Monte-Carlo Tree Search for Constrained POMDPs

Jongmin Lee', Geon-Hyeong Kim', Pascal Poupart?, Kee-Eung Kim'-3
1 School of Computing, KAIST, Republic of Korea
2 University of Waterloo, Waterloo Al Institute and Vector Institute
3 PROWLER.io
{jmlee,ghkim } @ai.kaist.ac.kr, ppoupart@uwaterloo.ca, kekim @cs.kaist.ac.kr

Abstract

Monte-Carlo Tree Search (MCTS) has been successfully applied to very large
POMDPs, a standard model for stochastic sequential decision-making problems.
However, many real-world problems inherently have multiple goals, where multi-
objective formulations are more natural. The constrained POMDP (CPOMDP) is
such a model that maximizes the reward while constraining the cost, extending
the standard POMDP model. To date, solution methods for CPOMDPs assume an
explicit model of the environment, and thus are hardly applicable to large-scale real-
world problems. In this paper, we present CC-POMCP (Cost-Constrained POMCP),
an online MCTS algorithm for large CPOMDPs that leverages the optimization of
LP-induced parameters and only requires a black-box simulator of the environment.
In the experiments, we demonstrate that CC-POMCP converges to the optimal
stochastic action selection in CPOMDP and pushes the state-of-the-art by being
able to scale to very large problems.

1 Introduction

Monte-Carlo Tree Search (MCTS) [4} 5, [12]] is a generic online planning algorithm that effectively
combines random sampling and tree search, and has shown great promise in many areas such as
online Bayesian reinforcement learning 8l [10] and computer Go [[7,20]. MCTS efficiently explores
the search space by investing more search effort in promising states and actions while balancing
exploration and exploitation in the direction of maximizing the cumulative (scalar) rewards. Due to
its outstanding performance without relying on any prior domain knowledge or heuristic function,
MCTS has become the de-facto standard method for solving very large sequential decision making
problems, commonly formulated as Markov decision processes (MDPs) and partially observable
MDPs (POMDPs).

However in many situations, it is not straightforward to formulate the objective with the reward
maximization alone, as in the following examples. For spoken dialogue systems [24], it is common to
optimize the dialogue strategy towards minimizing the number of turns while maintaining the success
rate of dialogue tasks above a certain level. For UAVs under search and rescue mission, the main goal
would be to find as many targets as possible, while avoiding threats that may endanger the mission
itself. The constrained POMDP (CPOMDP) [9] is an appealing framework for dealing with this kind
of multi-objective sequential decision making problems when the environment is partially observable.
The model assumes that the action incurs not only rewards, but also K different types of costs, and
the goal is to find an optimal policy that maximizes the expected cumulative rewards while bounding
each of K expected cumulative costs below certain levels.

Although the CPOMDP is a very expressive model, it is known to be very difficult to solve due to the
PSPACE-complete nature of solving POMDP [[16] originating from the two main challenges: the
curse of dimensionality and the curse of history. Partially observable Monte-Carlo Planner (POMCP)
[L9] tames these two curses of POMDP by using Monte-Carlo sampling both in the root belief-state

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

and in the black-box simulation of the history. In contrast, solution methods for CPOMDPs, e.g.
dynamic programming [[L1], linear programming [[18]], and online uniform-cost search [23], are not
yet advanced up to this level, partly due to requiring an explicit model of the environment. This
prevents CPOMDP from being a practical approach for modeling real-world applications.

In this paper, we present an MCTS algorithm for CPOMDPs, which precisely addresses the scalability.
To the best of our knowledge, extending MCTS to CPOMDPs (or even CMDPs) has remained
unexplored since it is not straightforward to handle the constrained optimization in tree search. This
challenge is compounded by the fact that optimal policies can be stochasticﬂ In order to develop
MCTS for CPOMDPs, we first show that solving CPOMDPs is essentially equivalent to jointly
solving an unconstrained POMDP while optimizing its LP-induced parameters that control the trade-
off between the reward and the costs. From this result, we present our algorithm, Cost-Constrained
POMCP (CC-POMCP), for solving large CPOMDPs that combine traditional MCTS with LP-induced
parameter optimization. In the experiments section, we demonstrate that CC-POMCP converges to
the optimal stochastic action selection using a synthetic domain and that it is able to handle very large
problems including constrained variants of Rocksample(15,15) and Atari 2600 arcade game, pushing
the state-of-the-art scalability in CPOMDP solvers.

2 Background

Partially observable Markov decision processes (POMDPs) [22]] provide a principled framework for
modeling sequential decision making problems under stochastic transitions and noisy observations. It
is formally defined by tuple (S,, A, Op, T}, Z,, Ry, v, bo), Where S, is the set of environment states s,
A is the set of actions a, O,, is the set of observations o, T),(s'|s, a) = Pr(s;41 = §'|sy = s,a; = a)
is the transition probability, Z,(o|s’,a) = Pr(oi11 = o|si+1 = §’,a; = a) is the observation
probability, R,(s,a) € R is the immediate reward for taking action a in state s, v € [0, 1) is the
discount factor, and by (s) = Pr(sg = s) is the starting state distribution at time step 0. The history
ht = [ag, 00, - - -, at,0¢] and hyasr1 = [ag, 0o, - - -, at, 0, az11] denote the sequence of actions and
observations. The agent takes an action via policy w(a|h) = Pr(a; = alh; = h) that maps from
history to probability distribution over actions. In POMDPs, the environment state is not directly
observable, thus the agent maintains belief b;(s) = Pr(s; = s|h:) that can be recursively updated
using the Bayes rule: when taking action a in b and observing o, the updated belief is b*°(s")
Zp(ols’,a) Y Tp(s'|s,a)b(s). Since belief b; is a sufficient statistic of history h;, the POMDP
can be understood as the belief-state MDP (B, A, T, R, -y, by), where by is the initial state, B is the
set of reachable beliefs starting from by, T'(V'|b,a) = >_, o Zy(ols', a)Tp(s'[s,a)b(s)d(b', b*°)
is the transition probability, R(b,a) = Y b(s)Ry(s,a) is the immediate reward function. We
shall use h and b = Pr(s|h) interchangeably as long as there is no confusion (e.g. Qr(h,a) =
Qr(b,a), w(alh) = 7(a|b)). The goal is to find an optimal policy 7* that maximizes the expected
discounted return (i.e. cumulative discounted rewards):

Z'bet,at ‘bo] .

t=0

max Vi (bo) =

Constrained POMDPs (CPOMDPs) [9} 111} 18] is a generalization of POMDPs for multi-objective
problems. It is formally defined by tuple (S,, A,O,, Ty, Zp, Ry, Cp, €,7,bo), where C, =
{Cp.x}1.. Kk is the set of K non-negative cost functions with individual thresholds ¢ = {é;}1. k.
Similarly, a CPOMDP can be cast into an equivalent belief-state CMDP (B, A, T\, R, C, &, 7), where
Cr(b,a) = >, b(s)Cp i (s, a). The goal is to compute an optimal policy that maximizes the expected
cumulative reward while bounding the expected cumulative costs:

Z’VtR b, ar)]

Zthk(bt,at) | bol < & Yk

max Vi (b)) =

t=0

! Stochastic nature of the optimal policy in CPOMDPs results from the stochasticity of optimal policies in
CMDPs [1]]. A more formal treatment on this matter, pertinent to CPOMDPs, can be found in [6].

