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Abstract

When k= q1, q2, ¢1G2, (194, 243NN, q3qa N, where q1, g2 and g3 are prime
powers, and where ¢; = 1 (mod 4), ¢z = 3 (mod 8), g3 =5 (mod 8), g4 =7
or23, N =232 a,b=0or1,t # 0is an arbitrary integer, we prove that
there exist regular Hadamard matrices of order 4k2, and also there exist
SBIBD(4k* 2k* + k,k* + k). We find new SBIBD(4k? 2k* + k, k* + k)
for 233 values of k.
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1 Preliminaries

An n x n matrix H is called a Hadamard matrix (or H-matrix) if every entry of the
matrix is 1 or —1, and
HHT =nl,,

where I,, is an n x n identity matrix. In this paper we use H” to denote the transpose
of a matrix H.
We denote the excess of an H-matriz H = [a;;] by o(H), where

1<i,j<n
Let o(n) = max{c(H)}. The weight of an H-matrix H, denoted by W (H), is the
number of ones in H. We define W(n) = max{W(H)}. Note that the maxima are
taken over all n x n H-matrices H. It is obvious that o(H) = 2W (H) — n? and
a(n) = 2W(n) — n? (see [4], [5], [6], [7] for details).
Best [1] proved that

o(n) < ny/n. 1)

Definition 1 (Regular Hadamard Matriz) A reqular Hadamard matriz has the sum
of each column of the matriz and the sum of each row of the matrix constant.

Definition 2 (SBIBD) A symmetric balanced incomplete block design, called an
SBIBD(v,k,\), is defined by a v X v matriz M, which has every entry 0 or 1.
The sum of each column and the sum of each row of the matriz is k. For any two
columns ¢;, ¢; (and two rows 15, ;), 1 < i # j < v, the inner product of ¢; and c;
(r; and r;) is A (see [10]).

With the result of this paper and those of [4], [9], the status of the existence of
4k*-Hadamard matrices and SBIBD(4k?, 2k? 4+ k, k? 4+ k) is that they exist for k €
{1,3,5, -, 45, 49, ---, 69, 73, 75, 81, ---, 101, 105, 107, 109, ---, 125, 129, 131,
135, 137, 139, 143, - --, 149, 153, -- -, 165, 169, -- -, 175, ---, 189, 193, - --, 197, 201,
... 207, 211, 215, 219, 221, 225, 227, 229, 233, 235, 241, - - -, 251, 257, 259, 261, 267
269, 273, 275, 277, 281, - -+, 299, 303, 307, 313, ---, 327, 331, - -+, 339, 343, -- -, 353,
361, 363, 371, 373, 375, 379, 387, 389, 391, 393, 397, 401, 405, ---, 411, 415, 417,
419, 421, 427, 429, 433, 441, 443, 447, 449, 451, 457, 461, 467, 471, 475, 477, 489,
491, 495, 499, 507, 509, 511, 513, 519, 521, 523, 525, 529, 531, ---, 543, 547, 549,
551, 557, 559, 563, 567, 569, 571, 575, 577, 579, 583, 587, 591, 593, 601, 603, 605,
609, 613, 617, - --, 625, 633, 637, 641, 643, 645, 653, 655, 659, 661, 667, 671, 673,
675, 677, 679, 683, 687, 691, 695, 699, 701, 703, 707, 709, 723, 725, 729, 731, 733,
735, 739, 741, 747, 753, 757, 761, 763, 767, 769, 771, 773, 777, 779, 783, 787, 791,
797, 803, 807, 809, 811, 815, 819, 821, 827, 829, 831, 841, ---, 859, 865, 867, 871,
875, 877, 879, 881, 883, 885, 891, 895, 897, 907, 909, 921, 925, 929, 931, 937, 939,
941, ---, 947, 951, 953, 957, 959, 961, 963, 971, 975, 977, 979, 981, 993, 997, 999, q1,
@, (142, (144, 293N, q3qaN'}, where g1, g2 and g3 are prime powers, ¢; = 1 (mod 4),
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@2 =3 (mod8), g =5 (mod8), gs=Tor23 N =293 ab=0or1,t+#0is an
arbitrary integer, 7 > 0. This means we find 233 new values less than 1000.

