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Abstract 

Let be a finite abelian p-group. We the complete set of 
cross numbers of minimal sequences associated with G. We also 

result of Krause minimal zero sequences with 
cross numbers less than or 

Let G be an additively written finite abelian group and S = (91, ... ,gz) a sequence 
of elements of G. For ease of we will also denote S by S = gl ... gl and 
use exponentiation to represent in the sequence. We say that S is a zero 
sequence if 

9i = o. 

Further, S is called a minimal zero sequence if 2:iEl 9i i= 0 for each proper subset 
o i= I c {I, ... , I}. The cross number k( S) of S is defined by 

k(S) = 1 
ord(gi) . 

Let U( G) represent the set of all minimal zero sequences of G and 

W(G) = {k(S)IS E U(G)} 
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the set of cross numbers of minimal zero sequences. Then 

max 

is called the cross number of G. 

Cross numbers of minimal zero sequences, and in the cross number 
of G, have found a deal of attention in recent literature (see the references). 
In this note, we determine W( G) for all finite abelian p-groups G. In section 3 we 
solve Problem 5 of [1], which deals with minimal zero sequences S satisfying 
k( S) ::; l. 

Throughout our discussion, we will use notation consistent with that of the papers 
[4] - [7J: Z the set of the set of positive integers, and Gn the 
cyclic group consisting of n elements. 

2 W( 
Lemma 1 Let G HEEl G2'f' be a finite abelian group with l' ~ I, exp(H) 28 m for 
some 0::; < r} m odd, and exp(G) = 2r m n. For every B E U(G) we have that 
k(B) = ~ for some even A E 

Proof: Let 
B = al'" 

be given with 2r A ord( ai) for 1 i::; k and there 
are even numbers ni, 1 ::; i ::; k, such that 

a.nd hence, 

for some even Al E For every 1 ::; j 1 we set 

with dj E Hand Cj E with ord( Cj) 2r. 

2r-l(Cj + cjI) = ° 
for all 1 ::; j < j' ::; l and thus 

Since ai + b· J 0, we infer that 1 is even. There are odd numbers mj, 
1 ::; j ::; 1, such 
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and 

If 

A 

with nf 

If,\' 

B 

and 

If A' is 

B 

n 

In theorem we determine 

not that 

Inc.,luSlon, let A 
then suppose that A is 

that A not divide n. "'l1-nn"cp further that 

A ,\' 

n 

,2 ::; )..' ::; n', A A' mod 2 and ,m') = 1. 
even, then 

k(B) = ,\' - 2 1 ~ + ,+ , n n n 

then C2.,. EB On' is a subgroup of G. Furthermore, 

some odd m 

(if G has no 

m) -- a - , 

( 
1 + n'Z ) (,\'-2) ( 2 + n'Z ) ( -,\' + n'Z ) 
1 + 2r Z 1 + 2rZ (1- )..1) + 2rZ E U(On' EB C2r) 
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and 
)..' - 2 1 1 A 

k(B) = -,- + I + f 
n n n n 

Case 2: that A = n. Take some 0 f:. 9 G and 
k(B) l. 

Case 3: Suppose that A < nand Aln. Then there is a 
such that 

A p 

n 

with I, p JI, pSlln, and IE N+. If A is even, we choose p 

pE dividing A 

Case 3.1: Suppose p 2. Take some element 9 E G of order pSl and set 
B (-g)g. Then 

k(B) 
2 A 

n 

Case 3.2: Suppose p 2:: 3 is odd. 
Case 3.2.1: that 1 is odd. Set 

B = ( \: lZ ) ( ~i + lZ ) ( -i + lZ ) 
((1 p) + ). +IZ 

Then E U( Cp ' EB Ct) and 

k(B) 
2 1 ). 

+ + 
11, 

Case 3.2.2: Suppose that 2tll for some t 2:: l. p A is odd and 
hence Cps 1 EB C2t S::! EB Cl EB is a subgroup of G. Set 

( 

1 + pSZ ) 
B = 1 + lZ 

0+ 2t Z 

Then B E U( Cpa EB 

( .~i :sl~ ) 1";-3 ( -i + lZ ) ( ~i + lZ ) ( (1-2
P2 iz 

0+ 2t Z 0 + 2t Z -1 + 2t Z 1. + 2t Z 

EB C2t) and 

k(B) 
A 
-.¢ 
n 

) 

........ "', ..... .,,,.1", ..... 3 Let G be any finite abelian group of odd order with eX"(:lonlent n. Then 
Theorem 2 yields (with r = 0) that 

