
Brick Yourself within 3 Minutes

Guyue Zhou1B, Liyi Luo1,2, Hao Xu3B, Xinliang Zhang1, Haole Guo1 and Hao Zhao4

Abstract— This paper presents an intelligent machine which
can automatically convert the captured portrait into a physical
gadget made up of LEGO bricks. On the contrary to synthe-
sising a 2D image or a virtual 3D object, generating physical
3D assembly object needs to take physical properties and
assembly process into consideration, leading to more challenges.
To generate brick models for arbitrary portraits, we formulate
the transformation between the attribute space (extracted from
2D images) and the brick model space as a constraint integer
programming problem which can be solved with a heuristic
search method. Furthermore, as the bricks are physically
scattered, we propose an algorithm to generate corresponding
assembly instructions for customized figure-featured-bricks to
facilitate users’ assembly. Meanwhile, we deploy the proposed
algorithms on an automatic machine which integrates a camera,
a printer, a laptop, and a brick operation unit. Finally, the
generated brick models and assembly instructions are evaluated
by a large number of users. It is worth noting that the whole
system works as an intelligent vending machine, producing a
150-brick-model within 3 minutes.

I. INTRODUCTION

With the rapid development of 3D printing technology,
mass customization, which was one of the forefront innova-
tions in manufacturing, have been gaining popularity even
for daily life. Compared with customizing a single physical
object, to manufacture product-level assemblies is obviously
more challenging, because the transition from user require-
ments to product design is non-trivial and assembling multi-
ple parts into the final object involves a complex procedure.
Nowadays, consumer products can hardly be customized
because of the relatively high cost of manufacturing non-
standard parts. An alternative way to achieve product-level
customization is to assemble standard parts in diversified
ways. For instance, toy building bricks are seen everywhere
in our daily lives and hence are perfect candidates of standard
parts for product customization.

In particular, figure-featured-bricks, e.g., LEGO Brick-
Headz series, are increasingly popular as toys, gifts, decora-
tions and even artworks. Unfortunately, the lack of neither
the design expertise nor the flexible supply chain makes it
still difficult for laymen to customize figure-featured-bricks.
The situation becomes worse when standard bricks are not
self-serving, meaning that we need to produce different cus-
tomized assembly instructions for each of different designs.
To solve the aforementioned problems, we demonstrate an
intelligent robotic system that enables laymen to customize

1Institute for AI Industry Research (AIR), Tsinghua University, China
{zhouguyue, zhangxinliang, guohaole}@air.tsinghua.edu.cn

2McGill University, Canada lyl@gmail.com
3Qianzhi Technology, China hao.xu.chn@gmail.com
4Intel Labs and Peking University, China hao.zhao@intel.com

Fig. 1. We develop a fully automatic system that converts a captured portrait
(a) into a brick model that resembles the portrait and can be physically
assembled (b). The generated model is made up with the most common
LEGO bricks (c), such as regular bricks, plates, tiles, slopes, etc.

their own figure-featured-bricks by simply taking a selfie to
be sent to the proposed vending machine.

To bridge the gap between casual user requirements and
their expected professional design, we present an easy-to-
use system that handles all stages of the figure-featured-
brick customization, from single-portrait input, design gen-
eration, human-in-the-loop interaction, to final fabrication.
In our system, experts define templates and basic assem-
bly rules that have physical guarantees. A series of deep
neural networks (DNN) and heuristic search methods are
employed to generate brick model proposals based on a
single photo from causal end users. End users can fine-tune
these design proposals in an interactive interface and the
confirmed brick design can be physically delivered on site.
While our machine is picking selected physical bricks, our
system automatically generate the corresponding assembly
instructions to facilitate user’s assembly. We accomplish the
complete system by contributing the following aspects.
• An end-to-end framework that supports automatic

figure-featured-bricks customization: from design to
fabrication.

• A novel algorithm that generates the brick model for a
given portrait, and furthermore generates the assembly
instruction for a given brick model.

• A fine-tune scheme that iteratively improves the auto-
matic design performance on the basis of user feedback.

• A series of experiments that verify the design through
fabrication of customized figure-featured-bricks from an
automatic machine.

