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Abstract 

We propose a conjecture: for each integer k 2:: 2, there exists N (k) such 
that if G = (Vb \12; E) is a bipartite graph with IV11 = 1\121 = n 2: N(k) 
and d( x) + d(y) 2: n + k for each pair of non-adjacent vertices x and y of G 
with x E V1 and y E \12, then for any k independent edges el, ... , ek of G, 
there exist k vertex-disjoint cycles G1, ... , Gk in G such that ei E E(Gi ) 

for all i E {I, ... , k} and V(G1 U··· U Gk ) = V(G). If this conjecture is 
true, the condition on the degrees of G is sharp. We prove this conjecture 
for the case k = 2 in the paper. 

1 Introduction 

Let k be a positive integer and let G = (Vi, \12; E) be a bipartite graph with IV11 = 
11121 = n 2:: 2. It is well known [1, 3] that if d(x) + d(y) 2:: n + 1 + k for each pair of 
non-adjacent vertices x and y of G with x E V1 and y E \12, then for any forest F with 
at most k edges and consisting of vertex-disjoint paths of G, G has a hamiltonian 
cycle passing through all the edges of F. We propose the following conjecture. 

Conjecture A For each integer k 2: 2, there exists N (k) such that if G = (V1' V2 ; E) 
is a bipartite graph with IV11 = 1\121 = n 2:: N(k) and d(x) + d(y) 2:: n + k for each 
pair of non-adjacent vertices x and y of G with x E Vi and y E \12, then for any k 
independent edges ell . .. ,ek of G, there exist k vertex-disjoint cycles G1, •.• ,Ck in 
G such that ei E E(Ci ) for all i E {I, ... , k} and V(G1 u··· u Gk) = V(G). 

If this conjecture is true, the condition on the degrees of G is sharp. To see this, 
let G = (X, Y; E) be a bipartite graph obtained from the complete bipartite graph 
K n- 1,n by adding a new vertex Xo to K n- 1,n such that Na(xo) = {Xl, X2, •. . ,Xk} 

where xl, X2, •.. ,Xk are k vertices of Kn-l,n whose degrees in Kn-l,n are n - 1. Then 
for each pair of non-adjacent vertices X and y of G with x E X and y E Y, we have 
Xo E {x,y} and d(x) + d(y) = n + k - 1. Let el, ... ,ek be k independent edges 
in G such that ei is incident with Xi for all i E {I, ... , k} and e1 = XOX1. Clearly, 
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every cycle passing through el must contain at least three vertices in {xo, Xl, ... , Xk}' 

Therefore G does not possess k vertex-disjoint cycles satisfying the requirement. 

In this paper, we prove the conjecture for the case k = 2. To state the result, let 
F be a graph obtained from K 4,4 by removing three independent edges from K 4,4' 

We prove the following: 

Theorem B Let G = (VI, 112; E) be a bipartite graph with IV11 = 11121 = n 2: 4. 
Suppose d(x) + d(y) 2: n + 2 for each pair of non-adjacent vertices x and y of G 
with x E VI and y E 112. Then for any two independent edges eo and el of G, G has 
two vertex-disjoint cycles Co and C1 such that ei E E(Ci) for each i E {O, I} and 
V(Co U Cr) = V(G), unless G is isomorphic to F. 

We discuss only finite simple graphs and use standard terminology and notation 
from [2] except as indicated. Let G be a graph. For a vertex u E V (G) and a subgraph 
H ofG, N(u, H) is the set of neighbors ofu contained in H, i.e., N(u, H) = NG(u)n 
V(H). We let d(u, H) = IN(u, H)I. Thus d(u, G) is the degree of u in G. For a subset 
U of V(G), C[U] denotes the subgraph of G induced by U. Let e be an edge of G. 
An e-subgraph of G is a subgraph H of G such that e E E(H). If P is an e-path, we 
define a-(e, P) = min(IE(P')I, IE(PII ) I) where pI and pI! are two components of P-e. 
If a-(e, P) = 0, we say e is an endedge of P. We use l(C) and l(P) to denote the length 
of a cycle C and the length of a path P, respectively. For a path P of an odd length, 
say P = XIX2 ... X2q, we define Eo(P) = {XIX2, X2q-lX2q}U{xixi+lli = 2,4, ... , 2q-2} 
and E1(P) = {XjXj+l!J = 3,5, ... , 2q-3}, and moreover, let r(e, P) = ° if e E Eo(P) 
and r(e, P) = 1 if e E E1(P). 

