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Abstract
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directed cycle ~Cn. In this paper, we give the exact value of the domination
number and the signed 2-independence number of ~Pm� ~Cn for any integers
m and n.
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1 Introduction

All digraphs considered in this paper are finite, without loops and multiple arcs. For
notation and terminology not defined here, we generally follow [2]. Specifically, let G
be a digraph with vertex set V (G) and arc set A(G). We say that u is an in-neighbor
of v and v is an out-neighbor of u if uv is an arc of G. For a vertex v ∈ V (G), the
sets of in-neighbors and out-neighbors of v are called the open in-neighborhood N−G (v)
and open out-neighborhood N+

G (v) of v, respectively. The closed in-neighborhood of
v is N−G [v] = N−G (v) ∪ {v}. The numbers d−G(v) = |N−G (v)| and d+G(v) = |N+

G (v)| are
the indegree and outdegree of v, respectively. We omit the subscript G whenever no
ambiguity on G is possible. For S ⊆ V (G), G[S] denotes the subdigraph induced
by S.

Given two digraphs G1 = (V1, A1) and G2 = (V2, A2), the Cartesian product
G1�G2 is the digraph with vertex set V1 × V2 and (x1, x2)(y1, y2) ∈ A(G1�G2) if
and only if x1 = y1 and x2y2 ∈ A2 or x2 = y2 and x1y1 ∈ A1, where xi, yi ∈ Vi for
i = 1, 2. Throughout this paper, we denote the sets of vertices of the directed path
~Pm and the directed cycle ~Cn by {u1, u2, . . . , um} and {v1, v2, . . . , vn}, respectively,

and A( ~Pm) = {u1u2, u2u3, . . . , um−1um} and A( ~Cn) = {v1v2, v2v3, . . . , vn−1vn, vnv1}.
Moreover, in the Cartesian product ~Pm� ~Cn, let Xj =

⋃n
i=1{(uj, vi)} for 1 ≤ j ≤ m

and let Yi =
⋃m

j=1{(uj, vi)} for 1 ≤ i ≤ n. Throughout this paper, for Yi, the
subscript i is taken modulo n. Thus, if i ≤ 0, then Yi = Yn+i, and if i > n, then
Yi = Yi−n.

A vertex u dominates a vertex v if u = v or uv ∈ A(G). A set D ⊆ V (G) is
a dominating set of G if any vertex of V (G) is dominated by at least one vertex
of D. The domination number of G, denoted by γ(G), is the minimum cardinality
of a dominating set. In other words, a function f : V (G) → {0, 1} is called a
dominating function if

∑
u∈N−[v] f(u) ≥ 1 holds for each vertex v ∈ V (G). The

domination number of G, denoted by γ(G), is the minimum weight of a dominating
function on G. Jacobson and Kinch [6] first studied the domination number of
Cartesian products of two undirected graphs and this work was then continued by
many others. In particular the domination number of the Cartesian product of
paths and cycles has been studied in [1, 3, 5, 11], etc. Recently, there are some
research articles on the domination number of Cartesian products of directed paths
and cycles ([7, 8, 15], etc.). In general, the determination of the domination number of
a directed or undirected graph is a difficult question in graph theory. This problem
has connections with information theory. For example the domination number of
hyper cubes is linked to error-correcting codes.

We also consider the signed 2-independence number of directed graphs. The
signed 2-independence number of undirected graphs has been studied in [4, 10] and
elsewhere. Recently, Volkmann [12] began to investigate this parameter in digraphs.
Formally, a function f : V (G) → {−1, 1} is called a signed 2-independence function
(abbreviated S2IF) if

∑
u∈N−[v] f(u) ≤ 1 for each vertex v ∈ V (G). The signed

2-independence number of G, denoted by α2
s(G), is the maximum weight of a S2IF

on G. We call a S2IF of weight α2
s(G) an α2

s(G)-function on G. Volkmann [12]
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presented some upper bounds on α2
s(G) for general digraphs G, Wang and Kim [13,

