On even [2, b]-factors in graphs
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Abstract

For each even integer b > 2 we prove that a graph G with n vertices has
an even [2,b]-factor if G is 2-edge connected and each vertex of G has
degree at least max{3, %}

1 Introduction

Tutte’s f-factor theorem [16, 4] has evolved in many directions. Surveys are given
in [1].

Lovész derived an extensive [g, f]-factor theory [11, 12, 13] which has been con-
tinued by other authors [5, 10].

Connected factors are treated in [6, 8, 9]. Odd factors have been treated by
Amahashi, Yuting, Kano, Topp and Vestergaard.

Amahashi [2] extended Tutte’s 1-factor theorem to {1, 3,5, ..., 2t — 1} factors, and
Yuting, Kano [17] generalized this further: for an integer valued function f given on
V(@) they define H to be a [1, f]-odd factor of G if for every vertex z in G, dy(x) is
odd and satisfies 1 < dy(z) < f(x). They then prove that G has a [1, f]-odd factor
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if and only if deletion of any set S of vertices leaves a graph whose number o(G — 5)
of odd components is not larger than »° . f(z), i.e.

G has a [1, f]-odd factor < o(G — S) < Z flx). (%)
zeS

Using Sumner’s theory [14] on minimal barriers, Topp and Vestergaard [15] proved
that it is not necessary to test (*) for all subsets S of V(G), but only for some of
them. As one consequence they show that if G is of even order n and if no vertex v
in G is the center of an induced K ,f(s)+1-star, then G has a [1, f]-odd factor.

In this paper we shall consider even factors. In general, existence of even factors
is not deducible from the existence of odd factors.

2 Notation

We consider graphs without loops or multiple edges. A graph G has vertex set
V(@) and edge set E(G). The order of G is |G| = |V(G)| = n. For subsets X,Y
of V(G) we denote by eq(X,Y) the number of edges in G having one end-vertex
in X and the other in Y. Thus eg(v,V(G) — v) = dg(v) is the degree of v and
0(G) = min{dg(v) | v € V(G)} is the smallest degree in G.

A subgraph of G containing all of V(G) but possibly not all of E(G) is called a
spanning subgraph of G or a factor in G.

Let g, f be mappings from V(G) into the nonnegative integers Z{ and let g(v) <
f(),¥Y v € V(G). Then F is called a [g, f]-factor of G if F is a factor of G with
g(v) < dp(v) < f(v),Vv € V(G). A factor F satistying dr(v) = 0 (mod 2),Vv €
V(G), is called even.

An edge e € E(G) is a bridge if G— e has more components than G and v € V(G)
is a cut-vertex if G —wv has more components than G. A graph with at least 3 vertices
is 2-edge connected if it is connected and has no bridge; G is 2-vertex connected if G
is connected and has no cut-vertex.

A block in a graph with no isolated vertex is either a bridge together with its
two end-vertices, or it is a maximal 2-vertex connected subgraph of G. The latter is
called a proper block of G.

Consider functions g, f on V(G) with g(v) < f(v) for each v € V(G), and an
ordered pair X,Y of disjoint subsets of V(G). A component C' of G — (X UY) is
called odd if -,y ) f(v) +eq(V(C),Y) is an odd number. The number of odd
components in G — (X UY) is denoted by hg(X,Y). When clear from the context
we may omit reference to G.

3 Complete bipartite graphs
Let us observe that K , has no [2, b]-factor; and K, has no proper [2, b]-factor, and
so, it has an even one if and only if ¢ is even and g < b.

Existence of an even factor with degrees bounded by the constant b is character-
ized in Theorem 1 below.
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Theorem 1 For 3 < p < q let K, be a complete, bipartite graph and let b > 2 be
an even integer. Then the graph K, , has an even [2,b]-factor if and only if ¢ < gp.

Remark: As b is even, the inequality ¢ < %p is equivalent to b > 2[%].

