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Abstract

It is proved that each 2-element generating set of As is a Cl-subset
and that the corresponding Cayley digraph is normal. It is furthermore
proved that for each 3-element generating set of As the corresponding
Cayley digraph is normal.

1 Introduction

Let G be a finite group and S a subset of G not containing the identity element 1.
We define the Cayley digraph X = Cay(G, S) of G with respect to S by

VX)= G,
E(X)= {(9,59)|9€G,s€ S}

If $ = S71, then the adjacency relation is symmetric and Cay(G,S) is called
the undirected Cayley graph of G with respect to S. The group G acting by right
multiplication (that is, gr : £ — zg) is a subgroup of automorphisms of Cay(G, S)
and acts transitively on vertices. We call Gr = {gr | g € G} the right regular
representation of G. Let Aut(G, S) = {a € Aut(G) | §* = S}. Obviously Aut(X) >
GRrAut(G, S). If G = Aut(X), then X is called a digraphical regular representation
(DRR) of G and a DRR of a group G is a normal Cayley graph of G.

Let A = Aut{X). We have '

Lemma 1.1 ([2, Proposition 1.3])
(1) Na(Gr) = GrAut(G, 5);
(2) A= GrAut(G,S) is equivalent to Gr < A.
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Definition 1.2 The Cayley (di)graph X = Cay(G,S) is called normal if Gr, the
right regular representation of G, is a normal subgroup of Aut(X).

So, normal Cayley digraphs are just those which have the smallest possible full
automorphism group. The following obvious result is a direct consequence of the
above definition and Lemma 1.1.

Lemma 1.3 Let X = Cay(G, S) be the Cayley digraph of G with respect to S, and
let A= Aut(X). Let Ay be the stabilizer of the identity element 1 in A. Then X is
normal if and only if every element of Ay is an automorphism of the group G.

Let X = Cay(G,S) be the Cayley digraph of G with respect to §. Let o €
Aut(G). Then it is easy to see that a is a graph isomorphism from Cay(G,S)
to Cay(G,S*). We call this kind of isomorphism between Cayley digraphs of G a
trivial automorphism. The subset S is said to be a CI-subset of G, if for any graph
isomorphism Cay(G, S) & Cay(G,T), there exists an o € Aut(G) such that S¢ =T.
In other words, that S is C'T means that there are only trivial isomorphisms between
Cay(G, S) and other Cayley digraphs of G.

The motivation for this paper comes from a survey of Xu [2] and an unpublished
result of Li [7] which states that some 2-element generating sets of A5 are CI-subsets,
and the corresponding Cayley digraph is normal. In order to make this paper self-
contained, we prove Li’s result in section 2 while in section 3 we give a further
extension. The main results of this paper are the following two theorems.

Theorem 1.4 (See [2]) Each 2-element generating set of As is a CI-subset and the
corresponding Cayley digraph is normal.

This result was originally proved by X. Li. However, the proof of Theorem 1.4 in
section 2 is independent of Li’s.

Theorem 1.5 Let G = As and S = {a,b,c} be a §-element generating set of G not
containing the identity 1. Then X = Cay(G, S) is a normal Cayley digraph.

In this paper the symbol G will always denote the group As and 1 will denote
its identity. For z € G we let o(z) denote the order of z. The symbol X will always
denote a simple graph. By V(X), E(X) and A(X) = A we denote the vertex set,
the edge set and the automorphism group of X, respectively. By A,(X) = A, we
denote the stabilizer of the vertex v € V(X). For every set T, 17 denotes the identity
permutation on T.

The group and graph-theoretic notation and terminology used here are generally
standard, and the reader can refer to [3] and [6] when necessary.

2 The Proof of Theorem 1.4

Lemma 2.1 Let S = {a,b} and T = {d',b'} be two 2-element generating subsets of
G = A4s. If X = Cay(G,S) =2 Cay(G,T) = X' and if min {o(a),0(b)} < 3, then
there erists o € Aut(G@) such that S* =T.
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Proof Let a be a graph isomorphism. Without loss of generality we may as-
sume that 1* = 1, since Cayley digraphs are vertex-transitive. Hence S* = T. By
renaming the elements of T' if necessary, we may also assume that

a®=d, "=V

We use induction on n to show that (z1z9-- - 2,)* = )25 - - - 2!, where z; = a or
~bfori=1,...,n. (This implies that o € Aut(G), as required.) We distinguish two
cases.