14] determined the exact values for the signed 2-independence number of Cartesian

products ~Pm� ~Pn (1 ≤ m ≤ 5, n ≥ 1) and ~Cm� ~Pn (2 ≤ m ≤ 5, n ≥ 2). Throughout
this paper, if f is a S2IF of G, then we let P and M denote the sets of those
vertices in G which are assigned under f the value 1 and −1, respectively. Therefore
|V (G)| = |P |+ |M | and α2

s(G) = max(|P | − |M |).
In this paper, we give the exact value of the domination number of the Cartesian

product of the directed path ~Pm and the directed cycle ~Cn, for any integers m,n.
We also show that for a directed graph G with minimum indegree 1 and maximum
indegree 2, the signed 2-independence number α2

s = |V (G)| − 2γ(G), where γ(G) is
the domination number of G. Consequently, we obtain the signed 2-independence
number from the domination number of ~Pm� ~Cn for all integers m and n.

2 Domination number of ~Pm� ~Cn for m ≤ 6

Lemma 2.1. Given a sequence S of n numbers, si, where the indices are considered
modulo n. There exists an index a such that

∑a+k
i=a si/(k + 1) ≤

∑n−1
i=0 si/n for all

k. In other words, there exists an index a in the sequence such that any subsequence
starting from a has an average which is at most the average of the entire sequence.

Proof. Without loss of generality we can assume the average of the sequence is 0,
otherwise we just subtract the average from every element in the sequence.

Now let Sm be a subsequence of S with minimum sum. Then a is the index of
the first element in Sm. Every sequence starting from a and ending inside Sm must
have a sum less than or equal to 0, otherwise the remaining elements in Sm form a
sequence with smaller sum. Every sequence starting from a and ending outside of Sm

must have a sum less than or equal to 0, otherwise the compliment of this sequence
with Sm appended to it will have a smaller sum than Sm.

In the following proofs we will apply Lemma 2.1 to prove lower bounds for
γ( ~Pm� ~Cn) for some fixed m. We do this by considering a sequence SD, where

D is a dominating set for a directed cylinder ~Pm� ~Cn. Elements in this sequence are
such that si = |Yn−i ∩D| is the i-th element of SD.

Upper bounds will be proved by construction. We will give parts of dominating
sets, A and Bi, such that a minimum dominating set can be constructed by taking
the appropriate Bi, if any, and filling the remainder of the cylinder with copies of A.

This first proof is easy enough without Lemma 2.1 even though it can be proved
in that way as well.

Theorem 2.2. γ( ~P1� ~Cn) = dn
2
e.

Proof. Any vertex of the cycle can dominate at most 2 vertices (itself and its outgoing
neighbor).
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A B1

Figure 1: Upper bound for ~P1� ~Cn

An upper bound can be found in Figure 1.

Now we will get a first example of how Lemma 2.1 will be used in the proofs.

Theorem 2.3. γ( ~P2� ~Cn) = n.

Proof. Assume there exists a dominating set D on ~P2� ~Cn with less than n vertices,
then, according to Lemma 2.1, there is an index a such that

∑a+k
i=a si/(k + 1) < 1,

for all k. So sa = 0, which means Yn−a has no dominating vertices and sa+1 < 2.
Therefore not all vertices in Yn−a will be dominated, a contradiction.

A

Figure 2: Upper bound for ~P2� ~Cn

An upper bound can be found in Figure 2.

For the following proof we need to look at a slightly longer part of the sequence
before we reach a contradiction.

Theorem 2.4. γ( ~P3� ~Cn) =
⌈
5n
4

⌉
.

