AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 32 (2005), Pages 111-116

The class of {3K,, C, }-free graphs

S.A. CHOUDUM M.A. SHALU

Department of Mathematics
Indian Institute of Technology Madras
Chennai - 600 036, India
sac@iitm.ac.in

Abstract

The problem of finding an optimal upper bound for the chromatic number

of 3K,-free graphs is open and quite hard. Approximate bounds are

known. Here, we characterize {3K,, C, }-free graphs and deduce that for
Sw(G

such a graph G, x(G) < ’V wi ) , where w(G) is the clique number

of G.

1 Introduction

It is well known that the problem of finding the vertex chromatic number x(G) of
a graph G is NP-complete, even when G belongs to a well-defined apparently small
class of graphs. As explained by Brandt [1], the problem of finding an optimal
upper bound, as a function of clique number, for the chromatic number of graphs
with independence number at most two, is also hopelessly difficult; the best one can

conclude is that for such a graph G, x(G) is bounded on both sides by © (%),

where w(G) is the clique number of G. In fact, to draw such a conclusion one requires
hard mathematics involving Ramsey numbers.

We follow standard notation and terminology of West [7] and all our graphs are
finite and simple. We also assume that the reader is familiar with standard results
on vertex colourings; see for example [7]. Given a family F of graphs, G is said
to be F-free, if no graph in F is an induced subgraph of G. As in [1], we find it
convenient to call a graph G with independence number at most two as a 3K, -free
graph. If H is a subgraph (respectively induced subgraph) of G, we write H C G
(H C G). The subgraph of G induced by a vertex subset S is denoted by [S]. If
S and T are vertex disjoint subsets of G, then [S,T] denotes the set of all edges in
G with one end in S and another end in 7. If G, and G, are two vertex disjoint
graphs, then their union G, UG, is the graph with V(G,UG,) = V(G,)UV(G,) and
E(G,UG,) = E(G,)UE(G,). Similarly, the join G, + G, is the graph with vertex set
V(G)UV(G,) and E(G, +G,) = E(G)UE(G,) U{(z,y) : € V(G,),y € V(G,)}.
For any positive integer k, kG denotes the union of & graphs each isomorphic with
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G. As usual x(G), w(G), a(G) respectively denote the chromatic number, clique
number, independence number, and P, C , K respectively denote the path, cycle,
complete graph on n vertices.

In this note, we characterize {3K,, C, }-free graphs and deduce that for such a
graph G, x(G) < ’V&UT(G)-‘ . This bound is optimal in the sense that given any two
integers w and k such that 1 <w <k < {%ﬂ-‘ , there exists a {3K,, C, }-free graph
G with w(G) = w and x(G) = k. Figure 1 shows an optimal chromatic upper bound
for any {3K,, H}-free graph G, where H is a graph on four vertices such that 3K
is not an induced subgraph of H. The known upper bounds shown in Column 2 are
consequences of stronger results cited.

H Chromatic upper bound for any
{3K,, H}-free graph G

K,/]K,—e/(K,UK)+ K, |w(G)+1,]2,4,5]

5w(G
C, %-‘ , this paper
P, w(G), [6]

3w(G .. .
K, UK, % , G is a union of paths and cycles
2K,

Figure 1: A table of optimal chromatic upper bounds

2 A special graph C, (m ,m,,m,,m,,m,)

Let C, = [v,,v,,v,,v,,v,,v,] be a 5-cycle and m,, m,,. . ., m, be non-negative integers.
We denote by C, (m,,m,, m,,m,,m,), the graph obtained from C, by

(1) replacing each v, by K ,1 <4 <5, and

(ii) joining every pair of vertices z € K

m.
i1

,yEKmi+l,1§i§5,imod5.

We drop the parameters m,’s in the notation of C,(m,,m,,m,, m,,m,) if they
are clear from the context. A schematic representation of C, is shown in Figure 2.
Throughout the paper, the subscripts of vertices v, in C, are modulo 5.

Lemmal (i) C (m,,m,,m,,m,,m,) is {3K,,C,}-free, for every integer m, > 0.
(ii) w(C;) = max {m, +m,,, : 1 <i <5, i mod 5}.

