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Information Programs for Technology Adoption:  
The Case of Energy-Efficiency Audits 

Soren T. Anderson and Richard G. Newell 

Abstract 

We analyze technology adoption decisions of manufacturers in response to energy audits 
provided by Department of Energy Industrial Assessment Centers. Using fixed effects logit 
estimation to control for unobserved plant characteristics, we find that plants respond as expected 
to financial costs and benefits, though there are unmeasured project-related factors that also 
influence investment decisions. Revealed behavior of plants suggests that most require a payback 
of 15 months or less as their investment threshold, corresponding to an 80% or greater hurdle 
rate. This is consistent with survey results for stated investment thresholds, suggesting that these 
programs do not lower hurdle rates, as some suggest. Plants reject about half of recommended 
projects; the primary rationale given is their economic undesirability, as opposed to remaining 
market or organizational barriers. This raises concerns regarding engineering-economic estimates 
of the degree to which there are feasible no-net-cost opportunities for reducing energy 
consumption and carbon emissions. 
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Information Programs for Technology Adoption:  
The Case of Energy-Efficiency Audits 

Soren T. Anderson and Richard G. Newell∗ 

1. Introduction 

Interest in energy-efficiency improvements has been reinvigorated by concerns ranging 

from the environmental effects of fossil fuel combustion—such as climate change due to carbon 

emissions or environmental damage caused by other pollutants (e.g., SO2 and NOx)—to energy 

price volatility and national security. The U.S. National Energy Policy, for example, 

recommends establishing “a national priority for improving energy efficiency” (White House 

2001), which supports the Bush Administration’s climate policy goal of decreasing the 

“greenhouse gas intensity” of the economy. As policies that would entail significant energy price 

increases are unlikely to be politically attractive in the near term, the focus has been on the 

development and diffusion of technology through other means. Thus, policy proposals have 

tended to emphasize programs that foster research, development, and deployment of 

technologies, government-industry partnerships, tax credits and other financial incentives, 

minimum appliance efficiency standards, voluntary agreements, and information programs.  

Information programs—which seek to encourage energy efficiency by increasing 

awareness of conservation opportunities and offering technical assistance with their 

                                                 
∗ Newell is a Fellow and Anderson is a Research Assistant at Resources for the Future, Washington, DC. 
We thank Kelly See for research assistance and Michael Muller at Rutgers University and Sandy Glatt at 
the Department of Energy for information on the program. We also acknowledge financial support from 
U.S. DOE grant DE-FG02-98ER62702. None of these institutions or individuals are implicated for any 
conclusions or errors that remain. 
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implementation—are an important element of this energy-efficiency policy portfolio. These 

programs take a variety of forms, including educational workshops and training programs for 

professionals, advertising, product labeling, and energy audits of manufacturing plants. In 

addition to alerting firms to profitable conservation opportunities, access to more accurate 

performance information can reduce the uncertainty and risk associated with adopting 

technologies that are new, or that receive differing reviews from equipment vendors, utilities, or 

consultants. The economic rationale for these programs lies primarily in public good aspects of 

knowledge and information provision. Although these programs are not free, the cumulative 

benefit of educating many users with similar information may well exceed the costs. Such 

information, however, tends to be underprovided by the private sector. Concerns about 

environmental externalities associated with energy production and use provide additional 

justification for these programs. 

Despite the role that information programs play in existing and proposed energy-

efficiency policy portfolios, surprisingly little is known about how participants respond to such 

programs. Although a reasonably large literature surveys various market barriers and market 

failures in energy-efficiency investment,1 few analyses have focused specifically on information 

programs—in part because of a lack of adequate data for analysis. One exception is Morgenstern 

and Al-Jurf (1999), who use data from the Department of Energy’s 1992 Commercial Buildings 

Energy Consumption Survey. They find that information provided through demand-side-

management utility programs appears to make a significant contribution to the diffusion of high-

efficiency lighting in commercial buildings. Although not the focus of their examination of 

energy-saving product innovation, Newell et al. (1999) find that the responsiveness of energy-

                                                 
1 See, for example, Ruderman et al. (1987); Sutherland (1991); Jaffe and Stavins (1994); and, Metcalf 
(1994). 
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efficient innovation in home appliances to energy price changes increased substantially during 

the period after energy-efficiency product labeling was required.  

DeCanio and Watkins (1998) investigate voluntary participation in the U.S. 

Environmental Protection Agency’s Green Lights Program, which offers companies technical 

expertise while committing them to a set of energy-efficient lighting improvements. They find 

that the characteristics of individual firms influence their decision to participate in the program. 

By exploiting information we have on multiple potential projects at each plant in our sample, we 

can control for the influence on adoption of unobserved characteristics across different plants 

using a logit model that includes plant fixed effects. 

We focus here on actions taken by manufacturing plants in response to energy audits 

offered through the U.S. Department of Energy’s Industrial Assessment Centers (IAC) program, 

which has been providing free energy assessments to small and medium-sized manufacturers 

since 1976. This program is of interest for several reasons. First, significant opportunities to 

conserve energy may exist in the industrial sector, which represents 37% of total national energy 

consumption. Second, the opportunity to focus on the behavior of small and medium-sized firms 

is rare because of data constraints, even though these firms represent more than 98% of all 

manufacturing firms and more than 42% of total manufacturing energy consumption. This focus 

is particularly appropriate given that smaller firms seem more likely to benefit from access to 

information and expertise, which may be more readily available to larger firms. Finally, the IAC 

program has generated an unusually extensive set of data on the characteristics of conservation 

opportunities identified and actions taken under the program (U.S. DOE 2001). One attractive 

aspect of these data is that there are multiple observations available for each firm, allowing us to 

control for unobserved differences in the propensity to adopt technology by employing a fixed 

effects model. 
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Because of their detail, these data provide a unique opportunity to quantify the factors 

that encourage small and medium-sized industrial firms to invest in energy-conserving 

technologies. After summarizing the general character of projects adopted under the IAC 

program, we explore the influence of technology costs, expected energy savings, and individual 

firm characteristics on the likelihood of technology adoption. We employ models of varying 

flexibility to examine and compare the degree of response to differences in capital costs and 

operating cost savings, as well as the price and quantity differences that underlie savings. The 

results strengthen our understanding of how certain factors influence technology adoption 

decisions, and whether this behavior is consistent with economic expectations. In addition, the 

results offer evidence on the likely relative effectiveness of policies for increasing energy 

efficiency, such as energy or carbon price increases, technology subsidies, and policies that 

directly alter the energy use of technologies. 