Let G be an abelian group with the addition @ and the subtraction ©. We
denote by 6 the zero element in GG. Consider the polynomials in the elements of G
over the field of rational numbers, > ¢ a(g)g, where the integer a(g) is the number
of occurrences of g, and define the addition by

Y- alg)g+ D blg)g = > (alg) +b(g))g.

geG geG geG

We denote > ;e g by A, G =3 e g and G* = G —0. For any two subsets A, B C G,
we define

AoB= > (a©b), AA=AOSA,

acAbeB

A(A,B)=(A© B)+ (Bo A).

It is obvious that A(A4, A) = 2AA. We define A = 0, A(@, A) = 0 for any
ACG.

Definition 3 (DS) Let D = {a1,- -, axr} be a subset of a group G of order v. If for
every non-zero element g € G there are X pairs (a;,a;), a;, a; € D, such that

a; 3] aj =9,
we call D a (v, k, \)-difference set (DS).

Definition 4 (Incidence matriz) The incidence matriz A = (a;;) of a (v, k, A)—diff-
erence set D is defined by ordering the elements of the group G = {g;}, i=1,---,v.
and defining

Qi = 17 g]@gleDv
Y71 0, otherwise

Definition 5 (SDS) Let D; C G, | D; |= ki, i=1,---,r. If

SAD; = (> ki— N0+ AG,
i=1 i=1

A >0, then Dy,---, D, arer—{v; ky,-- -, k; A} supplementary difference sets (SDS),
where v =| G |.

If by = - =k, =k, we simplify Dy,---, D, to r — {v; k; A} SDS. When r = 1,
the SDS become the difference set (DS).

We only consider » = 4. Then we define \ = Z?:l k; — v in this paper. In this
case, we call Dy, Dy, D3, Dy type H—SDS.
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Definition 6 (Type Hi) Let Dy, Dy, D3, Dy C G be SDS of order v, and |D;| = ki,
1=1,2,3,4. Now Dy, Dy, D3, Dy € Hy if and only if

4
STAD; =0+ \G,
i=1

and
A (D1, D9) + A(Ds, Dy) = AG,

where A =k + ko + k3 + ky — v.

Definition 7 (T'—matriz) Let Ty, Ty, T3, Ty be n X n matrices with entries (0, £1).
Let I, be an n X n identity matriz. Then we call Ty, T, T3, Ty T—matrices if

(i) TT; =T;T;, 1 <4,j <4, i #j,

(ii) there exists an n X n monomial matriz R with RT = R, R?> = I,,, such
that (T;R)Y = TR, i =1,2,3,4,

(iii) if Ti = (£), 1 < 4.k < n, i = 1,234, then o1, | 5 |= 1,
i <jk<n,

(i) Si, T,TF = nl,.

We use conditions (i) and (ii) to replace the condition of circulant T'—matrices,
and the matrix R may easily be found in abelian groups.

Definition 8 (C'—partitions) A1, Aa, -+, As are called C—partitions of an abelian
group G of order v, if the following three conditions are satisfied:

(i) AinA;=0,i+#j;
(it) Uiy A = G;
(i) S8 AA; =00 + S A4y, Aira).
Lemma 1 (Seberry [7]) The following conditions are equivalent:

(i) There exists a Hadamard matriz of order 4k* with mazimum excess
8k3.

(ii) There exists a reqular Hadamard matriz of order 4k?.
(iii) There evists SBIBD(4k? 2k? + k, k? + k).

Some very useful methods to construct Hadamard matrices with maximum excess
from Willamson matrices and T'—matrices are given in [7].