Proof. Assume there exists a dominating set D on ~P3� ~Cn with less than 5n/4 ver-
tices, then, according to Lemma 2.1, there is an index a such that

∑a+k
i=a si/(k+ 1) <

5/4, for all k. This means sa ∈ {0, 1}. If sa = 0, then sa+1 < 5/2 but to dominate
Yn−a we need sa+1 = 3. So sa = 1 and sa+1 < 3/2, because Yn−a needs to be domi-
nated we get sa+1 = 1. Similarly we have sa+2 = 1 and sa+3 = 1. However, it can be
easily seen that 4 consecutive Yi with only one dominating vertex are not possible
in a dominating set, a contradiction. For n < 4 the lower bound is easily found by
brute force and applying Lemma 2.1.

A B1 B2 B3

Figure 3: Upper bound for ~P3� ~Cn

An upper bound can be found in Figure 3.
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The next proof is slightly more complicated and we will use a more algorithmic
approach to see what dominating sets are still possible. So as we get restrictions on
the number of dominating vertices, we will build all possible corresponding dominat-
ing sets. We will use Lemma 2.5 to further reduce the number of dominating sets we
have to consider. A proof for this lemma can be found in [5].

Lemma 2.5. Given a graph G and two vertex sets, A and B, with |A| ≥ |B| and
(∪v∈AN+

G [v]) ⊆ (∪v∈BN+
G [v]). If SA, with A ⊆ SA, is a minimum dominating set for

G, then there exists a minimum dominating set for G, SB, with B ⊆ SB.

Therefore we do not have to consider minimum dominating sets containing A,
when searching for a minimum dominating set for G, with A and G according to
Lemma 2.5.

Theorem 2.6. γ( ~P4� ~Cn) =
⌈
5n
3

⌉
.

Proof. Assume there exists a dominating set D on ~P4� ~Cn with less than 5n/3 ver-
tices, then, according to Lemma 2.1, there is an index a such that

∑a+k
i=a si/(k+ 1) <

5/3, for all k. This means sa ∈ {0, 1}. If sa = 0, we need sa+1 ≥ 4 to dominate Yn−a,
but sa + sa+1 < 10/3. So sa = 1 and sa+1 = 2, this gives us three possible situations
(Figure 4).

Figure 4: Possible dominating vertices in ~P4� ~Cn for k = 1

Now we will always build all possible dominating sets for the first k + 1 paths
from the possible dominating sets for the first k paths. While we do this we use
Lemmas 2.1 and 2.5 to keep the possible dominating sets to a minimum.

In Figures 5 to 12 this is done for k < 10. We notice that there is a bijection
between possible dominating sets, S, for k = 6 and possible dominating sets, T ,
for k = 9 such that Yn−a ∩ S = Yn−a ∩ T , (uj, vn−a−6) ∈ Yn−a−6 ∩ S if and only
if (uj, vn−a−9) ∈ Yn−a−9 ∩ T , and |T | = |S| + 5. For k = 6 we then have that
5(k+1)/3−|S| = 5(k+4)/3−|T | = c, which means that we can add at most c+5/3
dominating vertices to Yn−a−k−1 or Yn−a−k−4. It follows that for all k ≥ 6 there is a
similar bijection between possible dominating sets for k and k + 3 and Lemma 2.1
will give the same restrictions.

However, in none of these sets is Yn−a−k dominated by Yn−a. This means we need
more vertices to create a dominating set for ~P4� ~Cn. This is a contradiction with the
assumed existence of a smaller dominating set.

An upper bound can be found in Figure 13.

For γ( ~P5� ~Cn) we have an easy proof once again.
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Figure 5: Possible dominating vertices in ~P4� ~Cn for k = 2

Figure 6: Possible dominating vertices in ~P4� ~Cn for k = 3

Figure 7: Possible dominating vertices in ~P4� ~Cn for k = 4

Figure 8: Possible dominating vertices in ~P4� ~Cn for k = 5

Figure 9: Possible dominating vertices in ~P4� ~Cn for k = 6

Figure 10: Possible dominating vertices in ~P4� ~Cn for k = 7
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Figure 11: Possible dominating vertices in ~P4� ~Cn for k = 8

Figure 12: Possible dominating vertices in ~P4� ~Cn for k = 9

A B1 B2

Figure 13: Upper bound for ~P4� ~Cn
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Theorem 2.7. γ( ~P5� ~Cn) = 2n if n /∈ {1, 2, 5}.