Case 1: min{o(a),0(b)} = 2.

Without loss of generality, we may assume that o(a) = 2. Then o(b) # 2 since
(a,b)y & As. Thus (a,1) € E(X) and (b,1) ¢ E(X) by definition of the Cayley
digraph X and so (¢/,1) € E(X'). By definition of the Cayley digraph X', (d’,b'a’) €
E(X') and (d,(a')?) € E(X'). If ¥a' = 1, this would contradict (a',¥') & As, so
it follows that (a')? = 1 and thus (ba)® = b'a’ and o(}') # 2. Using the fact that
the graphs have indegrees and outdegrees equal to 2, we have that (ab)* = o'b" and
(62) = (¥')2. So (z122)* = 7} 7).

Suppose n > 2. Set £ = 2324 -2, and &’ = 24z} --z,. From the inductive
assumption we can suppose that z* = 2/, (az)* = o'z’ and (bz)* = ¥'z’. An argument
similar to the one above shows that (z1292)* = zjzhz’. Thus we have that for any
positive integer n, (z129 -+ T,)® = zjzh- - zl.

Case 2: min{o(a),0(b)} = 3.

Let o{a) = 3. As 1 = a+— a® — 1 is a directed circuit of length 3 in X we have
that 1 v a’ — (a')? — (a')® must be a directed circuit of length 3 in X’ because
a'ba # 1, (V)% # 1 and ¥(a’)? # 1 (otherwise G = (d, ) is abelian). Thus
(@')® =1 and (a?)® = (¢')?, (ba)* = bd'.

If o(b) = 3, similarly we have (b)* = (V/)? and (ab)® = a't'. If o(b) # 3 then we
also have (b%)® = (V')? and (ab)* = o/b’ because there is a unique directed circuit of
length 3 through b and & in X and X' respectively.

Thus for n =1 or 2, (€122 -~ 2,)* = zzh - }. Using the same method as in
(1) completes the inductive step.

It follows that @ € Aut(G). O

We now prove Theorem 1.4.

First we show that each 2-element generating subset S of G is C1.

In Lemma 2.1, we checked that all 2-element generating subsets of G' are CI-
subsets except the case o(a) = o(b) = 5. Thus to prove our statement it suffices to
prove that given two 2-element generating subsets S = {a,b | o(a) = o(b) = 5} and
T = {a/,b'} such that X = Cay(G,S) and X' = Cay(G,T) are isomorphic, there
exists an & € Aut(G) such that S =T.

Suppose that @ : X = Cay(G,S) — Cay(G,T) is a graph isomorphism. Since
Cayley digraphs are vertex-transitive, without loss of generality we may assume that
1¢ = 1. Hence S* = T. By renaming the elements of 7" if necessary, we may also
assume that

a*=d, b*=V.

39




As 1+ awr a® = a® = a* = 1is a directed circuit of length 5 in X we have that
1= d w (a®) — (¢®) — (a*)' — (a®)’ must be a directed circuit of length 5 in X"
We now distinguish three cases:

(i) )@y =1,for0<i<4andi+j=>5.

Then (V)™ € (a’) and so (§') € (a’) which is a contradiction. So (i) cannot
happen.

(i) ('a’)?a’ =1 or (a'V)?d’ = 1.

If (¥d')%a’ = 1 then o' € (V'a') and thus ¥ € (Va') which contradicts A5 =
(@', ') < (a'V). Similarly (a'b')?a’ # 1 and so (ii) cannot happen.

(iil) o' (V) (a')2 =1 or /' (V)3a' = 1.

If a'(V')?(a)? = 1, then it is easy to check (¥)? # 1 and thus (¥)® € (a/). So
¥ € (da'), a contradiction. Similarly a(¥)? # 1.

By (i), (ii), (iii), we have (a)® = (a®) = 1 and thus 1 = a' = (a')? = (a')®
(@)%~ (a')® is a directed circuit of length 5 in X’. So (a)! = (a')' for i=1,2,3,4,5
and thus ¥'a’ = (ba)’. Similariy we have (¥')? = (?)' and o'V = (ab)".

