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Abstract
Let e(7},) be the primitive exponent of a primitive tournament 7, of order
n. In this paper, we obtain the following results.

1. Let T,, be a regular or almost regular tournament of order n > 7,
then e(7},) = 3.

2. Let k € {n,n + 1,n + 2}. We give the sufficient and necessary con-
ditions for 7T, such that e(7,,) = k, and obtain all T,,’s such that
e(T,) = k.

1 Introduction

A tournament matrix of order n is a (0, 1) matrix M of order n such that M + M" =
Jp — I,, where J,, is the matrix of all 1’s with order n, I,, the identity matrix of order
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n and M* the transpose of M. Let T,, = (V, E) be a tournament of order n. Then the
adjacency matrix of T, is a tournament matriz of order n. Conversely, the digraph
whose adjacency matrix is a tournament matrix must be a tournament. Now let M
denote the tournament matrix of order n and 7;, the corresponding tournament. For
T, = (V, E), the score of node v € V is the number of nodes dominated by v and
is denoted by s(v). If n is even and each node of T;, has score § or ”T’Q, then T, is
called almost regular. If n is odd and each node of T, has score "T’l, then 7, is called
reqular. The diameter of a strongly connected tournament T, is the least integer d
such that for every ordered pair of nodes v and u of T,,, there exists a nontrivial path
of length at most d from v to w.

Let D = (V, E) be a digraph. If there exists a positive integer k such that there
exists a walk of length £ from v to u for every ordered pair of nodes v and u of
V, then D is called primitive, and the least such integer k is called the primitive
exponent of D, denoted by e(D). The conditions that a tournament is primitive, the
bounds of primitive exponent, and the primitive exponent set, have been obtained
in [1] or [2] as follows.

Theorem A Let T, be the tournament of order n.
(i) T, is primitive if and only if n > 4 and T, is strongly connected.

(i) If n > 5 and T, is primitive, then d(T,) < e(T,) < d(T,) + 3, where d(T},)
denotes the diameter of T,,.

(i11) Suppose that n > 6, then the primitive exponent set of primitive tournaments
of order n is {3,4,...,n+1,n+ 2}.

For the given primitive exponent e, it is very difficult to find all primitive tour-
naments 7,, of order n such that e(7},) = e. This problem is equivalent to finding all
solutions of the Boolean matrix equation M¢ = J,,. It is called the M S problem in
[3]. In this paper, we obtain all solutions for e = n,n+ 1,7+ 2 and partial solutions
for e = 3.

2 The results and proof

Lemma 1 Let T,, = (V,E) be a tournament of order n > 7 in which V =
{vi,v9, -+, va} . If each score s(v;) (i = 1, 2, ---,n) satisfies 5+ < s(v;) < 2,
then for every ordered pair of nodes v and u of T, there exists a path of length 3
from v to u.

Proof. From a result of [5], T}, is strongly connected. Hence each vertex of T, is
contained in a cycle of length 3 (see [1]).

Now let v; and v; be two distinct vertices of T,,. We prove that there exist
paths of length 3 from v; to v;. Let #S denote the cardinality of set S, N(v;) =
{u|Ttie E,ue V) and N(v;) = {u | av; € E,u € V}.

Case 1 Assume 3;0; € E. Hence we have
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#(N(v;) —v;) > >2(n>7), #N(v)=n—-1-s(v;) > —.

2 2

If there are two distinct vertices v and « in N(v;) — v; which dominate vertex v;,
without loss of generality, assume 0% € E. Then vvuv; is a path of length 3 from v;
to v;.

If there is at most one vertex of N (v;) —v; which dominates v;, then v; dominates
at least #(N(v;) —v;) — 1 > ™52 vertices of N(v;) — v;. Thus, at most two vertices
of N(v;) are dominated by vj, so v; is dominated by at least #N(v;) —2 > 258 >0
vertices of N(v;); let u be such a vertex of N(v;). If N(v;) —v; € N(u), then

n+1 n

s(u) 2 #(N(W) ) +22 —— >3,

a contradiction. Therefore u is dominated by at least one vertex of N(v;) —v;; denote
such a vertex by v, so v;vuv; is a path of length 3 from v; to v;.

Case 2 This case is 7;0; ¢ E.

