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Abstract

“Daisy, Daisy, give me your answer, do!” [10]

For any positive integer n, the units of Zn are those elements of Zn \ {0}
that are coprime with n. The number of units in Zn is given by
Euler’s totient function φ(n). If n is odd, a daisy chain for the units
of Zn is obtained by arranging the units of Zn on a circle in some
order [a1, a2, . . . , aφ(n)] such that the set of differences bi = ai+1 − ai

(i = 1, 2, . . . , φ(n), with aφ(n)+1 = a1) is itself the set of units. Various
constructions are given for daisy chains for odd values of n that have
the prime-power decompositions pi (i ≥ 1), piqj (i ≥ 1, j ≥ 1) and pqr
(where p, q and r are distinct odd primes). The paper’s emphasis is on
values of n lying in the range 1 < n < 300, within which every prime-
power decomposition of an odd value n is of one of the types just given.
The concept of fertile daisy chains is defined, and the link between daisy
chains and terraces is briefly outlined.

1 Introduction

This paper introduces the combinatorial concept of a daisy chain for the units of Zn

where n is odd. If n is an odd prime, a daisy chain for the units of Zn is a directed
R-terrace for Zn [15, p. 252] and is equivalent to a total cycle in the sense of Azäıs
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[4]. (In these circumstances, a daisy chain provides a partition of the edges of 2Kn

into cycles of length n − 1, invariant under a group acting regularly.) However, for
odd values of n that are not prime the concept of a daisy chain seems to be new.
Although this new approach arose in connnection with the construction of power
sequence terraces [1, 2, 3], we now introduce it independently of its provenance, with
a brief illustration of the link between daisy chains and terraces in the final section
of this paper.

Any positive integer n has a prime-power decomposition n = piqjrk · · · (i, j, k ≥ 1)
where p, q, r, . . . are finitely many distinct primes. In standard number-theoretic
terminology, the units of the corresponding group Zn are those elements of Zn \ {0}
that are coprime with n (e.g. [14, p. 84]). The number of units in Zn is given by
Euler’s totient function

φ(n) = (p − 1)pi−1(q − 1)qj−1(r − 1)rk−1 · · ·

(e.g. [14, p. 87]). For n odd, we define a daisy chain for the units of Zn to be an
ordered arrangement [a1, a2, . . . , aφ(n)] of the units on a circle, such that the set of
differences bi = ai+1 − ai (i = 1, 2, . . . , φ(n), with aφ(n)+1 = a1) is itself the set of
units. Here, as in [15], we use square brackets to indicate a cycle. (The terminology
daisy chain has had other mathematical usages, but these were in mathematical
areas so far removed from the present context that no confusion should arise.)

For convenience, we write a displayed daisy chain in linear form, without brackets
and commas:

→֒ a1 a2 a3 . . . aφ(n) ←֓ (mod n) .

Here the symbols →֒ and ←֓ are reminders that the two ends of the linear form are
joined. We always regard the entry after the symbol →֒ as being a1.

If n is an odd prime, the units of Zn comprise all the elements of Zn \ {0}. Thus

→֒ 1 2 5 4 6 3 ←֓ (mod 7)

is a daisy chain for the units of Z7, and

→֒ 1 2 4 9 6 10 5 8 7 3 ←֓ (mod 11)

is a daisy chain for the units of Z11. These daisy chains were found by trial-and-
error, but this paper gives a succession of systematic constructions for daisy chains.
Each construction involves at least one sequence of successive powers of a unit of Zn,
so our approach is similar to that used in [1, 2, 3] for constructing power-sequence
terraces for Zn. Our emphasis is on values of n lying in the range 1 < n < 300, so
we consider only the cases n = pi (i ≥ 1), n = piqj (i ≥ 1, j ≥ 1) and n = pqr where
p, q and r are distinct odd primes.

For values of n that are odd prime powers, primitive roots of n can be used in
constructing daisy chains (see Theorem 2.1 below). However, other odd integers
greater than 1 do not have primitive roots. For these other values of n, the “next
best thing” to a primitive root is a primitive λ-root of n, which is a unit of Zn that
is of maximum order [8, 9], that order being given by Carmichael’s λ-function. As
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the literature of primitive λ-roots is sparse, notes on them have been placed on the
Web [7]. As in those notes, we write λ(n) for the order of a primitive λ-root of n,
and we write ξ(n) = φ(n)/λ(n). For any composite odd n, the value of ξ(n) is even
[7, §6]. A primitive λ-root x is inward if x− 1 is a unit of Zn. A primitive λ-root x
is negating if −1 ∈ 〈x〉.

We write Un for the set of units of Zn. Thus |Un | = φ(n). If z ∈ Un, we write
ordn(z) for the order of z, modulo n.

2 n an odd prime power

If n is an odd prime [not prime power], a daisy chain for Un is also, as stated above,
a directed R-terrace for Zn, for which the cycle of differences is an R-sequencing of
Zn [13], a concept introduced in [16]. Such a daisy chain can therefore be obtained
from the construction given by Friedlander, Gordon and Miller [11]:

→֒ a1 a2 . . . ar ar + r ar−1 + r . . . a1 + r ←֓ (mod n)

where r = (n− 1)/2 and

ai =

{
(i + 1)/2 if i is odd,
r + 1− i/2 if i is even.

If n ≡ 3 (mod 4), the sequence of differences for this daisy chain is the same as that
obtained for one of the ‘total cycles’ constructed by Azäıs [4]; if n ≡ 1 (mod 4), the
two sequences of differences become the same if the Azäıs cycle is reversed.

Also, if n is a prime of the form 12s + 7, a daisy chain (here again, a directed
R-terrace) can be obtained as the log of a circuit of a current graph used to obtain
a triangular rotation of Kn. The rotation scheme given by Ringel [18, p. 26] yields
the following daisy chain for Z19:

→֒ 1 11 14 13 15 3 8 9 7 4 17 10 18 5 16 12 2 6 ←֓ ,

whereas the recipe given by Youngs [19, again p. 26] yields

→֒ 1 3 7 6 14 4 16 17 9 5 11 2 18 12 15 10 8 13 ←֓ .

