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Abstract

We prove that cubic homogeneous bent functions f : Vo, — GF(2) exist
for all n > 3 except for n = 4.

1 Introduction

The theory of S-boxes emerged as a branch of cryptography whose main aim is
the design of cryptographically strong Boolean functions or S-boxes. Typically the
strength of an S-box is quantified by a collection of cryptographic criteria. There is an
intimate relation between cryptographic attacks and this collection of cryptographic
criteria. A new criterion is added to the collection every time a new cryptographic
attack is invented. If an S-box satisfies the criterion, then the designer may immunise
a cryptographic algorithm against the attack by using the S-box. Bent functions are
basic algebraic constructions which enable designers of cryptographic algorithms to
make them immune against a variety of attacks including the linear cryptanalysis,

We concentrate on homogenous bent functions. Homogeneousity becomes a
highly desirable property when efficient evaluation of the function is important. It
was argued in [5], that for cryptographic algorithms which are based on the structure
of MD4 and MD5 algorithms, homogeneous Boolean functions can be an attractive
option; they have the property that they can be evaluated very efficiently by re-using
evaluations from previous iterations.

Let us summarise some arguments from [5] which can be used to justify our
interest in homogenenous functions. Note that in the MD-type hashing (such as
MD4 or MD5 or HAVAL), a single Boolean function is used for a number of rounds
(in MD4 and MD5 this number is 16, in HAVAL it is 32). In two consecutive
rounds, the same function is evaluated with all variables the same except one. More
precisely, in the i-th round the function f(z) is evaluated for (z1,...,,). In the
(i + 1)-th round, the same function is evaluated for f(z2,...,&n, 1) Where y; is a
new variable generated in the i-th round. Note that variables are rotated between
two rounds. It can be proved that evaluations from the i-th round can be re-used
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if f(z) = f(ROT(z)). These Boolean functions create a class of rotation-symmetric
functions. An important property of rotation-symmetric functions is that they can
be decomposed into one or more homogeneous parts. To keep a round function f (z)
short, one would prefer a homogeneous rotation-symmetric function.

In [4] we proved there do not exist homogeneous bent functions of degree n in
GF(2)™ when n > 3. However the construction of high degree homogeneous bent
functions has remained an open problem. In this paper we show how to construct
cubic homogeneous bent functions in GF(2)*" where n > 3 and n # 4.

2 Background

Let V,, = GF(2)" be the set of all vectors with n binary co-ordinates. V; contains 2"
different vectors from o = (0,0,...,0) to agn_; = (1,1,...,1). A boolean function
f: V, = GF(2) assigns binary values to vectors from V,. Let z = (z;, -+, %n)
and y = (y1,+--,¥n) be two vectors in GF(2)". Throughout the paper we use the
following notations:

e the inner product of x and y defined as
n
(TY) =20y =011 @ - Lol = ) Tiliy
i=1

where z = (z1,-++,Zn) and y = (Y1, *, ¥n);
o the inner addition of x and y given by
xe}y: (x1®ylv"'7zn®yn)7

where z = (z1,--",%,) and ¥y = (y1,-*+,¥n). Note that inner addition is
equivalent to bit-by-bit XOR addition;

e the extension of vector z € V, by a vector y € V,, is defined as
TRy = (xlv"'vzmyl,"'vym)’
The vector £ @ Y € Voym.-

o the Hadamard product of vector a = (ay, -, a,) and vector b = (by, -+, bn)’
given by
axb=(aihy, -, a,b,)
where the symbol “” means transpose of the vector or matrix.

Definition 1 A boolean function f : V, — GF(2) is homogeneous of degree k if it
can be represented as

f(:E) = @ Qi Tiy * " Ly (1)

1<i1<<ig<n

wherex = (21,...,%s). Eachtermz;, « - 3;, iy, € GF(2) is a product of precisely
k co-ordinates.
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Let p, denote the set of all boolean functions in GF(2)". For f € p, we let
deg(f) be the degree of f. Define

R(m,n)={f € pp: deg(f) <m}.

