
PyOpenDial: A Python-based Domain-Independent Toolkit for
Developing Spoken Dialogue Systems with Probabilistic Rules

Youngsoo Jang1∗, Jongmin Lee1∗, Jaeyoung Park1∗,
Kyeng-Hun Lee3, Pierre Lison4, Kee-Eung Kim1,2

1 School of Computing, KAIST, Daejeon, Republic of Korea
2 Graduate School of AI, KAIST, Daejeon, Republic of Korea

3 Samsung Electronics, Seoul, Republic of Korea
4 Norwegian Computing Center, Oslo, Norway

{ysjang,jmlee,jypark}@ai.kaist.ac.kr,
kyenghun.lee@samsung.com, plison@nr.no, kekim@cs.kaist.ac.kr

Abstract

We present PyOpenDial, a Python-based
domain-independent, open-source toolkit for
spoken dialogue systems. Recent advances in
core components of dialogue systems, such as
speech recognition, language understanding,
dialogue management, and language genera-
tion, harness deep learning to achieve state-of-
the-art performance. The original OpenDial,
implemented in Java, provides a plugin archi-
tecture to integrate external modules, but lacks
Python bindings, making it difficult to inter-
face with popular deep learning frameworks
such as Tensorflow or PyTorch. To this end,
we re-implemented OpenDial in Python and
extended the toolkit with a number of novel
functionalities for neural dialogue state track-
ing and action planning. We describe the over-
all architecture and its extensions, and illus-
trate their use on an example where the system
response model is implemented with a recur-
rent neural network.

1 Introduction

Spoken dialogue systems (SDSs) allow interac-
tions between users and machines through nat-
ural language conversations. These systems are
composed of a broad range of components such
as speech recognition, language understanding,
dialogue management, language generation, and
speech synthesis. Recent SDS frameworks, such
as AT&T Statistical Dialogue Toolkit (Williams
et al., 2010), OpenDial (Lison and Kennington,
2016), and PyDial (Ultes et al., 2017) aim to
integrate these complex and diverse components
through a modular architecture.

Spoken dialogue systems may either adopt sym-
bolic or statistical approaches to perform lan-
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Figure 1: Information-state architecture for PyOpen-
Dial.

guage understanding, dialogue management and
language generation. Statistical approaches, in-
cluding but not limited to (Young et al., 2013;
Ultes et al., 2017) rely on probabilistic models
of dialogue interactions and allows these models
to be estimated from data. Symbolic approaches,
on the other hand, model the dialogue interaction
using finite-state automata or logical methods de-
signed by the developer. Of our particular interest
is OpenDial, a Java-based open-source toolkit that
combines the benefits of both statistical and sym-
bolic approaches.

In recent years, deep learning has shown to
achieve promising performance results in many
tasks related to dialogues, such as speech recog-
nition (Graves et al., 2013), language understand-
ing (Radford et al., 2018), dialogue management
(Williams et al., 2017) and language generation
(Yu et al., 2016). Given that one of the most pop-
ular programming languages for deep learning li-
braries is Python, e.g. Tensorflow (Abadi et al.,
2016) and PyTorch (Paszke et al., 2017), the inte-
gration of neural conversational models would be
a straightforward task if OpenDial itself was writ-
ten in Python.

To this end, we developed PyOpenDial, an
open-source SDS framework that re-implements
OpenDial in Python and integrates a range of
novel functionalities, such as the possibility to



track neural dialogue state and the use of Monte
Carlo Tree Search for forward planning. PyOpen-
Dial inherits the original architectural design of
OpenDial, and extends the XML domain specifi-
cation so that various deep learning models can
be directly used for SDS components. We include
the negotiation dialogue domain in (Lewis et al.,
2017) as an example to show how to integrate with
external components trained by deep learning.

2 Architecture

2.1 Dialogue State

PyOpenDial inherits the information-state frame-
work in OpenDial (Larsson and Traum, 2000):
All the components in the toolkit operates on the
shared information state that represents the dia-
logue state arising from the interaction between
the user and the machine (see Figure 1). The dia-
logue state is represented by a Bayesian network
(BN), a directed graphical model for encoding
the probability distribution of the dialogue state.
Hence, the dialogue state consists of a factored
representation of state variables on a dialogue,
which are random variables, and conditional de-
pendencies between them.