Let N(v;) replace N(v;) —v; in Case 1. The other discussions are analogous to
Case 1. We thus have completed the proof. O

Notice that 3 < d(7,,) < n —1if T, is a strongly connected tournament of order
n. Hence from Lemma 1 and Theorem A, we obtain the following result.

Theorem 2 Let T, be a reqular or almost reqular tournament of ordern > 7. Then
T, is primitive and e(T,,) = 3.

According to the appendix of tournaments of order k£ (3 < k < 6) in [1], we easily
find that Theorem 2 does not hold for n = 5,6. From Lemma 1 and this appendix,
we also obtain the following result.

Corollary 3 Suppose that T, is a reqular or almost reqular tournament of order
n > 3. Then d(T,) = 3.

Lemma 4 Let T, be a strongly connected tournament of order n > 5. Then d(T,,) =
n — 1, if and only if T,, = T, where the sign “=” denotes isomorphism. T is a
tournament of order n shown in Fig. 1, where not all arcs are included in the drawing;
the sign “=7” means that an arc not drawn is oriented from the left node to the right

node.
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Proof. Clearly, the diameter of T7 is equal to n — 1. Hence the sufficiency of the
lemma holds.

Now we prove the necessity of the lemma. Let T,, = (V, E') be a strongly connected
tournament of order n and diameter n — 1. By the definition of diameter, there exist
two distinct nodes of V', say v; and v, such that the shortest path from v, to v; has
length n — 1. Let P(vn,v1) = UnUn_1---v1 be such a shortest path. Clearly, all
vertices of T, are contained in the path. If there are positive integers 4,j (i +2 < j)
such that W € E, then v,v,_1 - - vjv;0;_1 - - - v1 s a path of length n—(j—i) < n—2
from v, to vy, a contradiction to the length n—1 of the shortest path P (v, v;). Hence
for arbitrary ¢ and j with 1 <7 <n —2 and i+ 2 < j, we always have 7;0; € E.
Therefor we obtain 7}, = T'*. This completes the proof. O

It was pointed out in [1] that e(7)y) = n+ 2 if n > 5. The following result
indicates that 7)) is the unique tournament with order n > 5 and primitive exponent
n+ 2.

Theorem 5. Let T;, be a strongly connected tournament of order n > 5. Then
e(T,) =n+2, if and only if T, = T

Proof. It e(T,,) = n+2, then d(T,,) > n—1 by Theorem A. Thus we have d(T,,) = n—1.
By Lemma 4, we obtain T, = T*. If T,, 2 T, then e(T;,) =n+ 2 by e(T}) =n+2
(see [1]). The proof is complete. O

Let ) (1<i<n—3), 7% 1<i<n—2) and T\ (2 <i < n—3) be the
tournaments of order n shown in Fig. 2.
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Lemma 6 Let T,, be a strongly connected tournament of order n > 6. Then d(T,) =
n—2 if and only if T,, = T,,(Lf? (k=1,2,3).

Proof. It is easy to find d(Téﬁ-)) =n—2 (k=1,2,3), so the sufficiency of the lemma
holds.

Now we prove necessity. Let T,, = (V, E) be a strongly connected tournament
with order n and diameter n — 2. By the definition of diameter, there exist two
distinct vertices of V, say v; and v,_1, such that the shortest path from v,_; to v,
has length n — 2; let P(v,_1,v1) = vU,_10n_2---v; be such a shortest path. So for
arbitrary 4,5 (1 <i<n-—3,i+2 < j <n—1), we always have 7;0; € E. Clearly,
there is only one node not contained in P(v,_1,v1); denote it by v. Since T, is a
strongly connected tournament, there are two distinct vertices v;,v; € V' such that
v0;,U;0 € E. Let

k=min{t: o5, e E,u, €V} >1, l=max{t:owe€ E,n,eV}<n-—1

Suppose that k < [. Then the structure of T}, is illustrated in Fig. 3, where the
arcs not drawn between v and v; (k+1 < j <1—1) may be oriented arbitrarily, and
the sign W = ) means that each vertex of W dominates each of . If [ > k + 3,
then