Another important aspect of this type of investment decisionmaking is the “payback 

period,” “hurdle rate,” or other discounting factor that firms employ when measuring current 

costs against future benefits. There is a substantial literature suggesting that “implicit discount 

rates,” which one can calculate based on the capital cost versus operating cost savings of 

alternative projects, can be quite high in practice (Hausman 1979; Train 1985). A related 

literature further contends that these high implicit discount rates are attributable to various 

market barriers and failures—including information problems—and that these problems can be 

ameliorated by appropriate policies, resulting in a lowering of the implicit discount rate (e.g., 

Ruderman et al. 1987). 

This has led to an approach used in several analyses of carbon mitigation costs, whereby 

the effect of information programs and other policies is incorporated into modeling efforts by 

significantly lowering the discount rate used for energy conservation decisions. The Clean 

Energy Futures study (Brown et al. 2001; Interlaboratory Working Group 2000), for example, 
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lowered investment hurdle rates in the industrial sector from 30% to 15% to capture the effect of 

various energy conservation policies. Such lowering of the discount rate results in a decrease in 

estimated energy use, as well as an increase in the rate at which energy use declines in response 

to energy price increases that result from, for example, a carbon permit system or carbon tax. 

This implies a lowering of the cost of carbon mitigation efforts through carbon price policies. 

We explore this issue by examining the rates of return for potential projects faced by 

firms that participated in the IAC program, to determine whether the level of implicit discounting 

used by plants that received information assistance actually decreased to the levels that some 

studies suggest. Finally, we analyze the reasons given by firms for not adopting recommended 

projects to determine whether this decision is due to the economic undesirability of the projects, 

or to some remaining type of market barrier or failure. 

We find that about half the projects recommended by energy assessment teams are 

actually adopted by the plants, although we cannot say how many of these projects might have 

been adopted in the absence of the energy audit. We find that the choice of whether to adopt a 

project depends on the financial characteristics of the project (i.e., technology costs, energy 

prices, the quantity of energy saved, energy operating cost savings, and the payback period) in 

ways predicted by economic theory, although there appear to be other unmeasured project-

specific factors that influence the investment decision. Surprisingly, however, we find that plant 

size had no measurable effect on adoption decisions, whereas most previous studies have found a 

positive relationship between plant size and technology adoption rates. 

Furthermore, we estimate that the implicit investment threshold typically used by the 

plants in evaluating energy audit recommendations was about a 1.25- to 1.5-year payback, which 

corresponds to about a 65% to 80% hurdle rate for projects lasting 10 years or more. These 

thresholds are consistent with what surveys of plant managers suggest they use for these types of 

investments, and do not therefore represent a significant decline. Finally, information regarding 
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the reasons given for rejecting certain recommendations suggests that the primary rationale is 

that the projects are economically undesirable. Remaining market and organizational barriers do 

not seem to play a large role in rejecting information provided under this program.  

Overall, one can view the glass as either half full or half empty. The results suggest that 

although the IAC program led to the adoption of many financially attractive energy conservation 

projects, plants found about half the projects recommended by assessment teams to be 

unattractive. This raises potential concerns about engineering-economic estimates of the degree 

to which there are profitable or zero-net-cost opportunities for reducing energy consumption and 

carbon emissions. 

2. Data 

2.1. The Industrial Assesment Center  Program and Database 

The IAC program has been providing free industrial assessments to small and medium-

sized manufacturers since 1976. The program operates as an extension service through 26 

participating universities, whereby teams of engineering students and faculty help manufacturers 

identify opportunities to conserve energy, reduce waste, and improve productivity (U.S. DOE 

2002). In addition to these direct benefits, the program may generate certain indirect benefits by 

educating university students (who may become future employees) and participating firms to the 

presence of potential future energy-conserving investment opportunities (Tonn and Martin 

2000). Of the program’s current federal outlay of about $7 million per year, each school receives 

about $180,000 annually, or about $7,000 per assessment. 
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Since 1981, a record of each assessment has been stored in the IAC database.2 With 

entries for more than 10,000 assessments (recommending some 70,000 individual projects), the 

database covers virtually every U.S. geographic region and manufacturing industry. Nearly half 

of these assessments have been conducted in the foods, rubber and plastics, fabricated metals, 

and commercial machinery industries. 

Assessments provided by the IAC program generally follow a typical protocol. 

Manufacturers expressing interest in the program must first meet several eligibility 

requirements.3 IAC teams then perform a preliminary assessment (e.g., reviewing the plant’s 

energy bills) followed by a one- or two-day visit to the plant site, where they interview 

managers, take a thorough tour of the plant, and gather technical data (e.g., measure lighting 

levels or check for air leaks). Within 60 days of the visit, IAC teams provide plant managers with 

an assessment report that highlights specific opportunities to increase energy efficiency, reduce 

waste, and improve productivity. Finally, two to six months following the delivery of the report, 

IAC teams contact plant managers by phone to determine which projects were actually 

implemented. For projects that were rejected, IAC teams try to determine the reason(s) why 

(U.S. DOE 2002, 2000). 

The information garnered during the assessment process provides the substance of the 

IAC database. The database contains information for each recommended project, including the 

project type, estimated implementation cost, quantity of energy conserved, and annual operating 

                                                 
2 The database is compiled and maintained by the Office of Industrial Productivity and Energy 
Assessment (OIPEA) at Rutgers University, http://oipea-www.rutgers.edu.  
3 Plants must have a Standard Industrial Classification (SIC) code of 20–30 (i.e., manufacturing) and be 
within 150 miles of an IAC host campus. In addition, plants must have gross annual sales of less than 
$100 million, fewer than 500 employees at the plant site, annual energy bills between $100,000 and $2 
million, and no professional in-house staff to perform the assessment. 
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cost savings, as well as confirmation of whether the recommended project was implemented. The 

database also contains other useful variables, such as the date of the assessment and plant-

specific variables like manufacturing sector (SIC code), annual sales, annual energy costs, and 

number of employees. Finally, for many rejected projects, the database contains information 

indicating why the project was not implemented (U.S. DOE 2002, 2000b). A rare aspect of these 

data is that they include multiple project investment decisions for each plant, allowing us to 

control for plant-level fixed effects that may affect the adoption decision. 

