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Abstract

We propose a conjecture: for each integer k > 2, there exists N (k) such
that if G = (V1, Vy; E) is a bipartite graph with |Vi| = [Vo| =n > N(k)
and d(z)+d(y) > n+k for each pair of non-adjacent vertices z and y of G
with © € V; and y € V, then for any & independent edges ey, ..., e; of G,
there exist k vertex-disjoint cycles C',...,C in G such that e; € E(C;)
foralli € {1,...,k} and V(C,U---UCy) = V(G). If this conjecture is
true, the condition on the degrees of G is sharp. We prove this conjecture
for the case k = 2 in the paper.

1 Introduction

Let k be a positive integer and let G = (V1, Va; E) be a bipartite graph with |V;| =
[Va| =n > 2. It is well known [1, 3] that if d(z) +d(y) > n+ 1 + k for each pair of
non-adjacent vertices z and y of G with € V; and y € V5, then for any forest F' with
at most k édges and consisting of vertex-disjoint paths of G, G has a hamiltonian
cycle passing through all the edges of F. We propose the following conjecture.

Conjecture A For each integer k > 2, there exists N (k) such that if G = (Vy, Va; E)
is a bipartite graph with |Vi| = [Vo| = n > N(k) and d(z) + d(y) > n + k for each
pair of non-adjacent vertices x and y of G with z € V; and y € Vs, then for any k
independent edges ey, ...,e, of G, there erist k vertez-disjoint cycles Cy,...,Cy in
G such that e; € E(C;) for alli € {1,...,k} and V(CLU---UCy) = V(G).

If this conjecture is true, the condition on the degrees of G is sharp. To see this,
let G = (X,Y; E) be a bipartite graph obtained from the complete bipartite graph
Ky 1, by adding a new vertex zo to K,_1, such that Ng(zo) = {z1,%2,...,7x}
where x1, s,. .., T are k vertices of K,_; , whose degrees in K,,_;, are n— 1. Then
for each pair of non-adjacent vertices  and y of G with z € X and y € Y, we have
zo € {z,y} and d(z) +d(y) = n+k — 1. Let e;,...,e; be k independent edges
in G such that e; is incident with z; for all ¢ € {1,...,k} and e; = z¢z;. Clearly,
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every cycle passing through e; must contain at least three vertices in {zq, z1,...,zs}.
Therefore G does not possess k vertex-disjoint cycles satisfying the requirement.

In this paper, we prove the conjecture for the case k = 2. To state the result, let
F be a graph obtained from Ky 4 by removing three independent edges from K 4.
We prove the following:

Theorem B Let G = (Vi,V3; E) be a bipartite graph with |Vi| = [Vo| = n > 4.
Suppose d(z) + d(y) > n + 2 for each pair of non-adjacent vertices x and y of G
with € V1 and y € Va. Then for any two independent edges ey and e; of G, G has
two vertez-disjoint cycles Cy and Cy such that e; € E(C;) for each i € {0,1} and
V(CoU Cy) = V(Q), unless G is isomorphic to F.

We discuss only finite simple graphs and use standard terminology and notation
from [2] except as indicated. Let G be a graph. For a vertex u € V(G) and a subgraph
H of G, N(u, H) is the set of neighbors of u contained in H, i.e., N(u, H) = Ng(u)N
V(H). We let d(u, H) = |N(u, H)|. Thus d(u, G) is the degree of u in G. For a subset
U of V(G), G[U] denotes the subgraph of G induced by U. Let e be an edge of G.
An e-subgraph of G is a subgraph H of G such that e € E(H). If P is an e-path, we
define o (e, P) = min(|E(P’)|, |E(P")|) where P’ and P" are two components of P—e.
If o(e, P) = 0, we say e is an endedge of P. We use {(C) and {(P) to denote the length
of a cycle C' and the length of a path P, respectively. For a path P of an odd length,
say P = x1x3 ... Ty, we define Ey(P) = {129, T2g-1Z2¢ }U{ZiTit1 ]t = 2,4,...,2¢-2}
and Ey(P) = {z;2;41|7 = 3,5,...,2¢—3}, and moreover, let r(e, P) = 0 ife € Eo(P)
and r(e,P) =1ife € E(P).