Proof: |l: Let F' be an even [2,b]-factor of K, ,. Then 2¢ < |E(F)| < bp and
q < %p follows.

i+ Assume ¢ < Zp. Let ¢ = rp+5,0 < s < p. Necessarily 1 <r < % andifr =2
then s = 0.

Let 21,29, ..., %, be the vertices of one colour class, and y1, ..., ¥p; Yp+1, Yp+2,
e Y2 Yo Ly - YBps - Yr—L)pls - - - Yrpd Yrph L Yrpt2, - - - Yrpts the vertices of the
other colour class of K, ,.

For s > 2, form the r + 1 cycles:

Ci = @y .. TplYp

Co = Z1Ypr1T2lYpra .. Tplap

C;, = T1Y(i—1)p+1L2Y(i-1)p+2 - - - TpYip

C’r‘ = T1Y(r-1)p+1T2Y(r—1)p+2 - - - LpYrp
C’r+1 = T1Yrp+1T2Yrp+2 - - - TsYrpts-

The union F = |J/Z] C; is an even [2, b]-factor of K, because V(F) = V(G), and
all vertices have in F' even degree at least two and at most b: Certainly dp(y;) =
2,1 <1 < ¢, and for z;,1 < j < p, we have, since s > 0 implies r < g, that
dp(z;) <2r+2= 2[%] =b.

For s = 1, we have b > 2(r + 1),

1. if p > 4, in the preceding definition we replace the cycle C,.;; by the cycle
Cli1 = Toyg123Yy, and F = (J._, C;) U Cl,; we have dp(y;) is 2 or 4, for

each 4; and for each j, we have dp(z;) <2(r—1)+4=2r4+2 <,
2. if p=3, then let CV = x1y,—2%2y,—3 and C”, 11 = T1Y4T3Yg-1-

So, for s = 1 with F = (.} C;) UC” U C",, we have dp(y;) = 2 for each i; and for
each j, we have dp(z;) <2(r—1)+4=2r4+2<b.

For s = 0 we have ¢ = rp,r < % and F = J;_, C; is an even [2, b]-factor of K,
since dp(z;) =2r <b,1 < j <p.

This proves Theorem 1. a
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So we conclude as follows.

Corollary For 3 <p < g, the least even integer b such that the bipartite graph K,
has an even [2,b] factor is b= 2[1].

Generalization Above, with G = K, ;,3 < p < ¢, we have p+ ¢ =n and §(G) = p.
The conditions p > 2—f7p > 3 translate into 0 > max{3, b2+—"2 which in the following
section as a generalization is proven to be a sufficient condition for any 2-edge con-
nected graph to contain an even [2, b]-factor. Furthermore, for ¢ = gp the graphs

K,,q demonstrate that the condition § > max{3, 2%} is strict.

4 General graphs

Below, we cite a theorem by Lovész characterizing graphs having an even [g, f]-factor
and a fortiori an even [2,b]-factor. We use Lovdsz’s theorem to derive Theorem 2,
which only gives a sufficient condition for G to contain an even [2, b]-factor. However,
Theorem 2 has the advantage of being easy to apply.

Lovasz’ parity [g, f]-factor Theorem [11, 3]. Let G be a graph, let g and f
map V(G) into the nonnegative integers such that g(v) < f(v),V v € V(G), and
g(v) = f(v)(mod 2),V v € V(G). Then G contains a |g, f]-factor F such that
dr(v) = f(v)(mod 2),¥ v € V(G), if and only if, for every ordered pair X,Y of
disjoint subsets of V(Q)

D daly) =D g(y)+ > flx) = h(X,Y) = e(X,Y) > 0.

yey yey zeX
Let b > 2 be an even integer and in the theorem above, let g(v) = 2, f(v) =
b,V v € V(G). Then we immediately obtain
Corollary G contains an even [2,b]-factor if

> da(y)=2|Y [+ X|-h(X,Y)—e(X,Y) > 0 (s5)

yey

for all ordered pairs X,Y of disjoint subsets of V(G).