2.2 Workflow

PyOpenDial adopts the probabilistic rules used in
OpenDial (Lison, 2014; Lison and Kennington,
2016) to update the dialogue state represented by a
Bayesian Network during the conversation. These
rules follow a if...then...else skeleton that map log-
ical conditions on a subset of state variables to a
probability or utility distribution on another subset
of state variables. Two types of rules are provided:
probability rules and utility rules. The probability
rule defines the probabilistic change of state vari-
ables through a probability distribution over ef-
fects, each of which is an assignment on the state
variables, given a logical condition of state vari-
ables. The utility rule defines utilities on the val-
ues of action variables given a logical conditions
of state variables. These probabilistic rules are
specified in the domain XML file. Examples are
shown in Listing 1, where line 13-23 contains the
probability rule and line 27-38 contains the utility
rule.

These probabilistic rules can be grouped ac-
cording to subtasks, such as language understand-
ing, dialogue management, language generation
and etc. Each group is defined as a model. Each

1 <initialstate>
2 <variable id="movie_rnn">
3 <value>@chatbot.MovieRNN</value>
4 </variable>
5 <variable id="music_rnn">
6 <value>@chatbot.MusicRNN</value>
7 </variable>
8 </initialstate>
9

10 <function name="gen_u_m">chatbot.generate</function>
11 <!-- User intent recognition -->
12 <model trigger="u_u">
13 <rule>
14 <case>
15 <condition>
16 <if var="u_u" value="movie" relation="contains"/>
17 </condition>
18 <effect prob="1">
19 <set var="a_u" value="movie"/>
20 </effect>
21 </case>
22 · · ·
23 </rule>
24 </model>
25 <!-- System utterance generation -->
26 <model trigger="a_u">
27 <rule>
28 <case>
29 <condition>
30 <if var="a_u" value="movie"/>
31 </condition>
32 <effect util="1">
33 <set var="u_m"
34 value="@gen_u_m({movie_rnn},{u_u})"/>
35 </effect>
36 </case>
37 · · ·
38 </rule>
39 </model>

Listing 1: A simple example domain XML specifica-
tion for an RNN-based chat-bot. Here, u u stands for
the user utterance, a u for the user intent and u m for
the system utterance.

model is associated with a subset of state vari-
ables, called trigger variables. Each model mon-
itors the change of its trigger variables. When
one or more trigger variables are updated during
a conversation, the probabilistic rules on the cor-
responding model are applied to the dialogue state
by instantiating the rule with the current dialogue
state. Note that these updates may result to trigger
other models, hence the procedure causes a chain
of updates on the dialogue state through the proba-
bilistic rules of the models. In summary, the work-
flow of PyOpenDial is basically a series of appli-
cations of probabilistic rules to the dialogue state.

Since this workflow is basically the same
as in OpenDial, we refer the readers to Li-
son (2014), Lison and Kennington (2016), and
the OpenDial toolkit website (http://www.
opendial-toolkit.net) for more details on
the XML specification of the domain modeling.

http://www.opendial-toolkit.net
http://www.opendial-toolkit.net


Figure 2: User interface for PyOpenDial.

2.3 Extensions to OpenDial

Custom Variable Types Neural models such as
recurrent neural networks (RNNs) have become
a popular choice for various dialogue processing
tasks, given their capability to be trained end-to-
end and infer complex latent representations of the
dialogue state. In these models, the dialogue state
is typically represented as a vector-valued predic-
tion computed from a complex mapping from in-
put to output. In contrast, the original OpenDial
only supports updates on primitive data types (e.g.
boolean, double, string, double array, and set) via
human-readable probabilistic rules similar to de-
cision trees. In order to overcome this limitation,
we extend the specification of the dialogue state
to include complex variable types and functional
values to allow arbitrarily complex mappings of
conditional variables, e.g. latent vectors in neural
models that encode the dialogue context.

