
Bayesian Reinforcement Learning with Behavioral Feedback

Teakgyu Hong†, Jongmin Lee†, Kee-Eung Kim†, Pedro A. Ortega‡, Daniel Lee‡
†KAIST, Republic of Korea

‡University of Pennsylvania, Pennsylvania, USA
{tghong, jmlee}@ai.kaist.ac.kr, kekim@cs.kaist.ac.kr, {ope, ddlee}@seas.upenn.edu

Abstract
In the standard reinforcement learning setting, the
agent learns optimal policy solely from state tran-
sitions and rewards from the environment. We con-
sider an extended setting where a trainer addition-
ally provides feedback on the actions executed by
the agent. This requires appropriately incorporat-
ing the feedback, even when the feedback is not
necessarily accurate. In this paper, we present a
Bayesian approach to this extended reinforcement
learning setting. Specifically, we extend Kalman
Temporal Difference learning to compute the poste-
rior distribution over Q-values given the state tran-
sitions and rewards from the environment as well as
the feedback from the trainer. Through experiments
on standard reinforcement learning tasks, we show
that learning performance can be significantly im-
proved even with inaccurate feedback.

1 Introduction
Reinforcement learning (RL) is the problem of an agent aim-
ing to maximize long-term rewards while acting in an un-
known environment. One of the fundamental challenges in
RL is the exploration-exploitation tradeoff : the agent has to
explore the environment to gather information on how to im-
prove long-term rewards, but always doing so will likely lead
to very poor rewards. Bayesian reinforcement learning (BRL)
provides a principled approach to finding the optimal trade-
off by computing Bayes-optimal actions, using the posterior
distribution over environment models or long-term rewards.

In the standard RL setting, it is assumed that the agent
learns solely from the state transitions and rewards from
the environment. Most BRL algorithms are developed pre-
cisely under this assumption, e.g. [Dearden et al., 1998;
Strens, 2000; Duff, 2002; Poupart et al., 2006; Guez et al.,
2012]. However, in many scenarios, there may be an addi-
tional source of information aside from the environment, such
as a trainer providing advice or feedback on which action to
execute. This is the learning setting assumed in this paper.

One of the dominant approaches related to this type of
scenario is reward shaping, where numeric feedback is con-
verted to additive reward bonus. In particular, a series of
work on potential-based reward shaping establishes a theory

on policy-invariant condition for the bonus, preventing un-
intended behavior [Ng et al., 1999; Wiewiora et al., 2003;
Harutyunyan et al., 2015]. Although this is a very attractive
approach, it is not directly applicable to our setting. For ex-
ample, when the feedback is discrete, such as “action a is
absolutely bad in state s”, then the agent should never take
that action again in the same state if the feedback is trusted.
However, reward shaping cannot assure this since the bonus
merely serves as a bias. In addition, it is not yet straight-
forward to extend this approach to BRL except for restricted
cases [Kim et al., 2015].

Another related approach is apprenticeship learning and
inverse reinforcement learning, where the agent infers the
underlying reward function behind the trainer’s demonstra-
tion [Ng and Russell, 2000; Abbeel and Ng, 2004; Ra-
machandran and Amir, 2007]. However, it is still nontriv-
ial to obtain active Bayes-optimal policies without a transi-
tion model of the environment. In addition, it is usually as-
sumed that a full demonstration is available before the agent
starts the inference task. Our algorithm can be seen as ex-
tending this line of work by directly inferring the value func-
tion from reward and feedback. This facilitates computing
Bayes-optimal policies during simultaneous interaction with
environment and trainer.

Our work is most closely related to policy shaping.
TAMER [Knox and Stone, 2009; 2012] extends traditional
RL to integrate numeric feedback into the familiar reward
learning rules. However, besides not being Bayesian, the
feedback is used only as a bias. Advise [Griffith et al.,
2013] combines Bayesian Q-learning [Dearden et al., 1998]
for reward and an independent policy learning algorithm for
discrete feedback. Lastly, SABL [Loftin et al., 2016] is a
Bayesian policy learning algorithm that focuses on the so-
phisticated model of feedback strategy in a reward-free envi-
ronment. Although the last two are most similar to our work,
they do not readily provide quantitative answers to questions
such as “how much more reward can be expected from ac-
tion a than from action b?”, which is crucial when actions are
associated with rewards.

In this paper, we present a model-free BRL algorithm that
learns jointly from reward and feedback. We assume dis-
crete feedback as in Advise and SABL, which is rooted in
behaviorism in psychology [Skinner, 1965]. Unlike Advise
and SABL, our algorithm tightly couples reward learning and

Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16)

1571

Algorithm 1: KTD posterior update

In : o(t)
= hs(t), a(t), r(t), s(t+1)

, a

(t+1)i: state
transition and reward observation ;
µ(t�1)

,⌃

(t�1): mean, cov of Pr(w(t�1)|o(1:t�1)
)

Out: µ(t)
,⌃

(t): mean, cov of Pr(w(t)|o(1:t)
)

¯µ(t)
= µ(t�1)

,

¯

⌃

(t)
= ⌃

(t�1)
+⌃

w

h = �(s(t), a(t))� ��(s(t+1)
, a

(t+1)
)

K

(t)
=

1
�

2
r+h>⌃̄(t)h

¯

⌃

(t)
h

µ(t)
=

¯µ(t)
+K

(t)
(r

(t) � h

>
¯µ(t)

)

⌃

(t)
= (I �K

(t)
h

>
)

¯

⌃

(t)

feedback learning. This is achieved by a generative model of
reward and feedback to track posterior over value functions.