Further examples for primes n = 12s + 7 (s = 1, 2, 3, 5, 6) appear in [6, 12].
However, if n = pi (i > 1) where p is prime, a daisy chain for Un is not a

directed R-terrace for Zn, nor can the above constructions be tweaked to produce
daisy chains. Accordingly, we now give some seemingly new constructions for daisy
chains for Un where n is an odd prime power n = pi (i ≥ 1), the number of units
being |Un | = φ(n) = (p− 1)pi−1.

Theorem 2.1 Let n be an odd prime power, and let x be a primitive root of n. Write
2π = φ(n) = ordn(x). Then

→֒ x0 x1 x2 . . . x2π−1 ←֓ (mod n)

is a daisy chain for Un.
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Proof: Trivial. �

Example 2.1: If we take n = 25 then 3 is a primitive root of n and we have π = 20.
Taking x = 3 gives us the following daisy chain for U25:

→֒ 1 3 9 2 6 18 4 12 11 8 24 22 16 23 19 7 21 13 14 17 ←֓ .

Theorem 2.2 Let n be an odd prime power, and again write 2π = φ(n). Let y be a
unit of Zn that is of order π. Suppose that there is a further unit c in Zn such that
c /∈ 〈y〉 and such that exactly one of c− 1 and y − c lies in 〈y〉 and the other lies in
Un \ 〈y〉. Then

→֒ y0 cy0 y1 cy1 y2 cy2 . . . yπ−1 cyπ−1 ←֓ (mod n)

is a daisy chain for Un.

Proof: The differences b1, b3, . . . , bn−2 are (c− 1)y0, (c− 1)y1, . . . , (c− 1)yπ−1.
Likewise, the differences b2, b4, . . . , bn−1 are (y− c)y0, (y− c)y1, . . . , (y− c)yπ−1.
The result follows at once. �

Note 2.2: If we choose c so that c2 = y, we obtain a special case of Theorem 2.1.

Example 2.2(a): For n = 11, take y = 9 and c = 2 in Theorem 2.2. Then c and
y − c are quadratic non-residues, and c − 1 is a quadratic residue. Thus we obtain
the following daisy chain for U11:

→֒ 1 2 9 7 4 8 3 6 5 10 ←֓ .

Example 2.2(b): For n = 13, which has π = 6, take y = 4 and c = 8 in Theorem
2.2. Then c and c− 1 are quadratic non-residues but y− c is a quadratic residue, so
we obtain the following daisy chain for U13:

→֒ 1 8 4 6 3 11 12 5 9 7 10 2 ←֓ .

Here, as π is even and yπ/2 ≡ −1 (mod n), the difference at any position is the
negative of the difference π positions later.

Example 2.2(c): For n = 25, take y = 4 and c = 3 in Theorem 2.2. Then
c − 1 = 2 ∈ Un \ 〈4〉, whereas y − c = 1 ∈ 〈4〉. Thus we obtain the following daisy
chain for U25:

→֒ 1 3 4 12 16 23 14 17 6 18 24 22 21 13 9 2 11 8 19 7 ←֓ .

Example 2.2(d): For n = 49 we can take (y, c) = (9, 17) in Theorem 2.2.

We now come to a theorem that has analogues for values of n that are not prime
powers. Each daisy chain obtained from this theorem (similar to Theorem 4.3 below)
is made up of π segments each comprising ω entries where π is some integer satisfying
2 < π < (n− 1)/2. For clarity, the segments of the printed daisy chain are separated
by vertical bars, referred to henceforth as fences.
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Theorem 2.3 Let n be an odd prime power. Suppose that φ(n) = πω where π and
ω are coprime (2 < π and 2 < ω), so that exactly one of π and ω is odd. Suppose
further that there are units x and z = (x + 1)−1 in Zn such that ordn(x) = π and
ordn(z) = ω. Then

→֒ x0z0 x0z1 . . . x0zω−1 | x1z0 x1z1 . . . x1zω−1 |

· · · | xπ−1z0 xπ−1z1 . . . xπ−1zω−1 | ←֓ (mod n)

is a daisy chain for Un.

Proof: Label the segments, in the above order, as S1, S2, . . . . We show that the
difference 1 − zω−1 that is missing from S1 equals the difference x2 − xzω−1 across
the second fence:

(1− zω−1)− (x2 − xzω−1) = 1− z−1 − x2 + xz−1

= (x − 1)[z−1 − (x + 1)]

≡ 0 (mod n) . �

Coverage of Theorem 2.3:
In the range 1 < n < 300, Theorem 2.3 can be used to obtain daisy chains with
parameters as follows:

n π ω x
13† 4 3 8
25 5 4 6
29† 7 4 16
37† 4 9 6
41 5 8 37
53† 4 13 23
61† 4 15 11

5 12 20
71* 5 14 25

7 10 45
89 8 11 77
97 32 3 34

101† 4 25 91
113 16 7 48

n π ω x
125 25 4 56
139* 6 23 43

46 3 95
149† 37 4 104
157 12 13 107
173† 4 43 80
181† 9 20 73

45 4 161
191* 10 19 152

38 5 38
5 38 184

19 10 6
197† 49 4 182
199* 9 22 180

11 18 18

n π ω x
223* 6 37 40

74 3 182
229 19 12 17

76 3 93
233 29 8 135
239* 14 17 215

34 7 23
241 5 48 87

80 3 224
269† 67 4 81
277 92 3 159
283* 6 47 239

94 3 43
293† 73 4 137

† n ≡ 5 (mod 8); 2 is a primitive root of n

∗ n ≡ 3 (mod 4); the two x-values in each pair of daisy chains sum to n− 1

Example 2.3(a): For n = 13 we can use x = 8 in Theorem 2.3 to obtain the
following daisy chain for U13:

→֒ 1 3 9 | 8 11 7 | 12 10 4 | 5 2 6 ←֓ .
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Example 2.3(b): For n = 25 we have φ(n) = 20 and we can use x = 6 in Theo-
rem 2.3 to obtain the following daisy chain for U25;

→֒ 1 18 24 7 | 6 8 19 17 | 11 23 14 2 |

16 13 9 12 | 21 3 4 22 ←֓ .