Lemma 2 (Xia and Liu [11]) Let ¢ be a prime power, if ¢ = 1(mod 4), there exist
4 —{q% %q(q —1);q(q — 2)} supplementary difference sets.
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Lemma 3 (Xia and Liu [14]) Let ¢ be a power of a prime, ¢ = 3(mod 8), then there
exist 4 — {q* %q(q —1);q(q — 2)} supplementary difference sets.

Lemma 4 (Chen [2], Xia [12]) Let ¢ = 293" N?, a,b=0 or 1, and N be an arbitrary
integer. Then there exist (4¢%,2¢> + q,¢* + q) difference sets and Williamson type
matrices (type 1) Ay, Ay, Az and Ay of order q? that satisfy

U(Al) - O-(AQ) = U(A3) = q37 U(A4) = _q3>
AT+ A3+ AR+ A3 = dg’e, @
AzAJ + AkAl = 0, {'L/‘], k, l} = {1’ 2’3’4}

Lemma 5 (Xia and Xia [13]) Let ¢, be a prime power, ¢, = 5(mod 8), ¢z = 223° N2,
a, b=0 or 1, and N be an arbitrary integer. Then there exist (1,—1) Williamson
type matrices (type 1) A1, As, Az and A, of order (q1q2)? that satisfy:

U(A1) = U(AQ) = U(As) = (CI1C]2)37 U(A4) = *(QNIQ)Sa
AlA{ + AgAg + AgA? =+ A4Az = 4((]1(]2)2[((11,12)2, (3)
ALAT + A, AT + A3AT + A AT = 0.

Proposition 1 Let p = 5(mod 8) be a prime, ¢ = 2%3°N?, a, b =0 or 1, N be an
arbitrary integer, for any integer r > 1, there exist (1, —1) matrices Ay, As, Az and
Ay of order (p"q)? that satisfy

0(Ay) = 0(A) = 0(As) = (pq)°, o(As) = —(p"q)?,
Z?:l AlAzT = 4(pTQ)ZI(p"q)2> (4)
AT + AT 4 AAT + A, AT = 0

Proof. When ¢; = p? 1, then ¢; = 5 (mod 8). Then from Lemma 5, the result is

true.

When ¢; = p*" = (p")?, from Lemma 4 we have the result. This completes the proof.
O

Remark. By using Definition 6 we can say when p = 5 (mod 8), ¢ = 2%3*N?, q,
b=0or 1, N is an arbitrary integer, for any integer r > 1, there exist SDS Dy, Ds,
D3 and Dy of order p*"¢? and type H;. We say H;(p*q?) # 0, whenever such SDS
exist for order p* ¢

In Section 2 we use SDS to construct SBIBD. In Section 3 we use SDS and

T —matrices to construct SBIBD. We find new results which give many new SBIBD:s.

2 Construct SBIBD from SDS

Theorem 1 If there exist 4 — {¢?; %q(q —1);q(qg —2)} SDS on an abelian group G
of order ¢?, then there exist SBIBD(4¢% 2¢*> + q,¢* + q).

Proof. Let Dy, Dy, D3, Dy be 4 — {¢% %q(q —1);q(qg —2)} SDS on G, since we have

1 4
|Di| = |Ds| = |Ds| = [Dy| = 5(1((1 —1), Y. AD;=¢%0+q(q—2)G.

i=1
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Let g1, -+, g, be the arbitrary order of G, and set

i=1,2,34, (5

() @ _ ) —1 ifgog €D,
Ai= (afk)1gj,kgq2’ Gk = { 1 otherwise,

1 ifg;®gp =0,
R=(rjt)icjpeg s Tik = { 0 Oth]c‘rwisc. (6)

It is obvious that A, Ay, A3, A4 are matrices of type 1. In this case
(i) AA; = AjA; i # 3§15 =1,2,3,4,
(i) (A;R)T = A;R,i=1,2,3,4,
(iii) iy AAT = 4¢° L.

