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Abstract

Let e(Tn) be the primitive exponent of a primitive tournament Tn of order
n. In this paper, we obtain the following results.

1. Let Tn be a regular or almost regular tournament of order n ≥ 7;
then e(Tn) = 3.

2. Let k ∈ {n, n + 1, n + 2}. We give the sufficient and necessary con-
ditions for Tn such that e(Tn) = k, and obtain all Tn’s such that
e(Tn) = k.

1 Introduction

A tournament matrix of order n is a (0, 1) matrix M of order n such that M +M t =
Jn− In, where Jn is the matrix of all 1’s with order n, In the identity matrix of order
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n and M t the transpose of M . Let Tn = (V, E) be a tournament of order n. Then the
adjacency matrix of Tn is a tournament matrix of order n. Conversely, the digraph
whose adjacency matrix is a tournament matrix must be a tournament. Now let M
denote the tournament matrix of order n and Tn the corresponding tournament. For
Tn = (V, E), the score of node v ∈ V is the number of nodes dominated by v and
is denoted by s(v). If n is even and each node of Tn has score n

2
or n−2

2
, then Tn is

called almost regular. If n is odd and each node of Tn has score n−1
2

, then Tn is called
regular. The diameter of a strongly connected tournament Tn is the least integer d
such that for every ordered pair of nodes v and u of Tn, there exists a nontrivial path
of length at most d from v to u.

Let D = (V, E) be a digraph. If there exists a positive integer k such that there
exists a walk of length k from v to u for every ordered pair of nodes v and u of
V , then D is called primitive, and the least such integer k is called the primitive
exponent of D, denoted by e(D). The conditions that a tournament is primitive, the
bounds of primitive exponent, and the primitive exponent set, have been obtained
in [1] or [2] as follows.

Theorem A Let Tn be the tournament of order n.

(i) Tn is primitive if and only if n ≥ 4 and Tn is strongly connected.

(ii) If n ≥ 5 and Tn is primitive, then d(Tn) ≤ e(Tn) ≤ d(Tn) + 3, where d(Tn)
denotes the diameter of Tn.

(iii) Suppose that n ≥ 6, then the primitive exponent set of primitive tournaments
of order n is {3, 4, . . . , n + 1, n + 2}.

For the given primitive exponent e, it is very difficult to find all primitive tour-
naments Tn of order n such that e(Tn) = e. This problem is equivalent to finding all
solutions of the Boolean matrix equation M e = Jn. It is called the MS problem in
[3]. In this paper, we obtain all solutions for e = n, n + 1, n + 2 and partial solutions
for e = 3.

2 The results and proof

Lemma 1 Let Tn = (V, E) be a tournament of order n ≥ 7 in which V =
{v1, v2, · · · , vn} . If each score s(vi) (i = 1, 2, · · · , n) satisfies n−1

2
≤ s(vi) ≤ n

2
,

then for every ordered pair of nodes v and u of Tn, there exists a path of length 3
from v to u.

Proof. From a result of [5], Tn is strongly connected. Hence each vertex of Tn is
contained in a cycle of length 3 (see [1]).

Now let vi and vj be two distinct vertices of Tn. We prove that there exist
paths of length 3 from vi to vj . Let #S denote the cardinality of set S, N(vi) =
{u | −→viu ∈ E, u ∈ V } and Ñ(vi) = {u | −→uvi ∈ E, u ∈ V }.

Case 1 Assume −−→vivj ∈ E. Hence we have
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#(N(vi) − vj) ≥ n − 3

2
≥ 2(n ≥ 7), #Ñ(vi) = n − 1 − s(vi) ≥ n − 2

2
.