W* (G) = {~, ~, ... , ~} . 
n n n 

In particular, if G S::! (with p an odd prime), then Krause's result that 

W(G) = 2 ~"",PIJ}. pS pS 
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In particular) if G (with p an odd then Krause's result [8] implies that 

W(G) {:., :., 
For p 2 the same group as above yields 

W(G) {~, ;8' .. , ~:}. 
Theorem 4 Let G be a finite abelian p-group for some prime p. Suppose that G ~ 

with 1 no nl:S;' . . n1' n. If p is odd} or if p 2 and n1' -1 = n} 
then 

Otherwise, 

W(G) {~12 )':e; nr -

W(G) nr 
1'-1 } 

~,..\ even 
ni 

Proof: In either of the two cases W( G) is contained in the on the right 
side of the equality by [5] and Lemma 1. In order to show the reverse inclusion, we 
proceed by induction on r. For r 1 the assertion follows from Theorem 2. Let 
el"" ,e1' be a generating for G with ord(ei) = ni for :s; i r. 

Case 1: p odd (or p = 2 and nr -1 = n). First suppose that G C2• EB C2 8 for 
some s E N+ (i.e., p = r = 2, n1 = n = 28

). Theorem 2 we have that 

{~12SAsn}~W(G)~{~12 AS2n-1}. 
n n 

For each 0 S 1 S n 1) set 

Bl = e~-l-le~-1-l( el + e2)l+l E U( G). 

We have k(Bd = 2n:l-l and hence 

A 
{ -In S A S 2n I} ~ W (G), 

n 

which completes the proof for G = C2 8 EB C2 •• 

Now suppose that r ~ 2 if p is odd (resp. r ~ 3 if p = 2) and that the result 
holds for r - 1. By the induction hypothesis we have that 
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Hence, it remains to verify that for every 1 :So l :So n 1 there exists some Bl E U( G) 
with 

l+l 
n 

Let l E {I, .. ,n 1} be given. If p Al or p = 2, then 

r-l 

Bl = II eii-le~( el + ... + er -l 
i=l 

satisfies the desired condition. If pll and p odd, then 

r-l 

Bl ei'-l e~-12er( el + ... + er-l - (1 + 1 )er ) 

yields the 'rProll11",,,,rl value for k(Bl). 

Case p = 2 and nr-l < n. Suppose r ~ 2. the induction hypothesis we 
infer that 

{~ :So .A. S; n(r - 1) - r-l 2::.,.A. even} 
ni. 

W(EIl'=lC.,) ~ {~12 .A. :So nr r-l 2::.,.A even} . 
i=l ni 

For 0 S; l j 1, set 

r-l 

eii-le~-1-21(el + ... + er-l + (2l + l)er ) E U(G). 

Then 

and the proof is complete. <> 

Remark 5 Let G be a p-group of odd order. Then, by Theorem 4, every possible 
value between min W( G) and max W( G) may be realized as a cross number of some 
S E U( G). We have been unable to find a non-p-group of odd order that satisfies 
this property. 

3 Sequences S with k(S) < 1 

The following result strengthens Lemma 2 in [8] and solves Problem 5 in [1]. 

Theorem 6 Let G be a finite abelian group and g some nonzero element of G. The 
following conditions are equivalent: 
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1. G is cyclic of prime power order. 

:s; 1 for all E 

:::::} 2) follows from Theorem 4. 
Assume to the that 

is the direct sum of two non-trivial SUiJIH'OUDS. 

with gl 1 g2 and not both gl 

power order. Then G 
Hence 9 = gl + 92 

Without loss of 
suppose that 0 and '-''-', .... u>'~~. two cases: 

:"'I11"nnc'1se that g2 O. Set 

Then S and 

a contradiction. 
Case 2: that 
and set 

As above, we have S E 

mIn 
+ m 

S + 
and k( S) 1, contradiction. 

with =n>l 

The following offers an alternate proof of the main result of [3]. 

· ....... 11 ... ..,·"<7 7 Let G be a abelian group and 9 some nonzero element of G. The 
following conditions are eq1'1,'/.valent: 

1. either G = C2 and 1 + 2Z or and 9 2 + 
2. k(S) = 1 for all S E U( G) containing g. 

Proof: Since the of (1 :::::} 2) is we prove only (2 :::::} 1). The previous 
Theorem implies that G Cpn for some p and some n E Since 

k(( -g)g) 1, 

it follows that ord(g) = 2 and hence p = 2. If n = 1, then we are done. If n 2:: 2, we 
choose an element h E G with ord( h) = 2n. Then 

implies that n = 2.<> 

1 2 
k(gh( -g - h)) = - + - = 1, 

2 2n 
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