This is achieved by extending the domain XML
specification to allow for variable types expressed
through complex functions that can be integrated
in probabilistic rules. In Listing 1, two such
custom variables are defined: movie rnn and
music rnn, which are instances of MovieRNN
and MusicRNN respectively (line 2-7), represent-
ing pre-trained RNN-based generation models.
Line 10 assigns gen u m to function generate
in module chatbot, which executes the neural
model. This particular function takes two argu-
ments (namely the generation model and a user ut-
terance) as input and returns the system utterance
as output.

Predictive models Dialogue management is, at
its core, a sequential decision-making problem,

where the goal of the system is to select actions
that fulfill the system objectives while minimising
associated costs. One way to achieve this objec-
tive is through forward planning, i.e. enabling the
system to search for actions that yield the maxi-
mum expected utility over a given horizon. For-
ward planning requires the specification of predic-
tive models (such as user simulation models) to
be able to predict the consequences of the system
actions on the current interaction. PyOpenDial
provides the planning-only option to models,
which makes the model triggered only when for-
ward planning is performed. This allows the sys-
tem to explicitly differentiate between observed
and predicted values in the dialogue state. The
specific use-case of this feature is described in
Section 4 with Listing 2 (line 30).

3 Implementation

PyOpenDial is implemented in Python and is
released under the MIT opensource license.
The toolkit is available through the GitHub
code repository at (https://github.com/
KAIST-AILab/PyOpenDial) 1. The toolkit
additionally provides a graphical user interface
that helps fast-prototyping and test-driving the
system. The graphical user interface, shown in
Figure 2, displays the domain and dialogue history
and take the user’s next input (text or speech).

PyOpenDial implements all the core compo-
nents and modules of OpenDial, including the
BN inference algorithm and the probabilistic rule
engine. We also introduced a number of new
modules, including the Monte-Carlo tree search
(MCTS) (Kocsis and Szepesvári, 2006) planner
and the basic speech-to-text and text-to-speech
modules using Google Speech APIs.

MCTS Planner In dialogue management, plan-
ning algorithms are often used to search for the
system action that maximizes the sum of utilities
in the long-term horizon so as to optimally react to
the user.

The baseline planning algorithm in OpenDial is
a lookahead forward planner that fully expands the
search tree up to the planning horizon H:

Qt(b, a) = U(b, a) + γmax
a′

Eo|b,a
[
Qt+1(b

ao, a′)
]

where b is the dialogue state, a is the value of
the action variables, o is the possible observation

1More dialogue domain examples combined with deep
neural networks can be found in the GitHub repository.

https://github.com/KAIST-AILab/PyOpenDial
https://github.com/KAIST-AILab/PyOpenDial


when taking action a in the state b, bao is the di-
alogue state updated from b after action a and
observation o, γ ∈ [0, 1) is the discount factor,
U(b, a) is the instantaneous utility of a at the dia-
logue state b, and QH(b, a) = 0 for all b, a. Af-
ter computing Q0(b, a) from the recursive equa-
tion, the forward planner chooses the final value of
the action variable given by argmaxaQ0(b, a). A
major limitation of the forward planner is that the
search becomes infeasible in the planning horizon
as well as the branching factor (i.e. the number of
candidate actions and observations).

On the other hand, MCTS combines tree search
with Monte-Carlo simulation so that the search
effort is non-uniformly invested into promising
nodes. One of the most basic MCTS algorithms
is UCT (Kocsis and Szepesvári, 2006), which per-
forms iterative simulation on the search tree by
following the UCB rule to select actions at inter-
mediate nodes

argmaxa

[
Q(b, a) + c

√
logN(b)
N(b,a)

]
where c is the exploration constant that balances
exploration and exploitation trade-off, Q(b, a) is
the average of the sampled sum of utilities,N(b) is
the number of simulations performed through the
dialogue state b, N(b, a) is the number of times
action a is selected in b. More recent versions of
MCTS algorithms have shown great successes in
many large sequential-decision making problems
such as playing Go (Silver et al., 2016).

PyOpenDial includes an MCTS planner, and we
shall demonstrate its effectiveness in the next sec-
tion by comparing its performance with the for-
ward planner, using the negotiation dialogue do-
main that requires long-term planning.

