
Towards a new approach to tightly coupled document collaboration
Speculative Short Paper

Stijn Dekeyser

Mathematics and Computing
University of Southern Queensland

Queensland 4350 Australia

dekeyser@usq.edu.au

Abstract Currently document collaboration typically
proceeds using tools such asCVS or vendor-specific
Computer Supported Collaborative Work (CSCW) and
Electronic Meeting (EM) messaging systems. Both reg-
ulate essentially asynchronousloosely coupledcollab-
oration. The prime disadvantages of these technolo-
gies are that often documents are checked out or dis-
tributed in their entirety and that human interaction is
needed in case of unresolvable conflicts. On the side of
tightly coupleddistributed collaborative work, emerg-
ing XML databases are employing database-type con-
currency control techniques, but unfortunately tend to
lock entire documents preventing simultaneous updates.
XML-enabled relational databases have the same in-
trinsic problems, leading to the question if another way
is possible.

In this speculative short paper we describe a
novel approach toward tightly coupled document
collaboration, involving database-style synchronous
client-server collaboration tailored to semi-structured
documents. It is partly based on previous theoretic
results which introduced path locks to control
concurrency on semi-structured data. We also describe
how clients may use a future communication protocol
based on the path locks.

Keywords Document and XML Databases,
Document Management, Document Collaboration.

1 Introduction
Collaboration on digital documents is not only a hot
topic, it’s a very important one as well. The economic
benefits of software allowing easy collaboration on any
kind of digital information are enormous. Currently
there is a wide range of techniques available, both for
general and specific purposes. Often these techniques
are classified using the two dimensions oftime and
location. Two main classes are physically distributed
asynchronous collaborative work, and physically
distributedsynchronouscollaborative work (we do not
discuss collaborative work in one location). We list

Proceedings of the 9th Australasian Document Computing
Symposium, Melbourne, Australia, December 13, 2004.
Copyright for this article remains with the authors.

some of them here, and give a very brief indication
of some of their individual drawbacks. Then we
proceed with outlining a new approach to document
collaboration.

Asynchronous, loosely coupled

CVS and related technologies.Drawbacks: (1) The
update method is based on lines in text files, rather
than on a conceptual representation of the seman-
tics of a document. (2) In case of multiple updates
on a given line, the system requires human inter-
vention to solve the conflict.

Tracking The technique of marking-up sections of a
document with change information is typically
used by word processing software and other office
tools. Drawbacks: (1) Multiple instances of
a document exist among authors, making file
management by hand unavoidable. (2) human
intervention is needed to solve conflicts. (3)
Documents must be distributed via email, disk,
FTP or other means.

CSCW and EMS (Messaging)A large body of
commercial systems manage group work
from a technical, managerial, and social
perspective [10, 16, 1]. The level of automatic
synchronization differs from product to product,
but often the entire workspace is distributed at
each participant’s site, while each copy is kept
up-to-date by interchanging appropriate control
messages [12].Drawbacks: Apart from those
of the previous two technologies, a distributed
groupware system can suffer concurrency control
problems due to events arriving out of order.
Other problems are outlined in [12].

Synchronous, tightly coupled

XML-enabled DB Documents can be stored in
relational tables, and users can update them
using transactions which are based on classic
concurrency control mechanisms.Drawbacks: it
has been shown [4, 9] that relational databases,
also those that are XML-enabled, are far from
adequate for generic document collaboration



purposes. This is mainly due to locking
mechanisms being table-based while several
parts of a document (or its entirety) may be stored
in the same table.

Native XML DB A document may be converted
to XML and stored in emerging native XML
databases [4]. Drawbacks: as with relational
databases, locking mechanisms are currently
primarily document-based, meaning that
concurrent updates on a single document are
not allowed.

Looking only at synchronous collaboration systems,
we notice that the main drawbacks of current methods
are related to the unsuitability of the concurrency
control technique that is being used. What is needed
is a new approach that controls concurrency at a
logical level within semi-structured documents (e.g.
XML [17]), rather than on a document-per-document
basis. We will present such an approach in Section 3.

2 Usage Scenarios
In this section we briefly describe some application ar-
eas where a new type of collaboration would be benefi-
cial.

2.1 Writing Documents
Typically, researchers using LATEX collaborate on pa-
pers with co-authors usingCVS or sending fragments
to a designated editor. Authors using other word pro-
cessors for more general purposes typically exchange
entire documents, with parts marked up to represent
changes made by different persons. This method is even
less satisfactory than using files inCVS repositories.

An alternative approach where the document
is stored on a server and clients interact with it
synchronously allows for a far better collaboration
experience. If a semi-structured locking mechanism
is used by the server, logical sections of a document,
however small or large, can be locked for write-access.
This ensures that the semantics of the document is
used in regulating concurrent access, and that human
intervention is not required to solve conflicts. Such
an approach would also make sense for web content
management systems.