If there are two distinct vertices v and u in N(vi)− vj which dominate vertex vj ,
without loss of generality, assume −→vu ∈ E. Then vivuvj is a path of length 3 from vi

to vj .
If there is at most one vertex of N(vi)−vj which dominates vj , then vj dominates

at least #(N(vi) − vj) − 1 ≥ n−5
2

vertices of N(vi) − vj . Thus, at most two vertices

of Ñ(vi) are dominated by vj , so vj is dominated by at least #Ñ(vi) − 2 ≥ n−6
2

> 0

vertices of Ñ(vi); let u be such a vertex of Ñ(vi). If N(vi) − vj ⊆ N(u), then

s(u) ≥ #(N(vi) − vj)) + 2 ≥ n + 1

2
>

n

2
,

a contradiction. Therefore u is dominated by at least one vertex of N(vi)−vj; denote
such a vertex by v, so vivuvj is a path of length 3 from vi to vj .

Case 2 This case is −−→vivj /∈ E.
Let N(vi) replace N(vi) − vj in Case 1. The other discussions are analogous to

Case 1. We thus have completed the proof. �

Notice that 3 ≤ d(Tn) ≤ n − 1 if Tn is a strongly connected tournament of order
n. Hence from Lemma 1 and Theorem A, we obtain the following result.

Theorem 2 Let Tn be a regular or almost regular tournament of order n ≥ 7. Then
Tn is primitive and e(Tn) = 3.

According to the appendix of tournaments of order k (3 ≤ k ≤ 6) in [1], we easily
find that Theorem 2 does not hold for n = 5, 6. From Lemma 1 and this appendix,
we also obtain the following result.

Corollary 3 Suppose that Tn is a regular or almost regular tournament of order
n ≥ 3. Then d(Tn) = 3.

Lemma 4 Let Tn be a strongly connected tournament of order n ≥ 5. Then d(Tn) =
n − 1, if and only if Tn

∼= T ∗
n , where the sign “∼=” denotes isomorphism. T ∗

n is a
tournament of order n shown in Fig. 1, where not all arcs are included in the drawing;
the sign “⇒” means that an arc not drawn is oriented from the left node to the right
node.
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Figure 2.

Proof. Clearly, the diameter of T ∗
n is equal to n − 1. Hence the sufficiency of the

lemma holds.
Now we prove the necessity of the lemma. Let Tn = (V, E) be a strongly connected

tournament of order n and diameter n− 1. By the definition of diameter, there exist
two distinct nodes of V , say v1 and vn, such that the shortest path from vn to v1 has
length n − 1. Let P (vn, v1) = vnvn−1 · · · v1 be such a shortest path. Clearly, all
vertices of Tn are contained in the path. If there are positive integers i, j (i + 2 ≤ j)
such that −−→vjvi ∈ E, then vnvn−1 · · · vjvivi−1 · · · v1 is a path of length n−(j−i) ≤ n−2
from vn to v1, a contradiction to the length n−1 of the shortest path P (vn, v1). Hence
for arbitrary i and j with 1 ≤ i ≤ n − 2 and i + 2 ≤ j, we always have −−→vivj ∈ E.
Therefor we obtain Tn

∼= T ∗
n . This completes the proof. �

It was pointed out in [1] that e(T ∗
n) = n + 2 if n ≥ 5. The following result

indicates that T ∗
n is the unique tournament with order n ≥ 5 and primitive exponent

n + 2.

Theorem 5. Let Tn be a strongly connected tournament of order n ≥ 5. Then
e(Tn) = n + 2, if and only if Tn

∼= T ∗
n .

Proof. If e(Tn) = n+2, then d(Tn) ≥ n−1 by Theorem A. Thus we have d(Tn) = n−1.
By Lemma 4, we obtain Tn

∼= T ∗
n . If Tn

∼= T ∗
n , then e(Tn) = n + 2 by e(T ∗

n) = n + 2
(see [1]). The proof is complete. �

Let T
(1)
n,i (1 ≤ i ≤ n − 3), T

(2)
n,i (1 ≤ i ≤ n − 2) and T

(3)
n,i (2 ≤ i ≤ n − 3) be the

tournaments of order n shown in Fig. 2.
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Lemma 6 Let Tn be a strongly connected tournament of order n ≥ 6. Then d(Tn) =

n − 2 if and only if Tn
∼= T

(k)
n,i (k = 1, 2, 3).

