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Abstract

A set S ⊆ V is a global dominating set of a graph G = (V,E) if S is
a dominating set of G and G, where G is the complement graph of G.
The global domination number γg(G) equals the minimum cardinality of
a global dominating set of G. The square graph G2 of a graph G is the
graph with vertex set V and two vertices are adjacent in G2 if they are
joined in G by a path of length one or two. In this paper we provide a
characterization of all trees T whose global domination number equals
the global domination number of the square of T .

1 Introduction and preliminary results

For terminology and notation on graph theory not given here, the reader is referred
to [5, 9]. Let G = (V,E) be a graph with vertex set V and edge set E. The square
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graph G2 of G is the graph with vertex set V and two vertices u and v are adjacent
in G2 whenever dG(u, v) ≤ 2. The complement G of G is the graph with vertex set
V and with exactly the edges that do not belong to G. The open neighborhood of a
vertex v ∈ V is the set N(v) = {u ∈ V | uv ∈ E}, and its closed neighborhood is the
set N [v] = N(v)∪{v}. The degree of v, denoted by degG(v), is the cardinality of its
open neighborhood. A set S ⊆ V is a dominating set of G if every vertex of V −S is
adjacent to at least one vertex of S. The minimum cardinality of a dominating set
of G, denoted by γ(G), is called the domination number of G. A dominating set of
cardinality γ(G) is called a γ-set of G. A set S ⊆ V is a global dominating set of G if
S is a dominating set of G and G. The minimum cardinality of a global dominating
set of G, denoted by γg(G), is called the global domination number of G. A global
dominating set of cardinality γg(G) is called a γg-set of G. Global domination is
studied for example in [1, 3, 8], and elsewhere.

One of many applications of global domination as given in chapter 11 of [4], relates
to a communication network modeled by a graph G, where subnetworks are defined
by some matching Mi of cardinality k. The necessity of these subnetworks could
be due for reasons of security, redundancy or limitations of recipients for different
classes of messages. For this practical case, the global domination number represents
the minimum number of master stations needed such that a message issued simulta-
neously from all masters reaches all desired recipients after traveling over only one
communication link. We note that Carrington [2] gave two other applications of
global dominating sets for graph partitioning commonly used in the implementation
of parallel algorithms.

A set D of vertices in a graph G is a packing if the vertices in D are pairwise at
distance at least 3 apart in G, or equivalently, for every vertex v ∈ V , |N [v]∩D| ≤ 1.
A set S ⊆ V is a distance 2-dominating set of G if dG(u, S) ≤ 2 for every vertex
u ∈ V − S. The minimum cardinality of a distance 2-dominating set of G, denoted
by γ2(G), is called the distance 2-domination number of G, for more see [4, 5]. We
note that every graph G satisfies γ2(G) = γ(G2), since every distance 2-dominating
set of G is a dominating set of G2, and every dominating set of G2 is a distance
2-dominating set of G. We also mention that a distance 2-dominating set of G and
G (that is, global distance 2-dominating set of G, γ2g(G) is not necessarily a global
dominating set of G2, and vice versa. For example, if G = C5, then γ2g(C5) = 1 and
γg(C

2
5) = 5.

A vertex that is adjacent to a leaf is called a support vertex. We denote by L(G) and
S(G) the set of leaves and support vertices of a graphG, respectively. The eccentricity
of a vertex v is ecc(v) = max{dG(v, w) : w ∈ V }. The radius of G is rad(G) =
min{ecc(v) : v ∈ V } and the diameter of G is diam(G) = max{ecc(v) : v ∈ V }. It is

well known that for every graph G, diam(G2) = ddiam(G)
2
e and rad(G) ≥ diam(G)

2
. In

particular, if T is a tree, then rad(T ) = ddiam(T )
2
e. The center C(G) of a connected

graph G is the set of vertices of minimum eccentricity. If T is a tree and u0, u1, . . . , uk
is a longest path in T , then C(T ) = {u k

2
}, when k is even and C(T ) = {u k−1

2
, u k+1

2
},

when k is odd.
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For some families of graphs, the global domination number is known or at least
restricted to within a fairly limited range (see [4, 5]). For instance:

- If G or G is disconnected, then γg(G) = max{γ(G), γ(G)}.

- If G is a triangle-free graph, then γ(G) ≤ γg(G) ≤ γ(G) + 1 [4].

- Max {γ(G), γ(G)} ≤ γg(G) = γg(G) ≤ γ(G) + γ(G).

Lemma 1.1 For any graph G, if rad(G) ≥ 3, then every dominating set of G is a
dominating set of G.

Proof. Let S be a dominating set for G and not be a dominating set for G. Therefore
there exists a vertex u in V (G) such that u is adjacent to every vertex of S in G and
so rad(G) ≤ 2, a contradiction. �

Since for every graph G, rad(G) ≥ diam(G)
2

, we have the following corollary.

Corollary 1.2 If G is a graph with diam(G) ≥ 5, then γg(G) = γ(G).

In [6], Raczek gave a characterization of all trees and all unicyclic graphs with equal
domination and distance 2-domination numbers. Raczek defined the family τ of trees
to consist of those trees T that can be obtained from sequence T1, T2, . . . , Tj (j ≥ 1)
of trees such that T1 is the path P2 and T = Tj , and, if j > 1, then Ti+1 can be
obtained recursively from Ti by the operation τ1, τ2 or τ3:

• Operation τ1. The tree Ti+1 is obtained from Ti by adding a vertex x1 and
the edge x1y, where y ∈ V (Ti) is a support vertex of Ti.

• Operation τ2. The tree Ti+1 is obtained from Ti by adding a path x1, x2, x3
and the edge x1y, where y ∈ V (Ti) is neither a leaf nor a support vertex in Ti.

• Operation τ3. The tree Ti+1 is obtained from Ti by adding a path x1, x2, x3, x4
and the edge x1y, where y ∈ V (Ti) is a support vertex in Ti.