Un—1Un—2 V410V V-1 * - - U1

is a path of length n — (I — k) < n — 3 from v,_; to v1, a contradiction to the length
n — 2 of the shortest path P(v,_1,v1). Hence we have k+1 <1 < k+2. Notice that
[<n—1 Wehave 1 <k <n-3ifl=Fk+ 2, and thus we always have T, §TT<L,1,2
for arbitrary orientation of the arc between v and v,1; we have 1 < k < n — 2 if
[l =k + 1, and thus we obtain 7}, = Tf,z

Suppose that k > . According to the definitions of k and [, we have k =1 + 1,
70 € Eand vv; € E for 1 <i <1, k < j < n (The corresponding drawing of
tournament is obtained by only exchanging the locations of v, and v, in Fig. 3.) If
l=1orl=n-2,then d(T,) =n — 1, a contradiction to d(7;,) = n — 2. Therefore
we have 2 <[ <n—-3. So T, = T,(f,z is obtained. The proof is completed. O

It was pointed out in [1] that e(Tii)lﬁg) =n+1if n > 6. Indeed, we have the
better results.

Theorem 7 Let T, be a strongly connected tournament of order n > 6. Then
e(T,) =n+1if and only if T,, = T,if? (k=1,2,3).
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Proof. For TV

ny ?

and n — 2 from v, to vy, vy and w3, respectively. Therefore we obtain e(Tél-)) #*

N2

n,n — 1,n — 2. By Theorem A, we have e(Tﬁ) = n + 1. By the same discussion,

it is easy to find that there do not exist walks of lengths n, n — 1

we have e(T'%)) = n + 1 and e(Tfli-)) = n+ 1. Thus the sufficiency of the theorem

n,i )

holds. If e(7,,) = n+ 1, then d(1,,) > n — 2 by Theorem A; again by Lemma 4 and
Theorem 5, we have d(T,) = n — 2; by Lemma 6, we obtain T, = TT(L{CZ-) (k=1,2,3).
The proof is completed. [l

Let GTé}g,GﬂEiﬁ, GTTS‘?,E and GT,,; be the tournaments of order n > 7 shown
in Fig. 4, where GTle,g satisfies 2 < k < mn —4, or k = 1 and either v, 10 € F
or Upsot € E, or k = n — 3 and either v0,_; € E or uv;, € E; GTE,E, satisfies
1<k<n-—4 GTS,z satisfies 1 < k < n —5; GT,, satisfies 2 <[ < k <n —3.
The sign “xr — — — 4" is understood to mean that the orientation of the arc between
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x and y is arbitrary.

Lemma 8 Let T, be a strongly connected tournament of order n > 7. Then d(T,,) =
n — 3 if and only if T, = GTXZ) (1<m<3) orT, 2GTy -

Proof. 1t is easy to find that d(GT,(:Z)) =n—3(m=123) and d(GT} 1) =n — 3.
Thus the sufficiency of the lemma holds. Now we prove the necessity of the lemma.
Let T,, = (V, E)) be a strongly connected tournament with order n > 7 and diameter
d(T,) = n — 3. By the definition of diameter, there exist two distinct vertices
v1,Vp_o € V such that the shortest path from v, o to v; has length n — 3; let
P(vp_2,v1) = Un_2Up_3 - - - v be such a shortest path. So we always have 5;0; € E for
i,7 (1 <i<n-3,i1+2 < j <n-1). Clearly, there are only two vertices not contained
in P(v,_2,v1); denote them by v and u, without loss of generality, let 91 € E. Since
T,, is strongly connected, there are two vertices v;,v; € V such that v;0,uv; € E.
Let k=min{t:uy; €e E,1<t<n—-2}, and l=max{t: 50 € E,1 <t <n—2}.

Case 1 Assume [ > k.

According to the definitions of k and [, T,, is illustrated in Fig. 5, where all arcs
between v and v; (1 <i<1—1),wand v; (k+1<j <n—2)are not pictured. If
[ > k+4, then vy_ov,_3- - VUUVLVE_1 - -+ v1 is a path of length n — (I — k) <n —4
from v,_5 to vy, and this is a contradiction to the length n — 3 of the shortest path
P(vp_2,v1). Hence k+1 <1< k+3.