2.2. Data Procedures 

Our data come from the IAC database for the years 1981–2000.4 We focus exclusively on 

energy management projects, which are present in 97% of all assessments and represent 83% of 

all recommended projects during this period.5 We adjust all monetary figures for inflation, 

scaling to U.S.$2000 using the Producer Price Index from the U.S. Bureau of Labor Statistics 

(2001, finished goods, series WPUSOP3000). We omit approximately 35% of energy-related 

projects for various reasons, as explained below, resulting in a sample of 38,920 projects from 

assessments at 9,034 plants. Our results are robust to the inclusion or exclusion of these 

observations. 

                                                 
4 The database covered 1981–2001, but the data were incomplete for many assessments conducted during 
2001, presumably because many plants had not yet received their callback interviews at the time the data 
were downloaded. Thus, we focus on the period 1981–2000. 
5 The sample includes 9,827 assessments and 59,961 recommended energy management projects before 
cleaning. 
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In our econometric estimation of the project adoption decision, we employ a discrete 

dependent variable indicating whether a plant adopted a recommended project.6 Each project is 

classified by a four-digit assessment recommendation code (ARC), and we include dummy 

variables for eight two-digit ARC classifications: combustion systems, thermal systems, 

electrical power, motor systems, industrial design, operations, buildings and grounds, and 

ancillary costs.7 These variables are intended to capture heterogeneity across different types of 

projects (e.g., project lifetimes). 

In addition to implementation codes and project type classifications, IAC data contain 

information regarding the estimated implementation cost and annual operating cost savings of 

each project. Using these figures, we generate the simple payback for each project, which is 

defined as cost divided by annual savings. This figure can be interpreted as the number of years 

before the cost of a project is recovered through annual savings. We focus only on projects with 

paybacks between 0.025 and 9 years, because careful inspection revealed that data outside this 

rage were of dubious quality.8  

                                                 
6 The IAC database codes most projects as I (implemented), N (not implemented), P (pending), or K (data 
excluded or unavailable); some projects are missing this code. Our dependent variable equals 1 for 
projects coded as I, and 0 for projects coded as N. We omit projects with P, K, or missing implementation 
codes.  
7 There are a total of nine two-digit ARC classifications for energy management. We omit three 
observations classified as “alternative energy usage” because of a lack of degrees of freedom for the 
corresponding dummy variable. 
8 Overall, we observe that adoption rates fall from approximately 65% to 40% as payback increases from 
0.025 years to 9 years. Adoption rates for projects outside this range do not follow the same pattern, 
however. In fact, adoption rates for these projects regress toward the mean for all projects, suggesting that 
the information supposedly conferred by these payback values is of negligible value. 
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The data for most projects also include information regarding the estimated quantity of 

energy that would be conserved annually (e.g., kWh or Btu).9 We compute the average energy 

price associated with each project by dividing annual savings by the corresponding quantity of 

energy conserved.10 To make these prices comparable, in percentage terms, across different 

energy types (e.g., electricity versus natural gas), we normalize the prices within each energy 

type to have a mean of one. For example, we divide each natural gas price by the mean natural 

gas price in our sample, and we divide each electricity price by the mean electricity price. We 

call these new prices our energy price index. Finally, we divide annual savings by our new 

energy price index to generate quantity figures that are also comparable in percentage terms 

across different energy types.11 We call these new quantities our energy saved quantity index. To 

ease interpretation of parameter estimates, continuous variables are normalized so that their 

means equal unity, or zero after taking natural logarithms.  

2.3. Descriptive Statistics 

As shown in Table 1, the 9,034 manufacturing plants in our sample average about $30 

million in annual sales. Our sample of 38,920 energy conservation projects recommended to 

                                                 
9 In some cases, net savings are associated with more than one energy type (e.g., switching from electric 
to natural gas heating), making it impossible to identify individual energy prices and quantities. Thus, we 
focus only on projects with positive annual savings for a single energy type. Electricity-related savings 
are often the result of reductions in electricity usage (i.e., kWh x $/kWh) plus reductions in demand 
charges (i.e., max kW x $/kW). We treat all electricity-related dollar savings as having come directly 
from reductions in usage. 
10 We focus only on projects whose prices and quantities have a clear and interpretable meaning (e.g., 
“other gas” or “other energy” would not qualify). After generating prices, we drop projects whose prices 
are clear outliers. The average annual energy prices derived from the data are consistent with historical 
energy prices. 
11 Equivalently, the quantity index can be calculated by weighting the original quantities within each 
energy type by the mean price for that energy type. 
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these plants over the period 1981–2000 has an estimated average implementation cost of $7,400 

and savings of $5,600 per year. The average payback period for these projects is only 1.29 years. 

Despite the seemingly quick payback periods, however, firms adopted just 53% of these projects. 

The IAC audit teams estimate that over the 20-year period 1981–2000, the adopted projects in 

our sample represented about $103 million in energy conservation investment, resulting in 

aggregate annual savings of about $100 million, as shown in Table 2.12 This represents an 

estimated aggregate payback period of about 1 year for adopted projects. 

Breaking these numbers down by project type, Table 2 shows that 90% of the projects in 

our sample affect building and grounds (e.g., lighting), motor systems, and thermal systems; a 

smaller but significant number of projects affect combustion systems and operations. Finally, just 

a handful of projects affect electrical power, industrial design, and ancillary costs.  

We also see significant variation in terms of cost, annual savings, payback periods, and 

adoption rates. Thermal systems, electrical power, and industrial design projects have high costs 

and low adoption rates. Building and grounds and ancillary costs projects have average costs, 

close-to-average annual savings, and longer-than-average payback periods; firms adopt these 

projects about 50% of the time. Combustion systems and motor systems projects have lower-

than-average costs, average or less-than-average paybacks, and relatively high adoption rates. 

Overall, it appears that project types with high annual savings relative to cost (as reflected by 

short payback periods) are correlated with high rates of adoption, as long as costs are not too 

high.13 This is consistent with survey findings (e.g., U.S. DOE 1996) that suggest projects above 

                                                 
12 By contrast, rejected projects would have cost $186 million for an aggregate annual savings of only 
$117 million. These numbers imply that firms tend to adopt the most profitable projects. 
13 The exception is operations projects, which have low implementation costs and short payback periods 
yet are adopted only 50% of the time. Operations projects may be associated with significant unmeasured 
opportunity costs, however (e.g., temporary plant shutdowns). 
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a certain cost may not get adopted, regardless of their benefits, because of budget constraints or 

requirements for additional management approvals. 