2 Background
2.1 Kalman Temporal Difference (KTD) Learning
Our algorithm is an extension of Kalman Temporal Differ-
ence (KTD) [Geist and Pietquin, 2010], a model-free BRL
based on Kalman filter to track posterior distribution over Q-
functions1. Specifically, suppose that the agent observes tran-
sition o

(t)
= hs(t), a(t), r(t), s(t+1)

, a

(t+1)i at time step t, and
the Q-function is linearly parameterized by

Q(s, a) = �(s, a)>w,

where �(s, a) = [�1(s, a) · · ·�K

(s, a)]

> is the set of basis
functions and w is the parameter vector. Using Bellman equa-
tion, observed rewards are assumed to be generated by

r

(t)
= Q(s

(t)
, a

(t)
)� �Q(s

(t+1)
, a

(t+1)
) + ✏

(t)
,

(1)

where � is the discount rate and noise ✏

(t) ⇠ N (0,�

2
r

) is the
observation noise. The parameter vector w is a latent variable
that evolves by

w

(t)
= w

(t�1)
+ ⌫(t�1)

, (2)

where ⌫(t�1) ⇠ N (0,⌃

w

) is the process noise. Thus, we
can use Kalman filter for this linear dynamical system to track
multivariate Normal (MVN) posterior Pr(w(t)|o(1:t)

), using
the state transition model defined by Eq. (2) and the observa-
tion model defined by Eq. (1). KTD is shown in Alg. 1.

2.2 Truncated Multivariate Normal Distribution
At the core of our algorithm, we use the truncated MVN dis-
tribution. This distribution, denoted by x ⇠ tN (µ,⌃,a),
is defined as x ⇠ N (µ,⌃) with truncation x � a (i.e.
p(x) = 0 if x

i

< a

i

for any i)2. Thus, � and � denot-
ing the PDF and CDF of the MVN respectively3, the PDF of

1KTD is a family of algorithms for different types of RL tasks.
Here, KTD refers to KTD-SARSA, which is for evaluating Q-
function.

2There are single-tail and two-sided truncation versions of the
distribution, but we use the single-tail truncation in this paper.

3The common definition of CDF is Pr(x a), but we define it
as �(a) = Pr(x � a) since we will be interested in truncating out
the lower tail.

tN (µ,⌃,a) is defined by

f(x;µ,⌃,a) =

�(x;µ,⌃)

�(a;µ,⌃)

for x � a and 0 otherwise.
The first and second moments of the truncated d-variate

Normal distribution tN (µ,⌃,a) can be obtained from the
derivatives of moment generating function [Tallis, 1961]. We
start with the zero-mean truncated MVN tN (0,⌃,a), whose
moments are computed from the following formula:

↵E[x

i

] =

dX

k=1

�

ik

F

k

(a

k

) (3)

↵E[x

i

x

j

] = ↵�

ij

+

dX

k=1

�

ik

�

jk

�

kk

[a

k

F

k

(a

k

)] (4)

+

dX

k=1

�

ik

X

q 6=k

✓
�

jq

� �

kq

�

jk

�

kk

◆
F

kq

(a

k

, a

q

)

where ↵ = Pr(x � a) = �(a;0,⌃), and F

k

and F

kq

are the
first and second derivatives of �(x;0,⌃) at x = a:

F

k

(a

k

) = �(a

k

; 0,�

kk

)�(a�k

;µ�k|k(ak),⌃�k|k)

F

kq

(a

k

, a

q

) = �(a

k

, a

q

;0,⌃(k,q),(k,q))

· �(a�(k,q);µ�(k,q)|(k,q)(ak,aq),⌃�(k,q)|(k,q))

Here, µ�k|k(ak) and ⌃�k|k, as well as µ�(k,q)|(k,q)(ak, aq)
and ⌃�(k,q)|(k,q) denote the conditional means and covari-
ances, e.g. µ�k|k(ak) = ⌃�k,k

⌃

�1
k,k

a

k

is the mean of
[x1, . . . , xk�1, xk+1, . . . , xd

] conditioned at x
k

= a

k

, and
⌃�k|k = ⌃�k|k �⌃�k,�k

�⌃�k,k

⌃

�1
k,k

⌃

k,�k

is the corre-
ponding conditional covariance matrix.