In Theorem 2 below we describe an important class of graphs which satisfy (**).

Theorem 2 Letb > 2 be an even integer and let G be a 2-edge connected graph with
n vertices and with minimum degree 6(G) > max{3, =% }. Then G contains an even
[2, b]-factor.

2n
7 b+2

We generalize this result in the following form.

Corollary Let b > 2 be an even integer and let G be a graph such that

(i) each vertex of G belongs to a proper block of G, and
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(i1) each block B in G satisfies §(B) > max{3, %}, and

(iii) each cut vertex in G has degree at most b.

Then G has an even [2, b]-factor.

The corollary follows immediately by applying Theorem 2 to each block of G.
We shall prove Theorem 2 by demonstrating that (**) holds.

Proof: Let X,Y be any pair (X = @ or Y = () may occur) of disjoint subsets of
V(G). Certainly

> daly) = ea(Y,V(G) = Y) > ea(X,Y) + h(X,Y) (1)
yey
and we can find the following inequality.
Y daly) = 2Y|+bX| = A(X,Y) —ec(X,Y) = =2V | +b|X]|. (2)
yey

Thus, if —2|Y| + b|X| > 0, inequality (**) and hence Theorem 2 holds. We may
therefore assume that for some pairs X,Y we have

—2lY| + b X| < 0. (3)

For pairs X,Y with | X| > §(G) = ¢ we can use (3) together with | X| + Y| <n (as
X NY = 0) to obtain

2 2 2
51X < V] < 30— |X]) < 2(n =) @)
giving
2n
"y (5)

but that contradicts the hypothesis § > bi—"Z, so no pair X, Y satisfying (3) can have
|X| > 6(G). We thus henceforth have

“2Y| +b|X| < 0and |X| <5 1. (6)

Case 1l |[Y|>b+1:
There are at most | X||Y] edges between X and Y, so
e(X,Y) < [X]|Y]. (7)
Each odd component of G — (X UY') contains at least one vertex, so

hMX,Y) <n—[X]-]Y]. (8)

Define
=Y dy) —2]Y[+bX]| - h(X,)Y) - e(X,Y). (9)

yey
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Using (7), (8), and dg(y) > 0, we obtain

T >0V =2|Y|+bX|—n+ |X|+ Y] - |X]|]Y],

T>0-1Y|+(0+1)—|Y])|X]—n.
Since b+1—|Y| <0 and |X| <4 — 1, we obtain

P2 (- DY+ (41— Y@ 1) —n,

r>b+DE—1) —n

SO

2
T>(b+1) (b—i—n21>n

2n

By hypothesis 0 > %,

and 1
T>—-mn—b—1.
b+ 2
For n > b + 4 we obtain )
-2
> -
Ty

and as b > 2 we have that 7 > 0.

That is, (**) holds for n > b+ 4.
If n < b+ 3 we use d > 3 in (13) to obtain the continuation

T>0b+1)2-(b+3)=b—-1>1>0.

Thus (**), and hence Theorem 1, is proven in Case 1.

Case 2 |Y] < b (and still —2]Y|+b|X]| <0, |X| < —1):

From |X| < 2|Y| < 2 we get that |X| equals 0 or 1.

(17)

Let hy = hi(X,Y) be the number of odd components C' of G — (X UY) with

e(C,Y) =1, and let hy = hy(X,Y") be the number of odd components C' of G — (X U
Y) having ¢(C,Y) > 1, i.e. e(C,Y) > 3. Then h(X,Y) = hy + ho.