 Most energy savings have come from the adoption of projects affecting building and 

grounds, motor systems, and thermal systems. This is not surprising, given that these projects 

represent the bulk of all recommended and adopted projects. In terms of return on investment, 

however, it is clear that combustion systems and operations projects have been the most 

profitable. The aggregate annual savings for adopted projects in these categories are roughly 

double their aggregate cost. Thermal systems projects have also proven profitable overall, with 

aggregate annual savings exceeding aggregate cost by 21%. Overall, these numbers suggest that 

the IAC program has alerted manufacturers to a number of energy conservation investment 

opportunities that appear profitable based on the IAC audit teams’ estimates of costs and 

benefits. It is conceivable, of course, that some of the adopted projects would have been 

implemented with or without IAC program involvement. Client firms may have already 

recognized attractive investment opportunities, for instance, but had not yet implemented these 

projects at the time of IAC program participation. 

To gain a more systematic understanding of firms’ behavior in response to the IAC 

program, we develop an econometric model that formally relates the energy conservation 

investment decision to the economic incentives of projects, including payback period, cost, 

annual savings, energy prices, and quantities of energy conserved. We discuss the econometric 

model and results below. 

3. Modeling and Estimation Approach 

Given a set of potential energy-conserving projects recommended by IAC auditors, we 

posit that a firm will adopt a particular project if the expected change in discounted profits is 
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positive given the characteristics of the project and the firm’s investment hurdle rate. We begin 

by defining πij
*, the expected change in profits resulting from the adoption of project i at plant j,   

 * ( , , ) ,ij ij ij ijC B Zπ ϕ ε= +  

where C is the expected cost of a project, B is the expected annual benefits of the project, Z is a 

vector of individual plant and project characteristics (e.g., investment hurdle rates and project 

lifetimes), φ is a function relating C, B, and Z to π*, and ε is a mean-zero independent, identically 

distributed error term.14 The error term reflects uncertainty in the expected profitability of 

projects, leading to rejection of projects that appear to be profitable, and vice versa. 

We do not observe the expected change in profits, π*. Rather, we observe only whether a 

project is implemented. We therefore define a dichotomous variable, π, which indicates whether 

a project is adopted: 

 *1 if 0,ij ijπ π= >  

and 

 *0 if 0.ij ijπ π= ≤  

It follows that 

 
*Pr[ 0] Pr[ 1]

                  = F( ( , , )),
ij ij

ij ij ijC B Z

π π

ϕ

> = =
 

where F is a cumulative distribution function for ε. Assuming F is logistic leads to the familiar 

logit model, whereas assuming F is standard normal leads to the probit model (Maddala 1983). 

As discussed further below, because we have observations for multiple potential projects at each 

                                                 
14 Note that we suppress subscripting in the text where this does not lead to confusion. 
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plant, we can estimate a logit model with plant-level fixed effects (Chamberlain 1980; Hamerle 

and Ronning 1995), thereby controlling for unobserved plant differences in the propensity to 

adopt. 

Our most basic econometric specification, the payback model, is given by 

(1) 2
1 2ln ln ,ij ij i jPB PB Aϕ β β γ α ε= + + + +  

where PB is the simple payback period for the project (cost divided by annual savings, PB=C/B), 

A is a vector of dummy variables indicating the project type, and α is a firm-specific fixed effect. 

Although it is well known that using a payback threshold is inferior to the net present value 

criterion (Lefley 1996), in the case of constant annual cash flows the two criteria lead to the same 

investment threshold, for a given investment hurdle rate and project lifetime.15 More importantly, 

simple payback analysis is the most common technique for project appraisal among the types of 

firms that receive IAC audits (Muller et al. 1995; U.S. DOE 1996), and much more widely 

(Lefley 1996).  

We found that entering PB and the other continuous variables described below in their 

logged form improved the model’s fit of the data and eased interpretation of the results, since 

changes in the probability of adoption correspond to percentage changes in the logged variables. 

Further, PB has been normalized so that the marginal probability of adoption at the mean 

payback is given directly by the coefficient on the linear term. That is, the marginal change in 

probability of adoption associated with a 1% increase in payback (at its mean) is β1 %. The plant 

fixed effects control for unobserved individual plant differences in the propensity to adopt, as 

                                                 
15 The three most serious flaws with applying a constant payback criterion across many projects are that it 
does not take account of differences across projects in (i) the time profile of the flows of cost and benefits, 
(ii) project lifetimes, and (iii) the total net benefits from implementation (i.e., it uses the ratio).   
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well as other assessment-related factors, such as the assessment date and the school conducting 

the assessment. 

Because payback is equal to cost divided by annual savings, equation (1) implies that 

percentage changes in costs and savings have the same effect on the probability of adoption. 

Theory suggests that they should have the same effect. Nonetheless, previous empirical studies 

have found that implementation cost has a stronger effect on energy conservation investments 

than energy savings (Jaffe and Stavins 1995; Hassett and Metcalf 1995). To test whether this is 

in fact the case, we explore less restrictive specifications. The cost-savings model is given by  

(2)  2 2
3 4 5 6ln ln ln ln ,ij ij ij ij i jC C B B Aϕ β β β β γ α ε= + + + + + +  

where C is the expected implementation cost of a project, B is expected annual savings in energy 

costs, and the other variables are as above. Like PB in equation (1), both C and B have been 

normalized and enter in their logged forms. Note that although it is discounted energy savings 

that matter for the investment decision (rather than simply the annual flow of savings, B), the 

discount factor multiplying B becomes additive after taking logs. As the discount factor depends 

on the firm’s investment hurdle rate and the project lifetime, its effect will be captured in the 

plant and project-type fixed effects, α and A. 