Proof. It is easy to find d(T
(k)
n,i ) = n− 2 (k = 1, 2, 3), so the sufficiency of the lemma

holds.
Now we prove necessity. Let Tn = (V, E) be a strongly connected tournament

with order n and diameter n − 2. By the definition of diameter, there exist two
distinct vertices of V , say v1 and vn−1, such that the shortest path from vn−1 to v1

has length n − 2; let P (vn−1, v1) = vn−1vn−2 · · · v1 be such a shortest path. So for
arbitrary i, j (1 ≤ i ≤ n − 3, i + 2 ≤ j ≤ n − 1), we always have −−→vivj ∈ E. Clearly,
there is only one node not contained in P (vn−1, v1); denote it by v. Since Tn is a
strongly connected tournament, there are two distinct vertices vi, vj ∈ V such that−→vvi,

−→vjv ∈ E. Let

k = min {t : −→vvt ∈ E, vt ∈ V } ≥ 1, l = max {t : −→vtv ∈ E, vt ∈ V } ≤ n − 1.

Suppose that k < l. Then the structure of Tn+1 is illustrated in Fig. 3, where the
arcs not drawn between v and vj (k +1 ≤ j ≤ l−1) may be oriented arbitrarily, and
the sign W ⇒ Q means that each vertex of W dominates each of Q. If l ≥ k + 3,
then

vn−1vn−2 · · · vl+1vlvvkvk−1 · · · v1

is a path of length n− (l − k) ≤ n− 3 from vn−1 to v1, a contradiction to the length
n− 2 of the shortest path P (vn−1, v1). Hence we have k +1 ≤ l ≤ k +2. Notice that

l ≤ n − 1. We have 1 ≤ k ≤ n − 3 if l = k + 2, and thus we always have Tn
∼= T

(1)
n,k

for arbitrary orientation of the arc between v and vk+1; we have 1 ≤ k ≤ n − 2 if

l = k + 1, and thus we obtain Tn
∼= T

(2)
n,k .

Suppose that k > l. According to the definitions of k and l, we have k = l + 1,−→viv ∈ E and −→vvj ∈ E for 1 ≤ i ≤ l, k ≤ j ≤ n (The corresponding drawing of
tournament is obtained by only exchanging the locations of vk and vl in Fig. 3.) If
l = 1 or l = n − 2, then d(Tn) = n − 1, a contradiction to d(Tn) = n − 2. Therefore

we have 2 ≤ l ≤ n − 3. So Tn
∼= T

(3)
n,k is obtained. The proof is completed. �

It was pointed out in [1] that e(T
(3)
n,n−3) = n + 1 if n ≥ 6. Indeed, we have the

better results.

Theorem 7 Let Tn be a strongly connected tournament of order n ≥ 6. Then
e(Tn) = n + 1 if and only if Tn

∼= T
(k)
n,i (k = 1, 2, 3).
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Figure 4.

Proof. For T
(1)
n,i , it is easy to find that there do not exist walks of lengths n, n − 1

and n − 2 from vn to v1, v2 and v3, respectively. Therefore we obtain e(T
(1)
n,i ) 	=

n, n − 1, n − 2. By Theorem A, we have e(T
(1)
n,i ) = n + 1. By the same discussion,

we have e(T
(2)
n,i ) = n + 1 and e(T

(3)
n,i ) = n + 1. Thus the sufficiency of the theorem

holds. If e(Tn) = n + 1, then d(Tn) ≥ n − 2 by Theorem A; again by Lemma 4 and

Theorem 5, we have d(Tn) = n − 2; by Lemma 6, we obtain Tn
∼= T

(k)
n,i (k = 1, 2, 3).