II. RELATED WORK

Design for manufacturability is an important problem in
engineering design [1] [2] [3] [4]. More recently, advances in

manufacturing have garnered a lot of interesting fabrication-
oriented design systems that bring down the design barrier
for casual users. A wide range of domain specific design
tools have been proposed in previous work, including sys-
tems for push toys [5], clothes [6], linkage-based characters
[7], model airplanes [8], robots [9] [10] and carpentry [11].
Specific to the LEGO design and fabrication problem, related
work will be discussed in sequence of system architecture,
brick model and assembly instruction respectively.

A. System Design

Although there does not exist any exact system which can
convert the captured portrait into a physical gadget made
up of LEGO bricks, some inspirations can still be obtained
from similar works. For example, some work has been done
to generate virtual character from a single image, using a
skinned vertex-based model [12], a silhouette-based model
[13], or a Hierarchical Mesh Deformation (HMD) framework
[14]. Meanwhile, the mechanical system design [15] [16]
of chip mounters demonstrates a high-speed execution of
automatic pick and place tasks for tiny parts.

B. LEGO Design

With a given target shape, Gower et al. [17] firstly for-
mulated the automatic construction of LEGO models using
regular bricks (refer to Fig.1) as a combinatorial optimization
framework to maximize a goodness measure for LEGO
structures. Some follow-up works solve this problem us-
ing different methods, include evolutionary algorithms [18],
beam search methods [19], graph-based algorithms [20],
multi-phase approaches [21], and genetic algorithms [22].

Considering more LEGO parts other than regular bricks,
complicated structure brings mechanics, assembly and artis-
tic problems. For example, LEGO assemblies with oriented
thin plates was computed in [23] and silhouette fitting
[24] was used to improve LEGO constructions. Moreover,
stability analysis was solved via a max-flow network [25]
based on a two-phase approach. The order of brick colors
during assemblies was taken care with a comprehensive
method [26] for buildable LEGO structures in larger scales.
The visual quality was optimized in Pixel2Brick [27] which
constructed computed brick sculptures from pixel arts.

C. Instruction Design

The two primary tasks in designing assembly instructions
are planning and presentation [28]. The assembly planning,
which is a classic problem in robotics [29] [30], aims
to choose a sequence of assembly operations that will be
friendly for users to understand and follow. The assembly
presentation, which is essentially a visualization problem
[31] [32], aims to automatically produce diagrams or other
digital contents that are easy for humans to understand. With
the development of new technology, traditional paper-made
instructions evolve to e-versions embedded in Computer
Aided Design (CAD) [33], Virtual Reality (VR) [34], and
Augmented Reality (AR) [35] systems. Specific to the field

Camera Brick Model
Generation

Stock
Control

Instruction
Generation

Screen

Operation
Unit

Printer

Image

Brick
Model

Pick&Place
Sequence

Brick
Model

Instruction

User
Interface

Fig. 2. The overview of system design: external input/output (left) and
internal modules (right) including hardware (green blocks) and software
(orange blocks).

of LEGO instruction design, there exist quite a few inter-
esting attempts: an assembly guide can be generated in real
time with a RGBD camera input [36], a component-driven
instruction can be designed based on a component-based
LEGO sculpture model [37], and an assembly instruction for
multiple robots can be planned to finish collaborative LEGO
construction [38].

III. SYSTEM ARCHITECTURE

Figure 2 illustrates our proposed system framework, which
converts the captured portrait into a physical gadget made up
of LEGO bricks, with the following assumptions.
• The captured portrait covers the frontal full-body.
• The homogeneous bricks (with same shape and same

color) are preset in a dedicated storage bin – the
minimum unit for machine’s loading and unloading.

• The bricks are interspersed and are required to be
manually assembled following the assembly instruction.

• The assembly instruction is e-version and can be ac-
cessed by scanning a printed QR code.

In the remaining of this section, we introduce hardware
and stock control modules. We will discuss our method of
brick model generation and instruction generation in Section
IV and Section V, respectively.

A. Hardware

As shown in Fig.3(a), the hardware system is composed of
a RGB camera for capturing portraits, a wireless printer for
printing QR codes (link to the e-version assembly instruc-
tions), a laptop for user interaction, and an operation unit
for brick storage and manipulation. The total dimension is
124cm × 84cm × 130cm (laptop excluded). The operation
unit, which is the core module of the hardware system, is
made up of a X-Z table for feeding, a Y-Z table for pushing, a
friction wheel, a multi-layer storage bins, a pneumatic device
with ducts, a servo-driven fence and other mechanisms.