An optimal policy of the CPOMDP (or the equivalent belief-state CMDP) is generally stochastic and
can be obtained by solving the following linear program (LP) [[1]:

1
oz Z R(b,a)y(b, a) (1)

sit. Zy) = 8(bo,)+ Y T |b,a)y(b,a) V&'

b,a

> Cu(b,a)y(b,a) <& Vk

b,a

where y(b, a) can be interpreted as a discounted occupancy measure of (b, a), and §(z, y) is a Dirac
delta function that has the value of 1 if x = y and 0 otherwise. Once the optimal solution y*(b, a)
is obtained, an optimal stochastic policy and the corresponding optimal value are computed by
7*(alb) = Pr(alb) = y*(b,a)/ >, y*(b,a’) and Vi3 (bo; €) = >, , R(b,a)y* (b, a) respectively. It
is usually intractable to solve LP () exactly since the cardinality of B can be infinite.

POMCEP [19] is a highly scalable Monte-Carlo tree search (MCTS) algorithm for (unconstrained)
POMDPs. The algorithm uses Monte-Carlo simulation for both tree search and belief update to
simultaneously tackle the curse of history and the curse of dimensionality. In each simulation, a state
particle is sampled from the root node’s belief-state s ~ B(h) (called root sampling) and is used to
sample a trajectory using a black-box simulator (', 0,7) ~ G(s, a). It adopts UCBI1 [2] as the tree
policy, i.e. the action selection rule in the internal nodes of the search tree:

log N(h)]

arg max lQR(h,a) + N(h,a)

where Qg (h, a) is the average of the sampled returns, N (h) is the number of simulations performed
through h, N (h, a) is the number of times action a is selected in h, and « is the exploration constant to
adjust the exploration-exploitation trade-off. POMCP expands the search tree non-uniformly, focusing
more search efforts in promising nodes. It can be formally shown that Qg (h, a) asymptotically
converges to the optimal value Q% (h, a) in POMDPs.

Unfortunately, it is not straightforward to use POMCP for CPOMDPs since the original UCB1 action
selection rule does not have any notion of cost constraints. If we naively adopt the vanilla, reward-
maximizing POMCP, we may obtain cost-violating action sequences. We could obtain the average of
sampled cumulative costs () during search, but it is not straightforward how to leverage them in the
tree policy: if we naively prevent action branches that violate the cost constraint Q¢ (h, a) < é, we
may end up with policies that are too conservative and thus sub-optimal, i.e. a feasible policy may be
rejected during search if the Monte-Carlo estimate violates the cost constraint.

3 Solving CPOMDP via a POMDP Solver

The derivation of our algorithm starts from the dual of (T)):

min d(bo, D)V (b) + E Cr Ak 2)
{V(b)}vb
{\p>0}VE b

s.t. V(b) > R(b,a) ZCkba)\kJrfyZTb'\ba (') Vb,a

Observe that if we treat A = [Ag, ..., A K} as a constant, the problem becomes an unconstrained

belief-state MDP with the scalarized reward function R(b,a) — AT C(b, a). Let V5 be the optimal
value function of this unconstrained POMDP. Then, for any A, there exists a corresponding unique
VX, and we can compute Vx with a POMDP solver. Thus, solving the dual LP (2)) reduces to:

. « T
min {V/\(bo) +A'é (3)

Moreover, if there is an optimal solution y* to the primal LP in (), then there exists a corresponding
dual optimal solution V* and A*, and the duality gap is zero, i.e.

Vi (bo; &) ZR (b, a)y* (b, a) = Vi (bo) + A" T &

by the strong duality theorem.

To compute optimal A in Eq. (3), we have to consider the trade-off between the first term and the
second term according to the cost constraint €. For example, if the cost constraint € is very large, the
optimal solution A* tends to be close to zero since the objective function would be mostly affected by

the second term A ' &. On the other hand, if ¢ is sufficiently small, the first term will be dominant
and the optimal solution A* tends to get larger in order to have a negative impact on the reward

R(b,a) — AT C(b,a). Thus, it may seem that Eq. (3) is a complex optimization problem. However, as
we will see in the following proposition, the objective function in Eq. (3)) is actually piecewise-linear
and convex over A, as depicted in Figure |3|in Appendix

Proposition 1. Let V5 be the optimal value function of the POMDP with scalarized reward function
R(b,a) — X" C(b,a). Then, Vi (bo) + X' & is a piecewise-linear and convex (PWLC) function of .
(The proof is provided in Appendix[A])

In addition, we can show that the optimal solution A* is bounded:

Proposition 2 (Lemma 4 in [14])). Suppose that the reward function is bounded in [Rynin, Rmax] and

there exists T > 0 and a (feasible) policy such that V5 (by) + 71 < &. Then, || A |1 < %

Thus, from Propositions|1|and 2} we can obtain optimal A* by greedily optimizing (3)) with Ay, in the

range [0, %]. The remaining question is how to compute that direction for updating A. We

start with the following lemma to answer this question:

Lemma 1. Let My = (B, A, T, Ry,7) and My = (B, A, T, Ry,) be two (belief-state) MDPs
differing only in the reward function, and V" and V' be the value functions of My and My with
a fixed policy ©. Then, the value function of the new MDP M = (B, A, T,pR1 + qR2,"y) with the
policy m is V™ (b) = pV{™ (b) + qV5 (b) for allb € B. (The proof is provided in Appendix|[B})

Lemmaimplies that V5 can be decomposed into Vj (by) = Vg; (bo) —)\TVg;‘ (bo) where 7} is
the optimal policy with respect to the scalarized reward function R(b,a) — A" C(b,a), and thus
becomes:

min |V~ (bo) = ATVE (bo) + AT ¢ @
One way to compute the descent direction for A would be by taking the derivative of Eq. @) with

respect to A while holding 73 constant so that we use the direction V5> (bg) — €. The following
theorem shows that this is indeed a valid direction:

Theorem 1. For any A, Vg;‘ (bo) — € is a negative subgradient that decreases the objective in Eq. (3)),
where 7} _is the optimal policy with respect to the scalarized reward function R(b, a) — ATCb,a).
Also, ing" (bo) — € = O then A is the optimal solution of Eq. @). (Proof provided in Appendix@)

The direction Vg; (bo) — € has a natural interpretation: if the current policy violates the k-th cost
constraint (i.e. ng‘ > (), A\, increases so that the cost is penalized more in the scalarized reward
function R(b,a) — AT C(b,a). On the other hand, if the current policy is too conservative for the
k-th cost constraint (i.e. Vg}j < Cg), A\, decreases so that the cost is penalized less.