2.2 Drawing Plans
Architects, engineers, or artists working in a team on a
vector graphic currently have even fewer options than
authors of text-based documents [5, 6, 8], unless the
graphic can be saved in a text format and kept in aCVS

repository as described above. Certain products have
facilities akin to those of word processors, where parts
are marked up to indicate editing by different persons.
However, someone must still manually manage a mas-
ter document and decide which updates are retained.
Other products use collaboration mechanisms based on

messaging. Here, too, multiple instances of a single
drawing exist, and users must intervene in the manage-
ment and resolution of conflicting updates. Certainly,
in some cases these properties are beneficial, but more
often they are not wanted.

Here, too, a different approach would likely be
better suited. Consider that the graphic is stored
as SVG [11] on a document collaboration server
that uses the document’s semantics to allow users
concurrent access to logical parts of the document
while scheduling potentially conflicting updates.
Collaborators would see the entire graphic evolve as
changes are made to it. Individual authors could be
given read- and update restrictions on any logical part,
akin to database privileges on tables or views. Only
one consistent, authoritative instance — managed
by the document collaboration server — exists (but
versioning is possible as in Section 2.3) at any given
time, although individuals may be allowed to make
copies of any version branch.

Some of these features are offered byDR. DWG [6],
but this is not a generic tool for use outside the partic-
ular application. Furthermore, it involves storing the
entire drawing at each user, letting one user at a time
make changes which are sent to the other collaborators
in real time. Similar comments hold for [13].

2.3 Programming
As a final use case, consider how collaborative
programming could be vastly improved if program
source code is treated logically rather than as a
sequence of lines. As in Section 2.1, the document
collaboration server regulates concurrent updates from
different clients, disallowing conflicts. The important
advantage of usingCVS, not just controlling updates but
also managing versions, can be effectively simulated in
this approach as well. For this, consider that the source
code is represented as anXML tree [3]. Special tags at
any location in the tree can indicate different versions
of code. A smart editor (e.g. Epic [2] already does this)
may manipulate these elements in diverse manners,
making version management realistic and flexible.

3 Path Lock Concurrency Control
In previous work [9] we have presented a novel concur-
rency control technique for use in schedulers for semi-
structured databases. It uses a new kind of locks which
are closely related to XPath queries to indicate precisely
which logical parts of a document have been read or
written by individual clients.

Clients query a document by sending XPath-like
statements to the document server. Appropriate path
(read) locks are set in the document. The document
server’s scheduler checks for conflicts with other
clients’ locks and sends back a node-set if there are no
conflicts.

Clients may alsoupdateparts that they have queried
within the context of a transaction, resulting in addi-



Figure 1: Epic Client View

tional path (write) locks. Path lock conflict rules are de-
scribed which enable checking for conflicts. The con-
flict rules exist in two versions,Path Lock Propagation
andPath Lock Satisfiability, representing a trade-off be-
tween time and space complexity in conflict checking
algorithms using the two schemes.

The paper also introduces two schedulers, aCon-
flict Scheduler and aCommitScheduler. Both sched-
ulers guarantee serializability of schedules consisting of
query and update statement belonging to various trans-
actions. Furthermore, their use of Path Locks and cor-
responding conflict rules allow for a much higher level
of concurrency compared to traditional relational and
hierarchical methods [9].

3.1 Transaction Operations
Making the above more concrete, we briefly list the op-
erations that clients may use within transactions. Some
details, notably constraints on their use, are omitted to
increase readability.

A(n, a) Theadditionoperation creates a new noden′

with tag-namea and an edge(n, n′) in the docu-
ment tree.

D(n) The deletionoperation removes the noden and
the edge incident ton in the document tree.

Q(n, p) The query operation returns the set of nodes
selected by the path expressionp started from the
context noden.

C() Thecommitoperation signals the end of a transac-
tion.

Note that the above update operations are sufficient
to support an XML update language such as
XUpdate [14], and that they can update both content
and structure.

4 Communication Protocol
As yet unexplored in the context of this paper is a com-
munication protocol (DCP — document collaboration
protocol) for use by document collaboration servers and
client document editors. Clearly, commands sent by the
client include the operations listed in Section 3.1. Addi-
tionally, arollback andabort operation will be needed,
as is ahandshakeoperation that identifies client and
transaction to the scheduler.

Replies from the server include sets of nodes as a
result for queries and updates, and notification of con-
flicts, and failures of both operations and transactions.

As a protocol for communication between a
database server and client, it is apparent that state must
be preserved during the lifetime of a transaction. And
since this technology must be usable over the Internet,
integration of the protocol with IP is essential.

5 Client Issues
Perhaps the most exciting challenge to realize this new
approach to document collaboration lies with redesign-
ing graphical clients. A general-purpose XML author-
ing client such as Epic offers a flat and a hierarchical
view of the document being edited (see Figure 1).

Clients implementing theDCP protocol described
in Section 4 must show the contents of parts of the
document as being uncertain. When a client (say,
A) first starts talking to the server, the full document
is received, yielding a flat and hierarchical view as
in Figure 1. However, to allow others to edit the
document, clientA must commit to release its read
locks, which at that point cover the entire document.
An end-user working withA can subsequently traverse
the assumeddocument (possibly requesting refreshes
whenever needed), while querying a specific part of
the document immediately prior to making a change.



