On the products of group-magic graphs

RICHARD M. LOW*

Department of Mathematics
San Jose State University
San Jose, CA 95192
U.S.A.
low@math.sjsu.edu

SIN-MIN LEE*

Department of Computer Science
San Jose State University
San Jose, CA 95192
U.S.A.
lee@cs.sjsu.edu

This paper is dedicated to the memory of Gwong C. Sun.

Abstract

Let A be an abelian group. We call a graph G=(V,E) A-magic if there exists a labeling $f:E(G)\to A-\{0\}$ such that the induced vertex set labeling $f^+:V(G)\to A$, defined by $f^+(v)=\Sigma f(u,v)$ where the sum is over all $(u,v)\in E(G)$, is a constant map. For four classical products, we examine the A-magic property of the resulting graph obtained from the product of two A-magic graphs.

1 Introduction

Let G be a connected graph without multiple edges or loops. For any abelian group A (written additively), let $A^* = A - \{0\}$. A function $f: E(G) \to A^*$ is called a *labeling* of G. Any such labeling induces a map $f^+: V(G) \to A$, defined by $f^+(v) = \Sigma f(u,v)$ where the sum is over all $(u,v) \in E(G)$. If there exists a labeling f whose induced map on V(G) is a constant map, we say that f is an A-magic labeling and that G is an A-magic graph.

Z-magic graphs were considered by Stanley [16,17], where he pointed out that the theory of magic labelings could be studied in the general context of linear homogeneous diophantine equations. Doob [1,2,3] and others [6,9,11] have studied A-magic

^{*} The authors wish to thank Tao-Ming Wang for his helpful comments

graphs and Z_k -magic graphs were investigated in [4,7,8,10]. The construction of magic graphs was studied by Sun and Lee [18]. In this paper, we extend some results to A-magic graphs. In particular, graph products offer a straight-forward and systematic means of constructing A-magic graphs.

Within the mathematical literature, various definitions of magic graphs have been introduced. The original concept of an A-magic graph is due to J. Sedlacek [14,15], who defined it to be a graph with real-valued edge labeling such that (i) distinct edges have distinct nonnegative labels, and (ii) the sum of the labels of the edges incident to a particular vertex is the same for all vertices. Previously, Kotzig and Rosa [5] had introduced yet another definition of a magic graph. Over the years, there has been great research interest in graph labeling problems. The interested reader is directed to Wallis' [19] recent monograph on magic graphs.

2 Definitions and examples

For any commutative ring R with unity, U(R) denotes the multiplicative group of units in R. The product of two graphs $G_1(p_1, q_1) = (V_1, E_1)$ and $G_2(p_2, q_2) = (V_2, E_2)$ can be defined in various ways. Within the product, the vertices will be denoted by $(a, b) : a \in V_1$ and $b \in V_2$, and the edges will be denoted by $((a, b), (a', b')) : a, a' \in V_1$ and $b, b' \in V_2$. Let us recall the following definitions of various products of graphs.

Definition 1. Cartesian product $G_1 \times G_2$: $V(G_1 \times G_2) = V_1 \times V_2 = \{(a, b) : a \in V_1 \land b \in V_2\}$ and $E(G_1 \times G_2) = \{((a, b), (a', b')) : a, a' \in V_1 \land b, b' \in V_2 \land ((a = a' \land (b, b') \in E_2) \lor (b = b' \land (a, a') \in E_1))\}.$

Definition 2. Lexicographic product $G_1 \bullet G_2$: $V(G_1 \bullet G_2) = V_1 \times V_2 = \{(a,b) : a \in V_1 \land b \in V_2\}$ and $E(G_1 \bullet G_2) = \{((a,b),(a',b')) : a,a' \in V_1 \land b,b' \in V_2 \land ((a=a' \land (b,b') \in E_2) \lor (a,a') \in E_1)\}.$

Definition 3. Tensor product $G_1 \otimes G_2$: $V(G_1 \otimes G_2) = V_1 \times V_2 = \{(a, b) : a \in V_1 \land b \in V_2\}$ and $E(G_1 \otimes G_2) = \{((a, b), (a', b')) : a, a' \in V_1 \land b, b' \in V_2 \land (a, a') \in E_1 \land (b, b') \in E_2\}.$

Definition 4. Normal product $G_1 \star G_2$: $V(G_1 \star G_2) = V_1 \times V_2 = \{(a, b) : a \in V_1 \land b \in V_2\}$ and $E(G_1 \star G_2) = E(G_1 \times G_2) \cup E(G_1 \otimes G_2)$, where $E(G_1 \times G_2)$ and $E(G_1 \otimes G_2)$ are the edge-sets of the Cartesian and conjunctive products of G_1 and G_2 respectively.

The tensor product (also called the Kronecker product [20], categorical product [12] and conjunctive product) is one of the least understood graph products. The lexicographic product is also known as composition and was introduced by Sabidussi [13]. Note that of the four products, only the lexicographic product is not commutative.

We conclude this section by giving a few examples where the product of two graphs is A-magic, but the individual factors are not A-magic.