Google Speech Modules PyOpenDial provides
new speech modules based on Google speech API:
The speech recognition module that uses Google
speech-to-text API and the speech synthesis mod-
ule that uses Google text-to-speech API 2. These
modules can also be replaced with other custom-
developed speech recognition and speech synthe-
sis modules.

4 Application Domain

In this section, we demonstrate the aptitude of
PyOpenDial using the negotiation dialogue do-
main (Lewis et al., 2017) as an example. In this

2https://cloud.google.com/text-to-speech,
https://cloud.google.com/speech-to-text

1 <initialstate>
2 <variable id="rnn">
3 <value>@nego.NegotiationRNN</value>
4 </variable>
5 <variable id="h"><value> </value></variable>
6 · · ·
7 </initialstate>
8
9 <function name="gen_u_m">nego.gen_u_m</function>

10 <function name="gen_u_u">nego.gen_u_u</function>
11 <function name="reward">nego.reward</function>
12 · · ·
13 <model trigger="u_u">
14 <rule>
15 <case>
16 <condition>
17 <if var="current_step" value="Negotiation"/>
18 </condition>
19 <effect util="0.001">
20 <set var="u_m" value="@gen_u_m({rnn},{h},0)"/>
21 </effect>
22 · · ·
23 <effect util="0.001">
24 <set var="u_m" value="@gen_u_m({rnn},{h},19)"/>
25 </effect>
26 </case>
27 </rule>
28 </model>
29
30 <model trigger="u_m" planning-only="true">
31 <rule>
32 <case>
33 <condition>
34 <if var="current_step" value="Negotiation"/>
35 </condition>
36 <effect>
37 <set var="u_u" value="@gen_u_u({rnn},{h})"/>
38 </effect>
39 </case>
40 </rule>
41 </model>
42
43 <model trigger="current_step">
44 <rule>
45 <case>
46 <condition>
47 <if var="current_step" value="Result"/>
48 </condition>
49 <effect util="@reward({rnn},{h})">
50 <set var="current_step" value="Terminated"/>
51 </effect>
52 </case>
53 </rule>
54 </model>
55 · · ·

Listing 2: A simplified XML specification for the ne-
gotiation dialogue domain.

domain, two agents (i.e. the user and the system)
negotiate on 3 types of items, and the negotiation
domain has the following unique characteristics:
(1) the simulated utterances of the system and the
user are generated from the RNN of system and
user models, which is done seamlessly thanks to
Python-based implementation of the framework,
(2) a long-term dialogue planning is required to
get a high reward in the negotiation since the util-
ity signal is given only at the very end of the poten-
tially very long dialogue; thus an MCTS planner is
desirable.



4.1 Domain Description
In the negotiation dialogue domain, 3 types of
items (i.e. books, hats, balls) are divided be-
tween two agents through natural language dia-
logue. There is a finite amount of each item (5
to 7 total items and 1 to 4 individual items), and
the agents have different utility functions that rep-
resent the agent’s preference. The utility function
for each agent is defined randomly while satisfy-
ing the following constraints: (1) The maximally
achievable utility for each agent should be 10; (2)
Each item must always have a non-zero utility for
at least one agent; (3) At least one item must al-
ways have a non-zero utility for both agents. If
an agreement is reached at the end of the nego-
tiation, each agent receives a reward equal to the
total utility of obtained items. If the decisions are
in conflict, both agents receive a reward of 0. Fig-
ure 2 shows the negotiation dialogue example be-
tween user and system in PyOpenDial, and List-
ing 2 presents a simplified version of the domain
XML specification.

4.2 RNN-based Natural Language
Generation Model

In implementing this dialogue system, we first pre-
trained an RNN model that imitates negotiation di-
alogues between two humans, following the super-
vised training scheme described in (Lewis et al.,
2017). This RNN model has the ability to gen-
erate natural language utterances, taking into ac-
count the previous dialogue history and the given
context (i.e. value and count of each item). We
use this RNN to generate candidates of system ut-
terances (line 19-25 in Listing 2) and to generate
user utterances for the user simulation model that
is used during multi-horizon planning (line 37 in
Listing 2). This RNN model uses PyTorch and is
imported into PyOpenDial as decribed next.