Clearly, the exact query posed before the update will
determine the level of concurrent authoring allowed by
other clients. Thus, clientAmust allow for an intelligent
way to describe the section that will be modified. Many
different queries are possible; for example, a positional
query (/section[3]) may be preferred over a content-
specific query (/section[title=‘ab’]), with both
yielding different path locks and hence resulting in
different concurrent updates being allowed or refused.

The above can be summarized as the following for-
mal research problem: given a set of path locksL and a
write operationo, give all query expressionsq such that
the locks required byo andq do not conflict withL.

In addition to intelligently querying the part of the
document that the end-user is editing, the client must be
flexible in displaying concurrent changes (the conflict
rules make sure that no problems can arise, however).
For instance, ifA is working on a specific section while
B is moving that section to a different location, then
upon B’s commit, A should refresh its view to show
the new location of the section being edited. These
and other issues with clients need to be researched for
both general-purpose and specific-purpose (e.g. draw-
ing) editors.

6 Realization
To realize this type of document collaboration, at least
five areas need further research and/or development:

• The Path Locks technique referred to in Section 3
needs to be expanded to allow for more expressive
update commands and to support queries
expressed in the full surface-syntax of XPath [7].
This research is proceeding smoothly.

• The communication protocol described in
Section 4 needs to be defined exactly by network
protocol experts. Integration with the Internet
Protocol is essential.

• A general-purpose document collaboration server
needs to be extended with an implementation of
the Path Locks concurrency control theory and the
communications protocol. An open source native
XML database server such as eXist [15] would be
a good target.

• As an alternative to a general-purpose document
collaboration server, existing applications such as
word processors, vector graphics authoring sys-
tems, spreadsheet programs and others could to
be extended to include a light-weight server allow-
ing others to collaborate using the communication
protocols in their clients.

• Clients need to be re-thought to allow parts of the
document they are editing to go out of date, and
read-lock only those parts that are actively seen
by the end-user, and write-lock the even smaller
fragment that is being updated at any given time.

Research is necessary to investigate how this can
be done generally, while allowing a maximal level
of concurrent updates.

References
[1] Proceeding on the ACM 2002 Conference on Computer

Supported Cooperative Work, New Orleans, Louisiana,
USA, November 2002. ACM.

[2] Arbortext. Epic editor overview. Arbortext.com Web
Article, 2004. http://www.arbortext.com/html/

epic_editor_overview.html.

[3] G. Badros. JavaML: A markup language for Java
source code. InProceedings of the Ninth International
Conference on the World Wide Web, May 2000.

[4] R. Bourret. XML and databases. Website, 2004.www.

rpbourret.com/xml/XMLAndDatabases.htm.

[5] B. Burchard. Sharing your drawings: An introduction
to collaboration. Autodesk.com Web Article, 2004.

[6] Dr DWG Knowledge Center. TheCAD View Collabo-
rator. White Paper, 2004.http://www.drdwg.com/
techcenter/cadviewcollaborator.html.

[7] J. Clark and S. DeRose. XML Path Language
(XPath). Recommendation, World Wide Web Consor-
tium (W3C), 1999.http://www.w3.org/TR/xpath.

[8] P. Coffee. Collaboration’s new age. eWeek.com Web
Article, February 2004. http://www.eweek.com/

article2/0%2C1759%2C1539706%2C00.asp.

[9] S. Dekeyser, J. Hidders and J. Paredaens. A transaction
model for XML databases.World Wide Web Journal,
2004.

[10] D. Eseryel, R. Ganesan and G. S. Edmonds. Review of
computer-supported collaborative work systems.Edu-
cational Technology & Society, Volume 5, Number 2,
2002.

[11] J. Ferraiolo, J. Fujisawa and D. Jackson. Scalable
vector graphics (SVG) 1.1. Recommendation, World
Wide Web Consortium (W3C), January 2003.http:
//www.w3.org/TR/SVG/.

[12] S. Greenberg and D. Marwood. Real time groupware as
a distributed system: concurrency control and its effect
on the interface. InProceedings of the ACM conference
on CSCW, pages 207–217. ACM Press, 1994.

[13] C. Ignat and M. Norrie. Grouping/ungrouping in graph-
ical collaborative editing systems. InECSCW, 2003.

[14] L. Martin. XUpdate – XML Update Language. Draft
requirements, XML:DB, November 2000.

[15] W. Meier. eXist: An open source native XML database.
In Web, Web-Services, and Database Systems. NODe
2002 Web- and Database-Related Workshops. Springer
LNCS Series 2593, 2002.

[16] J. F. Nunamaker, Alan R. Dennis, Joseph S. Valacich,
Douglas Vogel and Joey F. George. Electronic meeting
systems.Commun. ACM, Volume 34, Number 7, pages
40–61, 1991.

[17] F. Yergeau, T. Bray, J. Paoli, C. M. Sperberg-McQueen
and E. Maler. Extensible markup language (XML)
1.0. Recommendation, World Wide Web Consortium
(W3C), February 2004.http://www.w3.org/XML/.