As a value x satisfying the conditions of Theorem 2.3 does not exist for all odd
prime powers n with φ(n) = πω where φ and ω are coprime and each greater than
2, we now weaken Theorem 2.3 by replacing z by a unit y with φ(n) ≤ π ordn(y).

Theorem 2.4 Let n be an odd prime power. Suppose that there are units x and
y of Zn such that Un = 〈x, y〉 with 1 < π = ordn(x) < |Un|/2 and ω = |Un |/π ≤
ordn(y) ≤ |Un |. If (x− yω−1)〈x〉 = (y − 1)yω−1〈x〉, then

→֒ x0y0 x0y1 . . . x0yω−1 | x1y0 x1y1 . . . x1yω−1 |

· · · | xπ−1y0 xπ−1y1 . . . xπ−1yω−1 | ←֓ (mod n)

is a daisy chain for Un.

Proof: The differences arising from the ℓ th segment (ℓ = 1, 2, . . . , π) are

xℓ−1y0(y − 1), xℓ−1y1(y − 1), . . . , xℓ−1yω−2(y − 1)

and the fence difference at the end of the ℓ th segment is xℓ−1(x − yω−1). The result
follows at once. �

Examples 2.4(a): For n = 25 we can take (x, y) = (6, 2) in Theorem 2.4. Then
π = ordn(x) = 5 and ordn(y) = |Un | = 20, so that ω = 4. With these values we
obtain the following daisy chain for U25:

→֒ 1 2 4 8 | 6 12 24 23 | 11 22 19 13 |

16 7 14 3 | 21 17 9 18 | ←֓ .

Example 2.4(b): In Theorem 2.4 take n = 31 (a value not covered by Theorem
2.3) with (x, y) = (8, 3). Then ordn(y) = |Un|, with π = 5 and ω = 6. We obtain
the following daisy chain for U31:

→֒ 1 3 9 27 19 26 | 8 24 10 30 28 22 | 2 6 18 23 7 21 |

16 17 20 29 25 13 | 4 12 5 15 14 11 | ←֓ .

3 n = piqj with ξ(n) = 2

Theorem 2.2 can readily be adapted as follows for n-values that satisfy n = piqj and
ξ(n) = 2.
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Theorem 3.1 Let n = piqj (i ≥ 1, j ≥ 1) where p and q are distinct odd primes
such that gcd((p− 1)pi−1, (q − 1)qj−1) = 2. Let y be a primitive λ-root of n. Write
π = ordn(y) = lcm((p − 1)pi−1, (q − 1)qj−1). Suppose that there is a further unit c
in Zn such that c /∈ 〈y〉 and such that exactly one of c− 1 and y − c lies in 〈y〉 and
the other lies in Un \ 〈y〉. Then

→֒ y0 cy0 y1 cy1 y2 cy2 . . . yπ−1 cyπ−1 ←֓ (mod n)

is a daisy chain for Un.

Proof: As before. �

Example 3.1(a): For n = 33 we have π = lcm(2, 10) = 10. To meet Theorem 3.1’s
requirements on c− 1 and y − c we need c ≡ 2 (mod 3) and y ≡ 1 (mod 3). These
requirements can be met by, for example, taking (y, c) = (28, 5), whence we obtain
the following daisy chain for U33:

→֒ 1 5 28 8 25 26 7 2 31 23 10 17 16 14 19 29 4 20 13 32 ←֓ .

Example 3.1(b): For n = 45 we can in Theorem 3.1 take n = p2q where p = 3 and
q = 5, and we have π = 12. We can, for example, take y = 13 and c = 2, as these
give us y − c /∈ 〈13〉.

Note 3.1: An important special case of Theorems 2.2 and 3.1 arises when we can
take y = c− 1 = −2. The daisy chain then becomes

→֒ +1 −1 −2 +2 +4 −4 −8 +8 . . . ←֓ (mod n) .

In the range 1 < n < 300 this choice can be used for the following values of n:

n prime, n ≡ 3 (mod 8):–
11, 19, 59, 67, 83, 107, 131, 139, 163, 179, 211, 227;

n composite:–
15, 21, 35, 39, 45, 55, 69, 75, 77, 87, 95,
111, 115, 141, 143, 159, 183, 203, 235, 253, 295, 299.

4 n = piqj with ξ(n) ≥ 4

For n-values that satisfy n = piqj, the case ξ(n) = 4 is sufficiently important and
sufficiently distinctive to deserve special attention, and it is for this case that we give
our next theorem. In this section of the paper we use the symbol x for a primitive
λ-root of n, which is why the first two theorems have the power of z, not x, constant
within a segment.

Theorem 4.1 Let n be an integer of the form n = piqj (i ≥ 1, j ≥ 1) where p and q
are distinct odd primes. Suppose that ξ(n) = 4. Suppose further that x is an inward
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primitive λ-root of n such that there is a unit z of Zn that satisfies z ≡ x−1 − 1 and
z4 ≡ +1 (mod n), with Un = 〈x, z〉. Write ordn(x) = π. Then

→֒ x0 x1 . . . xπ−1 | zx0 zx1 . . . zxπ−1 |

z2x0 z2x1 . . . z2xπ−1 | z3x0 z3x1 . . . z3xπ−1 | ←֓ (mod n)

is a daisy chain for Un.

Proof: As Theorem 2.3. �

Note 4.1(a): If x and z in Theorem 4.1 can take the values x1 and z1 respectively,
then they can also take the values x2 and z2 respectively, where x2 ≡ x1z1 ≡ 1− x1

and z2 ≡ z−1
1 (mod n). This is because, firstly,

z2 − (x−1
2 − 1) = z−1

1 − (x−1
1 z−1

1 − 1)

= z−1
1 [z1 − (x−1

1 − 1)]

≡ 0 (mod n) .

Secondly, the fact that x1 is a primitive λ-root of n implies that ordn(x2) = ordn(x1z1)
= ordn(x1), whence x2 is also a primitive λ-root of n. Thirdly, as x1 is inward, x1

and x1 − 1 are units; thus x2 and x2 − 1, given by 1 − x1 and −x1 respectively, are
units too, whence x2 is inward. No analogous result applies for Theorem 2.3.