2 Le:mmas 

The following lemmas are Ore-type lemmas in bipartite graphs. The proofs of them 
can be found in or easily deduced from [1, 3, 4]. Let G = ("\Ii, V2 ; E) be a given 
bipartite graph in the following. 

Lemma 2.1 Let e be an edge and P = XIX2 ... X2q an e-path in G. Let y E V(G) -
V(P) such that {X2q, y} ~ Vi for every i E {1,2}. If d(X2q, P) + d(y, P) 2: q + 
1 + r(e, P), then G has an e-path pI such that V(PI) = V(P) U {y}. Moreover, if 
e =1= XIX2, then pI is a path from y to Xl. 

Proof. Clearly, the lemma holds if yX2q E E. So we may assume yX2q rf. E. As 
d(y, P) > 0, it is also easy to see that if e = XIX2 and XIX2q E E, then the lemma 
holds. Hence we may assume that if e = XIX2, then XIX2q rf. E. Let I = {xi+llxix2q E 
E}. Then IN(y, P) nIl = IN(y, P)I + 111- IN(y, P) U II 2: q + 1 + r(e, P) - q = 
1 + r(e, P). If r(e, P) = ° then there exists Xi+! E N(y, P) n I. Clearly, XiXi+l =1= e. 
On the other hand if r(e, P) = 1 then there exist i and j with i =1= j such that 
{Xi+l' Xj+!} ~ N(y, P) n I. We may assume w.l.o.g. that XiXi+l =1= e. In either case, 
pI = YXi+l Xi+2 ... X2q XiXi-l ... Xl is the desired path. 0 

Lemma 2.2 Let e be an edge and P = XIX2 . .. X2q an e-path with q 2: 2 in G. If 
d(Xl' P) + d(X2q, P) ~ q + 1 + r(e, P), then G has an e-cycle C with V(C) = V(P). 
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Proof. Clearly, the lemma holds if XlX2q E E. So we may assume XlX2q rJ. E. As 
in the proof of Lemma 2.1, the condition implies that there exist Xi and Xj for some 
{i,j} ~ {1,3, .. . ,2q -I} such that {XlXi+l,X2qXi,XlXjH,X2qXj} ~ E with i::j:. j if 
r(e, P) = 1. As XIX2q rt E, we see that e rt {XiXi+l, XjXjH} if r(e, P) = O. We may 
assume w.l.o.g. that e ::j:. XiXi+l if i =/:- j. Then C' = XIX2 . .. XiX2qX2q-l'" xi+lXl is 
the desired cycle. 0 

Lemma 2.3 Let e be an edge and C an e-cycle in G. Let y E V(G) - V(C). If 
d(y, C) ~ 2, then G[V(C)U{y}] contains an e-cycle C' such that l(C') < l(C), unless 
d(y, C) = 2, N(y, C) = {x', x"} and C has a subpath x' ZX" with z not incident with 
e. 

Proof. Say C = XlX2 ... X2qXl with e = XIX2q' Let {Xi, Xj} ~ N(y, C) such that 
1 :::; i < j :::; 2q and xy rt E for all x E V(C) - {Xi, Xi+b"" Xj}. Clearly, C' = 
Xl .. ,XiYXj .. ,X2qXI is an e-cycle. If l(C') f- l(C), then j = i + 2. This proves the 
lemma. 0 

Lemma 2.4 Let e be an edge, C an e-cycle and P a path with two endvertices u E VI 
and v E V2 in G such that V(C) n V(P) = 0. Let l(C) = 2q. If d(u, C) + d(v, C) ~ 
q + 1, then G has an e-cycle C' with V(C') = V(C UP). 