Theorem 1.3 (Raczek [6]) If T is a tree, then γ(T ) = γ(T 2) if and only if T
belongs to the family τ .

In [6], Raczek also showed that the set of support vertices of every tree T ∈ τ is both
a packing and a γ-set of T .

In this paper, we characterize the trees T satisfying γg(T ) = γg(T
2). In Section 2, we

consider graph parameters when restricted to pruned subgraphs. Using these results,
in Sections 3, 4, 5, 6 and 7, we discuss trees having a fixed diameter.
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2 The pruned subgraphs

Let G = (V,E) be a graph. For every u ∈ V , delete all the leaves from N(u) except
one. The remaining graph is called the pruned subgraph (or pruned subtree, if G is a
tree) of G and is denoted by Gp.

Proposition 2.1 If T is a tree, then diam(Tp) = diam(T ) if and only if T 6= K1,t

with t ≥ 2.

Proof. Let T be a tree different from a star K1,t with t ≥ 2. Clearly, diam(T ) 6= 2.
If diam(T ) = 0 or diam(T ) = 1, then obviously diam(Tp) = diam(T ). Hence assume
that diam(T ) ≥ 3, and let a and b be two leaves of T such that dT (a, b) = diam(T ).
Let P = a, u1, u2, . . . , uk, b be a diametral path in T . Since diam(T ) ≥ 3, a and
b have distinct support vertices. Hence we can assume, without loss of generality,
that a, b ∈ V (Tp). Since degT (ui) ≥ 2, each ui ∈ V (Tp) and therefore P remains a
path linking a and b in Tp. It follows that diam(T ) ≤ diam(Tp), and the equality is
obtained from the fact that diam(T ) ≥ diam(Tp).

Conversely, let T = K1,t with t ≥ 2. Then Tp = P2 and clearly diam(T ) = 2 >
diam(Tp) = 1. �

Proposition 2.2 If T is a tree, then rad(Tp) = rad(T ).

Proof. If T is a star, then Tp = P2, and so rad(Tp) = rad(T ) = 1. If T is not a

star, then by Proposition 2.1, diam(Tp) = diam(T ). Since rad(T ) = ddiam(T )
2
e and

rad(Tp) = ddiam(Tp)

2
e we obtain the desired result. �

Corollary 2.3 If G is a graph, then γ(Gp) = γ(G).

Proof. The result is valid if G has order n = 1 or 2. Let n ≥ 3, and A be a γ-set
of G. It is clear that B = (A− L(G)) ∪ S(T ) is a γ-set of G, too. Since B does not
include any leaves of G, B is a γ-set of Gp. �

Let F denote the class of trees T with n ≥ 2 vertices and either radius one (that
is, stars) or radius two having a vertex u with degT (u) ≥ 2 and degT (v) ≥ 3 for all
v ∈ N(u) [1]. Let F′ denote the class of trees T with radius two having a vertex u
with degT (u) ≥ 2 and degT (v) ≥ 3 for all v ∈ N(u). Additionally, letting S denote
the class of stars on n ≥ 2 vertices, let F = F′ ∪ S.

Theorem 2.4 If T is a tree, then γg(Tp) = γg(T ) if and only if T /∈ F′.

Proof. If diam(T ) ∈ {0, 1, 2}, then it is clear that γg(Tp) = γg(T ). Hence we
may assume that diam(T ) ≥ 3, and let S be the set of support vertices of T . If
diam(T ) = 3, then C(T ) is a γ-set of T and Tp, and so γg(Tp) = γg(T ) = 2. Now
suppose that diam(T ) = 4, and let u0, u1, u2, u3, u4 be a path in T and also in Tp.
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Suppose that T ∈ F′. Then S ∪ {u2} is a γg-set of T , while (S − {u3}) ∪ {u4} is a
γg-set of Tp. Hence γg(Tp) = γg(T )−1. Suppose now that T /∈ F′. Then T has either
a support vertex, say u3, of degree two or u2 is a support vertex. If the first situation
occurs, then (S − {u3})∪ {u4} is a γg-set of T and Tp, and if the second one occurs,
then the set of support vertices is a γg-set of T and Tp. Finally, if diam(T ) ≥ 5,
then by Proposition 2.1, and Corollaries 1.2 and 2.3 we have γg(Tp) = γg(T ). �

3 Trees T with diam(T ) ≤ 4 or diam(T ) ≥ 9

We begin by considering trees T with diameter at most four. The following result
has been obtained independently by Brigham and Dutton [1] and Rall [7].

Theorem 3.1 (Brigham and Dutton [1], Rall [7]) If T is a tree, then either
T ∈ F and γg(T ) = γ(T ) + 1, or γg(T ) = γ(T ).

It is clear that if diam(T ) = 0 or diam(T ) = 1, then γg(T
2) = γg(T ).

Theorem 3.2 If diam(T ) = 2 or 3, then γg(T
2) 6= γg(T ).

Proof. If diam(T ) = 2, then T is a star K1,p for p ≥ 2, so γg(T ) = 2 and γg(T
2) =

p+ 1 ≥ 3.

If diam(T ) = 3 with P = u0, u1, u2, u3 as a diametral path in T , then clearly S =
{u1, u2} is a γg-set of T , so γg(T ) = 2. Suppose that γg(T

2) = 2 and let S = {u, v} be
a γg-set of T 2. If u and v are adjacent in T , then dT (u, a) = 2 for every a ∈ N(v)−{u}
and likewise dT (v, b) = 2 for every b ∈ N(u)−{v}. But then S is not a dominating set
of the complement of T 2. Hence u and v are not adjacent in T 2, that is dT (u, v) = 2
or 3. Then for every vertex x on the path between u and v, we have dT (x, u) = 1 or
2 and dT (x, v) = 1 or 2. Thus x is an isolated vertex in the complement of T 2 and
cannot be dominated by {u, v}. Therefore γg(T

2) > 2. �

Lemma 3.3 Let S be the set of support vertices of a tree T . If diam(T ) ∈ {2, 3, 4, 5},
then γ(T ) = |S|.