Proof. Assume there exists a dominating set D on ~P5� ~Cn with less than 2n vertices,
then, according to Lemma 2.1, there is an index a such that

∑a+k
i=a si/(k + 1) < 2,

for all k. So sa < 2, which means Yn−a has at most 1 dominating vertex. Since Yn−a
has at least 5− 2sa undominated vertices remaining we have that sa+1 ≥ 5− 2sa, a
contradiction with sa + sa+1 < 4.

A B1 B2

Figure 14: Upper bound for ~P5� ~Cn

An upper bound can be found in Figure 14.

The last proof in this section will be similar to the proof for m = 4, just slightly
longer.

Theorem 2.8. γ( ~P6� ~Cn) = 7n+4
3

if n ≡ 2(mod 3) and n > 2.

Proof. Assume there exists a dominating set D on ~P6� ~Cn, n ≡ 2(mod 3) with at
most (7n + 1)/3 vertices, then, according to Lemma 2.1, there is an index a such
that

∑a+k
i=a si/(k + 1) ≤ 7/3 + 1/3n, for all k.

Assume for a moment that k + 1 < n we can rewrite the sum as
∑a+k

i=a si <
(7k + 8)/3, for all k. Of course we also have to consider k + 1 = n, when n ≡ 2
(mod 3), but only when trying to close the cylinder, not while generating a strict
part of it.

Because sa ≤ 2, sa + sa+1 ≤ 4 and sa+1 ≥ 6− sa, we have that sa = sa+1 = 2. In
Figure 15 all possibilities for this are shown.

Figure 15: Possible dominating vertices in ~P6� ~Cn for k = 1

Again we will build all possible dominating sets for the first k+ 1 paths from the
possible dominating sets for the first k paths.
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In Figures 15 to 21 this is done for k < 8. We notice that there is a bijection
between possible dominating sets, S, for k = 4 and possible dominating sets, T ,
for k = 7 such that Yn−a ∩ S = Yn−a ∩ T , (uj, vn−a−4) ∈ Yn−a−4 ∩ S if and only
if (uj, vn−a−7) ∈ Yn−a−7 ∩ T , and |T | = |S| + 7. For k = 4 we then have that
(7k + 8)/3 − |S| = (7(k + 3) + 8)/3 − |T |, which means that we can add at most
c + 7/3 dominating vertices to Yn−a−k−1 or Yn−a−k−4. Therefore, for all k ≥ 4 there
is a similar bijection between possible dominating sets for k and k + 3 and Lemma
2.1 will give the same restrictions.

Figure 16: Possible dominating vertices in ~P6� ~Cn for k = 2

When n ≡ 2(mod 3) and n = k + 1, we try to close the cylinder. We can use at
most (7n + 1)/3 dominating vertices in the entire cylinder. This means we can add
one more dominating vertex in Yn−a−k than was possible in Yn−a−k+3, because using
the same bound as in previous steps, we would only be allowed to use strictly less
than (7k + 8)/3 = (7(n − 1) + 8)/3 = (7n + 1)/3 dominating vertices. Now Yn−a−k
should be dominated by the dominating vertices from Yn−a−k = Yn−a+1 and Yn−a.
However, we can see that this is not possible, so we have a contradiction.

An upper bound can be found in Figure 22.

3 General formula

Here we will prove the general formula for γ( ~Pm� ~Cn) for each n mod 3 and m ≥ 4.
All proofs for the lower bounds will be done by induction on m.