Fig. 3. Instances of hardware: (a) hardware system overview, (b) breakdowns inside the operation unit and a brick’s trajectory (yellow dashed) from the
storage bin to the output box, (c), the instant of the friction wheel touching a black brick, and (d) alternative brick combinations for a 1×4 plate.

Before designing the storage bins, we build a brick library
including 998 colored bricks which are frequently used in
figure-featured-brick design. To adapt bricks of different
heights and widths, we design 8 types of storage bin. Our
operation unit contains 9 layers of 385 storage bins, which
are able to store 6719 bricks at full load and can be easily
extended to cover the entire brick library with more layers
inside the current machine. Furthermore, each layer, which
layouts 29 to 50 storage bins, can be pushed by the Y-Z table
or pulled by a drag spring. In this case, the friction wheel
mounted on the X-Z table can access to every storage bin.

When a specific brick is required, our system will first
push the corresponding layer and move the friction wheel
right on the corresponding storage bin. Then, we adjust the
fence, which is a part of a parallelogram structure driven
by a servo. When the fence is close to pushed storage bins,
pneumatic device can blow bricks toward the friction wheel
side through ducts. When the fence is away from pushed
storage bins as shown in Fig.3(c), the brick is driven by the
rotating friction wheel to the fence, and is next landed on a
slope to the output box following the trajectory in Fig.3(b). In
practice, we know the complete sequence of required bricks
in advance, so the operation unit will execute layer by layer
continuously.

B. Stock Control

For each type of brick b, its stock volume S(b) can be
known from on-board statics and its expected consumption
volume per gadget C(b) can be known from big-data statics.
The stock control module’s task is to maximize the expected
gadget volume that our machine can produce.

Considering the real-time computing requirement, we sim-
plify the task by assuming consumption expectations are
independent among different types of bricks. A two-step
greedy strategy can be applied on a generated brick model.
Firstly, we should select all flexible brick combinations,
which can be equivalently replaced by other bricks. Secondly,
for each flexible brick combination C, we should enumerate
every possible alternative B ∈ A(C) and select the one

maximizing the stock function F(B) = minb∈B S(b)/C(b)
where b represents the brick element in B.

To quickly find the alternative for a certain brick combina-
tion, we can prepare a look-up table among different bricks
in advance. Besides typical alternative relationships between
single big part and several small parts as shown in Fig.3(d),
alternative relationships of non-appearance bricks can come
from different colors. For a specific brick model, do notice
that a brick’s alternative should be double-checked in terms
of structure and assembly using the methods described in
Section IV and Section V.

IV. BRICK MODEL GENERATION

Fig.4 shows our 3-step pipeline of the brick model gen-
eration module. Firstly, the EfficientNetV2 [39] is used to
convert the input portrait to a 92× 1 vector in the attribute
space. Secondly, an uncolored brick model is transformed
from the attribute vector by solving a integer programming
under collision and assemblability constraints. Thirdly, the
Attribute-Mask R-CNN [40] is employed to assign colors
for the brick model. Here follows the detailed descriptions.

A. Map Portraits to Attributes

Define the attribute vector Va = {Vh;Vd} where Vh is a
40× 1 head vector to describe faces, hairs and emotions, Vd

is a 52× 1 dress vector to describe the dressings, and each
element of Va should be a float number in [0, 1] to represent
the confidence value for the particular attribute. To achieve a
image-to-attribute mapping, we use the EfficientNetV2 as the
backbone and fine-tune the efficientnet-b7 pre-trained model.
Vh can be obtained with a network trained with the Large-
scale CelebFaces Attributes (CelelbA) [41] Dataset. Vd can
be decomposed into the 2-dimensional category component
and the 50-dimensional attribute component. Two networks
are trained using the DeepFashion: Category and Attribute
Prediction Dataset [42] with all 50 categories and the most
common 50 clothing attributes to generate Vd.

