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Abstract

Let G be a finite abelian p-group. We compute the complete set of
cross numbers of minimal zero sequences associated with G. We also
strengthen a result of Krause concerning minimal zero sequences with
cross numbers less than or equal to 1.

1 Introduction

Let G be an additively written finite abelian group and S = (g1, -, 41) a sequence
of elements of (. For ease of notation, we will also denote S by § = ¢g;--- g1 and
use exponentiation to represent repetition in the sequence. We say that S is a zero
sequence if

l
Zg.; = 0.
=1

Further, S is called a minimal zero sequence if 3, g; # 0 for each proper subset

O£ Tc{l, -,I}. The cross number k(S) of S is defined by

K) = Z 0fd1(9¢)~

=1

Let U(G) represent the set of all minimal zero sequences of G and

W(G) = {k(5)IS e U(G)}
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the set of cross numbers of minimal zero sequences. Then
K(G) = exp(G)max W(G)

is called the cross number of G.

Cross numbers of minimal zero sequences, and in particular the cross number
of G, have found a great deal of attention in recent literature (see the references).
In this note, we determine W(G) for all finite abelian p-groups G. In section 3 we
solve Problem 5 of [1], which deals with special minimal zero sequences S satisfying
k(S) < 1.

Throughout our discussion, we will use notation consistent with that of the papers
[4] - [7]: Z represents the set of integers, N the set of positive integers, and C, the
cyclic group consisting of n elements.

2 On W(G)

Lemma 1 Let G = H @ Cy be a finite abelian group with v > 1, ezp(H) = 2°m for
some 0 < s <7, m odd, and ezp(G) = 2"m = n. For every B € U(G) we have that
k(B) = ;—’\1 for some even A € N,

Proof: Let
B=ay---apby--- b € U(G)

be given with 27 ford(a;) for 1 <1 < k and 27| ord(b;) for 1 < j < I. Thus, there
are even numbers n;, 1 <1 < k, such that

n = ord(a;)n;

and hence,
k k

z; oxd(a% ?:
for some even A; € IN,. For every 1 < j < [ we set
by =d; +¢c;
with d; € H and ¢; € Cy with ord(cj) = 2". Then,
27 et ep) =0
for all 1 < j < 5 <[ and thus
2" ford(b; + b;).

Since 3% L a; + 23»__1 bj = 0, we infer that ! is even. There are odd numbers m;,
1 <3 <1, such that

n = ord(b;)m;
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and hence .
1 mJ . )\2
“ord(b;) 2= n

j=1 7

for some even A, € N .o
Set W*(G) = {k(5)|S € U(G) and k(S) < 1}. In the next theorem we determine
W*(@) for all finite abelian groups @.

Theorem 2 Let G be o finite abelian group of ezponent n = 27m for some odd m
and some r > 0. If Cyr @ Cyr is a subgroup of G, then

wi(©) = {2 <asal.

Otherwise,

W'(@G) = {%[2 <Ah<mn, A even} .

Proof: By definition
W*(G) C {—%—12 <A< n} .
n

If Cy» @ Cy» is not a subgroup of @, then Lemma 1 implies that
A
WH(G)YCS~|2< A <n,)even).
n

In order to prove the reverse inclusion, let A € {2,...,n} be given (if G has no
subgroup isomorphic to Cyr @ C'yr, then suppose that X is even).

Case 1: Suppose that A does not divide n. Suppose further that ged(A,m) = q,
A =a), = and m = am’. Then

A X

n n
with n' = 2"m/,2 < X <n/,X = X mod 2 and ged(),m') = 1.
If M is even, then

('-2)
_ [ 1+m'Z 2+ m'Z -+ m'Z
B“(H«z'z) <1+2fz)((hyﬂm)eu(c‘m'@cﬁ)

N—2 1 1 A

n' n o
If X is odd, then Car @ Cyy is a subgroup of G. Furthermore,

(V-2)
_{1+n'Z 24+n'Z XN 4+ n'Z
B“(Hzrz) (1+2fz)<(1~x)+2fz)E“(C"’@Cz')

and
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and
AM—-2 1 1 A
4+ — 4 — =
T

! ,nl

k(B) =

n' n

Case 2: Suppose that A = n. Take some 0 # g € G and set B = g9 Then
k(B)=1.

Case 3: Suppose that X < n and A|n. Then there is a prime p € N, dividing A
such that
A_p
n pl
with s > 1, p [I, p*l|n, and | € Ny. If X is even, we choose p = 2.
Case 3.1: Suppose p = 2. Take some element g € G of order p°l and set
B = (—g)g. Then ) \
k(B) = ey
Case 3.2: Suppose p > 3 is odd.
Case 3.2.1: Suppose that ! is odd. Set

23 =3 2
B 14+pZ\?* [ 14pZ \?* [ 1492 (1—-p)+p°Z
T\ 14 1Z —141Z ~1+41Z 2+ 17 ’
Then B € U(Cps ® Cy) and

. —3)/2 -3)/2 2 1 A
K(B) = & y2 =32 2 1 _ X
pl pl pl pl mn

Case 3.2.2: Suppose that 2¢|! for some £ > 1. Since p is odd, A is odd and
hence Cps @ Cyt = Cps @ C) & Cye is a subgroup of G. Set

3

p=3 P8
1+4+p°Z \ * 1+ p°Z 5 14+ 9°Z 14 p'Z (1-p)+p°Z
B = 1+1Z ~1+1Z ~-1+1Z —14+1Z 2417 .
0+ 2'7Z 0+ 2% 0+ 2tZ -1+ 22 14 27