Proof. Clearly, γ(T ) ≥ |S|. Since diam(T ) ≤ 5, every vertex of T is either a support
vertex or adjacent to a support vertex. Hence S dominates all vertices of T , implying
that γ(T ) ≤ |S| and the equality follows. �

Lemma 3.4 If T is a tree of diameter 4, then γg(T
2) = 3.

Proof. Let P = u0, u1, u2, u3, u4 be a path of length 4 in T . It is easy to see that the
set A = {u0, u2, u4} is a global dominating set of T 2. We shall show that A is a γg-set
of T 2. Suppose to the contrary that γg(T

2) = 2. Since diam(T ) = 4, dT (x, u2) ≤ 2
for every x ∈ V (T ), so u2 belongs to every γ-set of the complement of T 2 and hence
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to every γg-set of T 2. Therefore, let A1 = {u2, x} be a global dominating set of T 2.
If xu2 ∈ E(T ), then each of u1 and u3 is at distance at most two from u2 and x. But
then A1 does not dominate at least one of u1 or u3 in the complement of T 2. Thus
xu2 /∈ E(T ). Let w be any vertex of T adjacent to both u2 and x. Then A1 does not
dominate w in the complement of T 2, a contradiction. We deduce that γg(T

2) 6= 2,
and so γg(T

2) = 3. �

Theorem 3.5 If T is a tree of diameter 4, then γg(T
2) = γg(T ) if and only if

a) T /∈ F and T has 3 support vertices or

b) T ∈ F and T has 2 support vertices.

Proof. By Lemma 3.3 we have γ(T ) = |S(T )| and by Lemma 3.4 γg(T
2) = 3. Now

by Theorem 3.1 and Lemma 3.4 the result holds. �

We turn our attention to trees with diameter at least nine.

Proposition 3.6 If T is a tree of diameter at least 9, then γg(T
2) = γg(T ) if and

only if T ∈ τ .

Proof. Since diam(T ) ≥ 9, we have diam(T 2) ≥ 5. The result follows by applying
Corollary 1.2 to both T and T 2, and by using Theorem 1.3. �

4 Trees with diameter five

In this section we characterize the trees T with diameter 5 such that γg(T ) = γg(T
2).

Thoughout this section, we let L(u) denote the set of leaves attached at a support
vertex u.

Lemma 4.1 Let T be a tree with diam(T ) ≥ 5. If T ′ is a tree obtained from T by
adding a new vertex attached at a support vertex of T, then γg(T

′2) ≤ γg(T
2).

Proof. Let u be a support vertex of T and a be the new vertex attached at u. Let
M be a γg-set of T 2. We will show that T ′2 has a global dominating set of cardinality
|M | . Assume first that M −NT [u] 6= ∅. Then vertex a is dominated in T ′2 by M as
well as any vertex of L(u) in T 2. Also, since M −NT [u] 6= ∅, vertex a is at distance
at least three from some vertices of M −NT [u], and so vertex a remains dominated
by M − NT [u] in T ′2. Therefore for that case, M is a global dominating set of T ′2.
Now assume that M − NT [u] = ∅. It is clear that M = NT [u]. Since diam(T ) ≥ 5,
we have rad(T ) ≥ 3. Thus there is a vertex t ∈ V (T ) such that dT (u, t) = 3. It
follows that M1 = (M − {u})∪{t} is a γg-set of T 2, too. Now since M1−NT [u] 6= ∅,
we deduce, as previously seen, that M1 is a global dominating set of T ′2. Therefore
γg(T

′2) ≤ γg(T
2). �
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Lemma 4.2 Let T be a tree andM a γg-set of T
2. If diam(T ) ≥ 4, then |L(u)∩M | ≤

1 for every u ∈ S(T ).

Proof. To the contrary, suppose there is a support vertex u ∈ S(T ) such that
|L(u)∩M | ≥ 2. Let a, b ∈M ∩L(u). If M−NT [u] 6= ∅, then it is clear that M−{a}
is a global dominating set of T 2, a contradiction. Thus M ⊆ N [u]. Observe that since
dT (z,M) ≤ 2 for every z ∈ NT [u], we have M = NT [u]. It follows that diam(T ) ≤ 6.
At first let diam(T ) = 4 and P = u0, u1, u2, u3, u4 be a longest path in T . The set
{u0, u2, u4} is a global dominating set of T 2, hence γg(T

2) ≤ 3, but |N [u]| ≥ 4, that is
a contradiction. Now suppose that diam(T ) = 5 and let P = u0, u1, u2, u3, u4, u5 be
a longest path in T . Note that since {u0, u2, u3, u5} is a global dominating set of T 2,
we have γg(T

2) ≤ 4. Clearly, if u /∈ C(T ), then either dT (u, u0) = 4 or dT (u, u5) = 4.
Hence dT (u0,M) = 3 or dT (u5,M) = 3, a contradiction. Thus u ∈ C(T ). But,
then |N [u]| ≥ 5, contradicting the fact that |M | = |NT [u]| ≤ 4. Hence we may
assume that diam(T ) = 6. Let P = u0, u1, u2, u3, u4, u5, u6 be a longest path in T .
If u ∈ C(T ), then (NT [u]− L(u)) ∪ {u0} is a global dominating set of T 2 smaller
than M, a contradiction. Hence u /∈ C(T ). But then either d(u0, NT [u]) ≥ 3 or
d(u6, NT [u]) ≥ 3, a contradiction. �

Theorem 4.3 If T is a tree, then γg(T
2
p ) 6= γg(T

2) if and only if

a) T is a star or

b) diam(T ) = 3 and degT (u) ≥ 3 for every u ∈ S(T ).

