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Abstract

In a given graph G = (V, E), a set of vertices S with an assignment of
colours to them is a defining set of the vertex colouring of G, if there exists
a unique extension of the colours of S to a x(G)—colouring of the vertices
of G. A defining set with minimum cardinality is called a minimum
defining set (of vertex colouring) and its cardinality, the defining number,
is denoted by d(G, x). In Combinatorics, Graph Theory and Algorithms
(1999), 461-467, Mahdian et al. have studied d(C,, X K3, x), d(Cr X K4, X)
and d(Cy, x Ks,x). They have conjectured:

(a) d(Cr, x K5,x) =2m + 1 for m odd; and
(b) d(Cp x Kq,x) =m+ 1.

In this paper we disprove conjecture (a) for m (> 5) odd and prove
conjecture (b).

1 Introduction

A c-colouring (proper c-colouring) of a graph G is an assignment of ¢ different colours
to the vertices of G, such that no two adjacent vertices receive the same colour. The
vertex chromatic number of a graph G, denoted by x(G), is the minimum number
¢ for which there exists a c¢-colouring of G. In a given graph G = (V,E), a set
of vertices S with an assignment of colours to them is called a defining set of the
vertex colouring of G if there exists a unique extension of the colours of S to a x(G)-
colouring of the vertices of G. A defining set with minimum cardinality is called a
minimum defining set (of vertex colouring) and its cardinality, the defining number,
is denoted by d(G, x); (see [6,7]). The concept of defining set has been studied, to
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some extent, for block design and also under another name, critical set, for latin
squares; (see [1,3,9,10]). In [6, 8] this concept is extended to colourings of graphs.
Let G be a graph and let L(v) denote a list of colours available for a vertex v of G.
A list colouring from the given collection of lists is a proper colouring ¢ such that
the colour of vertex v, ¢(v), is in L(v) (see [2]). Defining sets of vertex colourings are
closely related to the list colouring, (see [7]).

In [5] Mahdian et al. proved the following result.
Theorem A.

(1) d(Cm x K3,x) = [3] + 1.

(2) m <d(Cp X K4y x) <m+1.

(3) d(Cpn, x K5,x) = 2m for m even and 2m < d(Cp, X K5, x) < 2m+1 for m odd.

They have conjectured:

(a) d(Cp, x K5, x) = 2m+ 1 for m odd; and

(b) d(Cp x K4, x) =m+ 1.

The following will be useful.

Theorem B. [8] For any graph G = (V(G), E(G)) such that x(G) < n, we have
d(G x K, x) 2 |[V(G)|(n — 1) = 2| E(G))|.

Definition [4] A graph G with n vertices is called a uniquely 2—list colourable graph,
if there exists Si, Sa, -+ Sy, a list of colours on its vertices, each of size 2, such that
there is a unique colouring for G from this list of colours.

Theorem C. [4] A connected graph is uniquely 2—list colourable if and only if at
least one of its blocks is not a cycle, a complete graph, or a complete bipartite graph.

Let G = C),, x K,,. Each subgraph K, of G is called a row and each subgraph C,, of
G is called a column. It is well-known that x(G) = n when n > 3.

2 d(Cm X K57X)

In this section we disprove conjecture (a); in other words we show that d(G =
Cm % K5, x(G@)) = 2m for odd integers m > 5. Note that all vertices in arrays of this
section are labelled by their colours. The non-indexed labels in the arrays denote
the defining set and the indexed labels are the vertices, whose colours are uniquely
determined by the defining set, while the indices denote the order of colouring of
these vertices.
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Lemma 2.1. d(Cs x K5,x) = 10 and d(C7 x Ks5,x) = 14.

Proof. For m =5 consider the array

2 1 4y 5 3
1, 5 3 4 2
5 2% 49 35 1 |,
]-11 4 512 2 310
413 214 ]-15 3 5

where the cardinality of the defining set (non-indexed labels) is 10.

For m = 7 consider the array

[ 2 1 43 31 by ]
1, b5 3 4 25
5 2% 49 35 1
lin 4 512 2 3y
45 113 214 35
o918 2 4 1l 317
| 120 3190 221 5 4

where the cardinality of the defining set (non-indexed labels) is 14.

Theorem 2.1. Let G = (Cy, x Kj) then d(C,, x K3, x) = 2m, for m (> 5) odd.

155

Proof. For m =5 and m = 7, the result follows from Lemma 2.1. If m > 9 is an odd

number then m = 4n + 5 or m = 4n + 7 for some positive integer n.