The proof is completed. �
Let GT

(1)
n,k , GT

(2)
n,k , GT

(3)
n,k and GTn,l,k be the tournaments of order n ≥ 7 shown

in Fig. 4, where GT
(1)
n,k satisfies 2 ≤ k ≤ n − 4, or k = 1 and either −−−→vk+1u ∈ E

or −−−→vk+2u ∈ E, or k = n − 3 and either −−−→vvk−1 ∈ E or −→vvk ∈ E; GT
(2)
n,k satisfies

1 ≤ k ≤ n − 4; GT
(3)
n,k satisfies 1 ≤ k ≤ n − 5; GTn,l,k satisfies 2 ≤ l ≤ k ≤ n − 3.

The sign “x−−− y” is understood to mean that the orientation of the arc between



EXTREME TOURNAMENTS WITH GIVEN PRIMITIVE EXPONENTS 87

K 

2v 1−lv l
v

 1+lv k
v

 

K 

v

 

1v 

1−kv 

K 

2−nv 
u

 

1+kv 

Figure 5.

x and y is arbitrary.

Lemma 8 Let Tn be a strongly connected tournament of order n ≥ 7. Then d(Tn) =

n − 3 if and only if Tn
∼= GT

(m)
n,k (1 ≤ m ≤ 3) or Tn

∼= GTn,l,k.

Proof. It is easy to find that d(GT
(m)
n,k ) = n − 3 (m = 1, 2, 3) and d(GTn,l,k) = n − 3.

Thus the sufficiency of the lemma holds. Now we prove the necessity of the lemma.
Let Tn = (V, E) be a strongly connected tournament with order n ≥ 7 and diameter
d(Tn) = n − 3. By the definition of diameter, there exist two distinct vertices
v1, vn−2 ∈ V such that the shortest path from vn−2 to v1 has length n − 3; let
P (vn−2, v1) = vn−2vn−3 · · · v1 be such a shortest path. So we always have −−→vivj ∈ E for
i, j (1 ≤ i ≤ n−3, i+2 ≤ j ≤ n−1). Clearly, there are only two vertices not contained
in P (vn−2, v1); denote them by v and u, without loss of generality, let −→vu ∈ E. Since
Tn is strongly connected, there are two vertices vi, vj ∈ V such that −→viv,−→uvj ∈ E.
Let k = min {t : −→uvt ∈ E, 1 ≤ t ≤ n − 2}, and l = max {t : −→vtv ∈ E, 1 ≤ t ≤ n − 2}.

Case 1 Assume l > k.
According to the definitions of k and l, Tn is illustrated in Fig. 5, where all arcs

between v and vi (1 ≤ i ≤ l − 1), u and vj (k + 1 ≤ j ≤ n − 2) are not pictured. If
l ≥ k + 4, then vn−2vn−3 · · · vlvuvkvk−1 · · · v1 is a path of length n − (l − k) ≤ n − 4
from vn−2 to v1, and this is a contradiction to the length n − 3 of the shortest path
P (vn−2, v1). Hence k + 1 ≤ l ≤ k + 3.

Suppose that l = k+1. If there exists a node vi (1 ≤ i ≤ k−2) such that −→vvi ∈ E,
then vn−2vn−3 · · · vk+1vvivi−1 · · · v1 is a path of length n − 2 − (k − i) ≤ n − 4 from
vn−2 to v1; this is a contradiction. Thus for each i (1 ≤ i ≤ k − 2), we always have−→viv ∈ E. In the same way, we always have −→uvj ∈ E for each j (k + 3 ≤ j ≤ n − 2).
If k = 1 and −−−→uvk+1,−−−→uvk+2 ∈ E, or k = n− 3 and −−−→vk−1v,−→vkv ∈ E, then d(Tn) = n− 2,
a contradiction. Hence we have 2 ≤ k ≤ n − 4, or k = 1 and either −−−→vk+1u ∈ E
or −−−→vk+2u ∈ E, or k = n − 3 and either −−−→vvk−1 ∈ E or −→vvk ∈ E. Thus we obtain

Tn
∼= GT

(1)
n,k .