Note 4.1(b): If (x, z) can take the values (x1, z1) and (x2, z2) as above, and z2
1 ≡

z2
2 ≡ −1 (mod n), then

z1 + z2 = z1 + z−1
1

= z−1
1 (z2

1 + 1)

≡ 0 (mod n) ,

so that z1 ≡ z−1
2 ≡ −z2 (mod n).

Coverage of Theorem 4.1: If n = pq in Theorem 4.1 we have ξ(n) = gcd(p − 1,
q − 1) = 4, whence p and q must both be congruent to 1, modulo 4, whereas they
cannot both be congruent to 1, modulo 8. For many such n-values, Theorems 8.5
and 8.6 of [7] provide admissible duples (x, z) with z2 ≡ −1 (mod n). However, we
can also have z2 6≡ −1 (mod n). The following table gives details of the possibilities
for n-values satisfying 1 < n < 300. Any value of x or z that generates −1 is marked
with an asterisk ∗. The four duples marked with a dagger † have z ≡ 2x (mod n),
which implies (z − 1)(x + 1) ≡ 0 (mod n). Pairs of duples that are related as in
Note 4.1(a) are listed together in square brackets.
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(x, z)

(n, p, q) z2 ≡ −1 (mod n) z2 ≡ +1 (mod p) z2 ≡ +1 (mod q)

(see Note 4.1(b)) z2 ≡ −1 (mod q) z2 ≡ −1 (mod p)

(65, 5, 13) [(24, 18∗), (42, 47∗)] [(3, 21), (63∗ , 31)] [(59, 53)†, (7∗, 27)]

(85, 5, 17)

{

[(79, 13∗), (7, 72∗)],

[(24, 38∗), (62, 47∗)]
— —

(145, 5, 29) [(67, 12∗), (79, 133∗)] [(38, 41), (108∗ , 46)] [(44, 88)†, (102∗, 117)]

(185, 5, 37) [(59, 68∗), (127, 117∗)] [(53, 6), (133∗ , 31)] [(19, 38)†, (167∗, 112)]

(205, 5, 41) — — —

(221, 13, 17)

{

[(211, 21∗), (11, 200∗)],

[(198, 47∗), (23, 174∗)]
— —

(265, 5, 53) [(224, 83∗), (42, 182∗)] [(148, 76), (118∗ , 136)] [(239, 213)† , (27∗, 107)]

Examples 4.1(a): For n = 65 we present in full three examples from Theorem
4.1, to give readers the feel of different types. First we give the U65 daisy chain for
(x, z) = (42, 47∗). In this, any 24 consecutive entries are the negatives of the next 24
consecutive entries:

→֒ 1 42 9 53 16 22 14 3 61 27 29 48 |
47 24 33 21 37 59 8 11 7 34 63 46 |

64 23 56 12 49 43 51 62 4 38 36 17 |
18 41 32 44 28 6 57 54 58 31 2 19 | ←֓ .

Now we give the daisy chain for (x, z) = (3, 21):

→֒ 1 3 9 27 16 48 14 42 61 53 29 22 |
21 63 59 47 11 33 34 37 46 8 24 7 |

51 23 4 12 36 43 64 62 56 38 49 17 |
31 28 19 57 41 58 44 2 6 18 54 32 | ←֓ .

Here, for any i, the entries in the first half of the ith segment are the negatives of the
respective entries in the second half of the (i + 2)th segment. Last, the daisy chain
for (x, z) = (7∗, 27):

→֒ 1 7 49 18 61 37 64 58 16 47 4 28 |
27 59 23 31 22 24 38 6 42 34 43 41 |

14 33 36 57 9 63 51 32 29 8 56 2 |
53 46 62 44 48 11 12 19 3 21 17 54 | ←֓ .

Here, a negating primitive λ-root is used, and the entries in the first half of any
segment are the negatives of the respective entries in the second half.

Example 4.1(b): The n-value 325 = 52 × 13, although outside the range 1 < n <
300 on which this paper concentrates, merits special attention. It is not covered by
Theorems 8.5 and 8.6 of [7] (see above) as these, like the table above, are restricted



306 D. A. PREECE

to n-values with n = pq. However, little imagination is needed to generalise the
Cameron-and-Preece theorems [7] to other cases with n = piqj and ξ(n) = 4. For
n = 325 we can, for example, take (x, z) = (172, 307∗) to obtain the following daisy
chain for U325:

→֒ 1 172 . . . 308
︸ ︷︷ ︸

60 terms

| 307 154 . . . 306
︸ ︷︷ ︸

60 terms

|

324 153 . . . 17
︸ ︷︷ ︸

60 terms

| 18 171 . . . 19
︸ ︷︷ ︸

60 terms

| ←֓ .

If the values (x, z) here are reduced modulo 65, we have (42, 47) as in the first of
Examples 4.1(a), but 472 6≡ −1 (mod 325).

We now generalise Theorem 4.1 to cover ξ(n) ≥ 4. As before, p and q are distinct
odd primes.

Theorem 4.2 Let n be a positive integer of the form n = piqj (i ≥ 1, j ≥ 1) such
that ω = ξ(n) ≥ 4. Let x be an inward primitive λ-root of n and let z be a unit of Zn

that satisfies Un = 〈x, z〉 and zω ≡ +1 (mod n). Suppose that (z−1)[z−(x−1−1)] ≡ 0
(mod n). Write ordn(x) = π. Then

→֒ z0x0 z0x1 . . . z0xπ−1 | z1x0 z1x1 . . . z1xπ−1 |

· · · | zω−1x0 zω−1x1 . . . zω−1xπ−1 | ←֓ (mod n)

is a daisy chain for Un.

Proof: As for Theorem 4.1. �

Note 4.2: If x and z in Theorem 4.2 can take the values x1 and z1 respectively, then
they can also take the values x2 and z2 respectively, where x2 = x1z1 and z2 = z−1

1 .
This is because, firstly,

(z2 − 1)[z2 − (x−1
2 − 1)] = (z−1

1 − 1)[z−1
1 − (x−1

1 z−1
1 − 1)]

= −z−2
1 (z1 − 1)(1 − x−1

1 + z1)

= −z−2
1 (z1 − 1)[z1 − (x−1

1 − 1)]

≡ 0 (mod n) .