For x0 ⇠ tN (µ,⌃,a) with non-zero mean µ, we use the
fact that x0

= x+ µ with x ⇠ tN (0,⌃,a� µ):

E[x

0
] = E[x] + µ (5)

E[x

0
x

0>
] = E[x

0
]E[x

0
]

>
+ E[xx

>
]� E[x]E[x]

> (6)

where E[x] and E[xx

>
] are obtained from Eq. (3) and (4).

While the above result applies to axis-aligned trunca-
tions, Tallis [1965] generalizes this result to truncated MVN
tN (µ,⌃,A,a) with plane truncation Ax � a where A is
a k ⇥ d matrix representing k independent planes. The main
idea is to find a transformation of x that reduces to the axis-
aligned truncation case. Specifically, consider the d⇥d matrix

B =

A

C⌃

�1

�
(7)

where C is a (d � k) ⇥ d matrix with rows orthonormal to
the rows of A. Note that y = Bx, the truncation is now
axis-aligned, i.e. y � [a;�1]. From x = B

�1
y,

E[x] = B

�1
E[y] (8)

E[xx

>
] = B

�1
E[yy

>
](B

�1
)

> (9)

where E[y] and E[yy

>
] are obtained from Eq. (3)–(6).

1572

Finally, the moments for the complementary area of the
truncation can be also easily obtained. Let tN c

(µ,⌃,a) de-
note the truncated MVN with truncation x 6� a. Given ran-
dom variable z ⇠ N (µ,⌃), we can decompose it into two
terms, z = �(z � a)z+�(z 6� a)z. Note that this is a mixture
distribution with the first component being z1 ⇠ tN (µ,⌃,a)

with mixture proportion ↵ = �(a;µ,⌃) and the second
component being z2 ⇠ tN c

(µ,⌃,a) with mixture propor-
tion 1 � ↵. From this, we can obtain moments E[z2] and
E[z2z

>
2] from

µ = ↵E[z1] + (1� ↵)E[z2] (10)

⌃+ µµ>
= ↵E[z1z

>
1] + (1� ↵)E[z2z

>
2] (11)

by replacing E[z1] and E[z1z
>
1] with the results computed

from Eq. (3)–(6).

3 Learning from Reward and Feedback
As we discussed earlier, prior work on handling discrete feed-
back has either interpreted it as a numeric value for learning
value functions (reward shaping) or used it directly for learn-
ing parameterized policies (policy shaping). In this section,
we present our algorithm that addresses the limitation of these
approaches by directly using discrete feedback for learning
value functions.

Specifically, we extend KTD to learn jointly from reward
and feedback. The observation at time step t is now ˆ

o

(t)
=

hs(t), a(t), r(t), f (t)
, s

(t+1)
, a

(t+1)i, and the posterior over the
parameters w(t) of Q-function is given by

Pr(w

(t)|ˆo(1:t)
) /

Z ⇥
Pr(w

(t�1)|ˆo(1:t�1)
)·Pr(w(t)|w(t�1)

)·

Pr(r

(t)
, f

(t)|s(t), a(t), s(t+1)
, a

(t+1)
,w

(t)
)

⇤
dw

(t�1)

which is essentially the recursive equation of forward proba-
bilities in HMMs. Our model assumes that reward and feed-
back are conditionally independent given Q-function, i.e.

Pr(r

(t)
, f

(t)|s(t), a(t), s(t+1)
, a

(t+1)
,w

(t)
)

= Pr(r

(t)|s(t), a(t), s(t+1)
, a

(t+1)
,w

(t)
)·

Pr(f

(t)|s(t), a(t),w(t)
).

The graphical model for our algorithm is depicted in Fig. 1.
Our main focus here is on the likelihood of discrete feed-

back Pr(f

(t)|s(t), a(t),w(t)
). In this work, we assume that

the feedback is binary (as in [Griffith et al., 2013]), repre-
senting whether the last action a

(t) executed by the agent was
optimal or not, from a potentially imperfect trainer. In a task
with M actions, the optimality of an action is equivalent to its
Q-value being no less than those of other actions. More for-
mally, action a is optimal if and only if M � 1 dimensional
vector d � 0, defined by

d = D

a

q

where D

a

is the (M � 1)⇥M matrix that yields differences
in Q-values, e.g. assuming that a = a1,

D

a1 =

2

66664

1 �1 0 · · · · · · 0

1 0 �1 0 · · · 0

1 0 0 �1 · · · 0

...
...

...
...

. . .
0

1 0 · · · · · · 0 �1

3

77775
,

Figure 1: The graphical model of KTD extended for learning
from reward and feedback. Feedback f and reward r are gen-
erated from the latent action-value function parameterized by
w. The states and actions are omitted to avoid clutter.

and q is the M -dimensional vector of Q-values, i.e.

q = �

s

w =

2

6664

�(s, a1)>

�(s, a2)>

...
�(s, a

M

)

>

3

7775
w.

Combining the equations, action a is optimal if and only if

D

a

�

s

w � 0.