Fig. 4. Overview of our brick model generation pipeline. Given the input portrait (a), we use several deep neural networks to extract the attributes (b)
to describe the human appearance shown in the image. Built on these attributes, we generate the corresponding uncolored brick model (c) by iteratively
searching for brick component with the coordinate descent algorithm. Finally, we assign color to every brick to get the final brick model (d).

B. Transform Attributes into Brick Models

Define the brick vector Vb which is a 20 × 1 vector
to describe brick model options for beards, coiffures, face
shapes, glasses, waists, sleeves, trousers, shoes and other
figure features. Each element in Vb is a positive integer which
stands for an index of preset brick model options. Mean-
while, every brick model option is prepared by professional
designers and is manually labeled with the same attributes
according to the attribute vector. In this case, the essential
problem, searching for the best matching brick model under
collision and assemblablility constraints, turns out to be a
constraint integer programming [43].

V ∗b = argmin
Vb

(|Va,L(Vb)|2|Vb ∈ CB ∩AB) (1)

where L is the mapping function from the brick vector to
the attribute vector with known labels, CB and AB stand for
the brick spaces satisfying collision and assemblability rules
respectively.

To minimize the Euclidean distance in the attribute space
in 1, we apply a coordinate descent algorithm [44]. Based
on the expertise from professional designers, we follow a
heuristic search strategy starting from the head brick model,
following with the upper body brick model, and fitting the
rest brick models lastly.

C. Color Brick Models from Portraits

Define the color vector Vc(b), which is a k × 1 vector
and k varies from different brick model b, to represent color
information. Each element of Vc stands for an index of
discrete brick colors. A two-stage method is used for color
calculation. Firstly, we use the Attribute-Mask R-CNN as the
backbone and the ResNet-101 FPN as the pre-trained model
achieving pixel-level parsing for the portrait. Secondly, we
calculate major colors of k regions of interest. The major
colors come from the color-consistent connected areas with
related semantics.

V. INSTRUCTION GENERATION

After generating the brick model, we present our system
to automatically generate the assembly instruction, which

will be used to guide users to assembly the model in an
easy and friendly way. The overall pipeline of our assembly
instruction generation framework is inspired from the method
in [28], where we adopt and integrate their method to fit in
our system.

Below, we firstly introduce our method of modeling the
problem as a discrete optimization and then present our
search-based method to efficiently solve the optimization
problem.

A. Modeling an Assembly Instruction

The major objective of a user-friendly assembly instruction
is to compute an assembly sequence of all brick pieces in
the model as well as grouping them into steps. Based on
this principle, we model the assembly instruction generation
as an optimization, where we aim to find a proper sequence
of all brick pieces in the generated model, as guided by our
objective functions. The objective function mainly stands for
two physical meanings in general: 1) the brick model can be
physically assembled according to our generated assembly
sequence, and 2) we strive for a better assembly experience
for users. Below, we elaborate the requirements from the two
aspects.

a) Modeling Assemblability: Assemblability is a fun-
damental requirement for an assembly instruction, which
means the users can complete the final brick model according
to the assembly sequence as indicated by the assembly
instruction, without the need to remove assembled bricks
or add additional support. In this work, we model the
fundamental requirements for assembly instruction as hard
constraints, which include two terms. First, the bricks shown
in each step should be able to be snapped with existing bricks
without removing existing bricks. Second, the bricks shown
in each step should be able to connect with existing bricks;
or in other words, do not “float” in the air. We compute
the removal direction of the bricks based on the blocking
relationship as presented in [28], and compute the connection
between bricks based on the proximity of the connection
point of adjacent bricks.

b) Modeling Assembly Experience: Built on the hard
constraints discussed above, we strive to make the instruction

easy to be understood by general users. Here, we consider
the following objectives:
• Firstly, we maximize the visibility of all bricks shown

in each step. Because an assembly instruction can only
present 3D objects in a 2D space, we need to carefully
select the bricks to be assembled in one step, as well
as to select the viewing angle of the camera. In this
work, we measure the visibility of the bricks shown in
one step by minimizing the blocked area of the newly-
added bricks shown on the screen.

• Secondly, we maximize the semantic meaning of the
bricks shown in each step, for example, instead of
adding brick to both head and arms in one step, the
users prefer to assembly arms after completing the head.
We preserve the semantic meaning by leveraging the
semantic grouping information produced in the model
generation procedure, where we minimize the total
number of steps in which the bricks cover more than
one semantic group.