Secondly, as in Note 4.1(a), the fact that x1 is a primitive λ-root of n implies that
x2 is a primitive λ-root too. Finally, as x1 is inward, x1 and x1 − 1 are units. Thus
x2, given by x2 = x1z1, is a unit. Also

0 ≡ (z1 − 1)[z1 − (x−1
1 − 1)]

(z1 − 1)x−1
1 [(x1z1 − 1) + x1]

(z1 − 1)x−1
1 [(x2 − 1) + x1] (mod n) ,
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whence x2 − 1 must also be a unit. Thus x2 is inward too.

Coverage of Theorem 4.2: Even for n-values in the range 1 < n < 300, with
ξ(n) > 4, there are many pairs (x, z) that satisfy the conditions of Theorem 4.2. So
the following table is restricted to possibilities that have z ≡ x−1 − 1 (mod n). An
asterisk ∗ again marks a value that generates −1, and a dagger † signifies z ≡ 2x
(mod n).

n ξ(n) duples (x, z)

63 = 32 · 7 6 [(44, 52), (20∗, 40)†], [(23, 10), (41∗, 19)†]

91 = 7 · 13 6 [(86, 17∗), (6, 75∗)], [(72, 66), (20, 40)†]

117 = 32 · 13 6 —

133 = 7 · 19 6 [(79, 31∗), (55, 103∗)], [(86, 115), (48∗, 96)†],

[(17, 46), (117, 107)], [(131, 65), (3∗, 88)]

171 = 32 · 19 6 [(17, 160), (155∗, 31)], [(74, 103), (98∗, 88)]

189 = 33 · 7 6 [(86, 10), (104∗, 19)†], [(23, 73), (167∗, 145)†],

[(149, 136), (41∗, 82)†]

217 = 7 · 31 6 [(195, 68∗), (23, 150∗)], [(164, 130), (54∗, 212)],

[(40, 37), (178∗, 88)]

247 = 13 · 19 6 [(60, 69∗), (188, 179∗)], [(136, 88∗), (112, 160∗)]

259 = 7 · 37 6 [(93, 38), (167, 75)†]

275 = 52 · 11 10 [(38 + 55s, 151 + 55s), (238− 55s, 51− 55s)]

(s = 0, 1, 2, 4)

[(8 + 55s, 171 + 55s), (268− 55s, 156− 55s)]

(s = 0, 1, 2, 3, 4)

279 = 32 · 31 6 [(71, 223), (209∗, 274)], [(257, 37), (23∗, 181)]

Example 4.2: For n = 63, taking (x, z) = (41∗, 19)† in Theorem 4.2 yields the
following daisy chain for U63:

→֒ 1 41 43 62 22 20 | 19 23 61 44 40 2 | 46 59 25 17 4 38 |

55 50 34 8 13 29 | 37 5 16 26 58 47 | 10 32 52 53 31 11 | ←֓ .

Theorem 4.2 requires the difference missing from the first segment of its daisy
chains to equal the difference across the second fence. Accordingly, if ξ(n) = 4, we
can read such a daisy chain backwards to obtain one where the difference missing from
the first segment equals the difference across the third fence. But if ξ(n) ≥ 6, can we
have a daisy chain as in Theorem 4.2 save that the first segment’s missing difference
equals the difference across the third fence? In general, yes. The congruence to be
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satisfied jointly by x−1 and z is now

(z − 1)[ (z + 1)(x−1 − 1) − z2 ] ≡ 0 (mod n) .

For n-values satisfying n = pq and ξ(n) = 6 in the range 1 < n < 300, daisy chains
can be obtained from the following duples (x, z) that satisfy the new congruence and
the other necessary conditions from Theorem 4.2; square brackets and asterisks are
used as before:

n (x, z)

91 = 7 · 13 [(2 + 7s, 40), (80 + 7s, 66)] (s = 0, 5, 8, 10)

133 = 7 · 19 [(2 + 7s, 96), (59 + 7s ∗, 115)] (s = 0, 7, 10, 11, 12, 18)

217 = 7 · 31 [(19 + 31s, 57), (215 + 31s ∗, 99)] (s = 0, 4)

247 =13 · 19 —

259 = 7 · 37 [(2 + 7s, 75), (150 + 7s, 38)]

(s = 0, 10, 11, 13, 18, 19, 23, 24, 28, 29, 34, 36)

Likewise, for n = 275, which has ξ(n) = 10, we have found daisy chains as in Theorem
4.2 save that the first segment’s missing difference is equal to the difference across
either the 4th or 5th fence.

We now reverse the roles of x and z in Theorem 4.1 to give the following:

Theorem 4.3 Let n be a positive integer of the form n = piqj (i ≥ 1, j ≥ 1) such
that ξ(n) = 4. Suppose that x and z− 1 are primitive λ-roots of n such that z4 ≡ +1
and x ≡ z−1 − 1 (mod n) and Un = 〈z, x〉. Write ordn(x) = π. Then

→֒ z0 z1 z2 z3 | xz0 xz1 xz2 xz3 | x2z0 x2z1 x2z2 x2z3 |

· · · | xπ−1z0 xπ−1z1 xπ−1z2 xπ−1z3 | ←֓ (mod n)

is a daisy chain for Un.

Proof: As for Theorem 2.3. �

Note 4.3(a): If z and x can take the values z1 and x1 respectively, then they can
also take the values z2 and x2 respectively, where z2 = x1 + 1 = z−1

1 and x2 = z1− 1.
This is because

x2 − (z−1
2 − 1) = (x2 + 1)− z−1

2

= z1 − (x1 + 1)−1

≡ 0 (mod n)

as z−1
1 ≡ x1 + 1 (mod n).