Thus, feedback f from the trainer whether action a is opti-
mal (good) or sub-optimal (bad) is defined using the above:

Pr(f = good|s, a,w) =

⇢
⇢

TP

if D
a

�

s

w � 0

1� ⇢

TN

if D
a

�

s

w 6� 0

Pr(f = bad|s, a,w) =

⇢
1� ⇢

TP

if D
a

�

s

w � 0

⇢

TN

if D
a

�

s

w 6� 0

where ⇢

TP

and ⇢

TN

are the true positive and true negative
rates of feedback accuracy.

We are now ready to derive posterior over w given feed-
back, which is shown to be a mixture of two component dis-
tributions. As an example, when f = good,

Pr(w|f = good, s, a) =

1
⌘

⇥
⇢

TP

Pr(w)�(D

a

�

s

w � 0)

+ (1� ⇢

TN

) Pr(w)�(D

a

�

s

w 6� 0)

⇤
(12)

where ⌘ is the normalizing constant and � is the threshold
function. In particular, when the prior on w is the MVN as in
KTD, the posterior is the mixture of truncated MVNs. More
formally, given prior Pr(w) = N (µ,⌃), the first component
distribution becomes

Pr(w)�(D

a

�

s

w � 0) / tN (µ,⌃,D

a

�

s

,0).

The second component distribution corresponding to the
complement of truncation is rather unwieldy, requiring M

truncated MVNs to obtain the exact form. However, we can
use Eq. (10) and (11) to efficiently compute the moments.

1573

Algorithm 2: KTD update for reward and feedback

In : ˆo(t)
= hs(t), a(t), r(t), f (t)

, s

(t+1)
, a

(t+1)i: state
transition, reward, and feedback observation;
µ(t�1)

,⌃

(t�1): mean, cov of Pr(w(t�1)|ˆo(1:t�1)
)

Out: µ(t)
,⌃

(t): mean, cov of Pr(w(t)|ˆo(1:t)
)

Obtain µ(t)
r

,⌃

(t)
r

from KTD update (Alg. 1)
Obtain mean and cov hµ1,⌃1i of
tN (µ

r

,⌃

r

,D

a

(t)�
s

(t) ,0), as well as
↵ =

R
�(w;µ

r

,⌃

r

)�(D

a

�

s

w � 0)dw, by Eq. (8)–(9)
Obtain mean and cov hµ2,⌃2i of
tN c

(µ
r

,⌃

r

,D

a

(t)�
s

(t) ,0) by Eq. (10)–(11)
if f (t)

= good then
c1 =

⇢TP↵

⇢TP↵+(1�⇢TN)(1�↵) , c2 = 1� c1

else % f

(t)
= bad

c1 =

(1�⇢TP)↵
(1�⇢TP)↵+⇢TN (1�↵) , c2 = 1� c1

µ(t)
=

P2
i=1 ciµi

⌃

(t)
=

P2
i=1 ci(⌃i

+ µ
i

µ>
i

)� µ(t)µ(t)>

Finally, combining the results, the posterior is given by

Pr(w

(t)|ˆo(1:t)
) /

Z ⇥
Pr(w

(t�1)|ˆo(1:t�1)
)·Pr(w(t)|w(t�1)

)·

Pr(r

(t)|s(t), a(t), s(t+1)
, a

(t+1)
,w

(t)
)

⇤
dw

(t�1)

| {z }
KTD update

· Pr(f (t)|s(t), a(t),w(t)
)| {z }

feedback likelihood

.

Thus, we first perform KTD update using reward r

(t), and
then use Eq. (12) to update the posterior using feedback f

(t).
The remaining challenge is that the number of mixture

components grows exponentially in the number of updates.
Although there are a number of techniques to mitigate the
problem, our implementation leverages moment matching
with a single MVN: we first compute the moments of the two
component distributions in Eq. (12) to approximate each of
them as MVN, and then compute the moments of the mixture
to further approximate it as a single MVN (see Alg. 2).

We note in passing that our probabilistic model of feedback
shares similarity with [Boutilier, 2002], where the truncated
univariate Normal distribution was used to infer user prefer-
ences. In our model, the role of the truncated distribution is
different, inferring differences in Q-values for BRL, as well
as being extended to multi-dimensional plane truncations.

4 Unknown Feedback Accuracy
In this section, we further extend the algorithm to the case
where the agent does not have a-priori knowledge of the ac-
curacy rate of trainer feedback. Given that there is no straight-
forward conjugate prior for the feedback likelihood and that
the accuracy rate is represented by just two parameters ⇢

TP

and ⇢

TN

, we can take a simple grid-based filtering approach.
Specifically, we prepare N discrete levels of accuracy rates

{⇢(i)
= h⇢(i)

TP

, ⇢

(i)
TN

i|i = 1, . . . , N ⇥N} and initialize them

with uniform weight !(i)
= 1/N

2. Upon observing reward
and feedback at each time step, we update posterior over w
for each ⇢(i) using Alg. 2. Then, weights are updated by
Pr(⇢(i)|r, f) /

R
Pr(⇢(i)

,w, r, f)dw

=

⇥ R
Pr(w) Pr(r|w) Pr(f |w,⇢(i)

)dw

⇤
Pr(⇢(i)

)

/
⇥ R

Pr(w|r) Pr(f |w,⇢(i)
)dw

⇤
Pr(⇢(i)

)

=

⇥ R
Pr(w|r) Pr(f |w,⇢(i)

)dw

⇤
!