Since |D;| = $q(q—1), there exist 3q(g+ 1) ones and 3¢(¢q — 1) negative ones in each
row of A;, i =1,2,3,4, 50 0(4;) = ¢ i=1,2,3,4. Set

A, AR AR AR
AR A ATR —ATR -
AsR —ATR A, AR | Q)
AR AR —ATR A

It is easy to verify that HHT = 4¢*I,,2, 0(A;) = o(AiR) = 0(ATR), i = 1,2,3,4.
So we have
o(H) = 2{o(A) + 0(A2) + 0(A3) + 0(Ag)} = 8¢°.
From Lemma 1, $(H +J) is a SBIBD(4¢?,2¢* +q, ¢*+q). This completes the proof.
O

Proposition 2 Let q be a prime power, ¢ = 1(mod 4) or ¢ = 3(mod 8). There
exists SBIBD(4¢%,2¢> + ¢, ¢* + q).

Proof. From Lemma 2, Lemma 3 and Theorem 1 the conclusion is true. O

Remark. When ¢ = 1 (mod 4) is a prime power, there exist Williamson type
matrices A;, As, A3 and A, of order ¢%, that make the matrix H of (7) have maximum
excess and the form

_Al A2 A% A4

AQ Al A4 _A3 (8)
Ay —A, A A |

A, Ay —Ay, A

H=

Lemma 6 Let ¢ = 2°3°N?, a,b = 0 or 1, N be an arbitrary integer. There exists
SBIBD(4¢*,2¢> + q,¢* + q).
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Proof. From Lemma 4, there exist DS of type (4¢%,2¢> + q,¢* + q), and the (0, 1)
incidence matrix B of the DS is an SBIBD(44¢% 2¢*> + q,¢*> + q). The proof is
completed. O
Remark. From Lemma 4 we know that there exist Williamson type matrices Ay,
Ay, Az, Ay of order ¢? that satisfy (2). In this case, the matrix H of order 4¢2 with
maximum excess has the following form

Ay
As

or

(10)

Lemma 7 Let p = 5(mod 8) be a prime, ¢ = 2°3*p°N?, a,b,c =0 or 1, and N be
an arbitrary integer. Then there exists SBIBD(4¢%,2¢> + q,¢* + q).

Proof. When ¢ = 0, from Lemma 6, the Lemma 7 is true. When ¢ = 1, from
Lemma 5 there exist (1, —1) matrices (type 1) Ay, Ay, Az and Ay of order ¢? that
satisfy (3). Let

A Ay A A
oA oA A A |
H=1 _yr a1 ar a7 |} (11)
AT AT AT AT

then HHT = 4¢* 1,2, o(H) = 4(0(A1) + 0(As)) = 8¢°. So the matrix H of (11) is
an Hadamard matrix with maximum excess. In this case, from Lemma 1 there exists
SBIBD(4¢% 2¢* + q,¢*> + q). The proof is completed. |

Proposition 3 Let ¢ = 2"3™p™# N2, p = 5(mod 8) be a prime, r1, ro, T3 be integers
and ri,19,73 > 0, N be an arbitrary integer. Then Lemma 7 still holds.

Proof. Let r; = 2m; +a;, 0 < a; < 1, i = 1,2,3; then g = 2%13%2pas (2m13mzpms N')2,
From Lemma 7 the result is true. O

3 Construct SBIBD from SDS and T-matrices

More details of T-matrices are discussed in [3]. In this paper we refer to the paper
[15].
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Theorem 2 If there exist 4 —{q* Sq(q—1);q(q—2)} SDS Dy, Dy, D3, Dy of order
¢ in an abelian group G, and every entry of G appears an even number of times in
D1, Dy, D3, Dy, then there exist T-matrices Ty, Ty, T3, Ty that satisfy

o(Ty) = ¢*, o(Ty) = o(T3) = o(Ty) = 0.