Note 4.3(b): If (z, x) can take the values (z1, x1) and (z2, x2) as above, and z2
1 ≡

z2
2 ≡ −1 (mod n), then x1 + x2 = (z2 − 1) + (z1 − 1) = (z1 + z2)− 2 ≡ −2 (mod n),

by Note 4.3(b), by Note 4.1(b).
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Coverage of Theorem 4.3: The following table provides details of the possible
duples (z, x) for n-values satisfying 1 < n < 300. Asterisks are used as before. The
duples now marked with a dagger † have x ≡ 2z (mod n), which implies (x− 1)(z +
1) ≡ 0 (mod n). Pairs of duples that are related as in Note 4.3(a) are listed together
in square brackets.

(z, x)

(n, p, q) z2 ≡ −1 (mod n) z2 ≡ +1 (mod p) z2 ≡ +1 (mod q)

(see Note 4.3(b)) z2 ≡ −1 (mod q) z2 ≡ −1 (mod p)

(65, 5, 13) [(18∗, 46), (47∗, 17)] [(34, 43), (44, 33∗)] [(38, 11)†, (12, 37∗)]

(85, 5, 17)

{

[(13∗, 71), (72∗ , 12)],

[(38∗, 46), (47∗ , 37)]
— —

(145, 5, 29) [(12∗, 132), (133∗ , 11)] [(99, 103), (104, 98∗ )] [(28, 56)†, (57, 27∗)]

(185, 5, 37) [(68∗, 116), (117∗ , 67)] [(154, 178), (179, 153∗ )] [(73, 146)†, (147, 72∗)]

(205, 5, 41) — — —

(221, 13, 17)

{

[(21∗, 199), (200∗ , 20)],

[(47∗, 173), (174∗ , 46)]
— —

(265, 5, 53) [(83∗, 181), (182∗ , 82)] [(129, 188), (189, 128∗ )] [(158, 51)†, (52, 157∗)]

Example 4.3: For n = 65, taking (z, x) = (44, 33∗) in Theorem 4.3 gives the
following daisy chain with x ≡ 2−1 (mod n):

→֒ 1 44 51 34 | 33 22 58 17 | 49 11 29 41 | 57 38 47 53 |

61 19 56 59 | 63 42 28 62 | 64 21 14 31 | 32 43 7 48 |

16 54 36 24 | 8 27 18 12 | 4 46 9 6 | 2 23 37 3 | ←֓ .

By reversing the roles of x and z in Theorem 4.2 we could now generalise Theorem
4.3 to n-values with ξ(n) = ω ≥ 4 where n = piqj (i ≥ 1, j ≥ 1), the integers p and
q being distinct odd primes. However, the restriction zω ≡ +1 (mod n) in Theorem
4.3 can be relaxed to yτ ≡ +1 (mod n) for some y with τ > ω. We now proceed
using the relaxed restriction.

Theorem 4.4 Let n be a positive integer of the form n = piqj (i ≥ 1, j ≥ 1) such
that ω = ξ(n) ≥ 4. Let x be a primitive λ-root of n, and let y be a unit from Zn such
that y − 1 ∈ Un =

⋃ω−1
k=0 yk〈x〉. Thus ordn(y) ≥ ω. As before, write ordn(x) = π, so

that |Un| = ωπ. If (x − yω−1)〈x〉 = (y − 1)yω−1〈x〉, then the chain

→֒ x0y0 x0y1 . . . x0yω−1 | x1y0 x1y1 . . . x1yω−1 |

· · · | xπ−1y0 xπ−1y1 . . . xπ−1yω−1 | ←֓ (mod n)

(as in Theorem 2.4) is a daisy chain for Un.
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Proof: Almost as for Theorem 2.4. �

Coverage of Theorem 4.4: For the range 1 < n < 300, the following table gives
specimen values of (y, x) with ordn(y) > ω. (This last restriction cannot be satisfied
for n = 63.)

n ξ(n) (y, x)

65 = 5 · 13 4 (2, 42)

85 = 5 · 17 4 (2, 22)

91 = 7 · 13 6 (5, 2)

117 = 32 · 13 6 (2, 7)

133 = 7 · 19 6 (2, 73)

145 = 5 · 29 4 (3, 63)

171 = 32 · 19 6 (2, 154)

185 = 5 · 37 4 (2, 77)

189 = 33 · 7 6 (2, 52)

n ξ(n) (y, x)

205 = 5 · 41 4 (2, 22)

217 = 7 · 31 6 (44, 131)

221 = 13 · 17 4 (2, 198)

247 = 13 · 19 6 (51, 193)

259 = 7 · 37 6 (5, 72)

265 = 5 · 53 4 (2, 122)

275 = 52 · 11 10 (42, 138)

279 = 32 · 31 6 (2, 55)

Example 4.4: For n = 65 the duple (y, x) = (2, 42) yields the daisy chain

→֒ 1 2 4 8 | 42 19 38 11 | 9 18 36 7 | 53 41 17 34 |

16 32 64 63 | 22 44 23 46 | 14 28 56 47 | 3 6 12 24 |

61 57 49 33 | 27 54 43 21 | 29 58 51 37 | 48 31 62 59 | ←֓ .

5 n = pqr or n = piqj

Most of the procedures used so far, in this paper, are clearly inapplicable if n = pqr
where p, q and r are distinct odd primes, as a multiplication table for Un for such an
n-value must have at least three generators. However, we now introduce a general
construction that covers (a) all such n-values in the range 1 < n < 300, and (b) some
other n-values already considered above.

Theorem 5.1 Let n be a positive integer n = piqj (i ≥ 1, j ≥ 1) or n = pqr (where
p, q and r are distinct odd primes) such that ξ(n) ≥ 4. Let x be a non-negating
primitive λ-root of n. Write σ = ξ(n)/2 and ordn(x) = π, so that |Un | = 2πσ.
Suppose that x is such that the 2σ sets 2k〈x〉 and −2k〈x〉 (k = 0, 1, . . . , σ − 1) have
zero intersection and union Un. Suppose further that x + (−2)σ−1 ∈ −(−2)σ−1〈x〉.
Write S for the sequence

+20 −20 −21 +21 +22 −22 . . . (−2)σ−1 −(−2)σ−1 (mod n).