• Thirdly, we improve the consistency between every two
consecutive steps, which facilitate the users to quickly
locate the position to place new bricks. We quantify
the step consistency by computing the distance between
every two consecutive steps and aim the minimize the
total sum of all consecutive steps.

B. Searching for an Assembly Instruction

In our problem modeling as presented in Section V-A, we
are facing a combinatorial optimization problem with hard
constraints and soft objectives, where the decision variables
are the assembly sequence and the viewing angle of the
camera in each step. The solution space of the optimization
grows exponentially with the problem size, yielding an
immense discrete search space.

In this section, We present our method to solve such
a challenging combinatorial problem, where we present a
search procedure that computes the brick steps one by one,
as guided by our objective introduced in Section V-B. The
general pipeline of our method can be viewed as a disassem-
bling procedure, where we iteratively find removable bricks
from the brick model, group bricks as steps until all bricks
are removed. By doing so, the final assembly order can be
obtained by computing the reverse order of the disassembly
order.

Our searching method (Algorithm 1) can be divide into the
following two phases. In the first phase, given the generated
modelM with semantic groups G, we compute the assembly
sequence inside each group. For each group, our method
first finds all bricks that can be removed from the group,
denoted by B. All bricks in B must satisfy 1) each brick
can be removed without colliding with other bricks, and 2)
the remaining bricks do not collapse or be separated after
removing the brick. After that, we enumerate all subsets
of bricks in B, and select the subset that maximizes the
soft constraints introduced in Section V-A. We repeat this
process until no brick remains in the group to get the feasible
disassembly sequence for the group. In the second phase,

Algorithm 1 Procedure to Generate Assembly Instruction
Input: M = {G1,G2, ...,Gn}
Output: R = [[b1, b2, ..bm1], [bm1+1, bm1+2, ..bm1+m2], ...]

1: R = []
2: while M is not ∅ do
3: for each group gi in M do
4: if gi is removable with M and M \ gi is self-

connected then
5: temp = []
6: while gi is not ∅ do
7: B = get all removable bricks(gi)
8: [B1,B2, ...,Bm] = group bricks(B)
9: Bbest = group ranking([B1,B2, ...,Bm])

10: temp.append(Bbest)
11: gi.pop(Bbest)
12: end while
13: R.append(reverse(temp))
14: M.pop(gi)
15: break
16: end if
17: end for
18: end while
19: return reverse(R)

we compute the assembly sequence of all groups. In our
implementation, we treat each group as a large brick and
compute the sequence based on the same procedure as to
compute the sequence for individual bricks. At last, we
compute the viewing angle of the camera for each step,
where we first set four fixed camera viewing angles, and
evaluate which one gives maximum brick visibility.

VI. EXPERIMENTAL RESULTS

We set up two separated experiments: (a) a user study
collecting feedbacks from real customers to verify the per-
formance of brick model generation and instruction genera-
tion modules, and (b) a system demonstration to show the
capability of converting the captured portrait into a physical
gadget made up of LEGO bricks within 3 minutes.

A. User Study

As designs of brick models and assembly instructions can
hardly be evaluated with an objective function, we provide
brick customization service and collect feedbacks from real
customers to directly verify the performance of brick model
generation and instruction generation modules.

Before launching at various of e-commerce platforms, we
tested our proposed brick customization service with two
key opinion leaders (KOLs) – Sinovation Ventures (a venture
capital company led by Dr. Kai-Fu Lee), and the Fan Club of
Zhan Xiao (a popular actor in China). We obtained positive
feedbacks and understood that textures printed on bricks
would be the finishing touch as shown in Fig.5(a).

To generate labeled data satisfying requirements from
customers, we employed designers to extend our design

Fig. 5. Demonstrations of system performance: (a) the generated brick models with textures for KOLs, (b) a group show of the generated brick models in
the early stage with the human-in-the-loop interface, and (c) the exampled input portraits captured by our proposed machine and the corresponding outputs
– the physical brick models.

library in the early stage. The scale of design library showed
a significant convergence trend when the number of ac-
cumulated customers reached 800. After that, we started
to use the combination of AI-designed brick models and
assembly instructions with human-designed textures printed
on bricks. Up to this moment, over 1300 orders have been
made online showing the excellent performance generating
brick models, and Fig.5(b-1) shows a group of generated
brick models. More guidance and information can be found
at https://air.tsinghua.edu.cn/discover.