If f € pa, is a bent function, we call f + R(1,2n) a bent coset.
Let ~ denote the equivalence relation under the action of linear transformation.
We define for any nonsingular n x n matrix A and vector & € GF(n),

o(f) = f(XA® a), where X = (21,"-+,Zn).

Let F f denote the Fourier transform of f. Thus Ff is defined as

ff(a):zin T (c1)sie), .

X€Van

3 The Rank

For 0 < t < n, let SP be the set of all t—subsets of {1,.--,n}. For any I C S},
we write X; = [l;ero;. Let t1,6p > 0 with ¢, + ¢ = ¢, and f = Fjcsn a; Xy €

R(t,n)/R(t—1,n), where a; € GF(2). We define an ( f ) x ( t” ) matrix B (f)
1 2
over GF(2) as follows:

1. The rows and columns of Bt(f:?}( f) are labelled by the elements of Sp and the

elements of S}, respectively.
2. ar=0for I C {1, --,n} with ||I|| <t
For F € R(t,n)/R(t —1,n), t > 1, let
r(F) = rank (Bgft’l)l(F)) . (3)
If F € R(t,n), we define ry(F) = r(F @ R(t — 1,n)).
Theorem 1 (Hou[3]) Let F be a cubic bent function in po,.
1. If ro(F) > 0, then
F o~ P(zy,++,Ton—2) D Ton—1%2m, (4)
where P is a cubic bent function in pay—o.
2. If r3(F) < n, then ro(F) > 0.
3. If r3(F) = n and ro(F) = 0, then
FrQ(zy, Tn) ® iximnﬂ (5)
i=

for some Q € py,.
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Theorem 2 Let f(x) be a boolean function in GF(2)" and g(y) be a boolean function
in GF(2)™. f(z) ® g(y) is a homogeneous bent function of degree k in GF(2)"*™ if
and only if both f(z) and g(y) are homogeneous bent functions of degree k.

Proof. If f(z) and g(y) are homogeneous bent functions of degree k, it is easy to
see H(z) = f(z) ® g(y) is a homogeneous bent function of degree k where z =z ®y.
On the other hand, if H(z) = f(z) ® g(y) is a homogeneous bent function of
degree k where z = ®y, we know f(z) and g(y) are bent functions, too. Obviously
f(z) and g(y) are homogeneous bent functions.
The proof is complete. O

4 The Equivalence

Definition 2 Let F(X) and G(X) be two bent functions in GF(2)™. If there exists
a matriz T € GL(2n,2) and b € GF(2), such that

F(XT) & (X,b) = G(X),
we say that F' equivalent to G, and denote this by F ~ G.

Theorem 3 Let F(X) be a cubic bent function in GF(2)*" and G(X) be a homoge-
neous cubic bent function in GF(2)*. If F ~ G, then r3(F) = 0 and r3(F) > n.

Proof. Since F' ~ G, from the results of the work[3] we know r;(F) = r;(G), i = 2,3.
Because G is a homogeneous bent function, we have ro(G) = 0, ro(F) = r3(G) = 0.
From Theorem 1 we know r3(F") > n, which completes the proof. [}

Lemma 1 Let A = (a;;) be an n x n matriz, a;; € GF(2), 1 <4,j<n, and X be a
vector in GF(2)", Then XAX' is a linear boolean function if and only if A= A’

Proof. If XAX' is a linear boolean function, then there exists a vector b € GF(2)",
such that

XAX' = (X,b) (6)

forall X € GF(2)™. Asb= (by, --,bn), and X = (zy,- -+, Z,), we can rewrite (6) in
the following form:

n n
Z A;T;T5 = zble (7)
i=1

i,j=1

For any fixed i, 1 <i<n,letz; =1andz; =0, j #¢, 1 <j < n, then from (7) we
have

aii*—‘b,',i—‘:l,"',n. (8)
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For any pair of 4, 4,4 # j,1 < 4,7 <n,letz; =z; =1, 2, =0, k # i and k # ,
1 < k < n, then from (7) we have

a; + ajj + [ —+ aj; = bi + b]’. (9)
From (8) and (9) we have
a;; =aj 1<4,5<n, (10)

and A= 4"
Assume that A = A'. We obtain the following:

.XAX’ = Z Qi T T

B,j=1
= Zanx @ Z Z (aij @ aji)ziz; = Zanx,
i=1 j=i+1 i=1
is a linear boolean function. This completes the proof. a

5 The Matrix Representation of Cubic Bent
Functions

Let F(X) be a cubic bent function in GF(2)", r = r3(F) > n, ry(F) = 0, then

F(X)z Z -’Ei.’L’jfEk@ Z TyLy, (11)
(4,3,k)EE (up)eD

1% 4,5 # k,k # i,u # v. Suppose E is a collection of unordered triples, and further
suppose D is a collection of unordered pairs. Since r = r3(F), the cubic part of
F(X) can be represented as

flzr, -, z) = Z TiT; Tk (12)
(i,d,k)EE
We denote
X = (21, -, 20) = X1y ® Xea, (13)
X{l) = (-’171, e axr)s X(?) = (x‘r-!-l: e ,.732”).
The quadratic part of F(X) can be represented as
g(xlﬂ . az2n Z Tyly = XQX£1)7 (14)
(u v)eD
where Q = (Q;;) is a 2n x r matrix with
{1, i>jand(,j)€D,
4 = { 0, otherwise, (15)

237




where 1 < i < 2n, 1 < j < r. It is known that r3(F) = r3(f). We can construct
a matrix Bgf’;)( f) with r rows and -'112:—9 columns. The rows of the matrix are
ordered (1,2),---,(1,7), (2,3), -+~ (2,7), -+, (r = 1,7), and the columns of the
matrix are ordered 1,---,7. Then the ith row and (j,k)th column of the matrix is
1,if (4,5,k) € B, oris 0, if (i, j, k) ¢ E.

Notation 1 Let T = (t;;),1 < i < n,1 < j <p. We denote the jth column of the
matriz by t;, so T = (t1,+-+,1p). Let

T* = (ty * by, -ty % by, to % by, oo ok by, oo, tpo1 ¥ ). (16)
Let X = (zq, -, Zn) € Va, we denote
X* = (2122, 2123, -+, Tn-1%n) (17)
T* is a matrix with n rows and ’ﬁ%_—ll columns. We denote
C=C(f) =B (). (18)
Then
Fzy, -, 2) = X5 C X, (19)

where X(1), C, X{;y are defined as (13), (18), (17).
From (11), (12), (13), (14), and (19) we have

F(X) = X[yCX 1) ® XQX ). (20)

Example 1 F(zy, -, %) = T12223 D T224%5 B 1122 D 7124 D T2% O T3T5 D T4Ts.
r= 7"fi(‘F) =35. X(l) = (xl,va e 33"5); and

0000100000
0100000001
C'=|l1000000000],
0000001000
0000010000
00000
10000
00000
Q=1410000
00110
01000

We have F(X) = X,CX () @ XQX(y).
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Theorem 4 Let F(X) be the cubic bent function in GF(2)*™ which is defined by
(20). The function F(X) possesses a cubic homogeneous equivalent if and only if
there exists a nonsingular 2n x 2n matriz T = T(yy ® T(z), and

(T3 C & TQ)Tyyy = Ty (T4 eTQ), (21)
where Tpyy is a matriz with 2n rows and r = r3(F) columns. T(yy is defined by (16).

Proof. From formula (12) we have the cubic part of F(X):
> mEmk (22)
(ig,k)EE

We fix (4, ,k) € E, when Y = XT, T = (T}, - -, Ty), where T, is the uth column of
matrix T, and t,; denote the uth column and 4th row of the matrix 7', 1 < u,i < 2n.
Yi, Yj» Y& become XTj, XT}, XT;.