Thus for n = 1 or 2, (z122- - 2,)* = a2y -z),. Using the same inductive
method as in the proof of Lemma 2.1, we can show that o € Aut(G).

Now we show that X = Cay(G, S) is a normal Cayley digraph of G.

Let S = {a,b} be a 2-element generating subset of G and A = Aut(X). Then
A = A,Gp. For each ¢ € Ay,

¢: X = Cay(G, S) — X' = Cay(G, §%)

is graph isomorphism. As shown above, S is CI, so ¢ € Aut(G) and this implies
¢ € Aut(G, S). It follows that A; = Aut(G, S). By Lemma 1.1, Cay(G, S) is normal
as required. O

3 The Proof of Theorem 1.5

The proof is organized into twelve Lemmas.

Lemma 3.1 Let G = A5 and S = {a,b,c} be a 3-element generating subset of
G. Set X = Cay(G,S) and A = Aut(X). Then X = Cay(G, S) is normal if the
following conditions hold:

(1) for each ¢ € Ay, ¢ |g = 1g implies ¢ |g = 12,
(2) for each ¢ € Ay, ¢*|g = 1s.

Proof Let Hg denote the subgroup of A which fixes 1, a, b, and c. First we show
that Hyg is trivial. Note that since A is transitive on V(X) = G, condition (1) applies
to every vertex v, that is, for any ¢ € A,(X), ¢ |, = g, implies @ |, = 1g2,. Now
let ¢ € Hg, then ¢ € A, and ¢ |3 = 1550 ¢ |g. = 1s2. Let z € S, then 2% = z, so

¢ € Ag(X). Also Sz C S? s0 ¢|g, = 1]|g,. Hence ¢ |5, = 1s2. Since this holds
for all z € S, we have ¢ |gs = 1gs. By induction, ¢ |4 = 1g: holds for any positive
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integer ¢. Since G = (S) and G is finite, we have that if ¢s = 15 then ¢ = 1¢. This
implies that if ¢ € Hg, then ¢ = 1g and so Hg = 1 as required.

Since condition (2) says that for each ¢ € A, ¢? € Hg, we have ¢ = 1 for all
@ € Ay, so Ay is 2-group. Since A; C S3Hg = S, |41 < 2. As A = A;GR we have
Gr <1 A. Thus X = Cay(G, S) is normal. O

Using this lemma we can analyze the normality of a Cayley digraph of As in
terms of its generating set.

Let S be a generating subset of G of cardinality 3 and let [, m,n be integers > 2.
We call S an (I,m,n)-generating set of G if a,b,c € S, a' = ™ = ¢ = 1 and
G = {(a,b,c).

Lemma 3.2 Let S be a (2,3,5)-generating set of G. Then X = Cay(G,S) is a
normal Cayley digraph. Moreover X is a DRR of G.

Proof Now Aj is by definition the group given by the presentation (a,b,c | a®> =
B=cd=1ab=c)(or{o,bcla?=0B=c=1, ac—b)) ThusifSM{a b,c} as
above, then Cy = (1,a), Co = (1,5,4?) and C3 = (1,¢,c%, %, ¢ ) are umque cycles of
lengths 2, 3 and 5 at the point 1. So for each ¢ € Ay, we have ct=aq, C¢ = Cy and
C¢ = Cy. Since (4, Cy and Cj are directed dicircuits, therefore ¢ fixes Cy, Cy and
C; pointwise, and so b® = b, ¢® = ¢ and a® = a. It follows that 4; = A, = 4, = A,.
Finally because a, b, ¢ generate the group G, therefore 4; = A4, for any g € G and so
A; =1 and A = Gy as required. ]

In the remaining part of this section we shall discuss the case o(a) = o(b) # o(c).
If ¢ is a non-trivial graph automorphism which fixes the point 1, it must have the
form

¢ g = (a,b), ¢ =c.
This shows that ¢*|; = 1s. Applying Lemma 3.1 in this case, to prove that
Cay(G, S) is a normal Cayley digraph of G, we need only check that the condition (1)

of Lemma 3.1 holds, that is, we focus on testing which digraphs meet the condition:
for ¢ € A;,

if ¢|g =1g, then ¢ |g = 1g2. (3.1)

Lemma 3.3 Let S be a (3,5,5)-generating set of G or a (3,8,5)-generating set of G.
Then Cay(G, S) is a normal digraph.