In summary, we can solve the dual of LP of the belief-state CMDP by iterating through the following
steps, starting from any A:

1. 7} < SolveBeliefMDP((B, A, T, R — A" C,))
2. Vg; + PolicyEvaluation((B, A, T, C,~), 7})
3. A= A+ an (VG (bo) — &) and clip Ay to range [0, Buss=Puin] v € {1,2,.. K}

By Theorem [I] this procedure is a subgradient method, guaranteed to converge to the optimal solution

by using a step-size sequence v, such that) © «, =ocoand) a? < co.

Algorithm 1 Cost-Constrained POMCP (CC-POMCP)

function SEARCH(ho) function SIMULATE(s, h, d)
A is randomly initialized. if d = (maximum-depth) then
repeat return [0, 0]
if b = () then end if
s~ bo if h ¢ T then
else T (ha) < (Ninit, QRinit, Qc,init, 0) Ya
s ~ B(ho) return ROLLOUT(s, h, d)
end if end if
SIMULATE(Ss, hg, 0) a ~ GREEDYPOLICY(h, Kk, V)
a ~ GREEDYPOLICY (ho, 0, 0) (s',0,7,¢) ~ G(s,a)
A A+ an [Qc(ho,a) — ¢ [R,C] < [r,c] + - SIMULATE(s', hao, d + 1)
Clip A to range [0, %] Vk={1,2,..K} B(h) < B(h)U{s}
until TIMEOUT() N(h) < N(h) +1
return GREEDYPOLICY (ho, 0, /) N(h,a) <~ N(h,a) +1
end function Qr(h,a) + Qr(h,a) + %ﬂ’;‘”
function ROLLOUT(s, h, d) Qc(h,a) «+ Qc(h,a) + %
if d = (maximum-depth) then &(h. a) < &(h. a) + =ctha)
return [0, 0] (h, a) (h,a) + Noa)
end if return [R, C|
a~ ﬂ—'rollout('lh) and (S/7 o,r, C) ~ g(s7 a) end function
return [r, ¢ + - ROLLOUT(s', hao, d + 1) function MAINLOOP()
end function ¢ < (cost constraint)
function GREEDYPOLICY(h, K, 1/) Z i %mual state)
Q¥ (h,a) = Qr(h,a)=A"Qc(h,a) + & 1(135(1:’2};) while s is not terminal do
a* « argmax, QY (h,a) T S(E‘ZI;CH(}I)
* * * * a~ m(-
A"« {ai | 1Qa(h,ai) = Qu(h,a")] (s, 0,7,¢) ~ G(s, a)
log N (h,aj) log N (h,a*) o é—m(alh)e(h,a) =3,/ 24 w(a'|h)Qc (h,a’)
< ”(N(ha) T \/ N(h,a*))} C 4= ~r(alh)
Solve LP (I0) with A* to compute a policy 7(aj|h) = w;. s+ s
h < hao
return 7 (-|h) end while
end function end function

4 Cost-Constrained POMCP (CC-POMCP)

Although we have eliminated the cost-constraints by introducing simultaneous update of A, it still
relies on exactly solving POMDPs via SolveBeliefMDP in each iteration, which is impractical for

large CPOMDPs. Fortunately, all we need in step 3 is the cost value at the initial belief state Vg A (bo)

with respect to the optimal policy when the reward function is given by R — A" C. This is exactly
the situation where MCTS can be effectively applied: MCTS focuses on finding the optimal action
selection at the root node using the Monte-Carlo estimate of long-term rewards (or costs). We
are now ready to present our online algorithm for large CPOMDPs, which we refer to as Cost-
Constrained POMCP (CC-POMCP), shown in Algorithm [T} The changes from the standard POMCP
are highlighted in blue. CC-POMCP is an extension of POMCP with cost constraints and can be seen
as an anytime approximation of policy iteration with the simultaneous optimization of A: the policy
is sequentially evaluated via Monte-Carlo return

R—Qr(h,a) C - Qc(h,a)

Qr(h,a) < Qr(h,a) + Nh.a) and Qc(h,a) < Qc(h,a) +

and the policy is implicitly improved by the UCB1 action selection rule based on the scalarized value

Ox(h,a) = Qr(h,a) — AT Qc(h, a):

argmax QF (h,a) = |Qr(h,a) = A" Qc(h,a) + & m] (6)

Finally, A is updated simultaneously using the current estimate of Vo (sg) — €, which is the descent
direction of the convex objective function:

A X+ an(Qc(hg,a) — €) where a ~ w(-|ho) 7

The following theorem states that CC-POMCP asymptotically converges to optimal A* under mild
assumption:

Theorem 2. Suppose that A is updated with increasing simulation step t, and the search tree is
reset at the end of \’s update as detailed in Appendlx [F] If the asymptotic bias of UCT holds
"M ho) — Ve, (ho)| < M ('), then either
sign(VEX (ho) — é) = sign(VCk (ho) — ék) or \Vg}j (ho) — é| < MlOTgt holds with probability 1

ast — oo.

The above states that either X is close to optimal or it is improved by the update towards the direction
of negative subgradient. Note that CC-POMCP inherits the scalability of POMCP and thus does not
require an explicit model of the environment: all we need is a black-box simulator G of the CPOMDP,
which generates sample (s, 0,7, ¢) ~ G(s, a) of the next state s, observation o, reward r, and cost
vector ¢, given the current state s and action a.

4.1 Admissible Costs

After the agent executes an action, the cost constraint threshold ¢ must be updated at the next time
step. For this, we reformulate the notion of admissible cost [177]], originally formulated for dynamic
programming. The admissible cost €, at time step ¢ 4+ 1 denotes the expected total cost allowed
to be incurred in future time steps {t + 1,¢ + 2, ...} without violating the cost constraints. Under

&—E[C(r.ar)bom] yhere evaluating

dynamic programming, the update is given by [17]: ¢,y = >
E[C(b;, at)|bo, 7] requires the probability of reaching (b, a;) at time step ¢, which in turn requires
marginalizing out the history in the past [ag, b1, ag, ..., by—1]. This is intractable for large state spaces.
On the other hand, under forward search, the admissible cost at the next time step ¢ + 1 is simply
&41 = VZ (biy1). We can access VE (by11) by starting from the root node of the search tree h,
and sequentially following the action branch a, and the next observation branch o, ;. Here we
are assuming that the exact optimal V3 " is obtained, which is certainly achievable after infinitely
many simulations of CC-POMCEP. Note also that even though ¢; > V3 ’ (b4) is possible in general,

assuming ¢&; = V& " (by) does not change the solution. If & < V& " (by), this means that no feasible
policy exists.