2 Lemmas

The following lemmas are Ore-type lemmas in bipartite graphs. The proofs of them
can be found in or easily deduced from [1, 3, 4]. Let G = (V;,V3; E) be a given
bipartite graph in the following.

Lemma 2.1 Let e be an edge and P = ©12, ... 2o an e-path in G. Lety € V(G) —
V(P) such that {xog,y} € V; for every i € {1,2}. If d(zaq, P) + d(y,P) > q +
1+ (e, P), then G has an e-path P' such that V(P') = V(P) U {y}. Moreover, if
e # T129, then P' is a path from y to z.

Proof. Clearly, the lemma holds if yxo, € E. So we may assume yzo, ¢ E. As
d(y, P) > 0, it is also easy to see that if e = 212, and 2122, € E, then the lemma
holds. Hence we may assume that if e = z1x,, then 129, € E. Let I = {z;11|739, €
E}. Then [N(y,P) 1| = [N(y, P)| +|I| = IN(s, P) UI| > g+ 1+ (e, P) — g =
1+7(e, P). If r(e, P) = 0 then there exists ;41 € N(y, P) N I. Clearly, z;zi11 # €.
On the other hand if r(e, P) = 1 then there exist 7 and j with 4 # j such that
{Zi+1, 2541} € N(y, P)NI. We may assume w.l.o.g. that z;z,,; # e. In either case,
P =Yz 1Tits . . . TogZiZiy . . . Ty 18 the desired path. O

Lemma 2.2 Let e be an edge and P = 2125...%yq an e-path with ¢ > 2 in G. If
d(x1, P) 4+ d(22q, P) > q+ 1 + (e, P), then G has an e-cycle C with V(C) = V(P).
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Proof. Clearly, the lemma holds if 125 € E. So we may assume z122, &€ E. As
in the proof of Lemma 2.1, the condition implies that there exist z; and z; for some
{i,7} € {1,3,...,2¢ — 1} such that {@12;41, ToqZi, T1Zj11, Togz;} C E with i # j if
r{e, Py =1. As 2129, & E, we see that e & {z;2i41, 2;z,11} if 7(e, P) = 0. We may
assume w.l.o.g. that e # z;7;1 if ¢ # j. Then C' = 1125 ... 33Zag@og—1 . . . Tiy17y IS
the desired cycle. O

Lemma 2.3 Let e be an edge and C an e-cycle in G. Let y € V(G) - V(C). If
d(y, C) > 2, then GV (C)U{y}] contains an e-cycle C' such that [(C") < I(C), unless
d(y,C) =2, N(y,C) = {2',2"} and C has a subpath ='zz" with 2 not incident with
e.

Proof. Say C = x1%s... %02, with e = 2129, Let {z;,z;} C N(y,C) such that
1<i<j<2and zy € E for all z € V(C) - {zi,2it1,...,2;}. Clearly, C' =
Ty...TYTj.. . Toq1 is an e-cycle. If I(C") £ I(C), then j = ¢ + 2. This proves the
lemma. 0

Lemima 2.4 Let e be an edge, C' an e-cycle and P a path with two endvertices u € V4
and v € V3 in G such that V(C)NV(P) =0. Let I(C) = 2q. If d(u,C) +d(v,C) >
g+ 1, then G has an e-cycle C" with V(C') = V(C U P).

Proof. Let C = x1x5... 29071 With e = 2,25 and z; € V;. The condition implies
that {z;v, zipu} C E for some i € {1,3,...,2¢—1}. Then 2129yZoy_1 - . . Ty uPvz;
Z;—1...2 is the desired cycle. 0O

3 Proof of the Theorem

Let G = (V4, Va; E) be a bipartite graph with |Vi| = V3| = n > 4 such that d(z) +
d(y) > n + 2 for each pair of non-adjacent vertices x and y of G with z € V; and
y € V5. Suppose that there exist two independent edges ey and e; of G such that G
does not have two vertex-disjoint cycles Cy and C; with e; € E(C;) for each i € {0,1}
and V(CyUC}) = V(G). Then we shall prove that G is isomorphic to F.