(i)
= ⌘

(i)
!

(i)
,

That is, we scale each weight !

(i) by factor ⌘

(i)
=R

Pr(w|r) Pr(f |w,⇢(i)
)dw. The first term Pr(w|r) of the

integrand is the MVN posterior from KTD. The second term
Pr(f |w,⇢(i)

) is the feedback likelihood, e.g. when f = good

for state s and action a,
Pr(f = good|w,⇢(i)

)

= [⇢

(i)
TP

�(D

a

�

s

w � 0) + (1� ⇢

(i)
TN

)�(D

a

�

s

w 6� 0)].

Thus, we can see that ⌘(i) is the normalizing constant ⌘ in
Eq. (12). Combining the results, the weights are updated by

!

(i)
new

=

⌘

(i)
P

j ⌘

(j)!
(i)
old

,

which represents the posterior probability of ⇢(i).

5 Experiments
Experiments were conducted on the following four RL tasks:
(a) Inverted pendulum [Lagoudakis and Parr, 2003] is a prob-

lem where the objective is to balance a pendulum at the
upright position by applying forces to the attached cart.
This problem consists of 2 state variables (the angle and
the angular velocity of the pendulum) and 3 actions (left
force, right force, or no force).

(b) Mountain car [Sutton and Barto, 1998] is a problem
where the objective is to drive an under-powered car up
to a hill from a valley as soon as possible. The car must
oscillate at the bottom of the valley to gain enough mo-
mentum. The problem consists of 2 state variables (the
position and velocity of the car) and 3 actions (accelerate
forward, accelerate backward, or no acceleration).

(c) Acrobot [Sutton and Barto, 1998] is a problem where the
objective is to swing up a two-link under-actuated robot
as soon as possible. The first link is suspended from a
point and the second can exert torque. Similar to moun-
tain car, it must swing back and forth to gain enough mo-
mentum to raise the tip of the second link. The problem
consists of 4 state variables (the angle and angular veloc-
ity of each joint) and 3 actions (positive torque, negative
torque, or no torque).

(d) Octopus arm [Engel et al., 2005] is a challenging prob-
lem where the objective is to control a simulated model
of the octopus arm to touch a given target as soon as pos-
sible. A detailed description of the model can be found
in [Yekutieli et al., 2005]. The problem consists of 82
state variables and 32 action variables. We used the sim-
ulation code provided in the 2009 RL competition, which
discretized the action space into 8 representative actions4.

4https://code.google.com/archive/p/rl-competition/downloads

1574

Problem �(s, a) dim(w) Prior w �

r

Pendulum RBF 25⇥3 N (0, I) 0.5
Mt. Car RBF 25⇥3 N (0, 0.1I) 0.5
Acrobot RBF 256⇥3 N (0, I) 0.5
Octopus RBF 332⇥8 N (�20, I)

p
10

Table 1: Experimental settings for each problem

Our algorithm, KTD+FB, which extends KTD to learn simul-
taneously from reward and feedback, is compared to the fol-
lowing algorithms:

• KTD: A model-free BRL that learns only from reward.
• Bayesian Q-learning with policy shaping (BQL+PS)

[Griffith et al., 2013]: To the best of our knowledge,
this is the only BRL algorithm that is capable of learn-
ing simultaneously from reward and discrete feedback.
However, this algorithm cannot be used directly since it
assumes discrete state space to represent policies. Thus,
we modified the algorithm to use softmax distribution to
represent policies for continuous state space

⇡v(s, a) =
exp(�(s, a)>v)P
a

0 exp(�(s, a0)>v)
,

and to learn policy parameter v by maximizing log-
likelihood with an `2 penalty term, given by

maxv
P

t

⌧=1 f
(⌧)

log[⇢

TP

⇡v(s
(⌧)

, a

(⌧)
)

+ (1� ⇢

TN

)(1� ⇡v(s
(⌧)

, a

(⌧)
))]

+ (1� f

(⌧)
) log[(1� ⇢

TP

)⇡v(s
(⌧)

, a

(⌧)
)

+ ⇢

TN

(1� ⇡v(s
(⌧)

, a

(⌧)
))]� �kvk2,

where f

(⌧)
= 1 if the feedback was good and 0 other-

wise. We also replaced BQL with KTD since the latter
has a more theoretical background. However, note that
this extension not only doubles the parameters (w and
v), but also requires performing a non-convex optimiza-
tion at each time step, which incurs a significant amount
of computation (LBFGS was used in this paper).