Proof. Let T be a tree of order n. If diam(T ) ∈ {0, 1}, then T = Tp and so
γg(T

2
p ) = γg(T

2). If diam(T ) = 2, then T is a star, Tp is K2 and so γg(T
2
p ) = 2

while γg(T
2) = n > 2. If diam(T ) = 3, then Tp is P4. Without loss of generality let

P = u0, u1, u2, u3 be a longest path in T and in Tp. Then {u0, u1, u2} is a γg-set of
T 2
p , and so γg(T

2
p ) = 3. If degT (u) ≥ 3 for every u ∈ S(T ), then {u0, u1, u2, u3} is a

γg-set of T 2 and so γg(T
2) = 4. If degT (u) = 2 for some u ∈ S(T ), for example u1,

then the set {u0, u1, u2} is a γg-set of T 2 and so γg(T
2) = 3. Now if diam(T ) = 4,

then by Proposition 2.1 and Lemma 3.4, γg(T
2
p ) = γg(T

2) = 3. Now let diam(T ) ≥ 5.
Since T can be obtained from Tp by adding a new vertex at each time attached at a
support vertex of TP , Lemma 4.1 inductively implies that γg(T

2) ≤ γg(T
2
p ). Now if

M is a γg-set of T 2, then by Lemma 4.2 we have |L(u)∩M | ≤ 1 for every u ∈ S(T ).
Thus, without loss of generality, we can assume that vertices of M belong to V (Tp).
Therefore M is a global dominating set of T 2

p . Hence γg(T
2
p ) ≤ |M | = γg(T

2), and
the desired equality follows. �

Theorem 4.4 If T is a tree of diameter 5, then γg(T
2) = γg(T ) if and only if Tp is

one of the trees in Figure 1.
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Proof. In each of the figures given in Figure 2, the set of black vertices repre-
sent a γg-set of T while the squared vertices represent a γg-set of T 2. Let P =
u0, u1, u2, u3, u4, u5 be a longest path in T . Since {u0, u2, u3, u5} is a global dominat-
ing set of T 2, we have γg(T

2) ≤ 4 and by Theorem 4.3 we have γg(T
2
p ) ≤ 4, too. By

Proposition 2.1 we have diam(Tp) = 5 and by Lemma 3.3 and Corollary 1.2, if Tp
has more than four support vertices, then γg(T

2
p ) 6= γg(Tp). Now the only pruned

subtrees of diameter 5 with at most four support vertices are given in Figures 1 and
2. However, for every tree in Figure 1 we have γg(T

2
p ) = γg(Tp), and for every tree in

Figure 2, γg(T
2
p ) 6= γg(Tp). Now our result follows easily from Theorems 2.4 and 4.3.
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5 Trees with diameter six

In this section we characterize all trees T with diameter 6 such that γg(T ) = γg(T
2).

Lemma 5.1 Let T be a tree with diameter 6 and center C(T ) = {u}. If γg(T
2) =

γg(T ), then degTp
(x) < 3 for every x ∈ NTp(u).
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Proof. Let T be a tree with diameter 6 such that γg(T
2) = γg(T ). By Theorems

2.4 and 4.3, γg(T
2
p ) = γg(Tp). Clearly, NTp [u] is a global dominating set of T 2

p , and

so γg(T
2
p ) ≤

∣∣NTp [u]
∣∣ = dTp(u) + 1. On the other hand, since diam(T ) ≥ 5, we

have γg(T ) = γ(T ) ≥ |S(T )| = |S(Tp)|. For every w ∈ NTp(u), the component of
Tp − (NTp(u)− {w}) which includes w is named a branch of Tp containing edge wu.
One can easily see that each branch attached at u in Tp is one of the trees in Figure 3.
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Family of figures Q = {(A), (B), (C), (D), (E), (F ), (G), (H)}
Figure 3

Note that since each support vertex in Tp has exactly one leaf, there is at most one
branch (A) attached at u in TP . Now let us define n(X) as the number of branches
(X) attached at u in Tp, where X ∈ {A,B,C,D,E, F,G,H}. Hence degTp

(u) =∑
X∈{A,B,C,D,E,F,G,H} n(X). Observe that each of the branches (A), (B) and (C)

attached at u in Tp contains one vertex of NTp(u) and one vertex of S(Tp). Also,
each of the branches (D), (E), (F), (G) and (H) attached at u in Tp contains one
vertex of NTp(u) and at least two vertices of S(Tp). We will show that the only
branches attached at u in Tp are among branches (A), (B) and (C). Now let us
consider the following cases.

Case 1. Tp has at least one branch among branches (E), (G) and (H) attached at
u. Each of the branches (E), (G) and (H) has at least three support vertices, and so

γg(Tp) = γ(Tp) ≥ |S(Tp)|
≥ n(A) + n(B) + n(C) + n(D) + n(F ) + 3(n(E) + n(G) + n(H))

= n(A) + n(B) + n(C) + n(D) + n(E) + n(F ) + n(G) + n(H) + 2(n(E)

+ n(G) + n(H))

≥ degTp
(u) + 2 ≥ γg(T

2
p ) + 1.

Hence γg(T
2
p ) < γg(Tp), a contradiction. From now on we may assume that Tp has

no branches (E), (G) and (H) attached at u.
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Case 2. Tp has at least two branches among branches (D) and (F) attached at u.
Each of the branches (D) and (F) has two support vertices. It follows that

γg(Tp) = γ(Tp) ≥ |S(Tp)| = n(A) + n(B) + n(C) + 2(n(D) + n(F ))

= n(A) + n(B) + n(C) + n(D) + n(F ) + (n(D) + n(F ))

≥ degTp
(u) + 2 ≥ γg(T

2
p ) + 1,

and so γg(T
2
p ) < γg(Tp), a contradiction. Thus Tp has at most one branch among

branches (D) and (F) attached at u.

In cases 3 and 4, we will show that Tp has no branches (D) and (F) attached at u.