The cost-benefit model can also be made less restrictive. Because annual savings equal 

the quantity of energy conserved multiplied by the energy price, equation (2) implies that 

percentage changes in energy prices and quantities have the same effect on the probability of 

adoption. But one might conjecture, for instance, that energy prices are perceived as being less 

permanent than the quantity of energy saved, or that plant managers with engineering 

backgrounds are more sensitive to physical energy savings than to differences in the dollar value 

of these savings. For this reason we explore the possibility that energy prices and quantities have 

different effects on the probability of adoption. Our price-quantity model is given by 
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(3) 
2 2 2

7 8 9 10 11 12ln ln ln ln ln ln

                 ,
ij ij ij ij ij ij

i j

C C P P Q Q

A

ϕ β β β β β β

γ α ε

= + + + + +

+ + +
 

where P and Q are the price and quantity indexes described in section 2.2, and the other variables 

are as above.  

We estimate the payback, cost-benefit, and price-quantity models using a maximum 

likelihood, conditional fixed effects logit estimator, with plant-level fixed effects (Chamberlain 

1980; Hamerle and Ronning 1995). First note that assessments with all positive or all negative 

outcomes do not contribute to the log-likelihood and are therefore dropped from the estimation. 

Second, note that variables like annual sales, number of employees, and year of assessment are 

perfectly collinear with the plant-level fixed effects and cannot therefore be included in the 

estimation. We also estimated logit, random-effects logit, probit, random-effects probit, linear, 

linear fixed effects, and linear random-effects models, adding plant size and dummy variables for 

year, SIC code, project type, and IAC school to models without plant-level fixed effects. Our 

overall results (i.e., the effect of payback, cost, annual savings, prices and quantities) are robust 

to these alternatives. In addition, unlike other studies, we do not find a significant effect for plant 

size in models where it was included, whether measured by annual sales, annual energy costs, 

floor area, or employees. The results of the fixed effects logit estimations are presented below. 

4. Results 

4.1. Estimation Results 

Table 3 presents the results of our three econometric models of increasing flexibility. We 

transformed the coefficient estimates and standard errors so that they are presented as marginal 
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effects at the means of the continuous variables.16 Note that we have transformed the variables so 

that the marginal effects for continuous variables are given directly by the coefficient on the 

linear terms, as discussed above in section 3. Effects for the project type dummy variables have 

also been transformed so that they reflect the full change in predicted probability associated with 

each project type, relative to building and grounds projects (the omitted dummy variable).17 

Overall the results are consistent with economic expectations. To provide a sense of how 

our model fits the pattern of the data, Figure 1 plots the observed fraction of projects actually 

adopted at various payback levels, along with the estimated probability of adoption based on the 

payback model. As expected, projects with a longer payback period (i.e., greater ratio of costs to 

annual benefits) are less likely to be adopted. Further, the predicted probability corresponds quite 

well to the actual adoption rates of projects with various payback.  

Specifically, the results indicate that a 10% increase in payback leads to about a 0.8% 

decrease in the probability of adoption. The negative coefficient on the squared term for payback 

indicates that percentage increases in the payback period have an increasingly negative effect on 

                                                 
16 Given the form of the logistic distribution, ( ) exp( ) /(1 exp( ))′ ′ ′Λ = +β x β x β x , marginal effects in a 
logit model are equal to 2[ ] / exp( ) /(1 exp( ))E π ′ ′∂ ∂ = +x β β x β x  for continuous variables. With all 
continuous variables normalized to one at the mean, or zero after taking logs, and setting all fixed effects 
to zero, the marginal effects simplify dramatically to [ ] / / 4E π∂ ∂ =x β  at the mean. The assumption of 
setting the fixed effects to zero is both convenient and necessary because the conditional logit estimator 
does not produce individual parameter estimates for the fixed effects. Standard logit estimates of the same 
specification yielded a constant term estimate of –0.07, suggesting that the “average” fixed effect is 
indeed close to zero. Including a fixed effect of this magnitude in the calculation of marginal effects 
would reduce the factor multiplying β only negligibly from 0.2500 to 0.2497. 
17 The effect of a categorical variable, such as our project-type fixed effects, is found by taking the 
difference in the predicted probability with and without the categorical variable set to one. Given our 
normalizations described above, this results in the following simple relationship for the effect of 
categorical variable xi: [ 1] [ 0] exp( ) /(1 exp( )) ½i i i iE x E xπ π β β= − = = + − .  
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adoption rates. This result manifests itself in Figure 1 as downward curvature in the adoption 

function. 

The cost-benefit model relaxes the implicit restriction that costs and benefits have the 

same effect. According to the results of this model, a 10% increase in cost decreases the 

probability of adoption by 0.8%. The negative coefficient on the squared term for costs indicates 

that the effect of costs is increasingly negative, suggesting that very costly projects are especially 

unlikely to be adopted. This is consistent with survey findings showing that most firms consider 

an investment of $5,000 or more to be large, regardless of the benefits, and higher-cost projects 

($10,000 or more) are subject to greater scrutiny since they must be approved on a capital 

budgeting basis rather than paid out of production and maintenance budgets (Muller et al 1995; 

U.S. DOE 1996). 

On the other hand, a 10% increase in annual savings increases the probability of adoption 

by only 0.6%. The magnitudes of the cost versus savings effects are statistically different at the 

99% level.18 These results are consistent with previous literature, which finds that up-front 

implementation costs have a larger effect on energy conservation decisions than future annual 

savings. The magnitude of the difference, however, is much less pronounced in our results. 

Although we find that costs have a 40% greater percentage effect relative to future energy 

savings (at the mean of the data), Jaffe and Stavins (1995) found that costs had about three times 

the effect, and Hassett and Metcalf (71995) found that costs had about eight times the effect of 

energy savings. One difference, however, is that we have data directly measuring the estimated 

dollar value of energy savings, which includes both price and quantity information, whereas the 

                                                 
18 Using Wald tests, we reject the hypotheses that β3 = -β5 (Chi-square, 1 = 37.22) and that β4 = β6 (Chi-
square, 1 = 5.16). 
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other studies used only variation in energy prices to identify the effect of future energy dollar 

savings. We return to this issue below in the context of the price-quantity model. 

The price-quantity model relaxes the implicit restriction that changes in energy prices 

have the same percentage effect as changes in the quantity of energy conserved. The results 

indicate that a 10% increase in energy prices increases the probability of adoption by 0.4%, and a 

10% increase in the quantity of energy conserved increases the probability of adoption by 0.6%. 