In order to simulate feedback generation, we first obtained
reference policy for each problem. For inverted pendulum,
we used the straightforward optimal policy as the reference
policy: if the pendulum is moving toward the upright posi-
tion, do nothing; otherwise, apply the force in the reverse
direction to prevent the pendulum from falling down. For
mountain car and acrobot, we obtained reference policies by
running KTD for sufficiently many time steps. For octopus
arm, we used a heuristic policy that unfolds arm whenever
it is bent and rotates the base towards the target. Then, we
generated feedback by comparing the reference policy ver-
sus the agent’s action and perturbing the feedback signal with
parameters ⇢

TP

and ⇢

TN

.
Tbl. 1 summarizes the algorithm parameter settings for

each problem. Regarding action-selection strategy at each
time step, we adopted a simple exploration policy motivated
by LinUCB [Li et al., 2010], where we select the action a

Problem Known ⇢ Unknown ⇢ KTD
(Alg. 2) (Sec. 4) (Alg. 1)

Pendulum 4.09±0.14 4.73±0.13 104.70±1.33

Mt. Car 26.68±0.33 27.03±0.30 6.62±0.19

Acrobot 13.11±0.18 13.35±0.12 1.48±0.06

Octopus 5.55±0.43 2.38±0.36 1.43±0.26

Table 2: Number of finished episodes after initial 2000 time
steps (4000 time steps for octopus arm) with feedback from a
perfect trainer.

with the maximum index

q(s

(t)
, a) = �(s(t), a)>µ(t)

+ c

q
�(s(t), a)>⌃(t)�(s(t), a),

with c = 2 held fixed throughout time steps. The idea here
is that we want to execute the action with the maximally esti-
mated Q-value biased by the confidence in the estimate.

We first compared the learning performance when the
trainer feedback was accurate, i.e. ⇢

TP

= ⇢

TN

= 1. Fig. 2
shows the results in the first 5000 time steps (12000 time
steps for octopus arm). We can clearly observe that providing
the agent with accurate feedback enables learning the optimal
policy very quickly. In inverted pendulum, the total number
of failures of KTD+FB in 5000 time steps was merely 4 on
average, and all of them occurred in the very early stage. Al-
though the performance gap between KTD+FB and BQL+PS
was very small in acrobot, it was clearly noticeable in other
domains. Overall, the performance improvement of KTD+FB
over BQL+PS was statistically significant in all problems.

Fig. 3 shows the learning performance of KTD+FB with
different feedback accuracy rates in the first 2000 time steps
(12000 time steps for octopus arm). We used five accuracy
rate settings ⇢

TP

= ⇢

TN

2 {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. As
naturally expected, the learning performance improved as we
increased the feedback accuracy. When ⇢

TP

= ⇢

TN

= 0.5,
KTD+FB reduces to KTD with a minor difference due to nu-
merical error. In addition, although not shown in the plots,
our algorithm shows symmetric learning performance with
an adversarial trainer, i.e. ⇢ < 0.5. For example, learning
performance was same for ⇢ = 0 (a fully adversarial trainer
who always lies) and ⇢ = 1.

Tbl. 2 compares the learning performance when the feed-
back accuracy is known to the agent (Alg. 2) versus un-
known to the agent with the accurate trainer. We used
the Bayesian filtering algorithm in Sec. 4 with 36 levels
of accuracy rates (⇢

TP

, ⇢

TN

) 2 {0.5, 0.6, . . . , 0.9, 1.0} ⇥
{0.5, 0.6, . . . , 0.9, 1.0}. The filtering algorithm performed
quite well without the information on feedback accuracy,
even showing almost same performance in Mountain car and
Acrobot.

6 Discussion and Future Work
In this paper, we presented a model-free BRL algorithm for
learning simultaneously from reward and behavior feedback.
Our algorithm extends KTD to the setting where the trainer

1575

0 1000 2000 3000 4000 5000
0

50

100

150

Time Steps

C
u
m

u
la

tiv
e
 #

 o
f
E

p
is

o
d
e
s

(L
o
w

e
r=

B
e
tt
e
r)

(a) Inverted Pendulum

KTD
KTD+FB
BQL+PS

0 1000 2000 3000 4000 5000
0

10

20

30

40

50

60

70

Time Steps

C
u
m

u
la

tiv
e
 #

 o
f
E

p
is

o
d
e
s

(H
ig

h
e
r=

B
e
tt
e
r)

(b) Mountain Car

0 1000 2000 3000 4000 5000
0

5

10

15

20

25

30

35

Time Steps

C
u
m

u
la

tiv
e
 #

 o
f
E

p
is

o
d
e
s

(H
ig

h
e
r=

B
e
tt
e
r)

(c) Acrobot

0 3000 6000 9000 12000
0

3

6

9

12

15

18
(d) Octopus Arm

Time Steps

C
u
m

u
la

tiv
e
 #

 o
f
E

p
is

o
d
e
s

(H
ig

h
e
r=

B
e
tt
e
r)

Figure 2: Learning performance of each algorithm with feedback from a perfect trainer, measured by the number of finished
episodes over time steps. The end of an episode corresponds to a failure in inverted pendulum, whereas a success in other
problems. In the case of octopus arm, we forced the episode to restart with a failure if the target was not touched for 1500 time
steps. The plots are averaged over 100 trials (40 trials for octopus arm) and error bars indicate standard errors.