Case 3. Tp has one branch (D) attached at u. Clearly since diam(Tp) = 6, there is
at least one branch (C) attached at u. Let M be the set containing all vertices c of
branches (C) plus vertex b of (D). The following situations can occur.

a) If there is no branch (A) or (B) attached at u, then M is a γg-set of T 2
p and S(Tp)

is a γg-set of Tp. Therefore γg(T
2
p ) = γg(Tp)− 1, a contradiction.

b) If there exist branches (A) or (B) attached at u, then M∪{u} is a global dominat-
ing set of T 2

p and S(Tp) is γg-set of Tp. Therefore γg(T
2
p ) ≤ γg(Tp)−1, a contradiction.

Case 4. Tp has one branch (F) attached at u. Since diam(Tp) = 6, Tp has at least
one branch (C) attached at u. We observe the following situations.

a) Tp has exactly one branch (C) attached at u. If there are no branches (A) and
(B) attached at u, then S(Tp) ∪ {u} is a γg-set of Tp and vertices a of branches (F)
and (C) plus u form a γg-set of T 2

p . Therefore γg(T
2
p ) = γg(Tp)− 1, a contradiction.

Now if there is one branch (A) and no branch (B) attached at u, then S(Tp) is a
γg-set of Tp and vertices a and c of branch (C) and vertex a of branch (F) form a
γg-set of T 2

p . Therefore γg(T
2
p ) = γg(Tp)− 1, a contradiction.

If there is one branch (B) and no branch (A) attached at u, then S(Tp) is a γg-set
of Tp and vertices c of branch (C) and a of branch (F) plus b of branch (B) form a
γg-set of T 2

p . Therefore γg(T
2
p ) = γg(Tp)− 1, a contradiction.

If there are at least two branches (B) and no branch (A) attached at u, then S(Tp)
is a γg-set of Tp and vertices c of branch (C) and a of branch (F) and b of one of the
branches (B) plus vertex u form a γg-set of T 2

p . Therefore γg(T
2
p ) ≤ γg(Tp) − 1, a

contradiction.

If there is one branch (A) and at least one branch (B) attached at u, then S(Tp) is
a γg-set of Tp and vertices c of branch (C) and a of branch (F) plus vertex u form a
γg-set of T 2

p . Therefore γg(T
2
p ) ≤ γg(Tp)− 2, a contradiction.

b) Tp has at least two branches (C) attached at u. If there is no branch (B) attached
at u, then S(Tp) ∪ {u} is a γg-set of Tp and vertices c of branches (C) plus vertex a
of branch (F) form a γg-set of T 2

p . Therefore γg(T
2
p ) = γg(Tp) − 2, a contradiction.

Now if Tp has at least one branch (B) attached at u, then S(Tp) is a γg-set of Tp,
and vertices c of branches (C) plus u and vertex a of branch (F) form a γg-set of T 2

p .
Therefore γg(T

2
p ) ≤ γg(Tp)− 1.
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So the only branches that are attached to u are (A), (B) and (C) and the vertex a
in each of them has degree one or two. �

Theorem 5.2 If T is a tree with diameter 6 and C(T ) = {u}, then γg(T 2) = γg(T )
if and only if one of the following conditions holds:

a) Tp has one branch (A), two branches (C) and no other branches are attached at u,

b) Tp has one branch (B), at least two branches (C) and no other branches are
attached at u.

Proof. If T satisfies the conditions (a) and (b), then for Tp, the vertices c of branches
(C) plus vertex u form a γg-set of T 2

p and the set S(Tp) forms a γg-set of Tp , so
γg(T

2
p ) = γg(Tp) and by Theorems 2.4 and 4.3, we obtain γg(T

2) = γg(T ).

Now let γg(T
2) = γg(T ) and suppose that T does not satisfy conditions (a) or (b).

By Theorems 2.4 and 4.3, γg(T
2
p ) = γg(Tp). Also by Lemma 5.1, degTp

(x) < 3 for
every x ∈ NTp(u). Hence the only branches attached at u in Tp are among branches
(A), (B) and (C). Moreover, since diam(T ) = 6, Tp contains at least two branches
(C) attached at u. We now consider the following cases.

Case 1. One branch (A), at least one branch (B) and at least two branches (C) are
attached at u in Tp. In this case, S(Tp) is a γg-set of Tp. Also vertices c of branches
(C) plus vertex u form a γg-set of T 2

p . Therefore γg(T
2
p ) ≤ γg(Tp)−1, a contradiction.

Case 2. One branch (A), at least three branches (C) and no branch (B) are attached
at u in Tp. In this case, S(Tp) is a γg-set of Tp. Also vertex a of one branch
(C) plus vertices c of the remaining branches (C) form a γg-set of T 2

p . Therefore
γg(T

2
p ) = γg(Tp)− 1, a contradiction.

Case 3. At least two branches (B) and at least two branches (C) and no branch
(A) are attached at u in Tp. In this case S(Tp) is a γg-set of Tp. Also vertices c of
branches (C) plus vertex u form a γg-set of T 2

p . Therefore γg(T
2
p ) ≤ γg(Tp) − 1, a

contradiction. �

6 Trees with diameter seven

In this section we characterize all trees T of diameter 7 such that γg(T ) = γg(T
2).

Lemma 6.1 Let T be a tree with diameter 7 and center C(T ) = {u, v}. If γg(T 2) =
γg(T ), then degTp

(x) < 3 for every x ∈ NTp(u) ∪NTp(v)− {u, v}.

Proof. Let γg(T
2) = γg(T ). By Theorems 2.4 and 4.3 we have γg(T

2
p ) = γg(Tp).

Clearly, NTp(u)∩NTp(v) is a global dominating set of T 2
p and so γg(T

2
p ) ≤ degTp

(u)+
degTp

(v). Let Q′ be the family of all possible branches of Tp attached at u or v. We
note that vertex w in different branches is u or v.
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Figure 4

Note that since each support vertex in Tp has exactly one leaf, there is at most
one branch (A′) attached at u and at most one branch (A′) attached at v in TP .
Let n(X) be the number of branches (X) that are attached at u or v in Tp, where
X ∈ {A′, B′, C ′, D′, E ′, F ′, G′, H ′, I ′}. Hence

dTp(u) + dTp(v) =
∑

X∈{A′,B′,C′,D′,E′,F ′,G′,H′,I′}

n(X) + 2.