Suppose that l = k + 2. By a similar discussion to the case l = k + 1, we have−→viv ∈ E for each i (1 ≤ i ≤ k − 1), −→uvj ∈ E for each j (k + 3 ≤ j ≤ n − 2) and

1 ≤ k ≤ n − 4. Hence we obtain Tn
∼= GT

(2)
n,k .

Suppose that l = k + 3. By a similar discussion to the case l = k + 1, we have−→viv ∈ E for each i (1 ≤ i ≤ k), −→uvj ∈ E for each j (k + 3 ≤ j ≤ n − 2) and

1 ≤ k ≤ n − 5. Hence we obtain Tn
∼= GT

(3)
n,k .
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Case 2 Assume l ≤ k.
By the definitions of k and l, Tn is illustrated in Fig. 6, where all arcs between u

and vj (k + 1 ≤ j ≤ n − 2), v and vi (1 ≤ i ≤ l − 1) are not pictured. By a similar
discussion to l = k + 1 in case 1, we always have −→viv ∈ E for each i(1 ≤ i ≤ l − 3)
and −→uvj ∈ E for each j(k +3 ≤ j ≤ n− 2). If l = 1 or k = n− 2, then d(Tn) = n− 2,
a contradiction. Thus we have 2 ≤ l ≤ k ≤ n − 3. Thus we obtain Tn

∼= GTn,l,k.
This completes the proof. �

Lemma 9 Suppose that n ≥ 8 and T ∈
{

GT
(1)
n,k , GT

(2)
n,k , GT

(3)
n,k , GTn,l,k

}
. Then e(T ) =

n if and only if T are those tournaments of order n shown in Fig. 7.

Proof. Clearly, all tournaments in Fig. 7 are strongly connected. From Theorem A,
they are primitive. For the tournament BT

(1)
n , there are only paths of lengths n− 3

or n−2 from vn−2 to v, lengths n−4 or n−3 from vn−2 to v2 and lengths n−5 or n−4
from vn−2 to v3. Hence there are no walks of length n− 1, n− 2 and n− 3 from vn−2

to v, v2 and v3, respectively. Therefore we have e(BT
(1)
n ) 	= n− 1, n− 2, n− 3. Again

by Theorem A, we obtain e(BT
(1)
n ) = n. By a similar discussion to that above, the

primitive exponents of the other tournaments in Fig. 7 are n, too. The sufficiency of
the lemma holds.

Now we prove the necessity. Let x and y be two vertices of a primitive tournament
G and C(x, k) some cycle of length k containing x. The sign l∃P (x, y) means that
there exists some path P (x, y) with length l from x to y. We have the following fact.

If the integer m satisfies 3 ≤ m−l∃P (x, y) ≤ n, then P (x, y)+C(y, m−l∃P (x, y))
is a walk of length m from x to y. Therefore in order to prove e(G) ≤ m, we only
need prove that there exists a walk of length m from x to y for each pair of vertices
x and y such that l∃P (x, y) ≥ m − 3.

(1) Assume T = GT
(1)
n,k .

Clearly, T always has a path vn−2vn−3 · · · vk+1vuvk · · · v1 of length n−1 from vn−2

to v1.
Assume 3 ≤ k ≤ n−5. Then l ∃ P (x, y) ≤ n−4 always holds if (x, y) 	= (vn−2, v1).

Thus e(T ) ≤ n − 1.
Assume k = 2. Clearly, l ∃ P (x, y) ≤ n − 4 always holds if (x, y) 	= (vn−2, v1),

(vn−2, u). If −→v4u ∈ E, or −→v3u ∈ E, or −→v1v ∈ E, or −→vv2 ∈ E, then from vn−2 to u there
are the following paths with lengths n − 5, n − 4, n − 1 and n − 1, respectively.