Proof Suppose that S = {b,¢1,c,} and G = (b,c1,¢2) or S = {by,by,¢} and G =
(b1, ba, ¢), where b, by, b, are elements of order 3 and ¢y, ¢y, ¢ are elements of order
5in G. Let S; = {b,¢;} and Sy = {b1,c}. Since a subgoup of As which contains
an element of order 3 and an element of order 5 is As, so G = (S;) for i =1,2. If
¢|g = 1g for ¢ € A; then ¢ induces an action on S; for ¢ = 1,2. By Theorem 1.4
Cay(G, S;) is a normal Cayley digraph. Hence ¢ € Aut(G, S;), for i = 1,2. In either
case ¢ is an automorphism of G. Therefore ¢ fixes every element of G and hence
¢ =1 (certainly we have ¢ |g. = 152). So G < A as required. 0

41




Lemma 3.4 Let S be a (2,5,5)-generating set of G. Then X = Cay(G,S) is a
normal Cayley digraph.

Proof Let S = {a,c1, ¢z} be a (2,5,5)-generating set of G, where a is an involution
and ¢y, ¢y are elements of order 5.
If G ={a,c), i =1 ori=2, the lemma can be proved similarly to Lemma 3.3.
So we suppose that (a,¢;) # G for i = 1,2. Since G = {(a,c1,c), we have
{e1) # (ca). Thus G = (c1,¢) and hence for the digraph Cay(G, {c1,c2}), the set
{c1, ¢} is CI by Theorem 1.4, and so ¢ € Aut(G) for ¢ € A;. Therefore if ¢ | = 1g,
then ¢ |g2 = 1g2 and so (3.1) shows that X = Cay(G, S) is normal. o

Lemma 3.5 Let S be a (2,3,8)-generating set of G. Then X = Cay(G,S) is a
normal Cayley digraph.

Proof Assume that S = {a,b1,b; | a®> =03 = b} = 1}. If (a,b;) = G or (b1, by) = G,
for ¢ = 1,2, then the lemma can be proved similarly to Lemma 3.4. So it suffices to
prove the result in the case:

@) {a,b) #G,i=1,2; and
(ii) (b1, be) #G. (3.5)

Since As has only one conjugacy class of involutions, without loss of generality we
may assume that a = (12)(34). First we claim that if (a,b;) & A4 then (a,by) = S3
by condition (3.5). Indeed, if (a,b1) = A4 then we may suppose that b = (123) and
by = (i,4,k). Since G = (a, by, b2), {3, 7, k} must contain 5; say k = 5. Thus {4, 5}
cannot be one of {1,3}, {2,4}, {2, 3} or {1, 4} otherwise (a,bs) = A5. So {i,;} must
be either {1,2} or {3,4}. In either case we have {a,by) & S3. But if b, = (345) or
(354) then (by,b) = As. From this it follows that by = (125) or (152). Similarly,
suppose that a = (12)(34), by = (125). If {a,b;) & S3, then b; must be (345) or
(435); in either case we have (bi,b) = G which contradicts condition (ii). Since
{a,b) # G, it follows that (a,b;) & Ay.

Finally it remains to show the result in the case that (a, b1) = A4 and (a, by) = S,
where a = (12)(34), b; = (123), and b, = (125). “

Indeed, we claim that ¢|g = 1g for each ¢ € A in this case. If ¢|g # 1g
then ¢ fixes a and interchanges b; and b, and so ¢ induces a graph automorphism
between Cay({a, b), {a,b:}) and Cay({(a,bs), {a,bs}). This contradicts the assump-
tion (a,b;) = Ag and (a,by) = S5. Thus ¢ |g = 1s. So ¢ fixes a,b;,b, and hence
Ay = A, = Ay, = Ay, Tt follows that A; = 1 and the lemma is proved. n

Lemma 3.6 Let S be a (2,2,3)-generating set of G. Then X = Cay(G,S) is a
normal Cayley digraph.