Although the parameter estimates therefore indicate that energy conservation quantities have 

about a 40% greater effect on adoption likelihood than energy prices (i.e., the per unit value of 

conservation), these estimated effects are not statistically different at any reasonable confidence 

level.19 Still, they suggest that plant managers may be more responsive to differences in the 

quantity of energy conserved for alternative projects than to changes in energy prices. Perhaps 

plant managers with engineering backgrounds are inherently more responsive to technical energy 

savings than to their dollar value. Alternatively, quantity differences may be perceived as less 

uncertain and subject to change than price changes. 

The price-quantity model also permits a more direct comparison to other studies 

regarding the relative effect of up-front costs versus energy prices on the energy conservation 

decision. The results indicate that costs have a little more than double the effect of energy prices, 

which is more dramatic than the difference based on our less flexible cost-savings model above, 

but still not as large as the threefold or eightfold effect cited in the studies above. 

Although our results demonstrate that firms respond as predicted by economic theory to 

the incentives of payback, cost, savings, prices, and quantities, these variables do not fully 

                                                 
19 Using Wald tests, we cannot reject the hypotheses that β9 = β11 (Chi-square, 1 = 0.87) or the joint 
hypothesis that β9 = β11 and β10 = β12 (Chi-square, 2 = 2.69). 
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explain the technology adoption decision. Indeed, holding these variables constant, certain types 

of projects are more likely to be adopted than others, as measured by the project type dummy 

variables. Motor systems projects are the most attractive type of project, with a 9.2% greater 

probability of being adopted than building and grounds projects, the omitted group. Combustion 

systems and ancillary costs projects are about as likely to be adopted as building and grounds. 

Projects affecting operations, thermal systems, industrial design and electric power have, 

respectively, a 10%, 17%, 20%, and 25% lower probability of being adopted than building and 

grounds projects. 

Those results are consistent with the descriptive statistics on relative adoption rates for 

the various project types listed in Table 2. Further, they suggest that the IAC program’s simple 

measures of costs and benefits do not fully capture the relative desirability of alternative projects. 

There may be many missing factors—such as individual project lifetimes, unmeasured costs and 

benefits, uncertainty regarding costs and benefits, project complexity, and risks—that are crucial 

to understanding the adoption decision. Measurement error in the true costs and benefits of 

projects could also be leading to an “errors in variables” bias of the coefficients toward zero, 

resulting in estimated effects that are smaller in magnitude than their true values. 

4.2. Payback Thresholds and Implicit Discount Rates 

Previous literature has posited that information programs and other policies may lower 

the sometimes high implicit discount rates observed for firms with respect to their energy-

efficient investment decisions. We address this issue by looking at the observed level of implicit 

discounting for firms that participated in the IAC program. We focus on the 5,264 firms in our 

final sample that adopted some but not all of the energy-related projects recommended through 

IAC energy audits. This group is equivalent to the estimation sample from our econometric 

analysis. By sorting the payback periods of each plant from shortest to longest, one can in 

principle locate a “payback threshold” for that plant, below which projects are adopted and 
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above which projects are rejected. The payback threshold is an analogue to an investment hurdle 

rate. The presumption that all rejected projects will have higher paybacks than all adopted 

projects, however, ignores any uncertainty or measurement error in the estimation of project 

costs and benefits. In reality, we observe overlap in the paybacks of adopted and rejected 

projects for most firms. For each plant, we therefore find the adopted project with the highest 

payback and the rejected project with the lowest payback, and we take midpoint of these two 

paybacks as an estimate of the plant’s payback threshold. Conducting the same analysis but 

using only the sample of plants for which there is no such overlap in the paybacks of adopted and 

rejected projects yields very similar results. 

Figure 2 shows the distribution of payback thresholds. In addition, the figure shows the 

implicit discount rate or hurdle rate that corresponds to various payback thresholds.20 More than 

98% of firms have estimated payback thresholds less than 5 years, and about 79% have payback 

thresholds less than 2 years. The mean payback threshold is 1.4 years, and the median is 1.2 

years, corresponding to implicit discount rates of about 70% and 80%, respectively.  

Although these payback periods may seem quick, and the corresponding hurdle rates 

high, they are consistent with the investment thresholds that small and medium-sized 

manufacturers directly report that they routinely employ. For example, a series of industry 

roundtables conducted by the Alliance to Save Energy found that acceptable projects were 

typically limited to a 2-year payback or shorter, although larger companies sometimes 

considered 3-year paybacks to be acceptable (U.S. DOE 1996). This is consistent with other 

broad surveys of the use of the payback criterion, not just for energy conservation projects but 

                                                 
20 Implicit discount rates are given by solving PB = 1/r – 1/(r(1 + r)T) for r, where PB is the payback 
cutoff value, T is the project lifetime, and r is the investment hurdle rate to be calculated. For this purpose 
we use a project lifetime of 10 years. 
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much more widely (Lefley 1996). Likewise, in a followup survey of plants that had received an 

IAC audit, Muller et al. (1995) found that 85% of firms reported that they considered paybacks 

of longer than 2 years financially unattractive. The median threshold in this survey was a 1- to 

1.5-year payback, which is consistent with our findings. This suggests that participation in the 

IAC program had little or no effect on the discount rate for most firms. Further, since these high 

discount rates are based on projects and technologies that firms knew about, they cannot be 

explained by informational market failures. These firms simply use higher discount rates than 

many energy analysts commonly apply to them. Furthermore, what the firms state they do is 

fully consistent with their revealed behavior. This evidence seems to cast doubt on modeling 

approaches that significantly lower discount rates for energy-efficiency investment decisions in 

response to information programs. 

4.3.  Analysis of Reasons for Project Rejection 

Finally, to assess whether these high discount rates are the result of remaining market 

failures or imperfections, we examine the reasons given by firms for not adopting projects. Since 

about 1991, these reasons have been coded and recorded in the IAC database. For the purposes 

of our analysis, we focus only on rejected projects with at least one concrete reason for rejection. 