4.2 Filling the Gap: Stochastic vs Deterministic Policies

Our approach relies on the POMDP with scalarized rewards, but care must be taken as the optimal
policy of the CPOMDP is generally stochastic: given optimal X™, let 7 be the deterministic optimal

policy for the POMDP with the scalarized reward function R — A*TC. Then, by the duality between
the primal () and the dual),

Vi (b0:€) = VA (bo) + X7 & = Vi (bo) — A" (VS (bo) — &) ®

This implies that if A} > 0 and Vg* (bo) # cx for some k then 75 is not optimal for the original
CPOMDP. This is exactly the situation where the optimal policy is stochastic. In order to make the
policy computed by our algorithm stochastic, we make sure that the following optimality condition is

satisfied, derived from Vi (by; €) = Vgi (bo):

ZAk (V5> (bo) — éx) Z/\k (Zﬂ albo)QE (bo, a) — >:0 9)

k=1

That is, actions a} with equally maximal scalarized action values Qx(b,af) = Qr(b,a}) —

)\TQC(b, a¥) participate as the support of the stochastic policy, and are selected with probabil-
ity 7(a;[b) that satisfies Vk : A}y >0, > . 7(aj[b)Qc, (b,a}) = Ck.

0.001 0.01 0.1 0.001 0.01 0.1 0.001 0.01 0.1 1 0.001 0.01 0.1 1

o o . L
§ search time of CCPOMCP (secs), g 0.96 _[search time of CCPOMCP (secs)| § 15.0 {search time of CCPOMCP (secs) % 15.0 fkearch time of CCPOMCP (secs)
2 o 2125 o 12,5
¢ . ¢ 2 .
5 T 0.94+ £ 100 & 100 ---c
‘_2 E ~—- ¢, Optimal (stochastic) E 75 E ;5 CALP
3 3 0.024 7 Optirr_\al (deterministic) 3 3 : —— Baseline
< 2 Baseline 5 >0 T s0 —— CCPOMCP (ours)
k] £ CCPOMCP (ours)] €
c =1 e 25 =1
3 S 0.90 1+ 3 3 25
3 & / S 00 2 3
E JoE : . . . A5 . : © 00 : :
10! 102 103 104 10° 10* 102 10° 104 10° 102 104 10° 102 104 106
simulations simulations simulations simulations
(a) Toy (b) Rocksample (5, 7)
0.001 0.01 0.1 1 0.001 0.01 0.1 1 0.001 0.01 0.1 1 10 0.001 0.01 0.1 1 10
o o L . . . L . . . L L
§ 10 {search time of CCPOMCP (secs) § 15.01 earch time of CCPOMCP (secs) g s search time of CCPOMCP (secs) g earch time of CCPOMCP (secs)
e § ’ g, § 15
g g1 : E £
© S 1 -t & 3 = -
S 6 2 100 CALP 3 g 101 ,
£ 3 7.5 —— Baseline E 2 3 Baseline
3 4 5 S < —— CCPOMCP (ours)
© % 504 —— CCPOMCP (ours) || © 8
L > € > il 2 s
S 2 251 s g
g o N_/_/\/\ B S g B S N
s . , © 004 : ; s -1 , . © 0 . :
102 104 10° 102 104 106 102 104 10° 102 104 106
simulations simulations simulations simulations
(c) Rocksample (7, 8) (d) Rocksample (11, 11)

Figure 1: The result of CPOMDP Toy domain [11] and the constrained variants of Rocksample
[21]]. The result of Rocksample (15, 15) is presented in Appendix [I] For each domain, the left figure
shows the average discounted cumulative reward, and the right figure shows the average discounted
cumulative cost. The wall-clock search time for CC-POMCEP is presented on the top of x-axis.

GREEDYPOLICY in Algorithm[T]computes the stochastic policy according to the above principle. In
practice, due to the randomness in Monte-Carlo sampling, action values in (9) are always subject to
estimation error, so it is reformulated as a linear programming with up to |A| + 2K variables:

K
min Z A&+ €5) (10)

{wi &8 .60 21

s.t. Z w;Qc, (h,al) = é, + (E;—: —&) Vk

icaf €A*

Z w; =1 and wlagljaglz >0

i:af €A*

where A* = {a} | Qa(h,a}) ~ Qa(h,a*) s.t. a* = argmax, Q5 (h,a)}F} and the solutions are
w; = m(al|h). Here, when K = 1, there is a simple analytic solution to LP (I0), which is described
in Appendix[G] Even when K > 1, note that the optimization problem occurs only when the number
of equally maximal scalarized action values is more than 1 thus randomization of actions is required.
It is well known in CMDPs that an optimal policy requires at most X randomizations [1]], which
means that we expect to invoke optimization on extremely small part of the state space when the
problem is very large.

5 Experiments

All the parameters for running CC-POMCP are provided in Appendix [H]

Baseline agent To the best of our knowledge, this work is the first attempt to solve constrained
(PO)MDP using Monte-Carlo Tree Search. Since there is no algorithm for direct performance
comparison for large problems, we implemented a simple baseline agent using MCTS. This agent
works as outlined in section 2} it chooses an action via reward-maximizing POMCP while preventing
action branches that violate cost constraint Q¢ (s,a) < é. If all action branches violate the cost
constraints, the agent chooses action uniformly at random.

2Exact condition for Qx (h,a}) ~ Qx(h,a*) and its theoretical guarantee are provided in Appendix El

Domain |S] ¢ | Algorithm Cumulative reward | Cumulative cost
CALP 12.774+0 0.78+0
Rocksample (5,7) 3,201 | 1 | Baseline 1.0940.88 12.74+0.50
CC-POMCP 11.36£1.02 0.79£0.06
CALP 3.67+0 1.20+0
Rocksample (7,8) 12,544 | 1 | Baseline —0.23+0.44 13.924+0.33
CC-POMCP 9.36+0.76 0.56+0.06
CALP N/A N/A
Rocksample (11,11) 247,808 | 1 | Baseline 0.14+0.33 15.2940.25
CC-POMCP 2.65+0.73 0.09+0.04
CALP N/A N/A
Rocksample (15,15) | 7,372,800 | 1 | Baseline 0.39£0.58 16.2740.27
CC-POMCP 0.74+0.33 0.69+0.08

Table 1: Comparison of CC-POMDP with the state-of-the-art offline solver, CALP [18]].

CPOMDP: Toy and Rocksample We first tested CC-POMCP on the synthetic toy domain intro-
duced in [[11] to demonstrate convergence to stochastic optimal actions, where the cost constraint ¢ is
0.95. Any deterministic policy is suboptimal or violates the cost constraint. As can be seen in Figure
[Ta] CC-POMCP converges to optimal stochastic action selection (thus experimentally confirms the
soundness of algorithm), while the baseline agent converges to the suboptimal policy (optimal policy
among deterministic ones).