We have accumulated over 500 customers and there so far
exists no customer complaint about assembly instructions.
We also revisited 50 customers for enquiring assembly expe-
rience via follow-up phone callings. No negative comments
came to assembly orders but some suggestions on visual-
ization were adopted in our updated versions. It is worth
mentioning that: a customer was quite surprised that her 50-
year-old mother could independently follow instructions to
assemble bricks.

B. System Demonstration

We set up a system demonstration of the complete work-
flow: portrait shooting, user interaction, design generation
and fabrication. For the lack of general stock management
mechanism, the brick stocks are loaded in advance based on
3 selected individuals. Meanwhile, we develop an interface
as shown in Fig.5(b-2) for users to fine-tune generated brick
models using the laptop. The input portraits and output
assembled bricks can be referred to Fig.5(c). The detailed
statistics can be found in TABLE I. It should be noted that the
runtime counts fabrication time only with considerations as
follows: (a) the spent time with human machine interface is
uncontrollable and highly dependent on personal preferences,
and (b) the pre-computing time (including brick model gen-
eration, stock control, instruction generation, and machnical
motion planning) is less than 3s on a server with two GeForce
RTX 3090 GPUs and the machine can start operating fixed

bricks (e.g. base and internal structure) which are persistent
among designs during this computation.

TABLE I
STATISTICS OF SYSTEM DEMONSTRATIONS

Portrait Brick Number Assembly Step Runtime
Girl A (c-1) 178 83 155s
Boy B (c-2) 165 74 150s
Girl C (c-3) 147 57 141s

VII. CONCLUSIONS

The prototype of an automatic machine is built for con-
verting the captured portrait into a physical gadget made
up of LEGO bricks, with the purpose of enabling laymen
to customize figure bricks at will. The performance of the
brick model generation and instruction generation modules
are evaluated extensively by collecting feedbacks from real
customers. The results show positive comments on both
artistic effect and assembly friendliness from the majority.
Moreover, our system can work efficiently to support an
onsite customization with a live captured portrait within
3 minutes, showing the opportunity to upgrade traditional
make-to-stock production mode to an onsite customization
mode. By simply adding more brick model templates besides
portraits, our proposed system is expected to open new doors
for LEGO retails.

One may notice that our results may partially limited by
the expressiveness of LEGO bricks, strict requirements to
supply chain, and absence of brick texture print process.
Longer studies targeting AI-based brick texture design, data-
driven stock re-arrangement need to be conducted to optimize
our system further.

ACKNOWLEDGEMENT

We are grateful to Qianzhi Technology and Qimeng for
supporting this project, especially on the operation phase
including supply chain, e-commerce and customer service.

REFERENCES

[1] D.W. Currier. Automation of sheet metal design and manufacturing.
In 17th Design Automation Conference, pages 134–138, 1980.

[2] Satyandra K Gupta and Dana S Nau. Systematic approach to analysing
the manufacturability of machined parts. Computer-Aided Design,
27(5):323–342, 1995.

[3] Cheng-Hua Wang and R. Sturges. Bendcad: a design system for
concurrent multiple representations of parts. Journal of Intelligent
Manufacturing, 7:133–144, 1996.

[4] Jay Patel and Matthew I. Campbell. An Approach to Automate and
Optimize Concept Generation of Sheet Metal Parts by Topological
and Parametric Decoupling. Journal of Mechanical Design, 132(5),
04 2010. 051001.

[5] Yuki Mori and Takeo Igarashi. Plushie: An interactive design system
for plush toys. ACM Trans. Graph., 26(3):45–es, July 2007.

[6] Nobuyuki Umetani, Danny M. Kaufman, Takeo Igarashi, and Eitan
Grinspun. Sensitive couture for interactive garment modeling and
editing. ACM Trans. Graph., 30(4), July 2011.

[7] Bernhard Thomaszewski, Stelian Coros, Damien Gauge, Vittorio
Megaro, Eitan Grinspun, and Markus Gross. Computational design
of linkage-based characters. ACM Trans. Graph., 33(4), July 2014.