Say e; = uv. Clearly, d(z,G —u—v) +d(y,G—u—-v) >n+2-2=(n—1)+1
for each pair of non-adjacent vertices z and y of G — u — v. Thus by Lemma 2.2,
G — u — v is hamiltonian. Hence G — u — v has an ey-cycle C. Choose an eg-cycle C
in G — u — v such that

I(C) is minimal. 1)
Subject to (1), we choose C such that
The length of a longest path of G — V(C) containing e, is mazimal. (2)

Let P be a longest e;-path in H. Subject to (1) and (2), we further choose C and P
such that

o(ey, P) is minimal. (3)

oo 1T




Note that C does not have a chord by (1). Let C' = z125... 295z, With z; € 1}
and eg = x,79,, and H = G — V(C). By our assumption on G, H does not have
a hamiltonian cycle passing through e;. Let P = y195...yn. W.lo.g., say y; € V.
We claim

Claim 1. V(P) =V (H), i.e., m = 2n — 2s.
Suppose m < 2n — 2s. We distinguish two cases: m is even or m is odd.

Case a: m is even, say m = 2¢.

Choose a vertex yo from H — V(P) such that yo € Vi. By Lemma 2.1 and (2),
d(yo, P) + d(yae, P) < t+r(e1, P). Then we have d(yo, H) + d(ya, H) < 3|V(H)| +
r(ey, P). It follows that d(yo,C) + d(ya,C) > s+ 2 — r(e1, P). Suppose first that
d(yo, C) + d(yat, C) > s+ 2. Then we have d(y, C) > 2. By Lemma 2.3 and (1), we
must have d(yp, C) = 2, and consequently, d(ys, C) = s. Furthermore, N(yp, C) =
{®i, Tiya} for some i € {2,4,...,2s — 2}, Then C' = C — Zi41 + YoZi + YoTis2 1S an
eg-cycle with [(C") = I(C) and P’ = P + you;41 18 an e;-path with [(P') = I(P) +1,
contradicting (2). Hence we must have r(e;, P) = 1 and d(yo, C) + d(y2:, C) = s+ 1.
It follows that ¢ > 3 and d(yo, P) + d(y, P) = t + 1. In particular, d(y, P) >
0. If G has an e-cycle C' with V(C") = V(C), then C' + yo has an e;-path P’
with V(P') = V(P) U {yo}, contradicting (2). Therefore by Lemm 2.2, we have
d(y1, P) + d(yas, P) < t + 1. It follows that d(y1,C) + d(ye:;, C) 2 n+2—-t—-12>
s+ 2. By Lemma 2.3 and (1), d(y1,C) < 2 and d(ya,C) < 2. We conclude that
d(y1,C) = d(ya, C) = s = 2. W.Lo.g., say |[V(P)| < |[V(P)| where P, and P, are
two components of P —e;. Then C" = C — 23+ ¥ is an eg-cycle with I(C") = {(C)
and P" = P —y; +yxx; is an e;-path with [(P") = [(P) and o(ey, P") = o(e1, P) -1,
contradicting (3).

Case b: m is odd, say m = 2¢ + 1.

We have yorpy € Vi. Then either e; = yo_1Y2; Or €1 = ¥Yo;11Yo; for some ¢ €
{1,2,...,t}. W.lo.g., say the former holds. Then 7(e;,P —y;) = 0 and o(e;, P —
y1) > 0if e; is on P — y;. Choose yp from H — V{P) such that y, € V5. By
Lemma 2.1 and (2), if d(ye, P — y1) + d(yae+1, P — 1) > t+ 1, then G has a path
P' from yo to yo such that V(P') = V(P — y1) U {w}, and moreover, P’ is an
e;-path when e; is on P — y;. Thus P’ + ypy; is an ej-path, contradicting (2).
Hence d(yo, P) + d(yats1, P) = d(yo, P — w1) + d(y2t41, P — y1) < t. It follows that
d(yOa C) + d(y2t+170) Z n+2—t— d(yo, H - V(P)) 2 s+ 3. Thus d(yg,C) > 3. By
Lemma 2.3, this is in contradiction with (1). So the claim is true. 0

Let t = n — s. Then m = 2t by Claim 1. We divide our proof into the following
two cases: r(e;, P) =0or r(e;, P)=1.