We also conducted experiments on cost-constrained variants of Rocksample [21]]. Rocksample(n, k)
simulates a Mars rover in n X n grid containing k rocks. The goal is to sort out good rocks, collect
them, and escape the map by moving to the rightmost part of the map. We augmented the single-
objective Rocksample with the cost function that assigns 1 to low reward state-action pairs (i.e.
Cp(s,a) = 1if Ry(s,a) < 0), similarly to [[18]. We also assigned the cost of 1 to actions detecting
whether a rock is good or bad. The cost constraint ¢ is set to 1. We compared CC-POMCP with
the state-of-the-art offline CPOMDP solver, CALP [[18]. CALP was allowed 10 minutes for the
offline computation, and we performed exact policy evaluation with respect to the resulting finite state
controller without simulation in the real environment. The results on Rocksample are summarized in
Table[T)and Figure[I] In Rocksample (5, 7), the reward performance of CC-POMCP is comparable to
CALP when more than 2 seconds of search time is allowed while at the same time satisfying the cost
constraint. In contrast, baseline agent basically exhibited random behavior since the Monte-Carlo
return at early stage mostly violates cost constraints for all actions. On Rocksample (7, 8), CALP
failed to compute a feasible policy, and CC-POMCP outperformed CALP in terms of reward while
satisfying the cost constraint. Finally, CC-POMCP was able to scale to Rocksample (11, 11) and (15,
15): given a few seconds of search time, CC-POMCP was able to find actions satisfying the cost
constraints, and tended to yield higher returns as we increased the number of simulations.

CMDP: Pong We also conducted experiments on a multi-objective version of PONG, an arcade
game running on the Arcade Learning Environment (ALE) [3]], depicted in Figure 2a] In this domain,
the left paddle is handled by the default computer opponent and the right paddle is controlled by
the agent. We use the RAM state feature, i.e. the states are binary strings of length 1024 which
results in |S| = 2'924, The action space is {up, down, stay}. The agent receives a reward of
{1, —1} for each round depending on win/lose. The episode terminates if the accumulated reward
is {21, —21}. We assigned cost 0 to the center area (position € [0.4,0.6]), 1 to the neighboring
area (position € [0.2,0.4] U [0.6,0.8]), and 2 to the area farthest away from the center (position €
[0.0,0.2] U [0.8,1.0]). This cost function was motivated by the scenario, where a human expert tries
to constrain the RL agent to adhere to human advice that the agent should stay in the center. This
advice is encoded as the cost function and its threshold. We experimented with various cost constraint
thresholds ¢ € {200, 100, 50, 30, 20} ranging from the unconstrained case ¢ = 200 (.- Cl%?;‘ = 200)
to the tightly constrained case ¢ = 20. We can see that the agent has two conflicting objectives: in
order to achieve high rewards, it sometimes needs to move the paddle to positions far away from the
center, but if this happens too often, the cost constraint will be violated. Thus, it needs to trade off
between reward and cost properly depending on the cost constraint threshold ¢.

Figure [2b] summarizes the experimental results from the CC-POMCP and the baseline agents. When
¢ = 200 (unconstrained case), both algorithms always win the game 21 by 0. As we lower ¢,

¢=200 ¢=100 ¢=50 ¢=30 ¢=20

0.5

0.4 E . . E

0.3 E . . E

0.2 E . . E

0.1 E . . E
S| = 21024, |A[=3 0905 10 05 10 05 10 05 10 05 1

position B ALGO avg cumulative avg discounted avg score

= 0.0 rewards cumulative costs FOE vs ALGO
02 200 CC-POMCP 21.00£0.00 133.00+4.97 0.0 vs 21.0
0.4 Baseline 21.00+£0.00 136.66+4.45 0.0 vs 21.0
06 100 CC-POMCP 19.27+1.63 99.88+0.13 1.4 vs 20.7
08 Baseline —15.05+3.83 110.88+3.86 18.9vs 3.9

CC-POMCP 17.88+1.79 49.95+0.07 2.8 vs 20.7
Baseline —20.454+0.26 130.40+4.99 21.0vs 0.6

30 CC-POMCP -0.07+5.23 30.40+-0.46 13.2vs 13.2
Baseline —20.4840.30 131.374£5.08 21.0vs 0.5

20 CC-POMCP —17.80+2.91 25.36+1.25 20.1vs 2.2
Baseline —20.48+0.30 131.374£5.08 21.0vs 0.5

1.0 50

(a) Domain description (b) Simulation results

Figure 2: (a) Multi-objective version of Atari 2600 PONG, visualizing the cost function. (b) Results of
the constrained PONG. Above: Histogram of the CC-POMCP agent’s position, where the horizontal
axis denotes the position of the agent (0: topmost, 1: bottommost) and the vertical axis denotes the
relative discounted visitation rate for each bin.

CC-POMCEP tends to stay in the center in order to make a trade off between reward and cost (shown
in the histograms in Figure [2b). We can also see that the agent gradually performs worse in terms
of scores as ¢ decreases. This is a natural result since it is forced to stay in the center and thus
sacrifice the game score. Overall, CC-POMCP computes a good policy while generally respecting
the cost constraint. On the other hand, the baseline fails to show a meaningful policy except when
¢ = 200 since the Monte-Carlo cost returns at early stage mostly violate the cost constraint, resulting
in random behavior.

6 Conclusion

We presented CC-POMCEP, an online MCTS algorithm for very large CPOMDPs. We showed that
solving the dual LP of CPOMDPs is equivalent to jointly solving an unconstrained POMDP and
optimizing its LP-induced parameters A, and provided theoretical results that shed insight on the
properties of A and how to optimize it. We then extended POMCP to maximize the scalarized value
while simultaneously updating A using the current action-value estimates Q. We also empirically
showed that CC-POMCP converges to the optimal stochastic actions on a toy domain and easily scales
to very large CPOMDPs through the constrained variants of Rocksample and the multi-objective
version of PONG.

Acknowledgement

This work was supported by the ICT R&D program of MSIT/IITP of Korea (No. 2017-0-01778) and
DAPA/ADD of Korea (UD170018CD). J. Lee acknowledges the Global Ph.D. Fellowship Program
by NRF of Korea (NRF-2018-Global Ph.D. Fellowship Program).

References

[1] Eitan Altman. Constrained Markov Decision Processes. Chapman and Hall, 1999.

[2] Peter Auer, Nicold Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem.
Machine Learning, 47(2):235-256, 2002.

[3] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment:
An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253-279, 2013.

(4]

(5

—

[6

—_

[7

—

(8]

[9

[

[10]

(11]

(12]

[13]

(14]

[15]

[16]

[17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

Cameron Browne, Edward Powley, Daniel Whitehouse, Simon Lucas, Peter I. Cowling, Stephen Tavener,
Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey of Monte Carlo tree search methods.
1EEE Transactions on Computational Intelligence and Al in Games, 4:1-49, 2012.

Rémi Coulom. Efficient selectivity and backup operators in Monte-Carlo tree search. In Proceedings of
the 5th International Conference on Computers and Games, pages 7283, 2006.

Eugene A Feinberga and Aleksey B Piunovskiyb. Nonatomic total rewards markov decision processes
with multiple criteria. J. Math. Anal. Appl, 273:93-111, 2002.