[8] Nobuyuki Umetani, Yuki Koyama, Ryan Schmidt, and Takeo Igarashi.
Pteromys: Interactive design and optimization of free-formed free-
flight model airplanes. ACM Transactions on Graphics (TOG),
33(4):1–10, 2014.

[9] Vittorio Megaro, Bernhard Thomaszewski, Maurizio Nitti, Otmar
Hilliges, Markus Gross, and Stelian Coros. Interactive design of 3d-
printable robotic creatures. ACM Transactions on Graphics (TOG),
34(6):1–9, 2015.

[10] Adriana Schulz, Cynthia Sung, Andrew Spielberg, Wei Zhao, Robin
Cheng, Eitan Grinspun, Daniela Rus, and Wojciech Matusik. In-
teractive robogami: An end-to-end system for design of robots with
ground locomotion. The International Journal of Robotics Research,
36(10):1131–1147, 2017.

[11] Jeffrey I Lipton, Adriana Schulz, Andrew Spielberg, Luis Trueba,
Wojciech Matusik, and Daniela Rus. Robot assisted carpentry for mass
customization. In 2018 IEEE international conference on robotics and
automation (ICRA), pages 3540–3547. IEEE, 2018.

[12] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-
Moll, and Michael J Black. Smpl: A skinned multi-person linear
model. ACM transactions on graphics (TOG), 34(6):1–16, 2015.

[13] Ryota Natsume, Shunsuke Saito, Zeng Huang, Weikai Chen,
Chongyang Ma, Hao Li, and Shigeo Morishima. Siclope: Silhouette-
based clothed people. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June 2019.

[14] Jason M. Saragih, Simon Lucey, and Jeffrey F. Cohn. Real-time
avatar animation from a single image. In 2011 IEEE International
Conference on Automatic Face Gesture Recognition (FG), pages 117–
124, 2011.

[15] Dina R Berkowitz and John Canny. Designing parts feeders using
dynamic simulation. In Proceedings of IEEE International Conference
on Robotics and Automation, volume 2, pages 1127–1132. IEEE, 1996.

[16] Yukiyasu Domae, Akio Noda, Tatsuya Nagatani, and Weiwei Wan.
Robotic general parts feeder: Bin-picking, regrasping, and kitting.
In 2020 IEEE International Conference on Robotics and Automation
(ICRA), pages 5004–5010. IEEE, 2020.

[17] Rebecca A. H. Gower, Agnes E. Heydtmann, and Henrik G. Petersen.
Lego: Automated model construction. In European Study Group with
Industry, pages 81–94, 1998.

[18] Pavel Petrovič. Solving LEGO brick layout problem using evolution-
ary algorithms. In Proc. NIK (Norsk Informatikkonferanse), pages
87–97, 2001.

[19] David V. Winkler. Automated brick layout. In Proc. BrickFest, pages
145–166, 2005.

[20] Romain Testuz, Yuliy Schwartzburg, and Mark Pauly. Automatic
generation of constructible brick sculptures. In Eurographics (short
paper), pages 81–84, 2013.

[21] Ben Stephenson. A multi-phase search approach to the lego construc-
tion problem. In Proc. Symposium on Combinatorial Search (SoCS),
pages 89–97, 2016.

[22] Seung-Mok Lee, Jae Woo Kim, and Hyun Myung. Split-and-merge-
based genetic algorithm (sm-ga) for lego brick sculpture optimization.
IEEE Access, 6:40429–40438, 2018.

[23] Bram Lambrecht. Voxelization of boundary representations using
oriented plates, 2006. University of California, Berkeley, http:
//lego.bldesign.org/ [Online; accessed 18-May-2018].

[24] Grim Yun, Cheolseong Park, Heekyung Yang, and Kyungha Min.
Legorization with multi-height bricks from silhouette-fitted voxeliza-
tion. In Proc. CGI, 2017. Article No. 40.

[25] Martin Waßmann and Karsten Weicker. Maximum flow networks for
stability analysis of structures. In Proc. Annual European Conference
on Algorithms (Lecture Notes in Computer Science, vol 7501), pages
813–824, 2012.