Proof In this case G is generated by a pair of involutions a;, a; and an element b of

order 3. Without loss of generality we assume b = (123). Let ¢ € A;. If ¢ | # 1s, as
before ¢ fixes b and interchanges a; and as and so it induces a graph automorphism
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from Cay({ay,b), {as,b}) to Cay({az, b}, {as,b}). So |[{ay,b)| = |{az, b}| and it follows
that (a?,b) = (as,b).

Now we consider three cases.

(1) (al,b) = ((,Q,b) = A5.

Since Cay((a;,b),S;) is a normal Cayley digraph by Theorem 1.4 (where S; =
{a;,b} and ¢ = 1,2), we have ¢ € Aut(G,{a;,b}) < Aut(@) and so the result is
proved by Lemma 1.3.

(2) (a1,b) = (a2,b) = Ay

It is obvious that (a;,b) # (as,b). Let ¢ € A. If ¢ | = 1g then ¢ induces an
automorphism of the subgraph X; = Cay({a;, ), S;), where S; = {a;,b} and i =1, 2.
Since C; = (1, a;) is the unique circuit of length 2 and Cy = (1, 5,4?) is the unique
circuit of length 3 at the point 1, it follows that ¢ fixes Cy and Cs pointwise. Since
¢ fixes b, ¢ fixes the neighbourhood of b in X; and thus ¢ fixes a;b. Since ¢ fixes a;,
@ fixes the neighbourhood of a; in X; and thus ¢ fixes ba;. Since ¢ fixes a1, ¢ fixes
the neighbourhood of a; in X and thus ¢ fixes aza;. Similarly we can check that ¢
fixes the points ayb, a3, bay and aya,. This shows that ¢ | g2 = lg2. By Lemma 3.1,
Cay(G, S) is normal as required.

(3) {a1,b) = (az,b) = Ss.

This case can not happen, since for each element of order 3 in the unique subgroup
which is isomorphic to Ss, if (a1, b) = (as,b) = S3 then (a1, b) = (a,b) = S; which
contradicts (a1, as,b) =G.

By (1), (2) and (3), the lemma is proved. O

Lemma 3.7 Let S be a (2,2,5)-generating set of G. Then X = Cay(G,S) is a
normal Cayley digraph.

Proof Suppose that G is generated by a pair of involutions a;, a2 and an element
¢ of order 5. If {a1,¢) & Dy then (as,c) ¥ Do by the fact that c is in a unique
subgroup H = Dyp, and so (ay, c) = As. Now we distinguish two cases.

(1) <a1,C> = Dl() and (GQ,C) = As;

(2) (a1,c¢) = (az,c) = As.

The lemma follows in either case in the same way as the proof of Lemma 3.5. O

Lemma 3.8 Let S be a (5,5,5)-generating set of G. Then X = Cay(G,S) is a
normal Cayley digraph.

Proof Let S = {ci,c0,c3 | ¢§ = & = ¢§ = 1}. Clearly if {¢;) # (c2), then
(c1,¢2) = As. Since G = (¢, ¢, ¢3), we may assume that (c;, c2) = As. If (cg, c3)
Zs, then ¢ |g = (c1,¢9,¢3) is not a graph automorphism from Cay(G, {c1,c}) to
Cay(G?, {c1, c2}?) since (c1, ¢0) 2 As and {c1, c2)? = (cg, c3) = Zs.

So we assume that (¢, ¢2) = {(c2, ¢3) = {c3,¢1) = G. Let A; ., denote the subgroup
of A which fixes 1 and ¢;. Then [A4;] < 3|41, | Let ¢ € A;,, then ¢ fixes ¢; and
stabilizes the set {cs,c3}. Set S; = {cg,¢3}. Thus ¢ induces a graph automorphism
of Cay(G, S;). Since Cay(G, S1) is a normal Cayley graph by Theorem 1.4, it follows
that ¢ € Aut(G). But Aut(G) has no non identity automorphism that interchanges
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a pair of elements (c; and c3) of order 5 and fixes another element ¢; of order 5, so
we have ¢ =1 and thus 4; ., =1 and |4;| < 3.