Sylvain Gelly and David Silver. Monte-Carlo tree search and rapid action value estimation in computer Go.
Artif. Intell., 175(11):1856-1875, 2011.

Arthur Guez, David Silver, and Peter Dayan. Scalable and efficient Bayes-adaptive reinforcement learning
based on Monte-carlo tree search. Journal of Artificial Intelligence Research, pages 841-883, 2013.

Joshua D. Isom, Sean P. Meyn, and Richard D. Braatz. Piecewise linear dynamic programming for
constrained POMDPs. In Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence,
pages 291-296, 2008.

Sammie Katt, Frans A. Oliehoek, and Christopher Amato. Learning in POMDPs with Monte Carlo tree
search. In Proceedings of the 34th International Conference on Machine Learning, pages 1819-1827,
2017.

Dongho Kim, Jaesong Lee, Kee-Eung Kim, and Pascal Poupart. Point-based value iteration for constrained
POMDPs. In Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence -
Volume Volume Three, IJJICAI’11, pages 1968-1974, 2011.

Levente Kocsis and Csaba Szepesvari. Bandit based Monte-Carlo planning. In Proceedings of the
Seventeenth European Conference on Machine Learning (ECML 2006), pages 282-293, 2006.

Levente Kocsis, Csaba Szepesvari, and Jan Willemson. Improved Monte-Carlo Search. Technical Report 1,
Univ. Tartu, Estonia, 2006.

Jongmin Lee, Youngsoo Jang, Pascal Poupart, and Kee-Eung Kim. Constrained Bayesian reinforcement
learning via approximate linear programming. In Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence (IJCAI-17), pages 2088-2095, 2017.

Eunsoo Oh and Kee-Eung Kim. A geometric traversal algorithm for reward-uncertain MDPs. In Proceed-
ings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI-11), pages 565-572,
2011.

Christos Papadimitriou and John N. Tsitsiklis. The complexity of Markov decision processes. Math. Oper.
Res., 12(3):441-450, 1987.

Alexei B Piunovskiy and Xuerong Mao. Constrained Markovian decision processes: the dynamic program-
ming approach. Operations research letters, 27(3):119-126, 2000.

Pascal Poupart, Aarti Malhotra, Pei Pei, Kee-Eung Kim, Bongseok Goh, and Michael Bowling. Approxi-
mate linear programming for constrained partially observable Markov decision processes. In Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pages 3342-3348, 2015.

David Silver and Joel Veness. Monte-Carlo planning in large POMDPs. In Advances in Neural Information
Processing Systems 23, pages 2164-2172, 2010.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik
Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with deep neural networks
and tree search. Nature, pages 484-489, 2016.

Trey Smith and Reid Simmons. Heuristic search value iteration for pomdps. In Proceedings of the 20th
Conference on Uncertainty in Artificial Intelligence, UAI *04, pages 520-527, 2004.

Edward J. Sondik. The Optimal Control of Partially Observable Markov Processes. PhD thesis, Stanford
University, 1971.

A. Undurti and J. P. How. An online algorithm for constrained POMDPs. In 2010 IEEE International
Conference on Robotics and Automation, pages 3966-3973, 2010.

Jason D. Williams and Steve Young. Partially observable markov decision processes for spoken dialog
systems. Computer Speech and Language, 21(2):393-422, 2007.

10

Supplementary Material: Monte-Carlo Tree Search for Constrained
POMDPs (Jongmin Lee, Geon-Hyeong Kim, Pascal Poupart, Kee-Eung Kim)

Appendix A Proof of Proposition]|

Propositionm Let V5 be the optimal value function of the POMDP with scalarized reward function
R(b,a) — X' C(b,a). Then, Vi (bo) + X' & is a piecewise-linear and convex (PWLC) function over
A

Proof. We give a proof by induction. For all b,
VO (b) = max [R(b, a) — ATC(, a)}

is a piecewise-linear and convex function over A since the max of linear functions is piecewise linear

and convex. Now, assume the following induction hypothesis: V;k) () is piecewise-linear and convex
function over \ for all b. Then, for all b,

VI (0) =max | R(b,a) = AT C(b,a) +7 Y Z,(ols',a)T(s'|s, a)b(s) Vi ()

0,s,s’

linear in A PWLC in A

is also PWLC since the summation of PWLC functions 1ks PWLC and max over PWLC functions is
again PWLC. As a consequence, V5 (by) = limg_00 Vg)(bo) is PWLC over A and so is V5 (bo) +
Ale. O

85

(80) +ATe

*
A

Figure 3: V5 (bo) + AT ¢ for a simple CPOMDP, which is piecewise-linear and convex. Red
line represents the trajectory of \ starting from A = [0,0]" and sequentially updated by A <

A+ a, (VG (bo) — @).

Appendix B Proof of LemmalI]

Lemmal[l} Let My = (B, A, T, Ry,7) and My = (B, A, T, Ry,7) be two (belief-state) MDPs
differing only in the reward function, and V" and V5 be the value functions of My and My with
a fixed policy w. Then, the value function of the new MDP M = (B, A, T,pR; + qR2,~) with the
policy wis V™ (b) = pViT(b) + qV57 (b) forall b € B.

Proof. We give a proof by induction. For all b,
VO(b) = nlalb) [pRi(b,a) + qRa(b, a)]
=p Z m(a|b)Ry(b,a) + q Z 7(a|b)Ra(b, a)
a a

= V1) + qV V()

11

Then, assume the induction hypothesis V(¥) (b) = le(k)(b) + qVQ(k)(b). For all b,
V(k:-‘rl) (b)

= 5 walt)[pRs0,0) + aRa(br) + 4 T VO W)
a b’
7p2 alb) {Rl (b,a HZT ('|b, @)V, (k)(b’)]

43 w(alb) [Rxb, 0+ ST, a)v;%')}
a b’
= pV TV (0) + gV (b)

As a consequence, V7 (b) = limy_,o. V) (b) = limk%oo(Vl(k)(b) + Vz(k) (b)) = V{7 (b) + VI (b).
O

Appendix C Proof of Theorem]|

Theorem For any A, Vgi (bo) — € is a negative subgradient that decreases the objective in Eq. (3),
where T3 is the optimal policy with respect to the scalarized reward function R(b, a) —)\TC(b, a).
Also, ing)‘ (bo) — € = 0 then X is the optimal solution of Eq. (3).

Proof. For any A\g and Ay,

*

(Vi (B0) + A &) — (V3 (bo) + Ag &)
=(Vt (bo) = ATV (b)) — (Vi (bo) — Ag VS (b)) + (As — o) & (Lemmal1]
>V (bo) — AL VE (b)) — (Vi (bo) — Ad V(b)) + (As — Ao) &
(- my, is optimal w.rt. R — Al C)
—(A1 = A0)T (& = V3 (o) (1)

s

Therefore, & — VéAO (bo) is a subgradient of Vi (by) + AT & at point A = Ao, which concludes that
Vg“’ (bo) — € is a negative subgradient at point A = Ag.