Upper bounds for the formulae can be constructed by starting from the mini-
mum dominating sets for ~P5� ~Cn as shown in Figure 14 and adding (uj, vi) to the
dominating set for j > 5 if and only if (uj−2, vi+1) is in the dominating set. Since
we also have that (u5, vi) is in the dominating set if and only if (u3, vi+1) is in the
dominating set, we know that the constructed set will be dominating. Furthermore
we have that γ( ~Pm+2� ~Cn) has 2n/3, (2n + 1)/3, or (2n + 2)/3 more dominating

vertices than γ( ~Pm� ~Cn), when n is 0, 1, or 2 modulo 3, respectively.



S. CREVALS ET AL. /AUSTRALAS. J. COMBIN. 61 (3) (2015), 192–209 201

Figure 17: Possible dominating vertices in ~P6� ~Cn for k = 3

Figure 18: Possible dominating vertices in ~P6� ~Cn for k = 4



S. CREVALS ET AL. /AUSTRALAS. J. COMBIN. 61 (3) (2015), 192–209 202

Figure 19: Possible dominating vertices in ~P6� ~Cn for k = 5

Figure 20: Possible dominating vertices in ~P6� ~Cn for k = 6
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Figure 21: Possible dominating vertices in ~P6� ~Cn for k = 7

A B2

Figure 22: Upper bound for ~P6� ~Cn
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Theorem 3.1. γ( ~Pm� ~Cn) = (m+1)n
3

if n ≡ 0(mod 3).

Proof. We know the formula is true for m = 4 and m = 5. So assume it is true for
all 4 ≤ m < k.

Let D be a minimum dominating set on ~Pk� ~Cn, with n ≡ 0(mod 3). By induction
we know that |D ∩ (

⋃k−1
i=1 Xi)| ≥ kn/3 and that |D ∩ (

⋃k−2
i=1 Xi)| ≥ (k− 1)n/3. From

the upper bound we can see that |D ∩ (
⋃k

i=1Xi)| ≤ (k + 1)n/3. By subtracting
these first two inequalities from the last one we get |D ∩ Xk| ≤ n/3 and |D ∩
Xk−1|+ |D ∩Xk| ≤ 2n/3. And by looking at what vertices can dominate Xk we get
|D ∩ Xk−1| + 2|D ∩ Xk| ≥ n. Now it follows that |D ∩ Xk| = n/3 and thus that
|D ∩ (

⋃k
i=1Xi)| ≥ (k + 1)n/3.

Combined with the upper bound this completes the proof.

Theorem 3.2. γ( ~Pm� ~Cn) =
⌈
(m+1)(2n+1)

6

⌉
− 1 if m ≥ 4 and n ≡ 1(mod 3).

Proof. When m is odd we can write the formula as γ( ~Pm� ~Cn) = (m+1)(2n+1)
6

− 1 and

when m is even as γ( ~Pm� ~Cn) = (m+1)(2n+1)+3
6

− 1.

We know the formula is true for m = 4 and m = 5. So assume it is true for all
4 ≤ m < k.

Let D be a minimum dominating set on ~Pk� ~Cn, with n ≡ 1(mod 3). By in-

duction we know that |D ∩ (
⋃k−1

i=1 Xi)| ≥
⌈
k(2n+1)

6

⌉
− 1 and that |D ∩ (

⋃k−2
i=1 Xi)| ≥⌈

(k−1)(2n+1)
6

⌉
− 1. From the upper bound we can see that

|D ∩ (
k⋃

i=1

Xi)| ≤
⌈

(k + 1)(2n+ 1)

6

⌉
− 1.