EXTREME TOURNAMENTS WITH GIVEN PRIMITIVE EXPONENTS 89

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

K 

2−nv 

u v

 

1v 2v 2−nv 3−nv4−nv 2v 

:)5(

n
BT

 

3v 

4−nv 

v

 

v

 

v

 v

 

uu

u u

2+kv 1+kv 

4v 3v 1v

K 

v

 

2−nv 

u

k
v

 l
v 1−kv 1+lv 2−lv 

K 

v

 

1v 3−lv 

K 

2−nv 

u

1−lv 

2+kv 1+kv 

K 

k
v

 l
v 1−kv 1+lv 2−lv 

K 

v

 

1v 3−lv 

K 

2−nv 

u

1−lv 

43:
)1(

,, −≤≤≤ nklBT
kln  

:)1(

n
BT

 

2−nv 4v 3v 2v 1v

K 

4v 2v 

K 

1v 2−nv 

:)2(

n
BT

 

:)3(

n
BT

 

2−nv 3−nv 4−nv 1v

K 
3−nv 

K 

1v 2−nv 

:)4(

n
BT

 

K 

:)6(

n
BT

 

43:
)2(

,, −≤≤≤ nklBT
kln  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1+lv 

3v 

2+kv 1+kv 

K 

k
v

 l
v 1−kv 1+lv 2−lv 

K 

v

 

1v 3−lv 

K 

2−nv 

u

1−lv 

43:
)3(

,, −≤≤≤ nklBT
kln  

K 

2+kv 1+kv k
v

 1−kv 

v

 

1v 2v 

K 

2−nv 

u

K K 

3−nv l
v 4−nv2−lv 

v

 

1v 3−lv 

K 

2−nv 

u

1−lv 

42:
)4(

,2, −≤≤ nkBT
kn

33:
)5(

3,, −≤≤
−

nlBT
nln

Figure 7.



90 TAN SHANGWANG, LIU BOLIAN AND ZHANG DELONG

vn−2vn−3 · · · v4u, vn−2vn−3 · · · v4v3u, vn−2vn−3 · · · v4v3v2v1vu, vn−2vn−3 · · · v4v3vv2v1u.

Thus we assume −→uv4,
−→uv3,

−→vv1,
−→v2v ∈ E. But vn−2vn−3 · · · v4v3v2vv1u is a path of

length n−1 from vn−2 to u. The discussion above indicates that e(T ) ≤ n−1 always
holds when k = 2. By the similar discussion with k = 2, e(T ) ≤ n − 1 also always
holds if k = n − 4. Hence we obtain k /∈ {2, 3, · · · , n − 4,}.

Assume k = 1. Clearly, l ∃ P (x, y) ≤ n − 4 when (x, y) 	= (vn−2, v1), (vn−2, u),
(vn−2, v), (vn−3, u). Firstly, let −→v2u ∈ E; then l∃P (vn−3, u) = n− 4. If −→v1v ∈ E, then
there exist paths of length n − 1 from vn−2 to u and v. So we have e(T ) ≤ n − 1, a

contradiction. Hence we have −→vv1 ∈ E, i.e., T ∼= BT
(1)
n . Secondly, let −→uv2 ∈ E. Then−→v3u ∈ E must hold and we easily find −→vv1 ∈ E. Hence T ∼= BT

(2)
n .

Assume k = n − 3. By a similar discussion to the case k = 1, T ∼= BT
(3)
n or

T ∼= BT
(4)
n hold.

(2) Assume T = GT
(2)
n,k .