In addition, suppose A1 = A + a(VéAO (bo) — €). Then, for sufficiently small & > 0, the new
reward function R —)\IC which is slightly changed from the old reward R —)\g C still satisfies

the reward optimality condition with respect to policy 73 [[15]. In this situation, 7} = 7}, and we

obtain:

(Vi (bo) + A3 &) — (V5, (bo) + A{ &) > (Ao — A1) T (& — VEN (b)) (by result of (TT))
= —a (V5™ () — &) (&~ V5™ (b))

o X 2
= alle = V™ (b))l
>0

Also, if Vg; (by) — € = 0, then the dual objective in Eq. (@) becomes V}g; (bo). By the weak duality
theorem, V> (b) > > p.a B(b,a)y* (b, a) = Vi (bo; €) holds where y* (b, a) is the optimal solution
of the primal LP (I). Assuming that Vgi (bg) = €, 7y is a feasible policy that satisfies the cost

constraints, and Vgi(bo) cannot be larger than V3 (bo; €). That is, Vg;(bo) Vi (bo; €) and the
duality gap is zero, which means that X is the optimal solution.

12

Appendix D Recursive Update of Admissible Cost

As an alternative to using V3 (h¢+1), we can also do recursive update of the admissible cost at time
step ¢ + 1 to depend only on the current expected immediate cost at (h;, a;) and the current optimal

cost value QF (h, a;) by the following relationship.

ét = VC t ZTF a|ht QC (ht,)
= 7 (ae|) QE (he,) + Z (alh)QE (s, a)

aFay
— *(arlh) [cmt,at) +vE[Vé*<ht+l>|ht,at]} + 3 7 (alh)QE ()
—& aF#ay
t41
. & — m(arhe)C(hey ar) = Y qsq, 7 (alht) QE (ht, a)
. C41 = - (12)
e arlbe)

We used Eq. (I2) to update the admissible cost in the experiments.

Appendix E Equality Test for Collecting Optimal Action Candidates

Algorithm 2 SEARCH of CC-POMCP

1: function SEARCH(h)
2: Aisrandomly initialized

3: forn=1,2,...do

4 fort =1,2,..., f(n)do # f(n) is any monotonically increasing sequence w.r.t. n.
5: if h = () then

6: s~ bo

7: else

8: s~ B(ho)

9: end if
10: SIMULATEC(s, hg, 0)

11: end for
12: a ~ GREEDYPOLICY (hg, 0,0)
13: A A+ ay, [Qe(ho,a) —

14: Clip Ay, to range [0, %] Vk={1,2,..K}
15: Reset entire search tree T'(hg)

16: end for

17: return GREEDYPOLICY (hg, 0,)
18: end function

To compute a stochastic optimal policy, we first need to collect the candidates of the support of the
optimal actions. Since there always exists some error for estimating Qx (h, a) due to the randomness
of Monte-Carlo sampling, we need an explicit criterion to determine whether an action @ can be
treated as an optimum (i.e. Qx(h, @) ~ Qx(h,a*)). The following theorem provides the equality
test criterion to collect optimal action candidates and its validity.

Theorem 3. Let Qy be the scalarized action-value estimated by CC-POMCP using SEARCH in Algo-
rithm and a* = arg max, Q?(h, a). For any v > 0, suppose we use the following equality test cri-

terion for the optimal action selection: |Qx(h,a*) — Qx(h,a)| < v [10%1(\2 Zf*) + \/lo]gvl(\fh ’;)a)J.

Then it accepts all of the optimal actions (with respect to MDP with the scalarized reward function
R(s,a) — X" C(s, a)) while rejecting all of the suboptimal actions with probability I as t — .

To prove Theorem we first introduce a lemma from [|13]]:

Lemma 2 (Theorem 7 in [13]]). When the UCT algorithm is running on a tree with depth D, the bias
of expected payoffis O((|A|Dlogt + |A|P)/t) after t iteration. Moreover, the probability that UCT
algorithm fails to select optimal action at root converges to zero ast — oo.

13

By Lemma[2] there exists M/ > 0 such that the following holds:

log N(h,a)

Pr <|Q§(h,a)—Q>\(h,a)|2M N(ha) >—>OasN(h,a)—>oo, (13)

where Q3 = Qii (true optimal value function of MDP with the scalarized reward function). In order
to prove Theorem 3] we first provide the following two lemmas based on Eq. (T3).

Lemma 3. Let a* = arg max, Q?(h, a), and a be a suboptimal action (with respect to MDP with
the scalarized reward function R(s,a) —)\TC(S a)). For the given A, if a* is an optimal action, then

Pr <|Q>\(h, a*) — Qx(h,a)| <v [IOJgV](Vh(’};% + \/10%{]\;(}; Q)D — 0 as t — oco. In other words,

all of the suboptimal actions are rejected asymptotically by the proposed equality test criterion.

Proof. Let Q% (h,a*)— Q5% (h,a) = A > 0, where Q% = Q>\A Then using the fact that Pr(A+B <
C + D) <Pr(A < C)+Pr(B < D), we can derive the following inequality:

\/logN(h,a*) n \/logN(hﬁ)])
N(h, a*) N(ha d)

Qk(hva*) - Q)\(ha &) é v

: (gm, @) - Qiha®) + 5 < %)
by (Qw,&) o)+ 2 < %) | i

Therefore, it is enough to show that both of two terms in the right-hand side of (T4) converge to 0 as
t — oo. It is obvious that the first term converges to probability 0 since Oz (h, a*) — Q% (h,a*) — 0

by Eq. and 4/ % — 0as N(h,a*) — oo. The second term also converges to probability
0 by the same reasoning. O

Lemma 4. Let a* = argmax, Q?(h, a), and & be another optimal action (with respect to MDP
with the scalarized reward function R(s,a) —)\TC(S a)). For the given A, if ™ is an optimal action,

then Pr <|Q>\(h,a*) — Ox(h,a)| > v [lolgvl(\;’;a)) 4 \/IOJgV](V;L(Z’)d)D — 0ast — oo. In other

words, all of the optimal actions are accepted asymptotically by the proposed equality test criterion.