By subtracting these first two inequalities from the last one we get |D ∩ Xk| ≤
(n− 1)/3 when k is odd or |D ∩Xk| ≤ (n + 2)/3 when k is even and |D ∩Xk−1| +
|D ∩Xk| ≤ (2n+ 1)/3, respectively. And by looking at what vertices can dominate
Xk we get |D ∩ Xk−1| + 2|D ∩ Xk| ≥ n. Now it follows that |D ∩ Xk| = (n − 1)/3
and |D ∩ Xk−1| = (n + 2)/3 when k is odd and either |D ∩ Xk| = (n − 1)/3 and
|D ∩ Xk−1| = (n + 2)/3 or |D ∩ Xk| = (n + 2)/3 and |D ∩ Xk−1| = (n − 1)/3
when k is even. Summing |D ∩ Xk|, |D ∩ Xk−1| and |D ∩ (

⋃k−2
i=1 Xi)| gives us that

|D ∩ (
⋃k

i=1Xi)| ≥
⌈
(k+1)(2n+1)

6

⌉
− 1.

Theorem 3.3. γ( ~Pm� ~C2) = m.

Proof. It is trivial to see that γ( ~P1� ~C2) = 1 and γ( ~P2� ~C2) = 2. Now assume

γ( ~Pm� ~C2) = m for all m < k.

There is no reason to have more than one dominating vertex in Xk. If there is one
dominating vertex in Xk then we have at least k dominating vertices in total, since
we need at least k − 1 for ~Pk−1� ~C2. If there is no dominating vertex in Xk, then



S. CREVALS ET AL. /AUSTRALAS. J. COMBIN. 61 (3) (2015), 192–209 205

we need 2 dominating vertices in Xk−1 and since we need at least k − 2 dominating
vertices for ~Pk−2� ~C2 there are at least k dominating vertices in total.

If we take Y1 as a dominating set we have an upper bound.

Theorem 3.4. γ( ~Pm� ~C5) = 2m+ 1.

Proof. In Section 2 we have proves this for m ≤ 4. Now assume γ( ~Pm� ~C5) = 2m+1
for m < k.

If we have 2 or more dominating vertices in Xk we have a dominating set of at
least 2k + 1 dominating vertices for ~Pk� ~C5 because γ( ~Pk−1� ~C5) = 2k − 1.

If we only have one dominating vertex in Xk we need 3 dominating vertices in
Xk−1. We know γ( ~Pk−2� ~C5) = 2k−3. So we need at least 2k+1 dominating vertices

in the dominating set for ~Pk� ~C5).

Similarly if we have no dominating vertices in Xk we have at least 2k + 2 domi-
nating vertices in total.

Figure 23: Minimum dominating set for ~P4� ~C5

An upper bound can easily be constructed by having 3 dominating vertices in X1

and 2 adjacent dominating vertices in Xi, i > 1. An example can be found in Figure
23.

Theorem 3.5. γ( ~Pm� ~Cn) =

{
(m+1)(n+1)

3
− 1, if m ≡ 0(mod 2)

(m+1)(n+1)
3

− 2, if m ≡ 1(mod 2)

if m ≥ 4, n ≥ 8, and n ≡ 2(mod 3).

Proof. We know the formula is true for m = 4, m = 5, and m = 6. So assume it is
true for all 4 ≤ m < k. We will handle m odd and m even separately.

Let D be a minimum dominating set on ~Pk� ~Cn, with n ≡ 2(mod 3) and k ≡ 1
(mod 2). By induction we know that |D∩(

⋃k−2
i=1 Xi)| ≥ (k−1)(n+1)/3−2. From the

upper bound we can see that |D∩ (
⋃k

i=1Xi)| ≤ (k+ 1)(n+ 1)/3− 2. By subtracting
these two inequalities we get |D∩Xk−1|+ |D∩Xk| ≤ 2(n+ 1)/3. And by looking at
what vertices can dominate Xk we get |D ∩Xk−1| + 2|D ∩Xk| ≥ n. Now it follows
that |D∩Xk| ≥ (n−2)/3 and thus that |D∩ (

⋃k
i=1Xi)| ≥ (k+ 1)(n+ 1)/3−2. This

concludes the odd case.