2n

vy = XTXTXTy = Y, TutuiTotyZutur = S1© S, (23)
u,vw=1
where
Si= Y tubeturZuToZw = ik (24)
v vAW,WwHY

is a cubic homogeneous polynomial, and

Sy = ( Z (<) E (&) Z @ Z )tuitvjtwkxuwvxw

u=vFEW

= (< SeY)e(y e Y)el(y & ))tmtujtwkxu:cumw

u=vEw  USU=W u= w;&v U=V=W uFv=w  USU=W

- Z tuit ujLu 2 twkZw D Z tuituk®u Z tujm'v @ Z tugtukmu Z tuiTu

v=1

= X(T1*TJ)‘XT,C€BX(7“Z*T,€).XTJ EBX(T «T).XT, (25)
So,
f(XTy) = Z XTXTiXTe= >, O
(1,5,k)EE (44,k)EE

& Y (X(T*Tj).XTw & X(T; + Th). XT; & X (T; + Tx). XT5)
(i,5,k)EE

= 3 5,-,-@2( 3 X(Tj*Tk)) XT;
(i,J,k)EE i=1 \(j,k)€E;

- Z 5ijk$XT(*1)C(Xﬂ1))’. (26)
(i,5,k)EE
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We define
HX)= > b (27)

(1,4,k)EE
Now we have
F(XT) = f(XTy) ® XTQ(XTy) = H(X)® X(T},C @ TQ)THX . (28)

So the necessary and sufficient condition for F(X) ~ H(X) is that there exists a
nonsingular matrix T' that makes X (7(;)C' & TQ)T('I)X " be a linear function of X.

From Lemma 1, (T(},C & TQ)T('l) must be a symmetric matrix. The proof is now
completed. [m]

6 Cubic Homogeneous Bent Functions

Lemma 2 (Rothaus(1]) Let f(z1,+,2y) be a boolean function in GF(2)". Then

F($1,“',$2n)=f($1""»$n)@zfixi+n (29)

1=x1
is a bent function in GF(2)*.
Lemma 3 For any n > 3, there exist cubic bent functions with r3 = n in GF(2)*".
Proof. According to Lemma 2 we can easily construct cubic bent functions in

GF(2)% with r3(F) = n. O

Theorem 5 Let F(X) be a cubic bent function given by (29). We construct a non-
singular 2n x 2n matriz T which has the following structure:

T:(i ]?4), (30)

where I is a nx n identity matriz, 0 is a n X n zero matriz, M is a n x n nonsingular
matriz, A = (a;;), ai; € GF(2),4,j=1,---,n. Then F(XT) is a cubic homogeneous
bent function if and only if

AC =M, (31)
where C is defined in (18), and A* is defined as (16).

Proof. For an arbitrary cubic bent function F(X), it probably can be represented
in the form (20). When C and @ are uniquely defined, according to theorem 4, there
exists a matrix T(1y of the form (21). We define @ and T(y) as

o-(8). n-(1).
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then

we(A) () (k)

F(X) ~ H(X) where H(X) is a cubic homogeneous function if and only if formula
(21) holds. Now

. , 0 ,

0 0
= ( ACOM ACA®MA ) (34)

The resulting matrix is symmetric iff A*C & M = 0. The proof is completed. =~ O

Theorem 6 Let F(X) = f(z1, -+, 2,) ® D0, TiTirn be a bent function in GF(2)*"
where f is a homogeneous cubic function of (zy,--,zn) and r3(f) = n. Then there
exists o nonsingular matriz T such that F(XT) is a cubic homogeneous bent function.