Suppose that [ = k+1. If there exists a node v; (1 < i < k—2) such that o7} € E,
then v, _av,_3- Vg 00v;_1 - - - v1 is a path of length n — 2 — (k — i) < n — 4 from
Un—2 to vy; this is a contradiction. Thus for each i (1 <1i < k — 2), we always have
7;0 € E. In the same way, we always have uv; € E for each j (k+3 < j <n—2).
If k=1 and wvp i, uvps € E, or k =n — 3 and v;_10, 030 € E, then d(T,,) =n — 2,
a contradiction. Hence we have 2 < k < n — 4, or k = 1 and either v 0 € FE
or Vot € E, or k = n — 3 and either vv;_; € E or vv;, € E. Thus we obtain
T, = GT,).

Suppose that [ = k 4+ 2. By a similar discussion to the case [ = k + 1, we have
70 € Eforeachi (1 <i<k-—1),uv; € Eforeach j (k+3<j<n-—2)and
1 <k <n—4. Hence we obtain T,, = GTf,z

Suppose that { = k + 3. By a similar discussion to the case { = k + 1, we have
U0 € E for each i (1 < i < k), wv; € E for each j (k+3 < j < n—2) and
1 <k <n—>5. Hence we obtain T,, = GTT(f,z
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Case 2 Assume [ < k.

By the definitions of k and [, T, is illustrated in Fig. 6, where all arcs between u
and v; (k+1<j<n-—2),vandv; (1 <i<Il—1)are not pictured. By a similar
discussion to I = k + 1 in case 1, we always have 0;0 € E for each i(1 <i <[ —3)
and uv; € F for each j(k+3<j<n—2). If{=1o0r k =n—2, then d(T,,) = n—2,
a contradiction. Thus we have 2 < [ < k < n — 3. Thus we obtain T,, = GT, .
This completes the proof. 0

Lemma 9 Suppose thatn > 8 and T € {G‘Té’l,z7 G’Tf,z7 GTTEQ,E, GTn,l,k}- Then e(T) =
n if and only if T are those tournaments of order n shown in Fig. 7.

Proof. Clearly, all tournaments in Fig. 7 are strongly connected. From Theorem A,
they are primitive. For the tournament BT\, there are only paths of lengths n — 3
or n—2 from v,_s to v, lengths n—4 or n—3 from v,,_5 to v, and lengths n—>5 or n—4
from v,_5 to v3. Hence there are no walks of length n — 1,n — 2 and n — 3 from v,,_»
to v, ve and vs, respectively. Therefore we have e(BTT(Ll)) #n—1,n—-2,n—3. Again
by Theorem A, we obtain e(BTél)) = n. By a similar discussion to that above, the
primitive exponents of the other tournaments in Fig. 7 are n, too. The sufficiency of
the lemma holds.

Now we prove the necessity. Let x and y be two vertices of a primitive tournament
G and C(z, k) some cycle of length & containing x. The sign (3P(z,y) means that
there exists some path P(z,y) with length [ from z to y. We have the following fact.

If the integer m satisfies 3 < m—I[3P(z,y) < n, then P(z,y)+C(y, m—13P(z,y))
is a walk of length m from x to y. Therefore in order to prove e(G) < m, we only
need prove that there exists a walk of length m from z to y for each pair of vertices
x and y such that (3P (z,y) > m — 3.

(1) Assume T = GTSIE.

Clearly, T always has a path v, _sv,,_3 - - - Vg 10UV} - - - v1 of length n—1 from v,,_»
to 1.

Assume 3 < k <n—>5. Then! 3 P(z,y) < n—4 always holds if (z,y) # (vn_2,v1).
Thus e(T) <n —1.

Assume k = 2. Clearly, | 3 P(z,y) < n — 4 always holds if (x,y) # (vp—2,v1),
(Un_g,u). If 031 € E, or 531 € E, or 110 € E, or vv3 € F, then from v,_» to u there
are the following paths with lengths n — 5,n —4,n — 1 and n — 1, respectively.
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Un—2Un—3*** V4U, Up—2Up—3 " V4U3U, Up—2Up—3 " V4U3V2V1VU, Up—2Un—3 " - V4U3VV2VIU.

Thus we assume wvy, Uv3, V07, V20 € E. But v,_oUn_3 - - - 403020011 is a path of
length n—1 from v,,_5 to u. The discussion above indicates that e(7") < n— 1 always
holds when k = 2. By the similar discussion with k& = 2, e(T") < n — 1 also always
holds if £ = n — 4. Hence we obtain k ¢ {2,3,---,n —4,}.