Let D be a minimum dominating set on ~Pk� ~Cn, with n ≡ 2(mod 3) and k ≡ 0
(mod 2). By induction we know that |D∩(

⋃k−2
i=1 Xi)| ≥ (k−1)(n+1)/3−1. From the

upper bound we can see that |D∩ (
⋃k

i=1Xi)| ≤ (k+ 1)(n+ 1)/3− 1. By subtracting
these two inequalities we get |D∩Xk−1|+ |D∩Xk| ≤ 2(n+ 1)/3. And by looking at
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what vertices can dominate Xk we get |D ∩Xk−1| + 2|D ∩Xk| ≥ n. Now it follows
that |D ∩Xk| ≥ (n− 2)/3.

If |D ∩ Xk| = (n − 2)/3, then |D ∩ Xk−1| ≥ (n + 4)/3, and |D ∩ (
⋃k

i=1Xi)| =

|D ∩ (
⋃k−2

i=1 Xi)|+ |D ∩Xk−1|+ |D ∩Xk| ≥ (k + 1)(n+ 1)/3− 1.

If |D ∩Xk| = (n+ 1)/3, then |D ∩Xk−1| ≥ (n− 2)/3. If |D ∩Xk−1| ≥ (n+ 1)/3
we have our lower bound again. So assume |D| ≤ (k + 1)(n + 1)/3 − 2 and thus
|D ∩ Xk−1| = (n − 2)/3. Then we also have |D ∩ Xk−2| = (n + 4)/3. From this
it is clear that every vertex in Xk and Xk−1 is dominated by exactly one vertex.
Therefore there is only one possible way to put the dominating vertices in Xk (taking
rotational symmetry into account), since no two dominating vertices and no three
not-dominating vertices may be adjacent. Without loss of generalization we can say
the vertices in Y0 and Yi, with i ≡ 2(mod 3) and i < n, are the dominating vertices
of Xk. This means the vertices in Yi, with i ≡ 1(mod 3) and 4 ≤ i < n are the
dominating vertices in Xk−1 and the vertices in Y1, Y2, and Yi, with i ≡ 0(mod 3)
and 3 ≤ i < n are the dominating vertices in Xk−2. Since |D| = |D ∩ (

⋃k
i=1Xi)| =

|D ∩ (
⋃k−3

i=1 Xi)| + |D ∩ Xk−2| + |D ∩ Xk−1| + |D ∩ Xk| ≤ (k + 1)(n + 1)/3 − 2, we

have that |D ∩ (
⋃k−3

i=1 Xi)| ≤ (k + 1)(n+ 1)/3− 2− (n+ 1) = (k − 2)(n+ 1)/3− 2.

Because of the lower bounds for |D ∩ (
⋃k−3

i=1 Xi)| and |D ∩ (
⋃k−4

i=1 Xi)|, we know that
|D ∩Xk−3| = (n− 2)/3 — the smallest k for which we need this proof is k = 8 and
the formulae holds from k = 4, so we can go back as far as k − 4 in the proof. But
the dominating vertices of Xk−3 now have to be in Yi, with with i ≡ 2(mod 3) and
5 ≤ i ≤ n. However, this would mean we can keep the dominating vertices from Xi,
i ≤ k − 3 and have the vertices in Y1 and Yi, with i ≡ 0(mod 3) and 3 ≤ i < n, as

dominating vertices in Xk−2 and this would give us a dominating set for ~Pk−2� ~Cn

with (k− 1)(n+ 1)/3− 2. This is a contradiction with the induction hypothesis. So
also in this case we have |D ∩ (

⋃k
i=1Xi)| ≥ (k + 1)(n+ 1)/3− 1.

If |D ∩ Xk| ≥ (n + 4)/3, then |D ∩ (
⋃k

i=1Xi)| = |D ∩ (
⋃k−1

i=1 Xi)| + |D ∩ Xk| ≥
(k + 1)(n+ 1)/3− 1.

Combined with the upper bound this completes the proof.