Example 1. Consider the graph $G = P_4 \times P_4$. Figure 1 shows that G is Z_k -magic, for $k \neq 2$. However, P_4 is not Z_k -magic, for any k.

Figure 1. $G = P_4 \times P_4$.

Example 2. Consider the graph $G = P_4 \bullet N_2$, where N_2 is the null graph of order two (Figure 2). Since G is an eulerian graph with an even number of edges, we can label the edges of the eulerian circuit with a, -a, a, -a, ..., a, -a, where $a \in A^*$. Thus, G is A-magic. Clearly, P_4 and N_2 are not A-magic.

Figure 2. $G = P_4 \bullet N_2$.

Example 3. Consider the graph $G = P_4 \otimes P_4$. Figure 3 shows that G is Z_{2k+1} -magic, for all k. Clearly, P_4 is not Z_{2k+1} -magic.

Figure 3. $G = P_4 \otimes P_4$.

3 Products of group-magic graphs

Let us now analyze the A-magic property of the resulting graph obtained from the product of two A-magic graphs. For A-magic graphs $G_1(p_1, q_1)$ and $G_2(p_2, q_2)$, let L_1 and L_2 represent their respective A-magic labelings. Furthermore, let w_1 and w_2 be the constants induced on V_1 and V_2 respectively, by these labelings. Thus, we have $\sum_{a'} L_1(a, a') = w_1$ for any vertex $a \in V_1$ and $\sum_{b'} L_2(b, b') = w_2$ for any vertex $b \in V_2$.

To illustrate the theorems in this section, we will use the labeled graphs found in Figure 4.

Figure 4. Z_7 -magic labelings of G_1 and G_2 .

Theorem 1. Let A be an abelian group. If $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are A-magic graphs, then the Cartesian product $G_1 \times G_2$ is A-magic.

Proof. Let L denote the labeling assignment of $E(G_1 \times G_2)$, defined by:

$$L((a,b),(a',b')) = \begin{cases} L_1(a,a'), & \text{if } b = b'. \\ L_2(b,b'), & \text{if } a = a'. \end{cases}$$

Then, the induced labeling of every vertex (a, b) is:

$$\sum_{a',b'} L((a,b),(a',b')) = \sum_{b'} L((a,b),(a,b')) + \sum_{a'} L((a,b),(a',b))$$

$$= \sum_{b'} L_2(b,b') + \sum_{a'} L_1(a,a')$$

$$= w_2 + w_1.$$

Figure 5. Z_7 -magic labeling of the Cartesian product $G_1 \times G_2$.

Theorem 2. Let A be an abelian group. If $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are A-magic graphs, then both the lexicographic products $G_1 \bullet G_2$ and $G_2 \bullet G_1$ are A-magic.

Proof. We will show that $G_1 \bullet G_2$ is A-magic. Let L denote the labeling assignment of $E(G_1 \bullet G_2)$, defined by:

$$L((a,b),(a',b')) = \begin{cases} L_2(b,b'), & \text{if } a = a'. \\ L_1(a,a'), & \text{otherwise.} \end{cases}$$

Then, the induced labeling of every vertex (a, b) is:

$$\sum_{a',b'} L((a,b), (a',b')) = \sum_{\substack{a',b' \\ a=a'}} L((a,b), (a',b')) + \sum_{\substack{a',b' \\ a\neq a'}} L((a,b), (a',b'))$$

$$= \sum_{b'} L_2(b,b') + \sum_{a'} \sum_{b'} L_1(a,a')$$

$$= w_2 + \sum_{a'} \{p_2 \cdot L_1(a,a')\}$$

$$= w_2 + p_2 \cdot w_1.$$

A similar argument is used to show that $G_2 \bullet G_1$ is A-magic.

Figure 6. Z_7 -magic labeling of the lexicographic product $G_1 \bullet G_2$.

Theorem 3. Let A be an abelian group, underlying a commutative ring R. If there exist A-magic labelings $L_1: E(G_1) \to A^* \cap U(R)$ and $L_2: E(G_2) \to A^* \cap U(R)$ for graphs G_1 and G_2 respectively, then the tensor product $G_1 \otimes G_2$ is A-magic.

Proof. Let L denote the labeling assignment of $E(G_1 \otimes G_2)$, defined by:

$$L((a,b),(a',b')) = L_1(a,a') \cdot L_2(b,b').$$

Then, the induced labeling of every vertex (a, b) is:

$$\sum_{a',b'} L((a,b),(a',b')) = \sum_{a'} \sum_{b'} \{L_1(a,a') \cdot L_2(b,b')\}$$

$$= \sum_{a'} L_1(a,a') \cdot \sum_{b'} L_2(b,b')$$

$$= w_1 \cdot w_2.$$

Note that L assigns non-zero elements to $E(G_1 \otimes G_2)$, since the range of L_1 and L_2 are subsets of $A^* \cap U(R)$.

Corollary 1. Let A be an abelian group, underlying a field F. If $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are A-magic graphs, then the tensor product $G_1 \otimes G_2$ is A-magic.