Case 1: r(e1, P) = 0.
By Lemma 2.2, we have d(y1, P) + d(yat, P) < t. Hence

d(y1,C) +d(yat, C) > s + 2. (4)

If e; # y1y2 and e; # Yar—1Yat, then by Lemma 2.3 and (1), d{y;,C) < 2 and
d(y,C) < 2, and consequently, we obtain d(y:,C) = d(ya,C) = s = 2 by (4).
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Then we may assume w.lo.g. that |[V(P)| < |V(P,)| where P, and P, are two
components of P — e;. Replacing C and P by C — 23+ y; and P — y; + yosz3, we
obtain a contradiction with (3). Hence either e; = y1y2 or ey = yg_192;. W.lo.g,,
say €1 = Ya—1Y2t-

If t = 1, then s > 3 as n > 4. Clearly, for any two vertices z € V(C) NV} and
y € V(CYNV, with zy € E, we have n+2 < d(z) +d(y) < 6, and consequently, this
implies that s = 3 and {zy., yy1} C E. Thus G is isomorphic to F. Hence we may
assume that ¢t > 2.

We claim that s = 2. If this is not true, ie., s > 3, then d(y;,C) = 2 and
d(ya,C) = s by (1), (4) and Lemma 2.3. Moreover, N(y;,C) = {z;, Z;4a} for
some i € {2,4,...,2s — 2}. Then C' = C — zi41 + y1Z; + Y1Zi42 1S an ep-cycle
with {(C") = l{C) and P' = yoys...yauZis1 is an ej;-path with r(e;, P') = 0. Thus
yaZir1 € E. By Lemma 2.3 and (1), d(y2, C") < 2 and d(z;41, C") < 2. It follows that
d(ys, P") + d(zi41, P’) > t + 1. By Lemma 2.2, G[V(P’)] has an e;-cycle containing
all the vertices of P’, a contradiction. This shows s = 2.

By (4), we have d(y;,C) = 2 and d(y,C) = 2. Clearly, the theorem holds if
z3ys € E. Hence we may assume z3y, € E. If z1yp € E, then we obtain d(y,, P’) +
d(z3, P') > t + 1 with P! = yoys...yxzs and r(es, P') = 0, and by Lemma 2.2, a
contradiction follows. Hence we have z,y, € E.

Let 2a—1 be the greatest integer in {1, 3, ..., 2¢t—3} such that G[{y1,v2, - -, ¥24}]
is isomorphic to Koqe, N(y;, C) = {z5,24} and N(y;11,C) = {z;} for all i €
{1,3,...,2a — 1}. The above argument shows that ¢ > 1. We claim a = ¢ —
1. On the contrary, assume a < t — 1. Let L = ypor11¥oas2---y2- Clearly,
T1Y2iYie1 - - - Y2Y1T223TaZy IS an eg-cycle in G for all i € {1,2,...,a}. Therefore
Yulyoia & E for all ¢ € {1,2,...,a + 1}. In particular, G[V(L)] does not have a
hamiltonian cycle passing through e;. By Lemma 2.2, d(y2e+1, L) + d(y2s, L) < t—a.
As d(y2at1) + d(y2e) > t+ 4, we see that N(yaes1,C) 2 {Z2, 24} U{y2, %4, .- ., Yoas2}-
Clearly, C" = T1T2Y1 - Y2a+1T4T1 is an 60*CyC16 in G. Let P" = Y2a+2Y2a+3 - - - Y2tT3.
Then G[V(P")] does not have a hamiltonian cycle passing through e,. In particu-
lar, £3ys0+2 € E. Since r(ey, P") = 0, we obtain d(yaq42, P") + d(z3, P") <t —a by
Lemma 2.2. As z3yy; & E foralli € {1,2,...,a}, we see that d(yaate, P)+d(x3, P) <
t + 1, and consequently, d(z3,C) + d(y2as2,C) > 3. However, it is clear that
d(z3,C) + d(y2a+2,C) < 3. It follows that d(yagia, P) + d(z3,P) = t + 1 and
d(z3, C) +d(yaa+2, C) = 3, and consequently, N(yoa+2) 2 {Z1,91,¥3, - - -, Y2as1}- This
is a contradiction to the maximality of a. This shows that a =¢ ~ 1. If ¢ > 3, then
T124Y1Y2%1 and T3TaY3ys - . . Yorzs are the two desired cyles. Hence t = 2. Clearly, we
have two desired cycles if zoy;s € E. So zoys € E. As d(zq) + d(ys) > 6, we see that
z4Ys € E and therefore G is isomorphic to F'.