Proof. Let C be the n x ;l matrix defined as in (18). Since rank(C) = n, there

are 1 rows of C, say, (ji, k1), +, (jn, kn), such that the matrix M which consists of
these n rows is a nonsingular matrix. We define A = (a;;)1<ij<n as follows:

=1,--,n. (35)

@i = 1, fj=jgiorj=ki, i
" 0, otherwise,

Let T = ( i ?\/I ), where I is the n x n identity matrix, 0 is the n x n zero matrix.
Obviously, T is a nonsingular matrix. For any fixed 7, 1 < ¢ < n, in the ith row of
A*, 41009, -+, Gi1Gin, - -+ » Qin—10in, ONly ONe component a;; a4, = 1 and others are all
0. So the matrix product of the ith row of A* with C gives the (g;, k;)-th row of C.
That is A*C = M, so (31) holds and F(XT) is a cubic homogeneous bent function.
The theorem is proven. ]

Let E be an unordered triple set: E = {(,5,k) : 1 < 4,7,k < r}, write E; =
{(,k): (i,5,k) € E},1<i<n.

Definition 3 (Regular unordered triplet set) The unordered triplet set E is
called regular if E; /(U E;) #0, 1 < 4,5 <7

Theorem 7 Let F(X) = ¥ juer iliTk + Limt TiTin, T3(F) = n be a boolean
function in GF(2)*. If E is a regular unordered triple set, then there exists a square
matriz A which satisfies the equation (31) with M = I, and F(XT) is a cubic
homogeneous bent function.
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Proof. We expand the left side of (31). Hence we have
( ST oaixar,, Y, aj*ak)=M, (36)
(7.k)EEy (4.k)€En

in which a;, 1 < i < nis the ith column of matrix A. Since E is regular, Ei/(Up_, Ej) #
0, so there exists at least one unordered pair (j, k) € Ei/(Uj-; E;) which makes

ar=a;=1, ag=0,j#l#k1<1l<n
In this case, only a;a; = 1, and if (u,v) # (j, k), aiutiy = 0. Now the ith row of the

n—i

-1
left side of (36) becomes (0,---,0,1,0,--+,0), and this is identical with the ith row
of right side of (36). Hence equation (36) holds. Consequently, F'(XT) is a cubic
homogeneous bent function. The proof is completed. ]

Theorem 8 For all n > 3 and n # 4, there exist cubic homogeneous bent functions
in GF(2)?".

Proof. There are three cases:

1. n = 0 (mod 3), we can write n = 3m for some positive integer m. Let

m 3m
F(X) =Y T3i-2%3i125i © Y TiTisam. (37)
i=1 i=1

From Lemma 2 and we know that F(X) is a bent function. Now
E={(3i-23-1,3):1<i<m}

is the regular un-ordered triple set and F(X) has the form of (29). Hence from
Theorem 5 we know that there exists a 2n x 2n nonsingular matrix T with
the form of (30) which makes (31) hold. So F'(XT) is cubic homogeneous bent

function.
2. n =1 (mod 3), write n = 3m + 1 for some positive integer m. Because n # 4,
m > 2. Let
m 3m+1
F(X) =3 23i0%5i-173i ® T1Z4T3mp1 @ ), TiTitami1- (38)
=1 i=1

By Lemma 2 and we know it is a bent function. In this case, we have
E={(3-2,3%—-1,3):1<i<m}u{(1,4,3m+1)}, (39)

which is regular and F'(X) has the form of (29), the conclusion of Theorem 8
is also valid.
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3. n =2 (mod 3), write n = 3m + 2 for some m. Let

m 3m+2

F(X) =Y z3i-2%3i-1%3 D T1%3m+1T3m+2 © Z TiTit3m+2; (40)

i=1 i=1
and we have
E={(3i-23i-1,3):1<i<m}u{(,3m+1,3m+2)}. (41)
The proof of this case is the same as before.
Hence the statement of the theorem is true and the proof is completed. 0O

Example 2 Let F(X) = 212003 ® S5, 2:%i43 be a cubic bent function in GF(2)S.
0 01

, ay G2 013
We have C' = | 0 1 0| and set A = (a1,a0,a3) = | an axn axn |. We

100 azy a3z 433
calculate A*C = I and get

011
A=(1 01].
110
So
100000
010000
T= 001000
011100}
101010
110001
and

F(XT) = T1T2T3 D T1ToTy D T122T5 D T1T3T4 D T 13T D T124%5 D T1T4T6
@ T1Z5T6 D T2L3T5 D ToT3Le B TaT4Ts D ToTale B TaTsTe D T324T5
D T324T6 D T3T5Ts,

is a cubic homogeneous bent function.