Case 2.1 |Y| <band | X|=0:

From X = () we infer h; = 0, since a single edge between Y and an h;-component

D d(y) = 2]V [+ X[ = h(X,Y) = e(X,Y) > 3hy — 2|Y| — ha.

yey
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C of G —Y would be a bridge of G; but that contradicts the hypothesis that G is
2-edge connected. Thus, h(X,Y) = hy. Furthermore X = () implies by definition
that e(X,Y) = 0. We use this and }_ - da(y) > 3hs to obtain

(18)



If |Y] < hg, we see immediately that (**) holds. Otherwise, |Y| > hs, and together
with 6(G) > 3 we obtain

D da(y) = 2|V = hy > [Y] = hy > 0. (19)
yey
Thus (**) holds in Case 2.1.

Case 2.2 [Y| <band |[X|=1:
As ZyEY da(y) > hi +3ha+e(X,)Y), h(X,Y)=hi+hy
we have

Y daly) — 2Y|+b—h(X,Y)—e(X,Y) (20)

yeyY

v

hi+3hy+e(X,Y) = 2]Y|+b—hy —hy—e(X,Y) (21
= 2hy—2|Y|+b. (22)

For |Y| < hy + b/2 we see that (**) holds.
For |Y| > hy 4+ b/2 we use b—e(X,Y) > b—|Y| > 0 to obtain that

D d(y) =2V +b—hy —hy — e(X,Y) > (6 = 2)|Y] = =y — hy. (23)

yey

As |X|=1and ¢ > 3 we observe that each hj-component C' of G — (X UY") contains
at least two vertices. Let ¢’ be the unique vertex in C' which has a neighbour in YV’
and let ¢ € C'\ /. Then e(¢c, X UY) < 1 and ¢ has at least § — 1 neighbours in
C. So C contains at least 0 vertices. Therefore h; < % Using this and
—5> —HTQ, Y| > hy + HTl in (22) we obtain

1 — Y| —hy—1
(62)|Yh1h22(62)(h2+b; >n | |5 b1, (24)
b1 I [Y|+h+1
> (6 — AT I il EL L 2
> (6 3)<h2+2+2> 5 5 (25)

This expression is nonnegative if § > 4, and if 6 = 3 we use |Y| > b+71 > % to obtain
% > % and we get the same conclusion.
Thus Case 2.2, and with that Theorem 2, is proven. m|

In Theorem 2 it is necessary to demand d(G) > 3 as shown by the following
example.

Example 1 G has n = 14 vertices such that one vertex v has 11 neighbours, all of
degree 2. Three of them, ,y, z, also have another common neighbour w, dg(w) = 3,
and four of them share a common neighbour u, dg(u) = 4.

This graph G has n = 14,0(G) = 2, is 2-edge connected, and with b = 12 it

satisfies 6(G) > bi—”Q as 2 > é’}é; but G has no even [2, 12]-factor F since each of
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Figure 1: Example 1.

Figure 2: Example 2.

x,y, 2z must be in F' with degree 2, but then w will be in F' with degree 3, which is
not an even number.

A graph with bridges may have an even factor; this is the case for two circuits
joined by an edge, but in Theorem 2 the condition that G is 2-edge connected cannot
be omitted.

Example 2 Let G be the graph on 16 vertices consisting of one vertex with exactly
3 neighbours z, y, z such that the remaining 12 vertices form 3 disjoint K4’s, and x is
joined by two edges to one Ky, y by two edges to the second K and z by two edges
to the third Ky. Let b = 4; we have n = 16, =3 and 3 = 6 > 41+—627 but G has no
even factor.

Other conditions: Considering degree sums oy (G) = min{dg(v1) + dg(ve) + ... +

dg(vg) | v1,...,v, is a set of independent vertices}, it might for & = 2 be conjec-
tured that 0(G) > max{6, ;1% } implies existence of an even [2, bl-factor.

Another condition, suggested by an anonymous referee, is that §(G) > 3 and
01+1(G) > n implies that G has an even [2,2k|-factor. This is a generalization
of Theorem 2 since certainly oy41(G) > n is satisfied if 6 > max{3, ;;} and by
Theorem 2 that gives an even [2, 2k]-factor of G.
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