Proof. Let
E1 = G\(Dl U D2 U D3 U D4)7 E2 = (Dl n l)g)\E%7
Ey = (D1 N D3)\Es, Ey= (DN Dy)\Es,
Es = Dy N DyN D3N Dy, Eg = (D3 N Dy)\Es,
E7 - (Dg ﬂ D4)\E5, Eg — (Dg ﬂ Dd)\Eg)

From [15] we know

ENE =0, i#j 1<ij<8,

G - U?:lEia

8 4
Z AEi = q29 + Z A(E“ EJH,4)7
i=1 i=1

and

Dy =E,UE,UE3UEy, Dy=FE;UE,UE;ULE;g
Dy =E,UE;UE;UEs, Dy=FE;UE;ULEgU Ex7.

Set |E;| =e;,i=1,---,8. We have

|Di| = €3 + €3 + e4 + s, |Da| = €2 + €5 + €7 + e,
| D3| = e5 + e5 + e + es, |Dy| = es + €5 + €6 + er.

Since |Dy| = |Ds| = |Ds| = |D4| = %q(q — 1), then

62—66263—67:64—6820.

Since
3
¢ = |Gl=|U_ E|= € =-¢e1+e;5+2(ex+e3+e€)
i=1
= eg—e;+2ext+estestes) =€ —es+qlg—1),
then e; —es = ¢. Let g1, -, gg2 be an arbitrary ordering of elements of G, and
o o 1 ifgr©yg; € B
T, = (tjk)lgj’kng, ) =0 1 ifgog € By, i=1,2,3,4

0  otherwise,
Ty, Ty, T3, T, are T-matrices of order ¢? and
o(Ty) = ¢*, o(Ty) = o(T3) = o(Ty) = 0.

This completes the proof. O
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Proposition 4 Let q be a prime power and ¢ = 3 (mod 8); then there exist T-
matrices Ty, Ty, T3 and Ty of order ¢* that satisfy Theorem 2.

Theorem 3 If there exist T-matrices Ty, To, T3 and Ty of order t2, and o(T}) =
3, o(Ty) = o(T3) = o(Ty) = 0, then there exists SBIBD(4k? 2k® + k, k? + k),
k = tq, where ¢ = 1(mod 4) is any prime power.

Proof. When ¢ =1 (mod 4) is a prime power, from Lemma 2 we know there exist
4 —{g% %q(q —1);q(qg — 2)} SDS. In this case from Theorem 1 we have Williamson
type (type 1) matrices Ay, Ay, Az and Ay of order ¢? which satisfy

(i) Ai = AT, Aidj = AjA;, 1< j <40 #
(i) iy A7 = 4¢° L,
(iii) o(A4;)) = 0(Ay) = 0(A3) = 0(4y) = 7.
Let

B =Ty x Ay + Ty x Ay +T5 x Az + Ty x Ay,
BQZTIXAQ_TQXA1+T3XA4_T4XA37
Bngvl><143-’-7_12><144—713>(141—114>(1427
By=T1 x Ay — Ty x A3 — Ty X Ay + Ty X As,

(12)

where x is the Kronecker product. It is obvious that B;B; = B;B;, i # j, i,j =
1,2,3,4, and

4 4 4
S BBl = (YT x (3 A7) = 4(tq)* 12

i=1 i=1 i=1

Since o(T; x A;) = o(T})o(Ay), i = 1,2,3,4,
o(B1) = 0(B,) = 0(Bs) = o(Bs) = (tq)*.
Let
Q=RxIp, (13)

where R is a monomial matrix of order #? that satisfies R = R”, R?> = I, and
(T;R)T =T;R, i = 1,2,3,4. It is easy to show that () is a permutation matrix and
(B;Q)T = B;Q,i=1,2,3,4. Let

B, B)Q —B%Q B;Q

| B -B BQ BIQ
H=1" 50 B'Q B -BIO | (14)

_B,Q BIQ BIQ B

Then HH" = 4k®Iy2, and o(H) = 2(X1, 0(B;)) = 8k*. In this case, the matrix
H of order 4k? defined from (12), (13), (14) has the maximum excess. There exist
SBIBD(4k*,2k? + k,k? + k), k = tq. The proof is complete. |
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Proposition 5 When k = qi1q2, where g3 = 1(mod 4), ¢ = 3(mod 8) are prime
powers, there exist SBIBD(4k% 2k* + k. k* + k).

