\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Singular limit analysis of a reaction-diffusion system with precipitation and dissolution in a porous medium

Abstract / Introduction Related Papers Cited by
  • In this paper we consider a three-component reaction-diffusion system with a fast precipitation and dissolution reaction term. We investigate its singular limit as the reaction rate tends to infinity. The limit problem is described by a combination of a Stefan problem and a linear heat equation. The rate of convergence with respect to the reaction rate is established in a specific case.
    Mathematics Subject Classification: 35K05, 35K51, 35K57, 80A22, 80A30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. Bouillard, R. Eymard, M. Henry, R. Herbin and D. Hilhorst, A fast precipitation and dissolution reaction for a reaction-diffusion system arising in a porous medium, Nonlinear Anal. Real World Appl., 10 (2009), 629-638.doi: 10.1016/j.nonrwa.2007.10.019.

    [2]

    N. Bouillard, R. Eymard, R. Herbin and Ph. Montarnal, Diffusion with dissolution and precipitation in a porous medium: Mathematical analysis and numerical approximation of a simplified model, Math. Mod. Numer. Anal., 41 (2007), 975-1000.doi: 10.1051/m2an:2007047.

    [3]

    H. Brézis, Analyse Fonctionnelle, Masson, 1983.

    [4]

    R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, handbook of numerical analysis, Handb. Numer. Anal., VII (2000), 713-1020.

    [5]

    J. Pousin, Infinitely fast kinetics for dissolution and diffusion in open reactive systems, Nonlinear Analysis, 39 (2000), 261-279.doi: 10.1016/S0362-546X(98)00162-X.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(106) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return