7 The Fourier Transform of Homogeneous Bent

Functions
Lemmad Let Z =X ®Y, where X = (z1,--+,2,) € GF(2)", Y = (1, -, ¥n) €
GF(2)*, T is a 2n x 2n matric and T = ﬁ (1)\/[ , where L, A, M aren X n

matriz and L™' and M~" ezist. f(Z) = P(X)® (X,Y) and g(Z) = f(ZT) are bent
functions in GF(2)*. The Fourier transform of g(Z) is:

Fg(2) = P(Y & X(ALY))M " o (Y @ X(AL))M' T, XL (42)
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Proof. Let W=UQ®V,U = (wy, -+, ws), V= (Wn41, -, Wan). From the Fourier
transform definition, we have

Fo(z)=2" Y (~1ptema)

WeGF(2)2n

—9n Z (_1)f(ULeaVA)@(VL@VA,VM)@(U,X)@(V,Y)
UVeGF(2)™

2 3 (_1)<v,y)ea<VA,XL”‘)
VEGF(2)m

o T (1) FVL@VASVLOVAVMSVISVAXL ™)

UeGF(2)r

DS (_1)(v,yeaXL"’A’ ) (_1)f(5)e><s,vmeaxﬂ"‘)
VEGF(2)» SEGF(2)

—o T (_l)f(S)@(s,XL"‘> T (ml)(V,YeaXL'—lA'@SM')
SeGF(2)~ VEGF(2)"

— (___1)f((Y63X(AL“1)')M'_l)aa((YeBX(AL")’)M'-I,XL’_‘) (43)

a

Lemma 5 Let f(X) be a homogeneous function of degree 3 in GF(2)*. g(Z) =
f(X®YA)®(XDYA,Y) is a cubic homogeneous bent function, where A is an xn

nonsingular matriz. When A = A', Fg(Z) is a cubic homogeneous bent function,
too.

Proof. Since A = A', from Lemma, 4 we have
FoZ)=fY o XA) o (Y & XA, X). (44)

Since g(Z) is homogeneous bent function. The Fourier transform of g(Z) is also a
bent function. We have

9(2)=fzeYA) e (XBYAY)= B GirigiaZis Zin Zigs
1<i1<iz<iz<n
Where @iy iyigs 2iy s 2igs 2is € GF(2).

Because Z = X ® Y, z; is either ) or y,, 1 < j <3, 1<k, <n We define

T = yi, yi = @, 1 < i< n,then Z =Y ®X, g(Z) is cubic homogeneous bent
function. Then

FoZ)=f(Y XA D (YD XAX)=g(Y®X)

is a cubic homogeneous bent function. The proof is completed. 0

Lemma 6 There ezist cubic homogeneous bent functions g(X) in GF(2)*" whenn >
3, n # 4, and their Fourier transforms are also cubic homogeneous bent functions.
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8 Remark

Example 3 When n = 5, we define the function F(X) = 212,23 D21 2224 D21 2325 D
Y% miziys which is a cubic bent function in GF(2)1°. r3(F) =5, ro(F) = 0. Set
E = {(1,2,3),(1,2,4),(1,3,5)}, B = {(2,3),(2,4),(3,5)}, Ey, = {(1,3),(1,4)},
By = {(172); (1a 5)}9 E4 = {(1’2)}: Es = {(173)} We define

Bi = Ei/(UjiEy), where 1 <i,j <5,

and have B=F,, Eg:{(l,él)}, E3={(1,5)}, Es=Es;=0. So E is not a regular triple
set. But there exists n X n nonsingular matrix

01100
10010
A=]110001
11001
10110

that makes A*C = I. So E regular is not a necessary condition for A*C = I.
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