Case 2: 7(e;, P) = 1.

Say e; = Yao+1Y20+2 for some 2a + 1 € {3,5,...,2t — 3}. Then either o(e;, P) =
2a or o(e;, P} = 2t — 2a — 2. Wlo.g., say oe;,P) = 2t —2a — 2. Let C' =
Yoat1¥2a42 - - - YotlYoa+1 and H' = H — V(C'). Then G[V{C U H')] does not have a
hamiltonian cycle passing through eq. It is also easy to see that for every endvertex
u of a hamiltonian path of H’, u is not adjacent to a vertex of C' — {yas+1, Y2042} for
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otherwise we would have an e;-path Q with V(P) = V(Q) and o(e1, Q) < o(ey, P),
contradicting (3).

Let L = y1y2...Y2a- We have d(y;,C") < 1 and d(yq,C’) < 1. By Lemma
2.4, we have d(y1,C) + d(y2q,C) < s. We claim that H’ is hamiltonian. This is
obvious if y1y2, € E. If y1yse & E, then d(y1, L) + d(y2a, L) > t+5+2~5—-2 =
t, and therefore by Lemma 2.2, H' is hamiltonian. So the claim is true. Thus
dly, H) =0 for all y € V(C") — {yoa+1, Yoas2} If d(y1, L) + d(yas, L) > a + 1, then
there exists ¢ € {1,3,...,2a — 1} such that {y1yi+1,vive:} C F, and consequently,
P'= YoaY2a-1- - - Yit1Y1Y2 - - - YilY2tYot—1 - - - Y2a42Y20+1 18 a0 €1-path with V(P') = V(P)
and 0 = o (e, P') < o(e1, P), a contradiction. This shows d(y1, L) +d(ya:, L) < a. Tt
follows that d(y:, P)+d(ya, P) < t+1, and consequently, d(y1, C)+d(ya, C) > s+1.
Similarly, we can show that d(y2q, P)+d(y2:-1, P) < t+1 and d(y2q, C)+d(ya:_1, C) >
s+ 1. In particular, we have obtained d(y;,C) > 0 and d(yz,, C) > 0. By Lemma
2.3 and (1), d(yat-1, C) + d(ya:, C) < 4. We obtain

20 =2 d(ys, H') + d(yaa, H')
> 2(s+t+2) = [d(ya-1) + d(y2)] — [d(y1,C U C") + d(y24, C U C"))]
> 2s+t+2)— (20t —a)+4) — (s +2)

20+ s — 2.

I

It follows that s = 2, d(ya—-1,C) + d(y2, C) = 4 and d(y1, C) + d(y2q,C) = 2.
Since d(y1,C) > 0 and d(ya., C) > 0, it is clear that if y174 & E or yauz; € E, then
G[V(CUL) has a hamiltonian cycle containing ey, a contradiction. If {y;24, y2a21} C
E, then 2124y1 Lyaa®1 and C" — Yoy _1Yas + T3yas + Tayar—1 are the two desired cycles.
This proves the theorem. 0

Remarks. The following example shows N(3) > 7 if N(3) exists. Let G be a bipartite
graph obtained from K¢ with a bipartition ({z1,...,zs},{v1,-..,¥s}) by removing
T3Ys, T3Ys, Y3Ts, YaTs and x4y from Kee. Clearly, d(z) + d(y) > 9 for each pair of
non-adjacent vertices z and y of G with z € {z,...,2¢} and y € {yy,...,ys}. But
G does not contain three vertex-disjoint cycles passing through z,v1, T2y and z3ys,
respectively. Hence N(3) > 7.

As for general finite simple graphs, we proposed a conjecture in [5] and proved it
for the case k = 2.

Conjecture C (5] For each integer k > 2, there exists N(k) such that if G is a
graph of order n > N(k) and d(z) + d(y) > n+ 2k — 2 for each pair of non-adjacent
vertices x and y of G, then for any k independent edges e;, . .., ey of G, there exist
k vertez-disjoint cycles Ci,...,Cy in G such that e; € E(C;) for all i € {1,...,k}
and V(CL U ---UCy) = V(G).

Moreover, we know that if this conjecture is true, then the condition on the
degrees of G is sharp.

Note added in the proof Conjectures A and C were verified recently for k = 3.
However, the verification is more tedious than the above proof.
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