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Abstract

In this paper, it is shown that a necessary and sufficient condition for
the existence of a Ps-factorization of the complete bipartite symmetric
digraph K7, . is (1) m+n =0 (mod 3), (2) m < 2n, (3) n < 2m,
and (4) 3mn/(m 4+ n) is an integer.

1. Introduction
Let }_33 be the directed path on three vertices and let K, , be the complete
bipartite symmetric digraph with partite sets Vi and V3, where |Vi| = m and
|[Va] = n. A spanning subgraph F of K, » is called a P3-factor if each component
of F is isomorphic to P;. If K, ,, is expressed as an arc-disjoint sum of P3 -factors,

then this sum is called a }_’;—factorlzatlon of K, -

The spectrum problems for Ps-factorization of the complete graph K, the
complete bipartite graph K., ,, and the complete multipartite graph K have been
completely solved. (See [2, 4, 5, 6].) In this paper a necessary and sufficient
condition for the existence of a Ps- factorxzatlon of the complete symmetric digraph
K, ,, will be given.

Theorem 1.1 K, , hasa P_g)—factorization ifand only if (1) m+mn =0 (mod 3),
(2) m<2n, (38)n<2m,and (4)3mn/(m+n) is an integer.

It is easy to see that a P_;—factorization of Ky, , gives rise to a P3-factorization
of 2K, n. We get the following as a by-product of Theorem 1.1.

Theorem 1.2 2K, ,, has a P3-factorization if and only if (1) m+n = 0 (mod 3),
(2) m<2n, (3)n<2m,and (4)3mn/(m+n) is an integer.

2. Main result
From simple counting we have
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Theorem 2.1 If K}, ,, has a P}-factorization then (1) m+n =0 (mod 3),
(2)m<2n, (3)n<2m,and (4) 3mn/(m+n) is an integer.
We prove the following existence theorem, which is used later in this paper.

Theorem 2.2 If K, ,, has a F;—factorization, then K, ., has a ﬁ-factorization
for every positive integer s.

Proof: Let Vi, V3 be the independent sets of K, ., where |Vi| = sm and
|Va| = sn. Divide V; and V; into s subsets of m and n vertices each, respec-
tively. Construct a new graph G with vertex set consisting of the subsets which
were just constructed. In this graph, two vertices are adjacent if and only if the
subsets come from disjoint independent sets of K3,, .,,. Thus G is a complete bi-
partite graph K, ,. Noting that the cardinality of each subset identified with a
vertex set of G'is m or n and that K, , has a 1-factorization, we see that the

desired result is obtained. (1-factorizations of K , are discussed in [1, 3].)

Now we start to prove our main result. There are three cases to consider. -
Case m = 2n: In this case, from Theorem 2.2, K}, , has a P3-factorization since
...._> . . y
K3 has a P3-factorization:

T1Y1%2, T2Y1T1.

*

= o
m,2m has a Ps-factorization.

Case n =2m: Obviously, K
Case m < 2n and n < 2m: In this case, let z = (2n —m)/3, y = (2m — n)/3,
t = (m+n)/3, and r = 3mn/(m +n). Then from conditions (1)~(4), z,¥,t,r are
integers and 0 < x < m and 0 < y < n. We have z + 2y = m and 2z + y = n.
Hence r = 2(z +y) + xy/(x + y). Let 2 = zy/(z + y), which is a positive integer.
And let (z,2y) = d, = dp, 2y = dg, where (p,q) = 1. Then dg is even and
z =dpg/(2p + q). The following lemmas can be verified.

Lemma 2.3 If (p,q) =1, then (pg,p+q) = 1.
Lemma 2.4 If (p,q) =1, then (pg,2p+q) =1 when ¢ = 1 (mod 2) and
(pq,2p + q) = 2 when ¢ = 0 (mod 2).
Lemma 2.5 If(p,q) = 1, then (pq, 4p+q) = 1 when ¢ = 1 (mod 2), (pq, 4p+¢) =2
when ¢ = 2 (mod 4), and (pg,4p + q) = 4 when ¢ =0 (mod 4).

Using these p, g,d, the parameters m and n satisfying conditions (1)~(4) can
be expressed as follows:
Lemma 2.6 If (p,q) = 1 and dpg/(2p + q) is an integer, then for some positive
integer s,
(a) m=2(p+q)(2p+q)s, n= (4p+q)(2p + ¢)s when ¢ = 1 (mod 2),
(b) m = (p+2¢')(p+q)s, n= (2p+¢')(p+¢')s when ¢ = 2¢' and ¢’ = 1 (mod 2),
(0) m=(p+49")(p+24")s, n.= 2(p+ ¢")(p+ 24")s when g = 4q".