If |Ay] = 3, then |A] = 180 and A is not simple group. So A contains a non-
trivial normal subgroup N, that is N # land N # A. f GNN #1then GNN
is a nontrivial normal subgroup of G which contradicts G = As. It follows that
GNN =1and thus A =N -G and A; = N. Since A; is the stabilizer of the point
1, we get N =1, a contradiction. It follows that |A;| < 2 and Cay(G, S) is a normal
Cayley digraph as claimed. ]

Lemma 3.9 ([4, Lemma 2.2]) Let X = Cay(G,S). Then X is a normal Cayley
digraph of G if the following conditions hold:

(i) for each ¢ € Ay there exists 0 € Aut(G) such that ¢ |g =0 |g;
(ii) for each ¢ € Ay, ¢ |g = 1g implies ¢ |g = 1s2.

Proof (1) Condition (ii) implies that if ¢ € A; and ¢ | = 1, then ¢ = 1.

(2) We show that A; < Aut(G,S). By the hypothesis (i), for each ¢ € Ay, we
may take o € Aut(G) such that ¢ |g = o |g. Then ¢o~! |5 = 15. By the proof above
we have ¢go! = 15 and ¢ = 0 € Aut(G). Thus 4; < Aut(G, S).

(1) and (2) imply that X is a normal graph of the group G. |

Lemma 3.10 Let S be a (3,3,3)-generating set of G. Then X = Cay(G,S) is a
normal Cayley digraph.

Proof First suppose that G is generated by three elements by, by and b3 of order 3.
We now distinguish two cases:

(i) There exist b;, b; € S such that (b;, b;) = G. In this case there must exist b; or
b; such that (b;,bs) # G or (b;,bs) # G. As in Lemma 3.8 we can prove Cay(G, S)
is a normal digraph of G.

(ii) There are no b;, b; € S such that (b;,b;) = G. In this case there exist b;,b;
such that (b;,b;) = A4. It is clear that the 3-cycle b; and b; are in a same subgroup
of G which is isomorphic to A, if and only if they have two symbols that are the .
same. So without loss of generality, we assume that b; = (123) and b, = (124). Since
(b1, b, b3) = As, thus b3 = (4,7,5), and in addition (b;,bs) = Ay, for ¢ = 1,2 (If
(b;,bs) =2 Zs, then by € (b;, b;) = A4, a contradiction.) Hence we have by = (125) or
(152).

In this case for each ¢ € Ay, if ¢ |g = (b1, by, bs), then there exists 0 € Aut(G, 5)
such that ¢|g = o lg; in fact by the assumption, o = (345). If ¢|; = 1g, then ¢
induces a graph automorphism of Cay((b;, b;},{b;,b;}) for 4,5 € {1,2,3}. Set S; =
{bs,b;}. It is easy to check that the Cayley graph Cay((b;, b;), S1) satisfies the condi-
tions of Lemma 3.9. So Cay((b;, b;), S1) is normal and hence ¢ |5 € Aut((b;, b;)). It
follows that ¢ fixes b; and b; and hence fixes b7, b2, bjb; and b;b;. Similarly ¢ fixes the
other elements of 5. So if ¢ |g = 15 then ¢ |g = 1g2. By Lemma 3.9 our statement
follows.

By (i) and (ii), the lemma is proved. m]

44




Now consider the case when G is generated by three involutions a;, az and a3
and X = Cay(G,S) is an undirected graph. We will use the following result.

Lemma 3.11 ([5, Theorem 1.3]) Suppose that G is a nonabelian simple group. Then
G is a 8-CI-group if and only if G = As.

Lemma 3.12 Let S be a (2,2,2)-generating set of G. Then X = Cay(G,S) is a
normal Cayley graph.

Proof Since S = {a,a9,a3} is 3-CI, for each ¢ € A; we have ¢ € Aut(G) by
Lemma 3.11 and the lemma follows.

PROOF OF THEOREM 1.5 This is given by Lemmas 3.2, 3.3, 3.4, 3.5, 3.6,
3.7, 3.8, 3.10 and 3.12. m]
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