Then B € U(Cps @ C; & Cy) and

ra
Pl
Example 3 Let G be any finite abelian group of odd order with exponent n. Then
Theorem 2 yields {with » = 0) that

W*(G):{E,i,...,f}.

n n i

In particular, if G = Cps (with p an odd prime), then Krause’s result [8] implies that
2 3 #
W(G) = {—;,m,...,p—}.
p*p P’
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In particular, if G = Cp» (with p an odd prime), then Krause’s result [8] implies that

W(@) = {3 3 E},

PERSPERE RN
P p p
For p = 2 the same group as above yields

2 4 2°
W(G)“{ia"a:"wa‘s}

Theorem 4 Let G be a finite abelian p-group for some prime p. Suppose that G =
@ O, withl =ng < ny £ -+ < mp = 7. Ifpis odd, or if p=2 and n,1 = n,
then

A —ln
1l <nr—S" 2L
W(G) {RIZW)\wn'f Z:lnl}
Otherwise,

A Zn
wW(G) = ;l2§>\§nrwzf,)\ even ¢ .

=1 "2

Proof: In either of the two cases above, W(G) is contained in the set on the right
side of the equality by [5] and Lemma 1. In order to show the reverse inclusion, we
proceed by induction on 7. For r = 1 the assertion follows from Theorem 2. Let
e1,...,e be a generating system for G with ord(e;) =mifor 1 <4 <

Case 1: p odd (or p = 2 and n,_; = n). First suppose that G = Ca: @ Cys for
some s € N, (ie,p=r=2,n =n=2°). By Theorem 2 we have that

Pp<a<nycw@ c{iiz<r<m—1}.
n n
For each 0 <1 <n—1,set
By = el el ey + es) ™ € U(G).
We have k(B;) = 2—’—‘?1;1—-'—1 and hence
Bh<a<m-1cw@),

which completes the proof for G = Cqs @ Cos.

Now suppose that 7 > 2 if p is odd (resp. 7 > 3 ifp = 2) and that the result
holds for 7 — 1. By the induction hypothesis we have that

{%tz o= 1’7} = W(&i-20n)

i=a T

A o
W(@On) S -2 <A Smr =30 — .

i=1 Tk
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Hence, it remains to verify that for every 1 < < n —1 there exists some B; € UG)
with .
—n;—1 I+1
k(B) = Z

1=1 i

Let [€{1,...,n—1} be given. If p fl or p = 2, then

r—1
Bl = H e?i—_lei(el +ot e — ler)

=1

satisfies the desired condition. If p|l and p odd, then

-1
By = H er el e, (e + - + €pg — (I+1e,)

=1
yields the required value for k(B).

Case 2: p =2 and n,_; < n. Suppose r > 2. By the induction hypothesis we
infer that
71

{%]2 <A<n(r—1)— Zi,). even } =W(eI_,Ch) C

=2 %

-1
W(®i21Cn,) C {")\-]2 <A<nr—)" IL—,/\ even } .
n .

i=1 't

ForOSlgg—l,set

r—1

B, = H e ler e 4 ey + (214 1)e,) € U(G).

=1

Then

and the proof is complete. ©

Remark 5 Let G be a p-group of odd order. Then, by Theorem 4, every possible
value between min W(G) and max W(G) may be realized as a cross number of some
5 € U(G). We have been unable to find a non-p-group of odd order that satisfies
this property.

3 On Zero Sequences S with k(S) < 1

The following result strengthens Lemma 2 in [8] and solves Problem 5 in [1].

Theorem 6 Let G be a finite abelian group and g some nonzero element of G. The
following conditions are equivalent:
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1. G is cyclic of prime power order.
2. k(S) <1 for all § € U{G) containing g.

Proof:(1 = 2) follows from Theorem 4.

(2 = 1) Assume to the contrary that G is not cyclic of prime power order. Then G
is the direct sum of two non-trivial subgroups, say G = G1 @ G,. Hence g = g1 + g2
with g1 € G4, g2 € G4 and not both g, and g, are equal to zero. Without loss of
generality, suppose that g; # 0 and ord(gy) = m > 1. We consider two cases:

Case 1: Suppose that g; # 0. Set ord(gz) =n > 1 and

S — ggm»—i)ggn—-l)g‘
Then S € U{G) and

-1 -1 1
KS) ="y BTy >1

m n lem(m, n) ’

a contradiction.
Case 2: Suppose that g, = 0. We choose an element b € G with ord(h) =n > 1
and set

§ = gtmURl=1(g 4 h).

As above, we have S € U(G) and k(S) > 1, a contradiction. o
The following corollary offers an alternate proof of the main result of [3].

Corollary 7 Let G be a finite abelian group and g some nonzero element of G. The
following conditions are equivalent:

1. either G=0C5 and g =1+ 27 or G = Cy and g = 2 + 47,
2. k(5) =1 for all S € U(@F) containing g.

Proof: Since the proof of (1 = 2) is obvious, we prove only (2 = 1). The previous
Theorem implies that G = Cpn for some prime p and some n € N,. Since

H(=0)0) = s =1

it follows that ord(g) = 2 and hence p = 2. If n = 1, then we are done. If n > 2, we
choose an element & € G with ord(h) = 2”. Then

12
kgh(—g—h)) =5+ =1,

implies that n = 2.0
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