2 1 53 41 3
15 44 3 5 2
39 2 5 47 1
Iin 410 212 3 5

For m = 4n + 5 consider the colouring

for 04 X K5.

Now we take the defining set of Cy X K5 n times and then combine this with the

defining set for (Cs x K3) as in array X overleaf.

Then, as the array X shows, the cardinality of the defining set of (Cypqs X Kj5) is

(4n +5)5 — (12n + 15) = 8n + 10 = 2m.

2 1 3, 4, by
15 44 5 3 2
5y 2 35 4; 1
1in 310 212 5 4

For m = 4n + 7 consider the colouring

for C4 X K5.

Now take the defining set of Cy X K5 n times and then combine this with the defining

set for (C7 x Kj) as given in array Y overleaf.
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15
39
11

]-17
321

2
Lia(n—1)+5
312(n=1)+9
Lisn—1)+11
2

112n+4

5

Lignin1
4197113

123

2
Lig(n—1)+5
912(n—1)49
Lig(n—1)111
2

112n+4
5
112n+11
412n+15
51271—0—18
112n+20
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1
419(n—1)+4
2

412(n-1)+10
1

512n+7

219046
4

2127L+14

1
419(n—1)+4
2
312(n—1)+10
1

d12n46
219048

4

Liznt1s
2

312n+19

912(n—1)+3
3
912(n—1)+8
21271
412n+2

3

419749
912n+12
Liont1s

32
5

319(n—1)+2
5
312(n—1)+8
2127L
4127L+3

3

412049
d1ont12
2120414

4

2127L+21

419(n-1)41
5
412(n-1)47
3

d12n+1
4

312n+5
2
3

4y
3
4;
5

dir(n-1)11
3
d19(n—1)+7

5

312n+1
4

312047
2
3

112n+16

5

32
26

314
218

312(n-1)+2
212(n-1)+6
1

5

312043
219048

1

312n+10

5

93
26
1

4
915
218
1

4

912(n-1)+3
212(n—1)+6
1

4

D12n+2
212045

1

312n+10

5

312n417
4
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Thus, as the array Y shows, the cardinality of the defining set of (Cynq7 X Kj) is
(4n +7)5 — (12n + 21) = 8n + 14 = 2m. O

As an immediate result we have

Corollary 2.2. The conjecture (a) for m > 5 is disproved.

3 d(Cm X K47X)

In this section we prove conjecture (b); in other words we prove that d(G = C,, X
K4, x(G)) =m+1.

By (2) of Theorem A, we have m < d(Cp, x K4, x) < m+ 1. We show that d(Cp, x
K47X) # m.

Lemma 3.1. Let G = C), X Ky, then each row has at least one vertex in the defining
set of G.

Proof. On the contrary suppose that one of the rows has no vertex in the defining
set. So if all of the vertices of the other rows have been coloured, then by Theorem
C the vertices of this row cannot be uniquely coloured. a

Theorem A implies that the defining number d(C,, x Ky, x) > m.

Lemma 3.2. Let G = Cp, x Ky and d(G,x) = m. If v and u are two adjacent
vertices of the same column of G, then they cannot be simultaneously in the defining

set of G.

Proof. Suppose that m > 3 (for m = 3 it is easily verified). On the contrary, assume

that v,u are in a defining set and all vertices of the rows of G except the rows

including vertex v and vertex u have already been coloured. So there remain two

rows in which six vertices are colourless; these are shown with a (xs) in the following
* x *x

* ok x }

. v
diagram: [ v

Without loss of generality, let the colours of v and u be ¢(v) = 1 and c¢(u) = 2. So
four vertices (xs) have two choices for colouring and the others have three choices for
colouring. By colouring the vertices of all of the rows except the rows including v
and u, one of the following arrays of the set A or B must occur. Note that for m = 4
one of the arrays of the set B occurs and for m > 4 one of the arrays of the set B or
the set A occurs.