Proof. Let C = XIX2' .. X2qXl with e = XIX2q and Xl E VI. The condition implies 
that {XiV, XiH u} ~ E for some i E {I, 3, ... , 2q - I}. Then XlX2qX2q-l ... Xi+l UPVXi 
Xi-I ... Xl is the desired cycle. 0 

3 Proof of the Theorem 

Let G = (VI, V2; E) be a bipartite graph with IViI = 1V21 = n ~ 4 such that d(x) + 
d(y) ~ n + 2 for each pair of non-adjacent vertices X and y of G with X E Vi and 
y E V2 • Suppose that there exist two independent edges eo and el of G such that G 
does not have two vertex-disjoint cycles Co and C1 with ei E E(Ci ) for each i E {O, I} 
and V(Co U Cl) = V(G). Then we shall prove that G is isomorphic to F. 

Say el = uv. Clearly, d(x, G - u - v) + d(y, G - u - v) ~ n + 2 - 2 = (n - 1) + 1 
for each pair of non-adjacent vertices x and y of G - u - v. Thus by Lemma 2.2, 
G - u - v is hamiltonian. Hence G - u - v has an eo-cycle C. Choose an eo-cycle C 
in G - u - v such that 

l(C) is minimal. (1) 

Subject to (1), we choose C such that 

The length of a longest path ofG - V(C) containing el is maximal. (2) 

Let P be a longest el-path in H. Subject to (1) and (2), we further choose C and P 
such that 

o-(el' P) is minimal. (3) 
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Note that G does not have a chord by (1). Let G = XIX2 ... X2sXI with Xl E VI 
and eo = XIX2s, and H = G - V(G). By our assumption on G, H does not have 
a hamiltonian cycle passing through el. Let P = YIY2 ... Ym' W.l.o.g., say YI E VI. 
We claim 

Claim 1. V(P) = V(H), i.e., m = 2n - 28. 
Suppose m < 2n - 28. We distinguish two cases: m is even or m is odd. 

Case a: m is even, say m = 2t. 
Choose a vertex Yo from H - V(P) such that Yo E Vl. By Lemma 2.1 and (2), 

d(yo, P) + d(Y2t, P) ::; t + r(el' P). Then we have d(yo, H) + d(Y2t, H) ::; ~IV(H)I + 
r(el'P)' It follows that d(yo, G) + d(Y2t, G) 2:: 8 + 2 - r(eI,P). Suppose first that 
d(yo, G) + d(Y2t, G) 2:: 8 + 2. Then we have d(yo, G) 2:: 2. By Lemma 2.3 and (1), we 
must have d(yo, G) = 2, and consequently, d(Y2t, G) = 8. Furthermore, N(yo, G) = 
{Xi, Xi+2} for some i E {2, 4, ... ,28 - 2}. Then Gf = G - Xi+l + YOXi + YOXi+2 is an 
eo-cycle with l(G') = l(G) and pI = P + Y2tXi+1 is an el-path with l(P') = l(P) + 1, 
contradicting (2). Hence we must have r(el' P) = 1 and d(yo, G) + d(Y2t, G) = 8 + 1. 
It follows that t 2:: 3 and d(yo, P) + d(Y2t, P) = t + 1. In particular, d(yo, P) > 
O. If G has an el-cycle G' with V(G') = V(G), then G f + Yo has an el-path pI 
with V(P') = V(P) U {Yo}, contradicting (2). Therefore by Lemm 2.2, we have 
d(Yl' P) + d(Y2t, P) ::; t + 1. It follows that d(YI' G) + d(Y2t, G) 2:: n + 2 - t - 1 2:: 
8 + 2. By Lemma 2.3 and (1), d(YI' G) ::; 2 and d(Y2t, G) ::; 2. We conclude that 
d(YI' G) = d(Y2t, G) = 8 = 2. W.l.o.g., say IV(PI) I ::; IV(P2) I where PI and P2 are 
two components of P - el. Then G" = G - X3 + YI is an eo-cycle with l(G") = l(G) 
and pI! = P-YI +Y2tX3 is an erpath with l(PII