Proof. From [15] we know that there exist T-matrices T1, Ty, T3, Ty satisfying
Theorem 3. This completes the proof. a

Theorem 4 Suppose

1. there exist T-matrices Ty, Ty, Ty, Ty of order t? that satisfy

o(Ty) =13, o(Ty) = o(T3) = o(Ty) = 0,

and
2. there exist (1,—1) matrices (type 1) A1, As, Az and Ay of order ¢° that satisfy
(i) Tiy AAT = 4%z,
(ii) AAT + A AT + A3 AT + A4 AT =0,
(iii) o(A1) = 0(4As) = 0(A3) = ¢® = —a(4,).
Then there exist SBIBD(4Kk% 2k* + k, k*> + k), k = tq.

Proof. Let

By =Ty x A1 +To x Ay + T3 x Az + Ty x Ay,
B2:T1XA2+T2XA1+T3XA4+T4XA37
B3:T1XA?+T2XAI—T3XA1T—T4XA§,
By=-Ti x AT — Ty, x AT + Ty x AT + Ty x AT,

It is easy to verify that

4 4 4
SN BB = (Y LT x (O AAT) = 4k*Ie,
i=1 i=1

i=1

and
O'(Bl) = O'(Bg) = O'(Bg) = O'(B4) = kd

Set

B, BsR —BsR B4R
BsR —By, BIR BIR
BsR BIR B, —-BIR |’
-B,R BIR BIR B,

where R = Ry X Ry, Ry, Ry are monomial matrices of order #2 and ¢2, and (T; ;)T =
TRy, (AiRy)T = ARy, i = 1,2,3,4. In this case HHT = 4k?Iy2, and o(H) =
22?:10'(31') = 8k®. Then H is a Hadamard matrix with maximum excess, and
L(H +J) is a SBIBD(4k* 2k* + k,k* + k). i
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Proposition 6 Let k = 243%2pPps* N2, a1, a, as, ay = 0 or 1, p; = 5 (mod
8), p2 = 3 (mod 8) be primes and N be an arbitrary integer. Then there exists
SBIBD(4K?, 2k + k, k* + k).

Proof. When a4 = 0, from Lemma 7, the result is true. When a4 = 1, set ¢t = po,
q = 2913p{3 N2, From Lemma 5, Proposition 4 and Theorem 3, we can prove the
result is correct. m|
Remark. Let k = 2913%2p{3p3* N2 where a1, as, as, ay > 0, py = 5 (mod 8),
p2 = 3 (mod 8); then Proposition 6 is still true. Let a; = 2s; + r;, where s; > 0,
0<7r;<1,i=1,2,34. Then k = 2" 3"2p}*pi*(2513%2p3*p3* N )? satisfies the condition
of Proposition 6.
Proposition 7 If ¢ = 1(mod 4) is a prime power, there exist SBIBD(4(7q)?,
2(79)* +7q, (7q)* + 7q).
Proposition 8 When p3* in Proposition 6 is replaced by 7, the conclusion of Propo-
sition 6 is still true.
Proof. Let g = x ® 2 be a generator of GF(7?). Set

Fy, = {¢"%" (mod 2> ® 1,mod 7) : j = 0,1,2}, i=0,1,---,15.

Ei={0}UF1WUFUF;5, Ey=FUPF3, E3=FUF;, E;=FUIFy,
E5 = Fy, Es=FUF, FEr=FU, FEg=F;UF,.
It is easy to verify that
8 4
STAE; =490+ A(E;, Eiya).

i=1 i=1

Without loss of generality, let gi,-- -, gs0 be an arbitrary order on the elements of
GF(7%). Set
L= <t1k)1<3 k<49’ e =9 —L o @.gj € By 1=1,2,3,4
0, otherwise,

The matrices Ty, Tz, T3, Ty are T-matrices of order 49, and
U(Tl) = 737 U(TQ) = U(Td) = O'(T4) =0.