— N =N
DO X o
W X W
[ S o
— N =N
L * *
N ¥ o W
[ S o
— N =N
N e
W * W
[N
W N RN
[ S S
B ok X W
[N
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21 3 4 21 3 4 31 2 4 31 2 4
1 % x =% 1 x x % 1 x x % 1 % x %
2 % % x| 2 % % x| 2 % x x| 2 x x x|’
|13 1 24| [ 3214 [13 24| [123 4]
(31 247 [31 247 [31 247 [3 12 4]
1 % x =% 1 x x % 1 x x % 1 % x %
2 % % * [T 2 x ok x| 72 x x x| 2 % % x|’
|1 42 3| [4321] [4123]| [413 2]
(31 247 [3 1247 [31 247 [3 12 4]
1 % x =% 1 x x % 1 x x % 1 % x %
2 % % * [T 2 x ok x| 72 x x x| 2 % % x|’
|13 1 24| [ 3142 [3421] [3412)]
312 4 31 2 4
1 % x =% 1 x * %
2 % * * [T 2 x x %
3 214 3 2 41
(2 1 3 47 [2 13 47 [2 1347 [2 1 3 4]
B — 1 % x % 1 % x % 1 % x % 1 % x %
2 % % k[T 2 x x x| 72 x x x| 2 % x x|
112 43| [1342] |1423] |3421]
(2 1 347 [2 1347 [3 1247 [31 2 4]
1 x % % 1 x % % 1 x % * 1 x % %
2 % % * [ 712 x x x| 2 x x x| 2 % % x|
1341 2| [3241] [1342] [124 3]
31 2 4 312 4 312 4 312 4
1 x * * 1 x * * 1 x * 1 x *
2 % % x| 72 % x x[7]2 % x x| 2 x x *
1 4 3 2 4 2 31 4 21 3 4 3 1 2

The other cases are similar, by the colours of v and u. It is easily verifiable that the
non-coloured vertices in all arrays are not uniquely colourable. This shows that the
two adjacent vertices v and u in the same column cannot be simultaneously in the
defining set of G while d(G, x) = m. O

By the previous lemmas we have:

Corollary 3.1. Let G = Cp, X Ky and d(G, x) = m; then the vertices in the defining
set are independent.

Let G = Cp, X K,. We show that, if d(G, x) = m, then the non-coloured vertices of
every three consecutive rows of G cannot be uniquely coloured, and then all of the
non-coloured vertices of G cannot be uniquely coloured.
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Proposition 3.2. Let G = C,, X K4 and d(G, x) = m; then every three consecutive
rows of G admit two different colourings.

Proof. There must be one of the following arrays for three consecutive rows in G when
we assign (one, two or three) different colours to the three independent vertices of
these rows which are in the defining set.

(1 « x ] [1 = % 1 *x x * 1 — 1 —
* 2 * * * 2 * % 2 *x x * 1 % x * 1 % x
|3 % *x x| |2 x x x| |1 x x x| [2 % % x| [ 1 % % x|
(1 » » x| [1 » » ] [1 « +x][1 * ] [1 _—
* 2 x x * 2 K x * 2 K x * 1 * x * 1 * x
_**3*_ _**2*_ _**1*_ _**2*_ _**1*_

Note that in every array except the third and the fifth, the first row and the third
row can be adjacent.

For each array, there exist at least two different extensions as follows.

[1 x » ] [1 4237 [143 2] [1 % x * ] [1 43 27 [13 2 4]
* 2 % x = 14231, 4213 ;. * 2 % x =142 134G, 14213 ..
_3***_ _3142_ _3124_ _2***_ _2341_ _2431_
[1 x » ] [1 4327 [13 2 4] [1 % x * ] [1 4 3 2 13 2 4
2 % % | — 142131, 4213 * 1 » % l—141231 14132
1 P 13 2 4 14 3 2 L 2 « * 2 3 41 2 41 3
1 * x 12 3 4 14 2 3 [ 1 * x 13 2 4 14 2 3
1 » x| — 131421 12134 * 2 x % l—142131, 13214
1 % * * 1423 13 4 2 | * 3 x 2 431 41 3 2
[1 x » ] [1 4327 [13 4 2] [1 x » ] [1 34 27 [1 43 2]
* 2 % x yo— 13 214G, 14213 . * 2 % x = 14231, 13241 ..
| * * 2 * | L4321 [3 12 4] | * « 1 * | L2 4 13] [231 4]
[1 x » ] [1 3427 [143 2 1 % x * | 14327 [132 4]
* 1 % 37— 12134, 12143 . * 1 % 7= 12143, 14132
* ok 2 x| 342 1] [4321 | | = 1 * 1321 4 2 41 3

These arrays show that every three consecutive rows of G admit two different colour-
ings. By using induction, this is true for all rows. O

Theorem 3.3. If G = (C,, x Ky4) then d(G,x) =m+ 1.

Proof. By Lemma 3.1 there is at least one vertex in the defining set of G for each
row, so d(G, x) > m. By Lemma 3.2 the m vertices of the m rows are independent.
By Proposition 3.2, m independent vertices cannot form a defining set. So we have
at least m + 1 vertices in the defining set of G. Therefore, by Theorem A, d(G, x) =
m+ 1. d

As an immediate result we have,

Corollary 3.4. The congecture (b) is proved.
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