Proof. This is an immediate consequence of Theorem 3.

Figure 7. Z_7 -magic labeling of the tensor product $G_1 \otimes G_2$.

Theorem 4. Let A be an abelian group, underlying a commutative ring R. If there exist A-magic labelings $L_1: E(G_1) \to A^* \cap U(R)$ and $L_2: E(G_2) \to A^* \cap U(R)$ for graphs G_1 and G_2 respectively, then the normal product $G_1 \star G_2$ is A-magic.

Proof. Note the following: $E(G_1 \star G_2) = E(G_1 \times G_2) \cup E(G_1 \otimes G_2)$ and $E(G_1 \times G_2) \cap E(G_1 \otimes G_2) = \emptyset$. Let L denote the labeling assignment of $E(G_1 \star G_2)$, defined by:

$$L((a,b),(a',b')) = \begin{cases} L_1(a,a'), & \text{if } b = b'. \\ L_2(b,b'), & \text{if } a = a'. \\ L_1(a,a') \cdot L_2(b,b'), & \text{otherwise.} \end{cases}$$

Then, the induced labeling of every vertex (a, b) is:

$$\begin{split} \sum_{a',b'} L((a,b),(a',b')) &= \sum_{b'} L((a,b),(a,b')) + \sum_{a'} L((a,b),(a',b)) \\ &+ \sum_{\substack{a'' \\ a' \neq a \\ b' \neq b}} \sum_{b'} L((a,b),(a',b')) \\ &= \sum_{\substack{b' \\ b' \neq b}} L_2(b,b') + \sum_{a'} L_1(a,a') \\ &+ \sum_{a'} L_1(a,a') \cdot \sum_{b'} L_2(b,b') \\ &= w_2 + w_1 + w_1 \cdot w_2. \end{split}$$

L assigns non-zero elements to $E(G_1 \star G_2)$, since the range of L_1 and L_2 are subsets of $A^* \cap U(R)$.

Corollary 2. Let A be an abelian group, underlying a field F. If $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ are A-magic graphs, then the normal product $G_1 \star G_2$ is A-magic.

Proof. This is an immediate consequence of Theorem 4.

Figure 8. Z_7 -magic labeling of the normal product $G_1 \star G_2$.

References

- [1] M. Doob, On the construction of magic graphs, Proc. Fifth S.E. Conference on Combinatorics, Graph Theory and Computing (1974), 361-374.
- [2] M. Doob, Generalizations of magic graphs, J. Combin. Theory Ser. B 17 (1974), 205-217.
- [3] M. Doob, Characterizations of regular magic graphs, *J. Combin. Theory* Ser. B **25** (1978), 94–104.
- [4] M.C. Kong, S-M Lee and H. Sun, On magic strength of graphs, Ars Combinatoria 45 (1997), 193–200.

- [5] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970), 451-461.
- [6] S-M Lee, F. Saba, E. Salehi and H. Sun, On the V_4 -group magic graphs, Congressus Numerantium **156** (2002), 59-67.
- [7] S-M Lee, F. Saba and G.C. Sun, Magic strength of the k-th power of paths, Congressus Numerantium 92 (1993), 177–184.
- [8] S-M Lee and E. Salehi, Integer-magic spectra of amalgamations of stars and cycles, Ars Combinatoria 67 (2003), 199–212.
- [9] S-M Lee, Hugo Sun and Ixin Wen, On group-magic graphs, J. Combin. Math. Combin. Computing 38 (2001), 197-207.
- [10] S-M Lee, L. Valdes and Yong-Song Ho, On integer-magic spectra of trees, double trees and abbreviated double trees, J. Combin. Math. Combin. Computing 46 (2003), 85–96.
- [11] R.M. Low and S-M Lee, On group-magic eulerian graphs, *J. Combin. Math. Combin. Computing* **50** (2004), 141–148.
- [12] D.J. Miller, The categorical product of graphs, Canad. J. Math. 20 (1968), 1511–1521.
- [13] G. Sabidussi, The lexicographic product of graphs, Duke Math. J. 28 (1961), 573-578.
- [14] J. Sedlacek, On magic graphs, Math. Slov. 26 (1976), 329–335.
- [15] J. Sedlacek, Some properties of magic graphs, in Graphs, Hypergraph, and Bloc Syst. 1976, Proc. Symp. Comb. Anal., Zielona Gora (1976), 247–253.
- [16] R.P. Stanley, Linear homogeneous diophantine equations and magic labelings of graphs, Duke Math. J. 40 (1973), 607–632.
- [17] R.P. Stanley, Magic labeling of graphs, symmetric magic squares, systems of parameters and Cohen-Macaulay rings, *Duke Math. J.* **40** (1976), 511–531.
- [18] G.W. Sun and S-M Lee, Construction of Magic Graphs, Congressus Numerantium 103 (1994), 243–251.
- [19] W.D. Wallis, Magic Graphs, Birkhauser Boston, (2001).
- [20] P.M. Weichsel, The Kronecker product of graphs, *Proc. Amer. Math. Soc.* 13 (1962), 47–52.