) = I(P) and a(el' Pll) = a(el' P) -1, 
contradicting (3). 

Case b: m is odd, say m = 2t + 1. 
We have Y2t+1 E VI. Then either el = Y2i-lY2i or el = Y2i+lY2i for some i E 

{I, 2, ... , t}. W.l.o.g., say the former holds. Then r(el' P - Yl) = 0 and a(ell P -
yd > 0 if el is on P - YI. Choose Yo from H - V(P) such that Yo E V2. By 
Lemma 2.1 and (2), if d(yo, P - YI) + d(Y2t+ll P - Yl) 2:: t + 1, then G has a path 
P' from Yo to Y2 such that V(P') = V(P - YI) U {Yo}, and moreover, P' is an 
el-path when el is on P - Yt. Thus pI + Y2Yt is an el-path, contradicting (2). 
Hence d(yo, P) + d(Y2t+l' P) = d(yo, P - YI) + d(Y2t+1' P - Yl) ::; t. It follows that 
d(yo, G) + d(Y2t+1' G) 2:: n + 2 - t - d(yo, H - V(P)) 2:: 8 + 3. Thus d(yo, G) 2:: 3. By 
Lemma 2.3, this is in contradiction with (1). So the claim is true. 0 

Let t = n - 8. Then m = 2t by Claim 1. We divide our proof into the following 
two cases: r(el' P) = 0 or r(el' P) = 1. 

Case 1: r(el' P) = O. 
By Lemma 2.2, we have d(YI' P) + d(Y2t, P) ::; t. Hence 

(4) 

If el =I- YIY2 and el =I- Y2t-IY2t, then by Lemma 2.3 and (1), d(Yl' G) ::; 2 and 
d(Y2t, G) ::; 2, and consequently, we obtain d(YI' G) = d(Y2t, C) = 8 = 2 by (4). 
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Then we may assume w.l.o.g. that IV(PI)I ::; IV(P2)1 where PI and P2 are two 
components of P - el' Replacing C and P by C - X3 + YI and P - YI + Y2tX3, we 
obtain a contradiction with (3). Hence either el = YIY2 or el = Y2t-lY2t. W.l.o.g., 
say el = Y2t-IY2t. 

If t = 1, then 8 2:: 3 as n 2:: 4. Clearly, for any two vertices x E V (C) n VI and 
Y E V(C)nV2 with xy t/. E, we have n+2::; d(x)+d(y)::; 6, and consequently, this 
implies that 8 3 and {XY2, yyd ~ E. Thus G is isomorphic to F. Hence we may 
assume that t 2:: 2. 

We claim that 8 = 2. If this is not true, i.e., 8 2:: 3, then d(YI' C) = 2 and 
d(Y2t,G) = 8 by (1), (4) and Lemma 2.3. Moreover, N(YI,C) = {Xi,Xi+2} for 
some i E {2, 4, ... , 28 - 2}. Then C' = G - Xi+1 + YIXi + YIXi+2 is an eo-cycle 
with l(G') = l(C) and P' = Y2Y3'" Y2tXi+l is an el-path with r(el' P') = 0. Thus 
Y2Xi+l t/:. E. By Lemma 2.3 and (1), d(Y2' G') ~ 2 and d(Xi+I' C') ::; 2. It follows that 
d(Y2' P') + d(Xi+l' P') 2:: t + 1. By Lemma 2.2, G[V(P')] has an el-cycle containing 
all the vertices of P', a contradiction. This shows 8 = 2. 