Observe that each branch (X) attached at u or v in Tp contains one vertex of NTp(u)∪
NTp(v)−{u, v} and at least one vertex of S(Tp). More precisely, if X ∈ {A′, B′, C ′},
then branch (X) contains one vertex of S(Tp). If X ∈ {D′, G′}, then branch (X)
contains two vertices of S(Tp). If X ∈ {E ′, H ′}, then branch (X) contains three
vertices of S(Tp). If X ∈ {F ′, I ′}, then branch (X) contains at least four vertices
of S(Tp). It is sufficient to show that the only branches that are attached at u
or v in Tp are among branches (A′), (B′) and (C′). Now if there exists a vertex
x ∈ NTp(u) ∪ NTp(v) − {u, v} such that degTp

(x) ≥ 3, then we are in one of the
following cases.
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Case 1. Tp has at least one branch among branches (F′) and (I′) attached at u or v.
Since each of the branches (F′) and (I′) has at least four support vertices, we obtain

γg(Tp) = γ(Tp) ≥ |S(Tp)|
≥ n(A′) + n(B′) + n(C ′) + n(D′) + n(E ′) + n(G′) + n(H ′) + 4(n(F ′)+n(I ′))

= n(A′) + n(B′) + n(C ′) + n(D′) + n(E ′) + n(F ′) + n(G′) + n(H ′) + n(I ′)

+ 3(n(F ′) + n(I ′))

≥ degTp
(u) + dTp(v)− 2 + 3 = degTp

(u) + dTp(v) + 1 ≥ γg(T
2
p ) + 1.

Hence γg(T
2
p ) < γg(Tp), a contradiction. Thus, for the next cases Tp has no branch

(F′) nor (I′).

Case 2. Tp has at least two branches among branches (E′) and (H′) attached at u
or v. Since each of the branches (E′) and (H′) has three support vertices, we obtain
that

γg(Tp) = γ(Tp) ≥ |S(Tp)|
≥ n(A′) + n(B′) + n(C ′) + n(D′) + n(G′) + 3(n(E ′) + n(H ′))

= n(A′)+ n(B′)+ n(C ′)+ n(D′) + n(E ′) + n(G′) + n(H ′)+2(n(E ′)+n(H ′))

≥ degTp
(u) + dTp(v)− 2 + 4 = degTp

(u) + dTp(v) + 2 ≥ γg(T
2
p ) + 2.

Hence γg(T
2
p ) < γg(Tp), a contradiction.

Case 3. Tp has at least one branch (E′) and at least one branch among branches
(D′), (G′) and(H ′) attached at u or v. In this case, we have

γg(Tp) = γ(Tp) ≥ |S(Tp)|
≥ n(A′) + n(B′) + n(C ′) + 2(n(D′) + n(G′) + n(H ′)) + 3n(E ′)

= n(A′) + n(B′) + n(C ′) + n(D′) + n(E ′) + n(G′)

+ n(H ′) + (n(D′) + n(G′) + n(H ′)) + 2n(E ′)

≥ degTp
(u) + dTp(v)− 2 + 1 + 2 = degTp

(u) + dTp(v) + 1 ≥ γg(T
2
p ) + 1.

Hence γg(T
2
p ) < γg(Tp), a contradiction.

Case 4. Tp has at least one branch (H′) and at least one branch among branches
(D′), (E′) and (G′) attached at u or v. In this case, we have

γg(Tp) = γ(Tp) ≥ |S(Tp)|
≥ n(A′) + n(B′) + n(C ′) + 2(n(D′) + n(E ′) + n(G′)) + 3n(H ′)

= n(A′) + n(B′) + n(C ′) + n(D′) + n(E ′)

+ n(G′) + n(H ′) + (n(D′) + n(E ′) + n(G′)) + 2n(H ′)

≥ degTp
(u) + dTp(v)− 2 + 1 + 2 = degTp

(u) + dTp(v) + 1 ≥ γg(T
2
p ) + 1.

Hence γg(T
2
p ) < γg(Tp), a contradiction.
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Case 5. Tp has one branch (E′) and no branch among branches (D′), (G′) and (H′)
attached at u or v. Without loss of generality, we assume that (E′) is attached at v.
Since diam(G) = 7, Tp has at least one branch (C′) attached at u. We consider the
following two situations.

a) No branch (A′) or (B′) is attached at u or v in Tp. Then S(Tp)∪{u} is γg-set of Tp,
and vertices c of branches (C′) plus vertex a of (E′) form a γg-set of T 2

p . Therefore
γg(T

2
p ) = γg(Tp)− 3, that is a contradiction.

b) Tp contains some branches (A′) or (B′) attached at u or v. Then the set M formed
by vertices a of branches (C′) and (E′) plus u, v is a global dominating set of T 2

p ,
implying that |M | ≤ |S(Tp)| − 1. Hence γg(T

2
p ) ≤ |M | < |S(Tp)| ≤ γ(Tp) = γg(Tp), a

contradiction.

Case 6. Tp has one branch (H′) and no branch among branches (D′), (E′) and (G′)
attached at u or v. Without loss of generality we assume that (H′) is attached at v.
Since diam(G) = 7, Tp has at least one branch (C′) attached at u. We consider the
following two situations.

a) No branch (A′) or (B′) is attached at u or v in Tp. Then S(Tp) ∪ {u} is γg-set
of Tp, and vertices c of (C′) plus vertex a of (H′) form a γg-set of T 2

p . Therefore
γg(T

2
p ) = γg(Tp)− 3, a contradiction.

b) Tp contains some branches (A′) or (B′) attached at u or v. Then the set M formed
by vertices a of branches (C′) and (H′) plus u, v is a global dominating set of T 2

p ,
implying that |M | ≤ |S(Tp)|−1. Therefore γg(T

2
p ) ≤ |M | < |S(Tp)| ≤ γ(Tp) = γg(Tp),

a contradiction.