(“Z) w((c5 (ml =DMy — P,y — P, My — P,y 1M _p)) :w(cs(mlamzams’m47m5)) -
2p, where 0 < p < min {m, : 1 <i <5}

(i) x (C,(p,p,p,p,p)) = [%p], for any integer p > 1.
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C, (m,,my, my,,m,,m,) An optimal 5-coloring of C,(2,2,2,2,2)

Figure 2

Proof The statements (i), (i7) and (ii7) are obvious.
(iv) : For any graph G with n vertices, x(G) > ﬁ Hence, x (C, (p, p,p,p,p)) >

5p
{2 1_F0 prove the upper bound consider the partition (V,,V,,...,V,) of V(C, (p,p,
p.p,p)), where t = [E], [V]] = C,(2,2,2,2,2), for 1 <i<t—1and
V] = { C,(2,2,2,2,2), if piseven
‘ Cs, if p is odd
Since x (C,(2,2,2,2,2)) = 5 (see Figure 2), we have

ot, if p is even
X (C(p,p,ppsp)) < { S(t—1)+3, ifpis odd

T2 -

3 {3K,,C,}-free graphs

A universal vertex of a graph G is a vertex which is adjacent to all other vertices in
G.

Lemma 2 If G is {3K,,C,}-free and contains an induced C,, then any vertex
z € G—-V(C,) is either (i) universal in G or (i1) it is adjacent with exactly three
consecutive vertices of C;.

Proof Let C; = [v,,v,,v,,v,,7,,v,] be a 5-cycle in G. If z is adjacent with at
most one vertex or exactly two adjacent vertices of C,, then one can choose two
appropriate non-adjacent vertices of C,, which together with x induce a 3K, in G, a
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contradiction. If z is adjacent with exactly two non-adjacent vertices of C;, say v,
v,, then [z,v,,v,,v,,x] = C, E G, a contradiction. So, we conclude that x is adjacent
with at least three vertices of C;. If = is adjacent with exactly three vertices of C,,
then these must be consecutive on C,; else there exists an 7, 1 < ¢ < 5, such that z
is adjacent with v,_,, v,,, and it is not adjacent with v,. But then [z,v,_,,v,,v,,,,7]
= (C, C @. If z is adjacent with exactly four vertices of C;, then again C, C G, as
above. Next, if z is adjacent with all the vertices of C,, we claim that z is universal:
else, there exists a vertex y € G —V(C,) (y # ) such that (x,y) is not an edge in G.
By the above analysis, y is adjacent with exactly three consecutive vertices of C,,
say v,, v,, v, or it is adjacent with all the vertices of C;. In either case, [z,v,,y, v,, Z]
>~ C, C G, a contradiction. |

Lemma 3 If G is a {3K,,C,}-free graph containing an induced C, but containing
no universal vertex, then G = C, (m,,m,, m,, m,,m,), for some integers m, > 1.

Proof Let [v,,v,,v,,v,,v,,v,] be a C, in G. For each i, 1 < i < 5, define

V., ={z e G-V(C,): zis adjacent with v, ,, v, v, }.

5
By Lemma 2, V;’s are disjoint and V (G — V(C,)) = U\{ We now make two

i=1
more claims on V, which will imply the lemma. First, [V, UV,,,] is complete in G,
1 <4 <5, imod 5; on the contrary, if z,y € [V,UV,,,] are two non-adjacent vertices,
then [z,y,v,,,] = 3K,. Next, [V,_,,V.,,] = ¢, for 1 < i <5, i mod 5; on the contrary,

i+3} i+1

if [V}, V,] # ¢ (say), and (z,y) is an edge in [V}, V}], then [z,y,v,,v,, 2] = C,. [ ]

Theorem 1 If G is a {3K,, C,}-free graph, then either (i) G is chordal or (it) G =
C, (m,,m,,m,,m,,m,) + K,, for some integers m, > 1 and t > 0.

Proof Since a(G) < 2, every cycle C, (n > 6) in G contains a chord. So, if G is
C,-free too, then G is chordal. Next suppose that G contains an induced C;. Clearly,
no universal vertex of G belongs to C,, since it is chordless. So, if W is the set of
all universal vertices in G, then by Lemma 3, G — W = C, (m,,m,,m,,m,, m,), for
some m, > 1. Hence, G = C, + K,, where V(K,) = W. u

Lemma 4 Let G be a {3K,,C,}-free graph with no universal vertex. Suppose
G 3 C,(my,m,,my,m,,m,), for somem, > 1. If G — V(C,) contains an induced
C,, then G 3 C,(m, +1,m, + 1,m, + 1,m, +1,m, + 1).