4.3 Domain XML Specification
In this section, we briefly explain how the negotia-
tion domain is specified in the XML format shown
in Listing 2, which is an abbreviation of the full
version distributed with PyOpenDial.

Declaration We declare rnn state variable, an
instance of NegotiationRNN class (line 2-4).
The class has a pre-trained RNN model, described
in the previous section, as a member variable
and generates actual (user or system) utterance
through the RNN model. To represent the dialogue

history, we also declare a state variable h (line 5),
which maintains the user and system utterances up
to the current turn. We then declare two func-
tions, gen u m and gen u u, to generate utter-
ances (line 9-10). gen u m is used to generate the
set of candidate system utterances and gen u u is
used as the user simulator in the planner to search
for the best system action that maximizes the over-
all utility within the planning horizon. Finally, we
declare the function rewardwhich returns the re-
ward at the end of the negotiation (line 11)

System Utterance Generation The utility rule
specifies the utility associated with each candidate
system action. In order to harness the system ut-
terance directly generated by NegotiationRNN
and support dialogue planning, we add 20 effects
in the utility rule, each corresponding to a system
utterance sampled from NegotiationRNN, and
assign the same immediate utility of 0.001 (line
13-28)3. The actual, final utility is decided only
when the negotiation has finished, and the plan-
ner described next will search for the best system
utterance (among 20 candidates) using long-term
planning.

Planning The planner requires a user simulation
model for long-term planning. The user simula-
tion model is given in line 30-41. Note that we
set the planning-only tag for the user sim-
ulation model (line 30), in order to prevent the
user simulation model from overwriting the actual
user utterance u u during planning. At the end of
simulated dialogue, the final utility determined by
negotiation is obtained from the python function
reward. The variable current step is set to
“Terminated” to represent the end of a dialogue.

4.4 Experiments
Using the negotiation dialogue domain, we com-
pare the performances of two planning algorithms,
the forward planner and the MCTS planner, and a
naive baseline that only maximizes the immediate
utility without planning. The planning horizons
were set to 3 for the forward planner and 7 for the
MCTS planner, which made both planners take ap-
proximately same amount of search time.

As reported in Table 1, planning (using either
Forward or MCTS) improves the negotiation out-
come over the baseline in terms of both reward and

3(Py)OpenDial includes None action with utility 0 by de-
fault, thus we assigned small positive utility to the generated
utterances to be distinguished from the None action.



Reward Planning time (s) % Agreed
Baseline 4.96 ± 0.12 - 81.8
Forward 5.27 ± 0.12 2.28 ± 0.05 87.3
MCTS 5.68 ± 0.12 2.03 ± 0.03 88.9

Table 1: Experimental results for the negotiation ex-
ample. Baseline denotes the result of negotiation be-
tween two RNN models (without planning). Forward
and MCTS represents the negotiation result between
the corresponding planner and the RNN model. All the
results are averaged over 3000 dialogues and report the
2×(standard error).

agreement rate, and the MCTS planner further out-
performs the forward planner. This is mainly due
to the fact that the reward signal in the negotia-
tion domain only comes at the very end of the di-
alogue, thus in the early stages of the dialogue, no
meaningful reward signal can be obtained within
the short planning horizon of the forward planner.
In contrast, MCTS performs Monte-Carlo simula-
tions all the way towards the end of the dialogue
in most cases and thus captures the final utility.

5 Conclusion

In this paper, we presented PyOpenDial, a Python-
based open-source dialogue system toolkit that in-
herits the architectural design of OpenDial and ex-
tends the domain XML specification for integrat-
ing deep learning models.

We showed the aptitude of PyOpenDial by pre-
senting how the negotiation dialogue domain can
be implemented, seamlessly integrating with deep
learning model trained for natural language gen-
eration. We also demonstrated the efficacy of the
new MCTS dialogue planner, significantly outper-
forming the basic forward planner.

We look forward to active contribution from
the developer community towards refining and im-
proving PyOpenDial.
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