Hence for the remaining cases we consider Tp has no branch (E′) nor (H′).

Case 7. Tp has at least three branches among branches (D′) and (G′) attached at u
or v. Since each of the branches (D′) and (G′) has two support vertices, we obtain
that

γg(Tp) = γ(Tp) ≥ |S(Tp)| ≥ n(A′) + n(B′) + n(C ′) + 2(n(D′) + n(G′))

= n(A′) + n(B′) + n(C ′) + n(D′) + n(G′) + (n(D′) + n(D′))

≥ degTp
(u) + dTp(v)− 2 + 3 = degTp

(u) + dTp(v) + 1 ≥ γg(T
2
p ) + 1.

Hence γg(T
2
p ) < γg(Tp), a contradiction.

Case 8. Tp has one or two branches among branches (D′) and (G′) attached at u or
v. Note that in this case, Tp may also contain some branches among branches (A′),
(B′) and (C′) attached at u or v. It is clear that for every tree T with diameter 7 and
center {u, v}, by adding every branch (C′) to u or v, the amounts γg(Tp) and γg(T

2
p )

increase exactly by 1. We consider the trees in Figure 5.
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Figure 5

The tree Tp can be obtained by adding some branches among branches (A′), (B′),(C ′)
to vertices u or v of one of the trees Ti, i = 1, 2, . . . , 8. Note that Tp has at most one
branch (A′) attached at u or at v. In this case, for each tree Ti in Figures 6,7,8 a
γg-set, named Mi, by black vertices and a global dominating set of T 2

i , named Ni,
by square shapes is determined. So for trees Ti, i = 1, 2, 5, 6, 7, 8 we have γg(T

2
i ) ≤

|Ni| < |Mi| = γg(Ti) and for Ti, i = 3, 4, we have γg(T
2
i ) ≤ |Ni| = |Mi| = γg(Ti).

By adding some branches among branches (A′) and (B′) to u or v in Ti, i = 3, 4,
the amount |Mi| increases at least by 1 but |Ni| does not change. By adding some
branches among branches (A′) and (B′) to u or v in Ti, i = 5, 6, 7, 8, the amount
|Mi| does not change or increases by at least one, but |Ni| does not change. Hence,
if Tp is made by adding some branches among branches (A′), (B′) and (C′) to Ti,
i = 3, 4, . . . , 8, then we have γg(T

2
p ) < γg(Tp), that is a contradiction.

Now we consider the trees in Figure 6 that are obtained from the trees T1 or T2 by
attaching a branch (A′) to one of the vertices u and v.
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For trees Ti, i = 9, 10, 11, 12 we have γg(T
2
i ) ≤ |Ni| < |Mi| = γg(Ti). Now consider

the trees in Figure 7 which are the trees Ti, i = 1, 2, 9, 10, 11, 12, with new a global
dominating set of T 2

i .
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Figure 7

By adding every branch among branches (A′) and (B′) to u or v in Ti, i = 15, 16, 17, 18
the amount |Mi| increases at least by 1, but |Ni| doesn’t change, and by adding every
branch (B′) to u or v in Ti, i = 13, 14, then |Mi| increases by one but |Ni| does not
change.
Consequently if Tp is obtained from T1 or T2 by attaching some branches among
branches (A′), (B′) and (C′) at u or v we have γg(T

2) < γg(T ), a contradiction.
Hence Tp has no branches among branches (D′) and (G′) and the only branches
attached at u and v in Tp are among branches (A′), (B′) and (C′). �

Theorem 6.2 If T is a tree with diameter 7 and center C(T ) = {u, v}, then γg(T 2)
= γg(T ) if and only if at least one branch (C ′) and just one branch (B′) are attached
at u, also at v in Tp and Tp has no other branches attached at u and v.

Proof. Let γg(T
2) = γg(T ). Then by Lemma 6.1, degTp

(x) < 3 for every x ∈
NTp(u)∪NTp(v)−{u, v}. So there are attached only branches among branches (A′),
(B′) and (C′) at u and v in Tp. Since diam(T ) = 7, Tp must have at least one branch
(C′) attached at u and at least one branch (C′) attached at v. If Tp has no branch
(A′) or (B′) attached at u and v, then S(Tp)∪{v} is a γg-set of Tp, and the set formed
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by vertex a of one branch (C′) attached at u plus vertices c of the other branches (C′)
attached at u or v is a γg-set of T 2

p . It follows that γg(T
2
p ) = γg(Tp)−1, a contradiction.

From now on we may assume that Tp has at least one branch (C′) attached at u and
at least one branch (C′) attached at v and at least one branch among branches (A′)
and (B′) attached at u or v. Therefore, without loss of generality, we distinguish
between the following cases.

Case 1. Tp has one branch (A′) attached at u and no branch (B′) attached at u. In
this case, we are in one of the following situations.

a) No branch (A′) or (B′) is attached at v. Then S(Tp) is a γg-set of Tp, and the
set formed by vertex a of one branch (C′) attached at u plus vertices c of the other
branches (C′) attached at u or v, is a γg-set of T 2

p . Hence γg(T
2
p ) = γg(Tp) − 1, a

contradiction.

b) One branch (A′) and no branch (B′) are attached at v. If Tp has exactly two
branches (C′), then S(Tp) is a γg-set of Tp and the set formed by u plus vertex c of
branch (C′) attached at u and vertex a of branch (C′) attached at v is a γg-set of T 2

p .
It follows that γg(T

2
p ) = γg(Tp) − 1, a contradiction. Thus we assume that Tp has

at least three branches (C′). Without loss of generality, we assume that at least two
branches (C′) are attached at u. Then S(Tp) is a γg-set of Tp and the set formed by
vertex c of one of the branches (C′) attached at u plus vertices a of the remaining
branches (C′) is a γg-set of T 2

p . It follows that γg(T
2
p ) = γg(Tp)− 2, a contradiction.

c) At least one branch (B′) and no branch (A′) are attached at v. Then S(Tp) is a
γg-set of Tp and the set formed by vertices c of branches (C′) plus vertex v is a γg-set
of T 2

p . Hence γg(T
2
p ) ≤ γg(Tp)− 1, a contradiction.

d) One branch (A′) and at least one branch (B′) are attached at v. Then S(Tp) is a
γg-set of Tp and the set formed by vertices c of all branches (C′) plus vertex v is a
γg-set of T 2

p . Therefore γg(T
2
p ) ≤ γg(Tp)− 2, a contradiction.