5
Proof Let the vertex set of C,(m,,m,,m,,m,,m,) be UV;, where V, = V(K ),

=
1 <4 < 5; see Figure 2. Let [v,,v,,v,,v,,v,,v,] be an induced 5-cycle C,, where v, €
V., 1<i<5. Let [z,,z,,2,,2,,2,,z,] be a b-cycle in G — C,(m,,m,,m,,m,,m,).
For each ¢, 1 <14 <5, define W, = {z € V(G) : © # v, and z is adjacent with v,_,,

U, ,Ux+1}'
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5
By Lemma 3, W,’s are pairwise disjoint, UW U{v,} = V(G), W, UW,,] is

=1
complete and [W, |, W, ] =¢,1<i<5,imod 5. Clearly, V, —v, CW,,1 < i <5.
Without loss of generality(w.l.g.) suppose z, € W,. Since (z,,z,) € E(G), [W,,W,]
= ¢ and [W,,W,] = ¢, it follows that z, ¢ W,UW,; so z, € W, UW, U W,. If
z, € W,, we arrive at a contradiction. Since (z,,z,) ¢ E(G), z, € W, UW,. On
the other hand since (z,,z,) € E(G), z, € W, UW, UW,. It is a contradiction,
since W,’s are disjoint. So, z, € W, UW,. W.lg. suppose that =, € W,. By using
similar arguments, we can show that z, € W,, 3 <i < 5. So, W, U {v,} 2 V, U {z,},
1 <17 <5, and hence the lemma. |

Theorem 2 Let G be a {3K,,C,}-free graph. Then
(i) x(G) = w(G), or
(ii) there exists a maximum integer p > 1 such that
G 3 C(p,p,p,p,p) and X(G) < [§] + w(G) < [5“)5—6)1

Proof We apply Theorem 1. If G is chordal, then (i) holds. Next suppose G =
C, (m,,m,, my,m,,m;) + K,, for some integers m, > 1 and ¢ > 0. Let p = min
{m,,m,,...,m,}. Then by Lemma 4, p is the maximum integer such that G J
(Cs (papapapap)' Let G’ = G - (Cs(pvpvpvpvp) = (Cs (ml —p,m, —p,my; —p,m,; —
p,m,; —p) + K,. Again, by Lemma 4, G’ is C,-free and so it is chordal. We then
have,

X(G) < x(C(p,pp,p,p)) + X(G)

+w(G'), (by Lemma 1 and the chordal property of G')

< _5W4GW (since 2p < w(G) )
[ ]
Corollary 1 If G is {3K,,C,,C,(3,3,3,3,3)}-free, then x(G) < w(G) + 1.
Proof Apply Theorem 2, with p < 2. ]

4 Remark

For every pair of integers (w, k) (except one pair) such that 1 < w < k < [5Tw-|, there
exists a {3K,, C, }-free graph G with w(G) = w and x(G) = k. The exceptional pair
is (w =4t + 1, k = 5¢ + 2). The required graphs are shown in Figure 3.
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w k=w+s, A graph G with

where 0 < s < [%] | w(G) =w and x(G) =k
i, i>1 0<s<t C, (21, 2t, 25,21, 2t)
442, t>0| 0<s<t+1 |C(2t+1,2t+1,25—1,2t+1,2t+1)
A+1, t>0 0<s<t C.(2t +1,2t,25 — 1,2t + 1,2¢)
443, t>0 0<s<t C. (2t +2,2t +1,25,2t + 2,2t + 1)
4+3, t>0 s=t41 C,(2t+ 1,2t +2,2¢ + 1,2t + 1,2t +2)

Figure 3: A table of extremal graphs

Clearly, for each of these graphs G, we have w(G) = w, since 0 < s < [%1 In
each case one can show that x(G) < k, by using Theorem 2, and that x(G) > k by
using the general upper bound x(F) > %, for any graph F. The last inequalities
in the proof of Theorem 2 imply that there is no {3K,, C, }-free graph G with w(G)

=4t +1and x(G) =5t+2, (t >0).

5 Conclusion

K, ;-free graphs have received much attention as they form a superclass of line graphs
and they are amenable to polynomial time algorithms to find many graph theoretical
parameters; see [3]. The results in this paper suggest that if G is {K, ,, C,}-free (or
more generally { K, ,, K, +C, }-free ), then x(G) is bounded above by a constant mul-
tiple of w(G). We are unable to obtain such a bound. Note that the neighbourhood
of any vertex in a {K, ,, K, + C,}-free graph induces a {3K, C, }-free graph.
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