Proof. Without loss of generality, assume that Qx(h, a*) > Qx(h, a) at time . Then, we can derive
the following inequality, similarly to Lemma 3}

. . log N (h,a*) log N (h, a)
Pr (Q)\(h7a) — Ox(h,a) > v [\/ Nh,a") +\/ Nh,a) 1)

r (Qm, a*) — Q}(h,a") > v %)

)) log N (h,
Pr (Q;(h,a) — Ox(h,a) > v W) (15)

where Qf = Q;:;. Note that Q3 (h,a*) = Q3 (h, &) since the both actions a* and & are optimal. It
is sufficient to show that both of two terms in the right-hand side of Eq. (T3)) converge to 0 as ¢ — oo.
For any M > 0, the inequality

log N(h,a*) < MlogN(h, a*)
N(h,a*) — N(h,a*)

holds as N(h,a*) — oo. Therefore, by Eq. (13), the first term converges to probability 0. The
second term also converges to probability O by the same reasoning. O

14

Finally, we are now ready to provide the proof of Theorem [3}

Proof of Theorem[5] Let B the event that the proposed equality test accepts all of the optimal actions
while rejecting all of the suboptimal actions. Let a* = arg max, Q)‘ (h, a). Then, for B not to be
satisfied, one of the following three cases should be hold:

1. Bj: a* is not optimal action (i.e. a* ¢ arg max Qf‘; (h, a)) with respect to the scalarized
reward R — A" C

2. Bs: ais a suboptimal action but it is accepted as an equally optimal action while a* is an
optimal action.

3. Bs: ais an optimal action but it is rejected while a* is an optimal action.

Then,
PI‘(B) Z 1-— PI‘(Bl) — PI‘(‘!B]_ N Bg) - Pr(ﬁBl N B3)

Here, Pr(B;), Pr(B,), and Pr(B3) converge to zero as t — oo by Lemma 2} B and[4] respectively,
which concludes the proof. O

Appendix F Proof of Theorem 2]

To facilitate formal analysis, we assume that SEARCH of CC-POMCP is given by Algorithm[2] We
first introduce the following lemma.

Lemma 5. For any real numbers V*,V, and ¢ > 0, if there is M > 0 such that |V* — V| < M and
|[V* —c| > M, then (V* —¢)(V —¢) > 0.
Proof.
(V=) (V=)= (V" =)’ + (V' —o)(V - V)
ZW“wF—W“wMW—VW

=V —|(|[V* = = |V =V
> |V —c| (M — M)
=0. O

Now, we are ready to provide the proof of the following theorem, which guarantees that A is improved
until it converges to the optimal solution of Eq. (3), A

Theorem 2} Suppose A is updated with increasing simulation step t, and the search tree is reset at
the end of X’s update as outlined in Algorithm 2] If the asymptotic bias of UCT holds for all types of

i (ho) = Vo, (ho)| < Mlogt) then either sign(V:> (ho) — &) =

szgn(VCk (ho) — &) or |Vck (ho) — ¢ < Mlngt holds with probability 1 as t — oo, where V¢, (ho)
is an averaged Monte-Carlo return for k-th cost at the root node hy.

Proof. 1f |Vg*(h0) — | < M2 the statement trivially holds. If \ng;(ho) — G| > M2t then
by Lemmaand the assumption |Vg: (ho) — Ve, (ho)| < Ml%gt,

(VEM(ho) — éx) (Veo, (ho) — &) > 0

which concludes sign (Vo> (ho) — é,) = sign(Ve, (ho) — &) O

Even though Theorem [2| asymptotically guarantees that X is near-optimal or it is updated by the
direction of the negative subgradient, it requires resetting the entire search tree as described in
Algorithm 2] which significantly degrades the sample efficiency of the algorithm. Fortunately, we can
further show that the policy ordering is locally preserved even when A is changed slightly, which
justifies the use of practical Algorithm[I]that does not reset the tree and accumulates experiences on
different lambda into single search tree.

15

Theorem 4. For any Ao, there exists € > 0 such that if || A1 — Xol|; < e then Vb, V! (b) > V1°(b)
= Vb, V3! (b) > V3O(b). In other words, for a sufficiently small change of A, the ordering of the
policies is preserved.

Proof. Let AX = Ay — Ag. Then, for any b and 7,
) — A] VE(b) (LemmalI]
= VZ(b) — (Ao + AX) TVE(D)
= V3, (b) — AXTVE (D)

Now assume Vb, V{!(b) > V{°(b), let ¢ = min, [L (V5, (0) = Vy? (b))} > 0, and suppose

IAX]]; = A1 — Ao|l; < e. Then, for any b,

V(D) = VR (b) = V3L (b) = VEo(b) = AXT(VE' (b) = VE° (1)
> V(b)) = V3o (b) — ||A)\|| V& (b) = VE°(b)||,, (Holder’s inequality)
> V3, (0) = VZ\TS (b) - ma;
(b)) = V0 (b) — mm (VRO = Vo)) =0

Appendix G Analytic Solution of LP (when K = 1)

When K =1 and A > 0, LP (I0) can be rewritten as:

min (§T+€7)

{wi,+,67}
st Y wiQeo(h,al)=é+ (=€)
i:af €A*
> wi=1and w;, &, ¢ >0
i:ajeA*

Let amin = argming ¢ 4~ Qc(h, af) and amax = argmax,-c4- Qc(h,a}). Then, the analytic
solution is given by:

0 if Qc(h, amax) < ¢
T(amin|h) = ¢ 1 if Qc(h, amin) > ¢
GoTe 5Ty i Qo amin) < & < Qo (h, Gmas)
and
1 if Qc(h, amax) < €
T(amax|h) = ¢ 0 if Qc(h, amin) > ¢
£-Qc (hamin) if Qo (hy min) < & < Qe (P, Amax)

Qc (h,amax)—Qc (h,amin)

This has only O(|A|) time complexity, which is identical to that of UCB1 action selection.

Appendix H Experimental Setup

We used the following experimental parameters for each domain.

16

Domain Toy Rocksample Atari Pong

K 1 20 0.1
T ¢=0.95 c=1 ¢ € {20, 30,50, 100, 200}
anp 1/n 1/n 1/n
v 1 1 1
of runs 1000 100 (*) 40
of simulations from 23 to 227 | from 23 to 2%V 1000
maximum-depth d 7?4 =0.001 7?4 =0.001 d =100

Table 2: (*) We report the result averaged over 100 runs or 12 hours of total computation time.

Appendix I Experimental results on Rocksample (15, 15)

0.0010.01 0.1 1 10 100 0.0010.01 0.1 1 10 100
o 3 ! . ! . - | ! ! ! A
g search time of CCPOMCP (secs) 9 sdarch time of CCPOMCP (secs)
£ o2 o 151
o >
2 5
8 1- £ -—c
=]
e % —— Baseline
3 o0+ o —— CCPOMCP (ours)
° (9}
2 T 57
S -1 3
5 -2 : : © 01 . .
102 104 106 102 10 106
simulations simulations

Note that the baseline agent (red) is violating the cost constraint, so its return is not meaningful at all.

17

	Introduction
	Background
	Solving CPOMDP via a POMDP Solver
	Cost-Constrained POMCP (CC-POMCP)
	Admissible Costs
	Filling the Gap: Stochastic vs Deterministic Policies

	Experiments
	Conclusion
	Proof of Proposition 1
	Proof of Lemma 1
	Proof of Theorem 1
	Recursive Update of Admissible Cost
	Equality Test for Collecting Optimal Action Candidates
	Proof of Theorem 2
	Analytic Solution of LP (10) (when Lg)
	Experimental Setup
	Experimental results on Rocksample (15, 15)