By a similar discussion to case 3 ≤ k ≤ n − 5 of (1), we have k = 1, n − 4.
Firstly, suppose that k = 1. Obviously, l∃P (x, y) ≤ n − 4 always holds if (x, y) 	=
(vn−2, u), (vn−2, v1) and there always exists a path of length n− 1 from vn−2 to v1 for
arbitrary orientation of the arcs among v2 and u, v. Hence in order to make e(T ) = n,
T must not have walks of length n − 1 from vn−2 to u. Notice that from vn−2 to u
there is a path vn−2 · · · v3v2v1vu of length n − 1 if −→v1v ∈ E and a path vn−2 · · · v4v3u

of length n − 4 if −→v3u ∈ E. Hence −→vv1,
−→uv3 ∈ E. So we have T ∼= BT

(5)
n . Secondly,

suppose that k = n − 4. By a similar discussion to case k = 1, we have T ∼= BT
(6)
n .

(3) Assume T = GT
(3)
n,k .

If (x, y) 	= (vn−2, v1), then l∃P (x, y) ≤ n−4. Hence in order to make e(T ) = n, T
must not have walks of length n−1 from vn−2 to v1. Since vn−2 · · · vk+3vuvk+2vk+1 · · ·
· · · v1 is a path of length n − 1 from vn−2 to v1 when −−−→uvk+2 ∈ E, we must have−−−→vk+2u ∈ E. Since there is always a path of length n− 1 from vn−2 to v1 for arbitrary
orientation of the arc between u and vk+1 when −−−→vvk+2 ∈ E, we must have −−−→vk+2v ∈ E.
Since vn−2 · · · vk+3vk+2vuvk+1 · · · v1 is a path of length n − 1 from vn−2 to v1 when−−−→uvk+1 ∈ E, we must have −−−→vk+1u ∈ E. Since vn−2 · · · vk+3vk+2vk+1vuvk · · · v1 is a path
of length n − 1 from vn−2 to v1 when −−−→vk+1v ∈ E, we must have −−−→vvk+1 ∈ E. Clearly,
vn−2 · · · vk+3vk+2vvk+1uvk · · · v1 is a path of length n − 1 from vn−2 to v1, too. By
the discussion above, we know that there is always a walk of length n− 1 from vn−2

to v1 for arbitrary orientation of the arc among v, u and vk+1, vk+2. Hence this case
cannot happen.

(4) Assume T = GTn,l,k.

Obviously, we have T ∼= BT
(4)
n,2,k if l = 2 and T ∼= BT

(5)
n,l,n−3 if k = n − 3. Now

assume 3 ≤ l ≤ k ≤ n − 4.
(i) Let −−−→vvl−1 ∈ E. If (x, y) 	= (vn−2, v1), then l∃P (x, y) ≤ n−4. When −−−→vk+1u ∈ E

or −−−→uvk+1,−−−→vk+2u ∈ E, there is a path of length n − 1 from vn−2 to v1. Hence e(T ) ≤
n−1, a contradiction. So we have −−−→uvk+1,−−−→uvk+2 ∈ E. Therefor we obtain T ∼= BT

(1)
n,l,k.
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(ii) Let −−−→vl−1v ∈ E. By a similar discussion to (i), we have −−−→vvl−2,−−−→uvk+1,−−−→uvk+2 ∈ E

or −−−→vl−2v ∈ E. So we obtain T ∼= BT
(2)
n,l,k or T ∼= BT

(3)
n,l,k. We have completed this

proof. �

Theorem 10 Let Tn be a strongly connected tournament of order n ≥ 8. Then
e(Tn) = n, if and only if Tn

∼= BT
(i)
n (1 ≤ i ≤ 6) or Tn

∼= BT
(i)
n,l,k (1 ≤ i ≤ 5).

Proof. If e(Tn) = n, then we have d(Tn) = n − 3 from Theorem A, Theorem 5

and Theorem 7. Hence again by Lemma 8 and Lemma 9, we obtain Tn
∼= BT

(i)
n

(1 ≤ i ≤ 6) or Tn
∼= BT

(i)
n,l,k (1 ≤ i ≤ 5), i.e., the necessity of the theorem holds. The

sufficiency of the theorem is obvious by Lemma 9. This completes the proof. �

Using a more careful discussion similar to Lemma 9, it is easy to obtain all T7

with e(T7) = 7.
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