0 500 1000 1500 2000
0

20

40

60

80

100

120

Time Steps

C
u
m

u
la

tiv
e
 #

 o
f
E

p
is

o
d
e
s

(L
o
w

e
r=

B
e
tt
e
r)

(a) Inverted Pendulum

KTD+FB 0.5
KTD+FB 0.6
KTD+FB 0.7
KTD+FB 0.8
KTD+FB 0.9
KTD+FB 1.0

0 500 1000 1500 2000
0

5

10

15

20

25

30

Time Steps

C
u
m

u
la

tiv
e
 #

 o
f
E

p
is

o
d
e
s

(H
ig

h
e
r=

B
e
tt
e
r)

(b) Mountain Car

0 500 1000 1500 2000
0

2

4

6

8

10

12

14

Time Steps

C
u
m

u
la

tiv
e
 #

 o
f
E

p
is

o
d
e
s

(H
ig

h
e
r=

B
e
tt
e
r)

(c) Acrobot

0 3000 6000 9000 12000
0

3

6

9

12

15

18
(d) Octopus Arm

Time Steps

C
u
m

u
la

tiv
e
 #

 o
f
E

p
is

o
d
e
s

(H
ig

h
e
r=

B
e
tt
e
r)

Figure 3: Learning performance (i.e. the number of finished episodes) during initial 2000 time steps (12000 time steps for
octopus arm) with different feedback accuracy rate.

provides, with some error, binary feedback on whether the
last action executed by the agent was optimal or not. The
probabilistic model behind the algorithm treats the reward
from the environment and the feedback from the trainer as
two conditionally independent observations generated from
the latent Q-value function. At the core of our approach is
the generative model of feedback using the MVN with plane
truncation, which yields a mixture of truncated MVNs as pos-
terior. We leveraged an efficient technique for computing the
first and second moments of truncated MVNs, which allows
us to perform m-projection (i.e. moment matching) of the
posterior over value functions using a single MVN.

In recent years, there has been a significant growth of in-
terest in (Bayesian) RL agents capable of learning from dis-
crete trainer feedback. One of the ways of achieving this is to
use reward shaping [Ng et al., 1999], which requires convert-
ing the discrete feedback into numeric values. However, this
approach cannot assure that the agent never executes bad ac-
tions again as the shaping function only serves as a behavior
bias. In addition, this approach generally requires a complete
specification of feedback for every state and action before ex-
ecution, which may be hard to fulfill in practice. Another
approach is to use policy shaping [Loftin et al., 2016], which
uses explicit models of policies to directly learn from discrete
feedback. However, since it is not trivial to reflect reward in
learning the policy, an independent model for reward learning
is typically used [Griffith et al., 2013]. As a consequence, we
cannot readily use Bayes exploration policies [Dearden et al.,
1998], such as Value of Perfect Information (VPI), Thompson

sampling, or Bayes upper confidence bound in an integrated
manner. Our work overcomes these limitations through a
probabilistic model that allows us to infer the value function
jointly from reward and discrete feedback. Consequently, our
agent will never execute bad actions again if the feedback is
trusted (unlike reward shaping), and is capable of making bet-
ter informed choices of actions (unlike policy shaping).

There are a number of directions for future work. First,
computing the moments of truncated MVNs requires evalu-
ating the MVN cumulative distribution function. In our case,
although we are using thousands of features, the dimension of
truncated MVN required to compute moments is effectively
reduced to the number of actions. Still, in an environment
with a large number of actions, we need a more efficient way
of computing moments. In this respect, a low-rank approxi-
mation of the covariance matrix may be promising, as well as
a variational inference approach. Second, it would be inter-
esting to extend the model to capture the feedback strategy of
the trainer as in [Loftin et al., 2016]. Lastly, although we took
a grid-based discretization to handle unknown accuracy rate
of feedback, a more sophisticated filtering algorithm would
be promising.

Acknowledgments

This work was supported by R.O.K. MSIP/IITP (B0101-
16-0307), DAPA/ADD (UD140022PD), U.S. AFOSR, ARO,
DARPA, DOT, NSF, and ONR

1576

References
[Abbeel and Ng, 2004] Pieter Abbeel and Andrew Y Ng.

Apprenticeship learning via inverse reinforcement learn-
ing. In Proceedings of the 21st International Conference
on Machine Learning (ICML), 2004.

[Boutilier, 2002] Craig Boutilier. A POMDP Formulation of
Preference Elicitation Problems. In Proceedings of the
AAAI Conference on AI (AAAI), 2002.

[Dearden et al., 1998] Richard Dearden, Nir Friedman, and
Stuart Russell. Bayesian Q-learning. In Proceedings
of the 15th National Conference on Artificial Intelligence
(AAAI), 1998.

[Duff, 2002] Michael Duff. Optimal Learning: Compu-
tational procedures for Bayes-adaptive Markov decision
processes. PhD thesis, University of Massachusetts,
Amherst, 2002.