From Theorem 3 and Theorem 4, we know that Propositions 7 and 8 are both true.
This completes the proof. O

From Proposition 8 we know, for any integer r > 1, there exist SBIBD(4-7%*,2-
747 77 +77). When 7 is even, ¢ = 7" = 1 (mod 4), from Proposition 7 we know the
conclusion is true. When r is odd, then 777! =1 (mod 4). In this case let ¢ = 7771,
and then from Proposition 7, the conclusion is true. For any integer a,b > 1, p =5
(mod 8) a prime, from Proposition 8 we know there exist SBIBD(4(7%p")2, 2(7%p%)?+
70p°, (7%p*)% 4 79p®). From Proposition 8 we conclude that for a,b,c¢ > 0, p =5 (mod
8) a prime, there exist SBIBD(4(3%7°p%)?, 2(3°7p%)? + 397°p°, (3%7°p°)? + 3°7%p°).
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Lemma 8 There exist 4 — {23%;23 - 11,23 - 21} SDS of order 232.
Proof. Let g =z + 2 be a generator oF GF(23)2. Set
E; = {¢™" (mod 2* + 1,mod 23) : j =0,1,---,10}, i=0,---,47.

Put
A1 ={0}UEyU E;nU E13U Eog U Eqy U Egy U Eys,
Ay = EyU Eig U Ej7 U EyU Esp U B,
A3 = E2 @] E4 @] E18 @] EQO @] E34 @] ES()',
A5:E1UE5UE6UE22UE38,
Ag = E1gU By U Eys U Eyg U 37 U By,
Ay = E; UE U Ey3U By U By U Eys,
Ag = E14 UE15U E3gU B3 U Eyg U Eyy.

Let g1, -, gas2 be an arbitrary order on the elements of GF(23)%. Set matrix
. _ L, ifgr—g; €A,

Ti=(t0), penes B =4~ Hon— 0 € A, i=1,23.4 (16)

0, otherwise.
Then Ty, T, T3 and T defined in (16) are T—matrices of order 23% and
o(Tv) =23°, o(Ty) = o(T3) = o(Tu) = 0.

In this case the set {A4;}5_, defined in (15) is the C-Partition (see [15] for details).
The set

D1:145U142LJ143U1447 D2:A5UA2UA7UA8,

D3:A5UA5UA6UA87 D4:A5UA4UA()UA7, (17)

is the 4 — {23%;23 - 11,23 - 21} SDS. This completes the proof. O

Proposition 9 There exist SBIBD(4 - 23% 2 - 232 + 23,232 + 23).
Proposition 9 follows easily from Theorem 1.

Proposition 10 When 7 in Proposition 7 is replaced by 23, there exist SBIBD(4 -
(239)%,2 - (239)? + 23¢, (23¢)* + 23q).

Proposition 11 There exist SBIBD(4-23% 2 - 232" 4 237 232" 4 237).

Proof. For any integer > 1, when r is even, ¢ = 23" = 1 (mod 4), from Proposition
7, there exist SBIBD(4 - 23%",2 - 23%" + 237,23% + 23"). When r is odd, then
g =23""'=1 (mod 4), and in this case the conclusion is again true. ad

Remark. For any integers a,b > 1, and p = 5 (mod 8) a prime, there exist
SBIBD(4-(23%%)%,2 - (237p")2 + 23%p°, (23%p")2 + 23%p°).

For any a,b,c > 0, p = 5 (mod 8) a prime, there exist SBIBD(4 - (3°23°p°)2,2 -
(3a23bpc)2 4 3a23bpc’ (3a23bpc)2 + 3a23bpc).
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