We classify these reasons as economic, financing, or bureaucratic , as shown in Table 4. 21 

As can be seen from Table 4, more than 75% of projects were rejected for what we 

consider legitimate economic reasons. Many reasons suggest an unattractive balance between the 

                                                 
21 Since 1991, 51% of rejected projects in our sample include a rejection code that falls into one of these 
three categories. We omit projects whose sole reason for rejection is “to be implemented after two years,” 
“considering,” “unknown,” “could not contact plant,” or “other.” Some projects list more than one reason 
for rejection. A relatively small number of projects have rejection codes in more than one of the broad 
classifications (e.g., economic and bureaucratic reasons), and we do not consider these projects in our 
analysis. 
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financial costs and benefits of a project (e.g., “too expensive initially” or “unsuitable return on 

investment”), which should be reflected in IAC estimates of implementation cost and annual 

savings. But some reasons hint at opportunity costs (e.g., “unacceptable operating changes” or 

“personnel changes”) and various project risks (e.g., “risk or inconvenience to personnel” or 

“suspected risk of problem with equipment”) that are not typically reflected in the IAC cost 

estimates. Firms report that the risk of the technologies’ not work properly, and potentially 

leading to production halts or changes in product quality and cost, is in fact a strong deterrent to 

adopting certain projects (U.S. DOE 1996). The implication of this result is that simple financial 

measures alone do not determine the decision to invest in energy-efficient technologies. Analysts 

or policymakers who look at these measures, see that measured financial benefits outweigh 

financial costs, and then assume that rejected projects reflect market barriers or market failures 

may be overlooking many unmeasured costs and benefits.22 

 Although most projects are rejected for legitimate economic reasons, market 

imperfections may play a role in the rejection of some projects. According to the IAC data, about 

10% of rejected projects were rejected for financing reasons—i.e., limited cash flow—perhaps 

indicating a failure of capital markets to efficiently allocate financial resources. It is possible that 

loans directed at energy conservation could be effective in ameliorating this problem.  

Finally, institutional reasons account for 14% of rejected projects. A lack of staff needed 

for project analysis and implementation was cited in 11% of rejected projects—ironic, since 

project analysis is partly what the IAC program attempts to provide. It may be that this reason for 

project rejection reflects real economic costs that render a project financially undesirable, 

                                                 
22 In our econometric model, many of these differences should be captured with our project-type dummy 
variables and plant fixed effects. 
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however, and not simply a bureaucratic constraint. There were also a small number of projects 

rejected because of bureaucratic restrictions within the firm—as when plant managers need 

executive approval before undertaking energy conservation projects—perhaps indicating certain 

principal-agent market failures. Overall, however, most projects appear to be rejected for 

legitimate economic reasons. Consequently, there does not appear to be much potential at these 

firms for encouraging adoption through the further removal of failures and imperfections in 

energy conservation decisions.  

5. Conclusion 

The U.S. Department of Energy’s Industrial Assessment Centers program provides a 

unique opportunity to quantify the effects of an information program for energy-efficient 

technology adoption. We find that about half of the projects recommended through the IAC 

program were adopted, though we cannot say how many of these projects would have been 

adopted in its absence. Overall, our results indicate that firms respond as expected to the 

economic incentives of different energy-conserving investment opportunities, such as payback 

periods, implementation cost, annual energy savings, energy prices, and quantities of energy 

conserved. These simple financial measures do not explain everything, however. Indeed, holding 

these factors constant, we find that certain project types are more likely to be adopted than 

others, suggesting that there may be many economic costs, benefits, and risks that the IAC 

program’s simple financial measures do not capture.  

We find evidence that firms are more responsive to implementation costs than to annual 

energy savings, although this difference is not as pronounced as in previous studies. Similarly, 

firms seem to be more responsive to energy savings based on the quantity of energy conserved 

than to energy prices, though the effects are not statistically different. These results suggest that 

policy mechanisms to reduce costs (e.g., tax breaks or subsidies for implementation) and directly 

promote technical efficiency improvements (e.g., direct support for energy-efficiency R&D) may 
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be somewhat more effective in the short term than price mechanisms (e.g., energy or carbon 

taxes). Only price mechanisms, however, also provide the continuing incentive to reduce energy 

use.  

Like previous studies, we found that firms demand quick payback periods of two years or 

less and use high implicit discount rates for project adoption, as revealed through their 

technology adoption decisions. These results suggest that the information provided by the IAC 

program did not lower the rate of return demanded by firms, as some studies have suggested. 

Further, our assessment of the reasons for project rejection reveals that most projects are rejected 

for legitimate economic reasons, though some of these reasons may be difficult to quantify 

financially. Remaining market and organizational barriers do not seem to play a large role in 

rejecting information provided under this program. 

Overall, one can view the glass as either half full or half empty. The data suggest that 

during the two decades 1981–2000, the IAC program has led to the adoption of many financially 

attractive energy conservation projects, yielding an estimated $100 million in annual energy 

savings for an outlay of about $103 million (if we assume none of the projects would have been 

adopted in the absence of the program). Still, nearly half the projects recommended by the 

program are rejected, and implicit discount rates remain seemingly high relative to the cost of 

capital, despite the provision of free information. Some would argue that the routine use of short 

payback periods is a symptom of remaining market imperfections in corporate management, 

such as problems of agency, moral hazard, imperfect or asymmetrical information, and incentive 

design (DeCanio 1993). Although this is clearly possible, and perhaps likely, it seems doubtful 

there are any available energy policy instruments that could significantly improve so pervasive a 

situation at reasonable cost. In addition, we find evidence for many unmeasured costs and risks 

not captured in the IAC program’s simple financial estimates, so that estimated rates of return 

likely differ from realized rates of return. Further, the reasons given by firms for rejecting 
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projects confirm that most are rejected for legitimate economic reasons. This raises potential 

concerns about engineering-economic estimates of the degree to which there are profitable or 

zero-net-cost opportunities for reducing energy consumption and carbon emissions. 
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Table 1: Descriptive Statistics 

Variable Mean Standard dev. Minimum Maximum 

Adopted 0.53 0.50 0.00 1.00
Payback (years) 1.29 1.29 0.03 9.00
Implementation cost ($) 7,400 82,714 3.47 10,100,000
Annual savings ($) 5,574 27,881 8.45 2,661,508
Energy price index 1.00 0.38 0.12 4.56
Energy saved quantity index 6,091 42,853 6.96 4,650,939
Annual sales ($) 29,156,398 37,715,612 41,503 684,192,832
Employees 170 147 1 4,000
Floor area (square feet) 253,887 3,208,579 300 150,000,000
Annual energy costs ($) 486,969 702,126 2,502 11,951,324