[26] Sheng-Jie Luo, Yonghao Yue, Chun-Kai Huang, Yu-Huan Chung, Sei
Imai, Tomoyuki Nishita, and Bing-Yu Chen. Legolization: Optimizing
LEGO designs. ACM Trans. on Graph. (SIGGRAPH Asia), 34(6),
2015. Article no. 222.

[27] Ming-Hsun Kuo, You-En Lin, Hung-Kuo Chu, Ruen-Rone Lee, and
Yong-Liang Yang. Pixel2brick: Constructing brick sculptures from
pixel art. Computer Graphics Forum (Pacific graphics), 34(7):339–
348, 2015.

[28] Maneesh Agrawala, Doantam Phan, Julie Heiser, John Haymaker, Jeff
Klingner, Pat Hanrahan, and Barbara Tversky. Designing effective
step-by-step assembly instructions. ACM Transactions on Graphics
(TOG), 22(3):828–837, 2003.

[29] J.D. Wolter. On the automatic generation of assembly plans. In Pro-
ceedings, 1989 International Conference on Robotics and Automation,
pages 62–68 vol.1, 1989.

[30] L.S. Homem de Mello and A.C. Sanderson. A correct and complete
algorithm for the generation of mechanical assembly sequences. IEEE
Transactions on Robotics and Automation, 7(2):228–240, 1991.

[31] Steven Feiner. Apex: An experiment in the automated creation of
pictorial explanations. IEEE Computer Graphics and Applications,
5(11):29–37, 1985.

[32] Jock Mackinlay. Automating the design of graphical presentations
of relational information. Acm Transactions On Graphics (Tog),
5(2):110–141, 1986.

[33] Niloy J Mitra, Yong-Liang Yang, Dong-Ming Yan, Wilmot Li, and
Maneesh Agrawala. Illustrating how mechanical assemblies work.
ACM Transactions on Graphics-TOG, 29(4):58, 2010.

[34] Sankar Jayaram, Hugh I Connacher, and Kevin W Lyons. Virtual
assembly using virtual reality techniques. Computer-aided design,
29(8):575–584, 1997.

[35] Lei Hou, Xiangyu Wang, Leonhard Bernold, and Peter ED Love.
Using animated augmented reality to cognitively guide assembly.
Journal of Computing in Civil Engineering, 27(5):439–451, 2013.

[36] Ankit Gupta, Dieter Fox, Brian Curless, and Michael Cohen. Du-
plotrack: a real-time system for authoring and guiding duplo block
assembly. In Proceedings of the 25th annual ACM symposium on
User interface software and technology, pages 389–402, 2012.

[37] Man Zhang, Yuki Igarashi, Yoshihiro Kanamori, and Jun Mitani.
Component-based building instructions for block assembly. Computer-
Aided Design and Applications, 14(3):293–300, 2017.

[38] Ludwig Nägele, Alwin Hoffmann, Andreas Schierl, and Wolfgang
Reif. Legobot: Automated planning for coordinated multi-robot as-
sembly of lego structures. In 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 9088–9095. IEEE,
2020.

[39] Mingxing Tan and Quoc V Le. Efficientnetv2: Smaller models and
faster training. arXiv preprint arXiv:2104.00298, 2021.

[40] Menglin Jia, Mengyun Shi, Mikhail Sirotenko, Yin Cui, Claire Cardie,
Bharath Hariharan, Hartwig Adam, and Serge Belongie. Fashionpedia:
Ontology, segmentation, and an attribute localization dataset. In
European Conference on Computer Vision (ECCV), 2020.

[41] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep
learning face attributes in the wild. In Proceedings of International
Conference on Computer Vision (ICCV), December 2015.

[42] Ziwei Liu, Ping Luo, Shi Qiu, Xiaogang Wang, and Xiaoou Tang.
Deepfashion: Powering robust clothes recognition and retrieval with
rich annotations. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2016.

[43] Tobias Achterberg, Timo Berthold, Thorsten Koch, and Kati Wolter.
Constraint integer programming: A new approach to integrate cp and
mip. In International Conference on Integration of Artificial Intelli-
gence (AI) and Operations Research (OR) Techniques in Constraint
Programming, pages 6–20. Springer, 2008.

[44] Stephen J Wright. Coordinate descent algorithms. Mathematical
Programming, 151(1):3–34, 2015.