By (4), we have d(YI' G) = 2 and d(Y2t, C) = 2. Clearly, the theorem holds if 
X3Y2 E E. Hence we may assume X3Y2 t/:. E. If XIY2 t/:. E, then we obtain d(Y2' P') + 
d(X3, P') 2:: t + 1 with P' = Y2Y3 .. . Y2tX3 and r(el' P') 0, and by Lemma 2.2, a 
contradiction follows. Hence we have XIY2 E E. 

Let 2a-1 be the greatest integer in {I, 3, ... , 2t-3} such that G[{YI' Y2,' .. , Y2a}] 
is isomorphic to Ka,a, N(Yi' C) = {X21 X4} and N(Yi+I' C) {xd for all i E 
{I, 3, ... , 2a - I}. The above argument shows that a 2:: 1. We claim a = t -

1. On the contrary, assume a < t 1. Let L = Y2a+lY2a+2 ... Y2t. Clearly, 
XIY2iY2i-l ... Y2YIX2 X3X4Xl is an eo-cycle in G for all i E {I, 2, ... , a}. Therefore 
Y2tY2i-l t/:. E for all i E {I, 2, ... , a + I}. In particular, G[V(L)] does not have a 
hamiltonian cycle passing through el' By Lemma 2.2, d(Y2a+1, L) + d(Y2t, L) ~ t - a. 
As d(Y2a+l) + d(Y2t) 2:: t + 4, we see that N(Y2a+l, G) :;2 {X2' X4} U {Y2, Y4, ... ,Y2a+2}' 
Clearly, G" XIX2Yl ... Y2a+1X4Xl is an eo-cycle in G. Let P" = Y2a+2Y2a+3 ... Y2tX3' 
Then G[V(P")] does not have a hamiltonian cycle passing through el' In particu­
lar, X3Y2a+2 1:. E. Since r(el' P") = 0, we obtain d(Y2a+2, P") + d(X3, P") ~ t - a by 
Lemma 2.2. As X3Y2i 1:. E for all i E {I, 2, ... , a}, we see that d(Y2a+2, P)+d(X3, P) ::; 
t + 1, and consequently, d(X3' C) + d(Y2a+2, G) 2:: 3. However, it is clear that 
d(X3, G) + d(Y2a+2, C) ::; 3. It follows that d(Y2a+2, P) + d(X3' P) = t + 1 and 
d(X3, G) + d(Y2a+2 , C) = 3, and consequently, N(Y2a+2) :2 {XI, Yl, Y3, ... ,Y2a+d. This 
is a contradiction to the maximality of a. This shows that a = t - 1. If t 2:: 3, then 
XIX4YIY2Xl and X3X2Y3Y4 ... Y2tX3 are the two desired cyles. Hence t = 2. Clearly, we 
have two desired cycles if X2Y3 E E. So X2Y3 t/:. E. As d(X2) + d(Y3) 2:: 6, we see that 
X4Y3 E E and therefore G is isomorphic to F. 

Case 2: r(el' P) 1. 
Say el = Y2a+lY2a+2 for some 2a + 1 E {3, 5, ... , 2t - 3}. Then either O"(el' P) = 

2a or O"(el' P) 2t - 2a - 2. W.l.o.g., say O"(el' P) = 2t - 2a - 2. Let C' = 
Y2a+1Y2a+2 .. . Y2tY2a+l and H' = H - V(G'). Then G[V(C U H')] does not have a 
hamiltonian cycle passing through eo. It is also easy to see that for every endvertex 
u of a hamiltonian path of H', u is not adjacent to a vertex of G' - {Y2a+1, Y2a+2} for 
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otherwise we would have an el-path Q with V(P) V(Q) and a(el' Q) < a(el' P), 
contradicting (3). 