We use the following notation for sequences. Let A and B be two sequences
of the same length:

A: A1y A2y ...y Qy B: bl,bz,...,bu.
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Ifbj =a;+c (1 <4< u), then we write B = A+c. If b = a; + ¢ (mod w)
(1 < i < u), then we write B = A + ¢ (mod w), where the residues a; + ¢ (mod w)
are integers in the set {1,2,---,w}.

For the parameters i and n in (a)—(c) when s = 1, we can construct a Pi-
factorization of K, .

It is easy to see that the existence of a P3- factomzatlon of K, implies the

existence of a f? factorization of K, ,. The following two lemmas come from 5,
Lemma 4 and Lemma 6].

Lemma 2.7 If (p,q) =1, ¢=1 (mod 2), and m = 2(p + q)(2p + ¢q),
n=(4p+q)(2p+q), then K}, ,, has a Pj-factorization.

Lemma 2.8 Tf (p,q) = 1, ¢ = 4¢", and m = (p-+ 4¢")(p +2¢"),
n=2(p+q")(p+2q¢"), then K}, , has a P3-factorization.

For our main result we need only to prove the following lemma.
Lemma 2.9 If (p,q) =1,¢=2¢, ¢ (mod 2), and m = (p+2q)(p+q)
n=(2p+¢)p+q), then K}, , has a ? factorization.

Proof: Letz = (2n—m)/3,y = (2m—n)/3, t=(m+n)/3, and r = 3mn/(m+n).
Then we have 2 = p(p+¢'), y = ¢'(p+¢'), t = (p+¢)% and r = (p+2¢") 2p+¢').
Let my =p+2¢, ma =20+ ¢, mg=m/ry = (p+¢), and ng = n/re = (p+ ¢').
Consider the two sequences R and C both of length 2(p + ¢')

R: R,R' c: c,c”
in which
R': 1,1,2,2,-- ,2(p+q),2(p+q)
R": %(p+q’)+1,2(p+q)+1,~~,(p+q’),(p+q’)

C':1,2,34,,(p+d) -1, (p+q’)
c: (p+q)+1(p+q’)+2 20 +d) - 1,200+ ¢).
Construct p sequences R; where R; = R+ (i — 1)(p+¢') (1 <4 < p). Construct p

sequences C; where C; = C+ (i — 1) (mod 2(p+¢')) +2(E—-1)(p+4¢') 1 < i < p).
Construct two sequences S and T both of length 2(p + ¢')

S: 8,8 T: 7,7
in which

s 1727"'7(p+q,)_‘1’(p+ql)

" (p+d)+1,0+d)+2,-2p+d) - L20p+ )
T:1,3,---,(p+q¢)-1,1,,3,---,(p+¢) -1

T : 2v47"'v(p+q')72747"‘(p+q/)'
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Construct ¢’ sequences S; where S; = S+2(i—1)(p+¢')+plp+¢) (1<i< ).
Construct ¢’ sequences T; where T; = T+ (i — 1) +p (mod (p +¢')) + (i —1)(p+
¢)+2p(p+q') (1 <i<¢'). Consider the two sequences I and J both of the same
length
I:rrI J: JJ"

in which

I’: R1,R2,"',Rp I”: Sl,Sz,"',Sql

J/Z 01,02,"',Cp J”: Tl,Tz,-",qu.

Then the length of I and J is 2¢. Divide R; into two subsequences R} and R/ of
equal lengths (i = 1,2,...,p). And divide T; into two subsequences 7] and T}’
of equal lengths (4 = 1,2,...,¢'). Thus we have R; : R, R} and T; : T/, T/.
Let hg, jx be the k-th elements of I’ and J’ respectively (k =1,2,...,2p(p + ¢')).
When hy = hgyq, join hg in Vi and jg, jr41 in Vo with a directed path, either
Jkhedr41 if b € R} or jey1hede if hy € RY. Let hg, ji be the k-th elements of
I"” and J” respectively (k=1,2,...,2¢'(p+ ¢')). When jj, = Th+(p+a')/2> Join hy,
Pkt (p+qy/2 in V1 and ji, in V with a directed path, either Pk (prqryj2dk b if Ji € T}
or hiJkhr+(p+q) 2 if & € T;'. Construct the digraph F with the two vertex sets
{hx} and {jx} and this directed path set. Then Fisa Pi-factorization. This
digraph is called the Ps-factor constructed from the two sequences I and .J.

Construct r1 sequences I; where I; = I + (i — 1)mg (mod m) (1 < i < rp).
Construct r sequences J; where J; = J + (j — 1)ng (mod n) (1 < j < my).
Construct the riry Pi-factors ?ij from Iy and J; (1 <4< 7y, 1 <j<ry). Then
it is easy to see that the ?ij are arc-disjoint and their union is a Ps-factorization
of Ky,

By applying Theorem 2.2 with Lemmas 2.7 to 2.9, it can be seen that when
the parameters m and n satisfy conditions (1)-(4), the digraph K7, , has a 'P}
factorization. This completes the proof of Theorem 1.1
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