These results are summarized in Table 1.

4 Signed 2-independence number of ~Pm� ~Cn

Let G be a directed graph G with minimum indegree 1 and maximum indegree 2, and
let f be a S2IF on G. For every vertex v, we have that N−G [v] ∩M 6= ∅. It follows
that M is a dominating set for G. Therefore the signed 2-independence number
α2
s = max(|P | − |M |) = max(|V (G)| − 2|M |) = |V (G)| − 2γ(G), where γ(G) is the

domination number of G. Hence we can obtain the signed 2-independence number
of the Cartesian product of directed path ~Pm and directed cycle ~Cn directly from
γ( ~Pm� ~Cn).

According to Theorem 2.2, Theorem 2.3, and Theorem 2.4, the following results
are trivial.
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m n γ(
−→
P m�

−→
C n)

1 ALL dn
2
e

2 ALL n

3 ALL d5n
4
e

4 ALL d5n
3
e

5

n = 1 dm+1
2
e − 1

n = 2 5

n = 5 11

n /∈ {1, 2, 5} 2n

6
n = 2 6

n ≡ 2(mod 3), n > 2 7n+4
3

m ≥ 6 n ≡ 0(mod 3) (m+1)n
3

m ≥ 6 n ≡ 1(mod 3) d (m+1)(2n+1)
6

e − 1

m ≥ 7, m ≡ 0 (mod 2)
n ≡ 2(mod 3), n ≥ 8

(m+1)(n+1)
3

− 1

m ≥ 7, m ≡ 1 (mod 2) (m+1)(n+1)
3

− 2

ALL 2 m

ALL 5 2m+ 1

Table 1: Domination number of ~Pm� ~Cn

Corollary 4.1. For any integer n ≥ 2,

α2
s( ~P1� ~Cn) =

{
0 for n even,
−1 for n odd.

Corollary 4.2. For any integer n ≥ 2, α2
s( ~P2� ~Cn) = 0.

Corollary 4.3. For any integer n ≥ 2, α2
s( ~P3� ~Cn) = 3n− 2

⌈
5n
4

⌉
.

Applying Theorem 3.1, Theorem 3.2, Theorem 3.3, Theorem 3.4, and Theorem
3.5, the following results can be easily obtained.

Corollary 4.4. α2
s( ~Pm� ~Cn) = (m−2)n

3
if m ≥ 4 and n ≡ 0(mod 3).

Corollary 4.5. α2
s( ~Pm� ~Cn) = mn−2

⌈
(m+1)(2n+1)

6

⌉
−2 if m ≥ 4 and n ≡ 1(mod 3).

Corollary 4.6. α2
s( ~Pm� ~C2) = 0.

Corollary 4.7. α2
s( ~Pm� ~C5) = m− 2.
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m n α2
s(
−→
P m�

−→
C n)

1
n ≥ 2, n : even 0

n ≥ 2, n : odd −1

2 n ≥ 2 0

3 n ≥ 2 3n− 2d5n
4
e

m ≥ 4, m : even n ≥ 8, n ≡ 2(mod 3) (m−2)(n−2)
3

m ≥ 4, m : odd n ≥ 8, n ≡ 2(mod 3) (m−2)(n−2)
3

+ 2

m ≥ 4 n ≡ 0(mod 3) (m−1)n
3

m ≥ 4 n ≡ 1(mod 3) mn− 2d (m+1)(2n+1)
6

e − 2

ALL 2 0

ALL 5 m− 2

Table 2: Signed 2-independence number of ~Pm� ~Cn

Corollary 4.8. α2
s( ~Pm� ~Cn) =

{
(m−2)(n−2)

3
, if m ≡ 0(mod 2)

(m−2)(n−2)
3

+ 2, if m ≡ 1(mod 2)
if m ≥ 4,

n ≥ 8 and n ≡ 2(mod 3).

These results are summarized in Table 2.
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