Let L = YlY2 ... Y2a' We have d(Yl' C') ::; 1 and d(Y2a, G') ::; 1. By Lemma 
2.4, we have d(Yl' C) + d(Y2a, C) ::; s. We claim that H' is hamiltonian. This is 
obvious if YlY2a E E. If YlY2a ¢ E, then d(Yl' L) + d(Y2a, L) 2:: t + s + 2 - s - 2 = 
t, and therefore by Lemma 2.2, H' is hamiltonian. So the claim is true. Thus 
d(y, H') = 0 for all Y E V(C') - {Y2a+1, Y2a+2}. If d(YI' L) + d(Y2t, L) 2:: a + 1, then 
there exists i E {I, 3, ... , 2a - I} such that {YIYi+l, YiY2t} ~ E, and consequently, 
P' = Y2aY2a-1 ... Yi+IYIY2· ., YiY2tY2t-l· .. Y2a+2Y2a+1 is an el-path with V(P') = V{P) 
and 0 a(el' PI) < a(el, P), a contradiction. This shows d(Yl' L) + d(Y2t, L) ::; a. It 
follows that d(Yl' P)+d(Y2t, P) ::; t+1, and consequently, d(YI' G)+d(Y2t, C) 2:: 8+l. 
Similarly, we can show that d(Y2a, P)+d(Y2t-l, P) ::; t+1 and d(Y2a, G)+d(Y2t-l, C) 2: 
s + 1. In particular, we have obtained d(YI' C) > 0 and d(Y2a, G) > O. By Lemma 
2.3 and (1), d(Y2t-l, C) + d(Y2t, C) ::; 4. We obtain 

2a > d(Yl' H') + d(Y2a, H') 
> 2(s + t + 2) - [d(Y2t-d + d(Y2t)] - [d(YI' C U C') + d(Y2a, C U C')] 

2:: 2(8 + t + 2) (2(t - a) + 4) - (8 + 2) 

2a + 8 - 2. 

It follows that 8 = 2, d(Y2t-l, C) + d(Y2t, C) 4 and d(yl, G) + d(Y2a, C) = 2. 
Since d(YI' C) > 0 and d(Y2a, C) > 0, it is clear that if YIX4 ¢ E or Y2aXI ¢ E, then 
G[V(CUL) has a hamiltonian cycle containing eo, a contradiction. If {YIX4, Y2aXt} ~ 
E, then xlx4ylLY2aXI and C' - Y2t-IY2t + X3Y2t + X2Y2t-1 are the two desired cycles. 
This proves the theorem. D 

Remarks. The following example shows N(3) 2: 7 if N(3) exists. Let G be a bipartite 
graph obtained from K 6,6 with a bipartition ({Xl,'" ,X6}, {YI,'" ,Y6}) by removing 
X3Y5, X3Y6, Y3 XS, Y3 X6 and X4Y4 from K6,6. Clearly, d(x) + d(y) 2:: 9 for each pair of 
non-adjacent vertices X and Y of G with X E {Xl, ... ,X6} and Y E {YI, ... , Y6}. But 
G does not contain three vertex-disjoint cycles passing through XlVI, X2Y2 and X3Y3, 
respectively. Hence N(3) 2: 7. 

As for general finite simple graphs, we proposed a conjecture in [5] and proved it 
for the case k 2. 

Conjecture C [5] For each integer k 2: 2, there exists N (k) such that if G is a 
graph of order n 2: N(k) and d(x) + d(y) 2: n + 2k 2 for each pair of non-adjacent 
vertices X and Y of G, then for any k independent edges el,' .. ,ek of G, there exist 
k vertex-disjoint cycles CI, ... ,Ck in G such that ei E E( Ci) for all i E {I, ... , k} 
and V(C1 U·· . U Ck) = V(G). 

Moreover, we know that if this conjecture is true, then the condition on the 
degrees of G is sharp. 

Note added in the proof Conjectures A and C were verified recently for k = 3. 
However, the verification is more tedious than the above proof. 
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