Then
→֒ x0S | x1S | · · · | xπ−1S | ←֓ (mod n)

is a daisy chain for Un, where xkS denotes the sequence S multiplied throughout by
xk (k = 0, 1, . . . , π − 1).
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Proof: Very similar to previous proofs. �

Coverage of Theorem 5.1: In the range 1 < n < 300 Theorem 5.1 covers the
values n = pqr listed in the following table, which gives a specimen x-value for each;
a double asterisk ∗∗ marks solutions with x−2 ≡ 4 (mod n).

n ξ(n) π σ x

105 = 3 · 5 · 7 4 12 2 88∗∗

165 = 3 · 5 · 11 4 20 2 28∗∗

195 = 3 · 5 · 13 8 12 4 172

231 = 3 · 7 · 11 4 30 2 193∗∗

255 = 3 · 5 · 17 8 16 4 22

273 = 3 · 7 · 13 12 12 6 85

285 = 3 · 5 · 19 4 36 2 13

In the range 1 < n < 300 Theorem 5.1 also covers the values n = piqj (i ≥ 1, j ≥ 1),
ξ(n) > 4, that are listed in the following table; again a specimen x-value is given for
each.

n ξ(n) π σ x

63 = 32 · 7 6 6 3 19

91 = 7 · 13 6 12 3 6

117 = 32 · 13 6 12 3 31

133 = 7 · 19 6 18 3 61

171 = 32 · 19 6 18 3 154

189 = 33 · 7 6 18 3 166

n ξ(n) π σ x

217 = 7 · 31 6 30 3 —

247 = 13 · 19 6 36 3 232

259 = 7 · 37 6 36 3 69

275 = 52 · 11 10 20 5 188

279 = 32 · 31 6 30 3 199

Example 5.1(a): For n = 105 we have π = 12 and σ = 2. If we take x in Theorem
5.1 to be the primitive λ-root 88 of 105, we have

x + (−2)σ−1 = 86 = 2x9 ∈ −(−2)σ−1〈x〉 .

Thus the value x = 88 satisfies the conditions of Theorem 5.1, and we have the
following daisy chain for U105:

→֒ 1 104 103 2 | 88 17 34 71 | 79 26 52 53 | · · · | 37 68 31 74 | ←֓ .

Example 5.1(b): For n = 63 = 33 ·7 we have π = 6 and σ = 3. We can take x = 19
in Theorem 5.1 to obtain the following daisy chain for U63:

→֒ 1 62 61 2 4 59 | 19 44 25 38 13 50 | 46 17 34 29 58 5 |

55 8 16 47 31 32 | 37 26 52 11 22 41 | 10 53 43 20 40 23 | ←֓ .
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In this example, we could alternatively have taken x = 34 or x = 40.

If n = 3pq where p and q are distinct odd primes neither of which is 3, construc-
tions for daisy chains for Upq can be modified to produce daisy chains for Un. To
avoid notational complexities we omit details; we give the following single illustrative
example.

Example 5.2: For pq = 65 we can, as we have seen, take (z, x) = (34, 43) in
Theorem 4.3 to obtain a daisy chain for U65. Suppose, however, that we now work
modulo 195 (= 3 · 65 = n) and we take (z, x) = (164, 43), the values of z = 34 + kx
and x = 43 + ℓx (for some k and ℓ) being chosen so that none of z, z − 1 and
x is a multiple of 3. The chain given in the statement of Theorem 4.3, evaluated
modulo 195, now contains exactly half of the units of Z195, the absent units being the
negatives of those that are present. The differences for the chain likewise comprise
exactly half of the units of Z195, the absent values again being the negatives of the
units that are present. Now insert 2 extra elements after each of the first, third, fifth,
. . . elements of the chain to obtain the following:

→֒ z0 −z0 −z1 z1 z2 −z2 −z3 z3 |

xz0 −xz0 −xz1 xz1 xz2 −xz2 −xz3 xz3 | x2z0 . . . | · · · | ←֓ .

This produces the following daisy chain for U195:

→֒ 1 194 31 164 181 14 151 44 |

43 152 163 32 178 17 58 137 | 94 . . . | · · · | ←֓ .

The daisy chain is of the form

→֒ y0 cy0 y1 cy1 y2 cy2 y3 cy3 | xy0 . . . | · · · | ←֓ (mod n)

where y = −z and c = −1.

6 Fertility and green manures

We have seen in Theorem 2.1 that, if n is an odd prime power, then a daisy chain
for Un is provided by the cycle of successive powers of a primitive root of n. The
chain of differences bi = ai+1 − ai then itself consists of the successive powers of the
self-same primitive root. But are there other circumstances in which the chain of
differences is itself a daisy chain?

Let χ1 be a daisy chain, and let χ2 be the corresponding chain of differences. Let
χ3 be the chain of differences for χ2, and so on. If χ1, χ2, . . . , χt are daisy chains
but χt+1 is not, we say that χ1 is t-fertile.

Example 6.1: For n = 21, consider the daisy chain of the form given in Note 3.1,
namely

χ1 = →֒ +1 −1 −2 +2 +4 −4 . . . ←֓

= →֒ 1 20 19 2 4 17 13 8 16 5 10 11 ←֓ .
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Here

χ2 = →֒ 19 20 4 2 13 17 16 8 10 5 1 11 ←֓ ,

χ3 = →֒ 1 5 19 11 4 20 13 2 16 17 10 8 ←֓ ,

χ4 = →֒ 4 14 13 14 16 14 10 14 1 14 19 14 ←֓ .

Thus χ2 is a daisy chain but χ3 is not, so χ1 is 2-fertile. Here χ3 fails to be a daisy
chain as alternate entries in χ4 are equal to 14 (a multiple of a factor of n).

Example 6.2: For n = 39, the daisy chain of the form given in Note 3.1 is

→֒ 1 38 37 2 4 35 31 8 16 23 7 32 25 14 28 11 22 17 34 5 10 29 19 20 ←֓ ,

which is 5-fertile. If we take this daisy chain to be χ1, the corresponding chain χ6

fails to be a daisy chain as alternate entries in χ7 are equal to 13 (a factor of n).