Note: Statistics are based on the sample of 38,920 observations for energy-related project recommendations, 
representing 9,034 plant assessments. Monetary figures are in U.S.$2000.  
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Table 2: Adoption Rates, Payback, Cost, and Annual Savings by Project Type 

Project type 
Number 

of 
projects 

Adoption 
rate 

Mean 
payback 
(years) 

Mean 
cost ($)

Mean 
annual 
savings 

($) 

Aggregate 
cost of 

adopted 
projects ($) 

Aggregate 
annual 

savings of 
adopted 

projects ($) 

Building and grounds 
(e.g., lighting, 
ventilation, building 
envelope) 

14,208 0.51 1.47 6,217 4,347 39,995,506 31,349,388

Motor systems (e.g., 
motors, air compressors, 
other equipment) 

13,783 0.60 1.22 5,297 4,123 36,891,259 32,818,958

Thermal systems (e.g., 
steam, heat recovery and 
containment, cooling) 

6,790 0.44 1.23 9,021 8,273 16,670,472 20,203,020

Combustion systems 
(e.g., ovens, furnaces, 
boilers, fuel switching) 

2,358 0.56 0.99 5,131 7,442 4,611,227 9,570,203

Operations (e.g., use 
reduction, maintenance, 
scheduling , automation) 

1,471 0.50 0.93 2,617 4,267 1,716,740 3,483,098

Electrical power (e.g., 
demand management, 
generation, transmission) 

155 0.30 1.82 287,100 94,215 953,399 602,745

Industrial design (e.g., 
modify thermal, 
mechanical systems) 

145 0.38 1.44 34,013 25,537 1,634,788 1,487,817

Ancillary costs (e.g., 
administrative, shipping, 
distribution) 

10 0.50 1.76 7,160 4,715 43,788 15,363

All projects 38,920 0.53 1.29 7,401 5,574 102,517,178 99,530,592

Note: Statistics are based on sample of 38,920 project recommendations, broken down by project type. Aggregate 
cost and aggregate annual savings are for the years 1981–2000. Monetary figures are in U.S.$2000.  
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Table 3: Fixed Effect Logit Estimates of Project Adoption 

  Payback model Cost-benefit model Price-quantity model 
ln(payback=savings/cost) -0.083**   
 (0.005)   
ln(payback=savings/cost)2 -0.009**   
 (0.002)   
ln(project cost)  -0.087** -0.085** 
  (0.005) (0.005) 
ln(project cost)2  -0.005** -0.005** 
  (0.001) (0.001) 
ln(annual savings)  0.061**  
  (0.006)  
ln(annual savings)2  0.000  
  (0.002)  
ln(price of energy)   0.043** 
   (0.016) 
ln(price of energy)2   -0.030 
   (0.018) 
ln(quantity of energy saved)   0.058** 
   (0.006) 
ln(quantity of energy saved)2   -0.001 
   (0.001) 
motor systems 0.092** 0.090** 0.090** 
 (0.008) (0.008) (0.008) 
thermal systems -0.167** -0.165** -0.165** 
 (0.011) (0.011) (0.011) 
combustion systems 0.002 -0.002 -0.003 
 (0.016) (0.016) (0.016) 
operations -0.094** -0.095** -0.095** 
 (0.019) (0.019) (0.019) 
electrical power -0.273** -0.253** -0.250** 
 (0.060) (0.061) (0.062) 
industrial design -0.214** -0.198** -0.197** 
 (0.060) (0.061) (0.061) 
ancillary costs -0.038 -0.048 -0.049 
 (0.211) (0.213) (0.213) 

Log likelihood -10,133 -10,118 -10,116 
Likelihood ratio 1,278** 1,308** 1,312** 

Note: Asterisks denote statistical significance at various levels: * = 95%, ** = 99%. Data are observations of energy-conserving 
project recommendations made under IAC program from 1981 to 2000. Dependent variable equals 1 if project is adopted and 0 
otherwise. Estimation method is ML conditional fixed effects logit with plant-specific fixed effects. Each model is estimated on 
an effective sample of 5,263 plant visits representing 26,068 recommended projects. 3,771 plants (12,852 projects) in the full 
sample were dropped because they had no variation in whether projects were adopted. Marginal effects at variable means are 
given directly by linear terms, setting fixed effects and project-type dummies at zero. Marginal effects for dummy variables give 
change in predicted probability associated with changing dummy variable from 0 to 1. See sections 2 and 3 for further detail. 
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Figure 1: Probability of Adoption versus Payback 

Note: Circles represent the observed adoption rates for fixed intervals of payback in log scale. The areas of the 
circles are proportional to the number of observations in each interval. The solid line is the predicted probability of 
adoption for the payback model (see Table 3). All fixed effects are set to zero for the figure. 
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Figure 2: Histogram of Payback Threshold Values 

Note: Figure shows fraction of plants having a payback threshold within fixed intervals of payback in log scale. 
Based on sample of 5,263 plants that adopted some (but not all) projects. Payback threshold values are given by 
midpoint between maximum payback for adopted projects and minimum payback for rejected projects within each 
assessment. Mean payback threshold is 1.4 years; median is 1.2 years. Implicit discount rates above bars correspond 
to payback thresholds assuming a 10-year project lifetime. See section 4.2 for further detail. 
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Table 4: Reasons Given for Project Rejection 

Reason for project rejection Number of 
rejected projects Percentage 

Economic reasons 5,099 76 
Too expensive initially 805 12 
Not worthwhile 677 10 
Unsuitable return on investment 603 9 
Impractical 589 9 
Facility changes 566 8 
Process and/or equipment changes 506 8 
Unacceptable operating changes 421 6 
Personnel changes 323 5 
Disagree 288 4 
Suspected risk of problem with equipment 215 3 
Risk or inconvenience to personnel 121 2 
Rejected after implementation failed 73 1 
Production schedule changes 68 1 
Material restrictions 33 1 

   
Financing reasons   

Cash flow prevents implementation 705 10 
   
Institutional reasons 926 14 

Lack of staff for analysis and/or implementation 723 11 
Bureaucratic restrictions 209 3 

   
All reasons 6,730 100 
Note: Some projects list more than one rejection code. Thus, numbers and percentages may not sum to totals for 
each broad category. A small number of projects had rejection codes in more than one of the broad categories 
and are not included here. See section 4.3 for further detail. 

 

 