Assume k = 1. Clearly, | 3 P(z,y) < n —4 when (z,y) # (Vn-2,v1), (Un_2,u),
(Un—2,), (Vn—_3,u). Firstly, let 030 € E; then 3P (v,_3,u) =n — 4. If 070 € E, then
there exist paths of length n — 1 from v,_5 to u and v. So we have e(T) <n—1, a
contradiction. Hence we have v0; € E, i.e., T = BTV, Secondly, let v € E. Then
U3t € E must hold and we easily find v0; € E. Hence T = BT7£23.

Assume k = n — 3. By a similar discussion to the case k = 1, T & BT or
T = BT hold.

(2) Assume T = GTn(.sz-

By a similar discussion to case 3 < k < n — 5 of (1), we have k = 1,n — 4.
Firstly, suppose that & = 1. Obviously, [3P(x,y) < n — 4 always holds if (x,y) #
(Un_2,u), (Vp_2,v1) and there always exists a path of length n — 1 from v,,_5 to vy for
arbitrary orientation of the arcs among v, and u, v. Hence in order to make e(7) = n,
T must not have walks of length n — 1 from v,_» to u. Notice that from v,_5 to u
there is a path v,_y -+ - vsvyvvu of length n — 1 if 279 € F and a path v,,_3 - - - v4v3u
of length n — 4 if 73t € E. Hence 007, uv3 € E. So we have T = BTY. Secondly,
suppose that k =n — 4. By a similar discussion to case k = 1, we have T = BTY.

(3) Assume T = GTS,Z.

If (z,y) # (vn—2,v1), then (3P(z,y) < n—4. Hence in order to make e(T) =n, T
must not have walks of length n—1 from v,,_5 to vy. Since v,,_g - - - Vg1 3VUV 12V 41 - - -
---v; is a path of length n — 1 from v,_s to v; when w5 € E, we must have
Urs2t € E. Since there is always a path of length n — 1 from v,,_5 to v; for arbitrary
orientation of the arc between w and vgy1 when v05 5 € E, we must have 0,50 € E.
Since vy,_9 - - Vky3VkioVUUEL1 - - - U1 1S a path of length n — 1 from v,,_s to v; when
W0k, € E, we must have U510 € E. Since v,_g « + - Up43Up12Vp41 VUV - - - U1 1S a path
of length n — 1 from v,_5 to v; when U410 € E, we must have vy € E. Clearly,
Up—g - * VUp43Ukt2VUVE41 UV - - - U1 1S & path of length n — 1 from v,_5 to vy, too. By
the discussion above, we know that there is always a walk of length n — 1 from v,,_»
to vy for arbitrary orientation of the arc among v, u and vy 1, vg12. Hence this case
cannot happen.

(4) Assume T = GT,, 5.

Obviously, we have T' = BTn(gk ifl=2and T = BTH(?W
assume 3 <[ < k <n—4. - v

(i) Let vo;7 € E. If (z,y) # (vn_g,v1), then [FP(z,y) < n—4. When ;10 € E
Or W11, Uks2U € E, there is a path of length n — 1 from v,,_5 to v;. Hence e(T) <

3 if kK =n—3. Now

n—1, a contradiction. So we have uvy 1, uvg1s € E. Therefor we obtain 7' = BTéll)k.
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(ii) Let 5,10 € E. By a similar discussion to (i), we have 90,3, WUx11, W0rt3 € E
or 20 € E. So we obtain T & BTka or T = BTr(ka. We have completed this
proof. O

Theorem 10 Let T, be a strongly connected tournament 0()_" order n > 8. Then
e(T,) = n, if and only if T, = BT\ (1< i <6) or T,, = BT\, (1 <i<5).

Proof. 1f e(T,) = n, then we have d(T,,) = n — 3 from Theorem A, Theorem 5
and Theorem 7. Hence again by Lemma 8 and Lemma 9, we obtain T, = BTY
(I1<i<6)orT,= BTf:l)’k (1 < i <5), ie., the necessity of the theorem holds. The
sufficiency of the theorem is obvious by Lemma 9. This completes the proof. O

Using a more careful discussion similar to Lemma 9, it is easy to obtain all T%
with e(T7) = 7.
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