As can be seen in the last two examples, the first two elements of χ3 are 1 and
5 when the construction from Note 3.1 is used for χ1. If that construction is used
when n is a suitable prime satisfying n ≡ 3 (mod 8), then both of the elements 1
and 5 are quadratic residues if and only if n ≡ ±1 (mod 10). Thus the construction
merely produces a 1-fertile daisy chain if n = 11, 19 or 59. However, it produces a
2-fertile daisy chain for n = 67 and a 3-fertile daisy chain for n = 83.

No detailed study of t-fertility in daisy chains has been made. But there is
another interesting aspect to the sequence χ1, χ2, . . . . In discussing this, we regard
two daisy chains a and α as being the same if, for some c, we have ai = αi+c

(∀i ∈ {1, 2, . . . , φ(n)} ) where αφ(n)+1 = α1, αφ(n)+2 = α2, etc.
If χ1 is t-fertile, then χt+1 must fail to be a daisy chain as a result of χt+2 not

comprising each unit exactly once. So χt+2 is not a daisy chain either. However,
χt+3 may then be a daisy chain. Indeed, it might be the same as χ1, or it might be
the negative of χ1, or it might be a different daisy chain from either χ1 or −χ1. If
χt+3 is the negative of χ1, then χ2t+5 will be the same as χ1.

If, in general, s is the smallest positive integer such that χs+1 is the same as χ1

(or the same as a translate of χ1, see below), the succession of chains χ1, χ2, . . . ,
χs is analogous to the succession of crops in the s years (or seasons) of an s-course
rotation of crops in agriculture [17]. Accordingly we then say that χ1, χ2, . . . , χs

yield an s-course rotation of chains. We have required χ1 to be a daisy chain but,
as we have seen, two or more of the s courses may not contain daisy chains. These
courses are analogous to agricultural rotation-courses where the crop is not harvested
but is ploughed in for future benefit; such crops are used as ‘green manures’, and
we analogously refer to green-manure courses or chains in our s-course rotations of
chains.

Example 6.1 (cont.): Here, χ5 is the negative of χ1, and so χ9 is the same as χ1.
We thus have an 8-course rotation containing 4 daisy chains (χ1, χ2, χ5 and χ6) and
4 green-manure chains (χ3, χ4, χ7 and χ8).

Example 6.2 (cont.): Here, χ8 is the same as χ1, so we have a 7-course rotation
containing 5 daisy chains and 2 green-manure chains.
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Example 6.3: For n = 35, consider the daisy chain

χ1 = →֒ +1 −1 −2 +2 +4 −4 −8 . . . ←֓

= →֒ 1 34 33 2 4 31 27 . . . ←֓ .

This is 1-fertile. In the sequence χ1, χ2, . . . , the next daisy chains are χ10 and χ25,
this latter being the negative of χ1. We thus have a 48-course rotation containing
just 4 daisy chains (χ1, χ10, χ25, χ34) amidst 44 green-manure chains. (This is not
practical agriculture!)

As we indicated above, we can have an s-course rotation where χs+1 is not the
same as χ1 but is the same as a translate of χ1. This situation is achievable when
n = pi (i > 1) for some odd prime p, as a daisy chain for such a value of n remains
a daisy chain when some constant multiple of p is added to all its elements.

Example 6.4: For n = 25 consider the following daisy chain χ1:

1 18 14 7 16 13 24 12 6 8 9 17 21 3 19 22 11 23 4 2 .

This is an ∞-fertile daisy chain, for which χ5 is the daisy chain given in Ex. 2.2(c).
Clearly χ1 is obtained by adding 5 to χ5 throughout. This example gives us a 4-course
rotation with no green-manure courses.

7 The link between daisy chains and terraces

We now briefly present two results that show how daisy chains can be used in the
construction of terraces.

Let a be a linear arrangement (a1, a2, . . . , an) of all the elements of Zn, and
let b be the sequence (b1, b2, . . . , bn−1) given by bi = ai+1 − ai (i = 1, 2, . . . , n − 1).
Then [5] a is a terrace for Zn (in short, a Zn terrace) if the sequences b and −b
together contain exactly 2 occurrences of each element from Zn \ {0}. (A terrace for
Zn provides a partition of the edges of 2Kn into Hamiltonian paths, invariant under
a group acting regularly.) When we present a terrace in a display, we omit brackets
and commas.

Result 7.1 Suppose that [a1, a2, . . . , an−1] is a daisy chain for the units of Zn for
some odd prime n. If ai+1 ≡ 2ai (mod n) for some i, then

ai+1 ai+2 . . . an−1 a1 a2 . . . ai | 0

is a terrace for Zn. Likewise, if 2ai+1 ≡ ai (mod n) for some i, then

0 | ai+1 ai+2 . . . an−1 a1 a2 . . . ai

is a terrace for Zn.
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Example 7.1: The daisy chain

→֒ 1 2 5 4 6 3 ←֓ (mod 7)

for the units of Z7 has x2 = 2x1 and 2x6 = x5. It thus yields the Z7 terraces

2 5 4 6 3 1 | 0

and
0 | 3 1 2 5 4 6 .

Result 7.2 Let n = p2 where p is an odd prime. Suppose that the cycle a =
[a1, a2, . . . , ap(p−1)] is a daisy chain for the units of Zn and that the cycle α =
[α1, α2, . . . , αp−1] is a daisy chain for the units of Zp. If ai+1 ≡ 2ai (mod n) for
some i, and 2αj+1 = αj (mod p) for some j, then

ai+1 ai+2 . . . ap(p−1) a1 . . . ai | 0 |

pαj+1 pαj+2 . . . pαp−1 pα1 . . . pαj

is a terrace for Zn.

Example 7.2: Take n = p2 = 112 = 121. Then a = [1, 2, 4, . . . , 2109] is a daisy chain
for the units of Zn, and α = [1, 2, 4, 9, 6, 10, 5, 8, 7, 3] is a daisy chain for the units of
Zp (see §1). As 2α8 = 2 · 8 = 16 ≡ 5 = α7 (mod 11), we can take i = 110 and j = 7
in Result 7.2 to obtain the Z121 terrace

1 2 4 . . . 61
︸ ︷︷ ︸

110 terms

| 0 | 88 77 33 11 22 44 99 66 110 55 .
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