[Engel et al., 2005] Yaakov Engel, Peter Szabo, and Dmitry
Volkinshtein. Learning to control an octopus arm with
Gaussian process temporal difference methods. In Ad-
vances in Neural Information Processing Systems (NIPS),
2005.

[Geist and Pietquin, 2010] Matthieu Geist and Olivier
Pietquin. Kalman temporal differences. Journal of
Artificial Intelligence Research, 39, 2010.

[Griffith et al., 2013] Shane Griffith, Kaushik Subramanian,
Jonathan Scholz, Charles L. Isbell, and Andrea Thomaz.
Policy Shaping: Integrating Human Feedback with Rein-
forcement Learning. In Advances in Neural Information
Processing Systems (NIPS), 2013.

[Guez et al., 2012] Arthur Guez, David Silver, and Peter
Dayan. Efficient Bayes-Adaptive Reinforcement Learn-
ing using Sample-Based Search. In Advances in Neural
Information Processing Systems (NIPS), 2012.

[Harutyunyan et al., 2015] Anna Harutyunyan, Sam Devlin,
Peter Vrancx, and Ann Nowe. Expressing arbitrary reward
functions as potential-based advice. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), 2015.

[Kim et al., 2015] Hyeoneun Kim, Woosang Lim,
Kanghoon Lee, Yung-Kyun Noh, and Kee-Eung Kim.
Reward shaping for model-based bayesian reinforcement
learning. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), 2015.

[Knox and Stone, 2009] W. Bradley Knox and Peter Stone.
Interactively Shaping Agents via Human Reinforcement:
The TAMER Framework. In The Fifth International Con-
ference on Knowledge Capture, 2009.

[Knox and Stone, 2012] W. Bradley Knox and Peter Stone.
Reinforcement Learning from Simultaneous Human and
MDP Reward. In Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS), 2012.

[Lagoudakis and Parr, 2003] Michail G. Lagoudakis and
Ronald Parr. Least-squares policy iteration. Journal of
Machine Learning Research, 4, 2003.

[Li et al., 2010] Lihong Li, Wei Chu, John Langford, and
Robert E Schapire. A contextual-bandit approach to per-
sonalized news article recommendation. In Proceedings
of the 19th International Conference on World Wide Web
(WWW), New York, New York, USA, 2010.

[Loftin et al., 2016] Robert Loftin, Bei Peng, James Mac-
Glashan, Michael L. Littman, Matthew E. Taylor, Jeff
Huang, and David L. Roberts. Learning behaviors via
human-delivered discrete feedback: modeling implicit
feedback strategies to speed up learning. Autonomous
Agents and Multi-Agent Systems, 30(1), 2016.

[Ng and Russell, 2000] Andrew Y Ng and Stuart Russell.
Algorithms for Inverse Reinforcement Learning. In Pro-
ceedings of the 17th International Conference on Machine
Learning (ICML), 2000.

[Ng et al., 1999] Andrew Y. Ng, Daishi Harada, and Stu-
art Russell. Policy Invariance under Reward Transforma-
tions: Theory and Application to Reward Shaping. In Pro-
ceedings of the 16th International Conference on Machine
Learning (ICML), 1999.

[Poupart et al., 2006] Pascal Poupart, Nikos Vlassis, Jesse
Hoey, and Kevin Regan. An analytic solution to dis-
crete Bayesian reinforcement learning. In Proceedings of
the 23rd International Conference on Machine Learning
(ICML), 2006.

[Ramachandran and Amir, 2007] Deepak Ramachandran
and Eyal Amir. Bayesian Inverse Reinforcement Learning.
In Proceedings of the 20th International Joint Conference
on Artificial Intelligence (IJCAI), 2007.

[Skinner, 1965] Burrhus Frederic Skinner. Science and hu-
man behavior. The Free Press, 1965.

[Strens, 2000] Malcolm Strens. A Bayesian Framework for
Reinforcement Learning. In Proceedings of the 17th Inter-
national Conference on Machine Learning (ICML), 2000.

[Sutton and Barto, 1998] Richard Sutton and Andrew Barto.
Reinforcement Learning: An Introduction. MIT Press,
1998.

[Tallis, 1961] G. M. Tallis. The moment generating func-
tion of the truncated multi-normal distribution. Journal of
the Royal Statistical Society. Series B (Methodological),
23(1), 1961.

[Tallis, 1965] G. M. Tallis. Plane truncation in normal pop-
ulations. Journal of the Royal Statistical Society. Series B
(Methodological), 27(2), 1965.

[Wiewiora et al., 2003] Eric Wiewiora, G Cottrell, and
Charles Elkan. Principled methods for advising reinforce-
ment learning agents. In Proceedings of the 20th Interna-
tional Conference on Machine Learning (ICML), 2003.

[Yekutieli et al., 2005] Yoram Yekutieli, Roni Sagiv-Zohar,
Ranit Aharonov, Yaakov Engel, Binyamin Hochner, and
Tamar Flash. Dynamic model of the octopus arm. i. biome-
chanics of the octopus reaching movement. Journal of
Neurophysiology, 94(2):1443–1458, 2005.

1577