Case 2. Tp has one branch (A′) and at least one branch (B′) attached at u. In this
case, we are in one of the following situations.
a) No branch (A′) or (B′) is attached at v. Then S(Tp) is a γg-set of Tp and the set
formed by vertices c of all branches (C′) plus vertex u is a γg-set of T 2

p . Therefore
γg(T

2
p ) ≤ γg(Tp)− 1, a contradiction.

b) No branch (A′) and at least one branch (B′) are attached at v. Then S(Tp) is a
γg-set of Tp and the set formed by vertices c of all branches (C′) plus u and v is a
γg-set of T 2

p . Hence γg(T
2
p ) ≤ γg(Tp)− 1, a contradiction.

c) One branch (A′) and at least one branch (B′) are attached at v. Then S(Tp) is a
γg-set of Tp and the set formed by vertices c of all branches (C′) plus u and v is a
γg-set of T 2

p . Hence γg(T
2
p ) ≤ γg(Tp)− 2, a contradiction.

Up to now by cases 1 and 2 we found that no branch (A′) is attached at u and v.
From now on we may assume that no branch (A′) is attached to u and v.

Case 3. At least one branch (B′) is attached at u. In this case, we are in one of the
following situations.
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a) No branch (B′) is attached at v. Then S(Tp) ∪ {v} is a γg-set of Tp and the set
formed by vertices c of all branches (C′) plus vertex u is a γg-set of T 2

p . Therefore
γg(T

2
p ) ≤ γg(Tp)− 1, a contradiction.

b) At least one branch (B′) is attached at v. Then S(Tp) is a γg-set of Tp and the
set formed by vertices a of all branches (C′) plus u and v is a γg-set of T 2

p . It follows
that if more than one branch (B′) is attached at each of u or v, then γg(T

2
p ) < γg(Tp).

Equality between γg(T
2
p ) and γg(Tp) holds when there is attached exactly one branch

(B′) at u, and one at v. �

7 Trees with diameter eight

For this section, consider the branches of Figure 8.
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Family of figures Q′′ = {(A′′), (B′′), (C ′′), (D′′), (E ′′), (F ′′), (G′′), (H ′′), (I ′′)}

Figure 8

According to the definition of family τ , if T ∈ τ and diam(T ) = 8, then Tp can be a
tree of Figure 9 or 10 with u as a center vertex.
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Figure 9 Figure 10
Figure 9 consist of one branch (A′′) and at least two branches among branches
(D′′) and (F ′′) attached at u, while Figure 10 consist of one branch (B′′) and some
branches among branches (C ′′) and (H ′′) attached at u. Note that in Figure 10,
since diam(T ) = 8, so at least two branches (H ′′) are attached at u.

Theorem 7.1 If T is a tree of diameter 8, then γg(T
2) = γg(T ) if and only if T ∈ τ .

Proof. If T ∈ τ , then S(T ) is both a γg-set of T and γg-set of T 2, and therefore
γg(T

2) = γg(T ).
Conversely, let T be a tree of diameter 8 and center vertex u such that γg(T

2) =
γg(T ). By Theorems 2.4 and 4.3, we have γg(T

2
p ) = γg(Tp) and since diam(Tp) ≥ 5

we have γg(Tp) = γ(Tp). Let B1, B2, . . . , Bk denote the branches of Tp attached
at u. Note that since diam(T ) = 8, so the branches attached at u in T or Tp
are at most in diameter four. Let Si be the set of support vertices of branch Bi.
Note that if Bi = (A′′), then |Si| = 0. Let Wi be the set of vertex labeled b
if Bi = (B′′) and Wi = {v ∈ V (Bi) | dTp(v, u) = 2, dTp(v) > 1} if Bi 6= (B′′),

i ∈ {1, 2, . . . , k}. Let W =
⋃k

i=1Wi. Clearly, |Wi| ≤ |Si|, i ∈ {1, 2, . . . , k} and∑k
i=1 |Si| ≤ |S(Tp)| ≤ γ(Tp) = γg(Tp). Since W ∪ {u} is a global dominating set of

T 2
p we obtain that γg(T

2
p ) ≤ |W | + 1. We note that if Bi ∈ Q′′, then |Wi| = |Si|.

However, Tp may contain some branch Bj /∈ Q′′ and for which we have |Sj| > |Wj|.
Now let us examine the different situations.

Case 1. Either |Sj| ≥ |Wj| + 2 for some j ∈ {1, 2, . . . , k} or |Sr| = |Wr| + 1 and
|St| = |Wt|+ 1 for some r, t ∈ {1, 2, . . . , k} with r 6= t. In this case, we have

γg(T
2
p ) ≤ |W |+1 = (

∑k
i=1 |Wi|)+1 ≤

(∑k
i=1 |Si|

)
−2+1 ≤ γg(Tp)−1, a contradiction.

Case 2. |Sj| = |Wj| + 1 for just one j ∈ {1, 2, . . . , k} and Bi ∈ Q′′, for i ∈
{1, 2, . . . , k} − {j}. Without loss of generality, assume that j = 1. Clearly, since
diam(T ) = 8, at least one of the branches (D′′), (F ′′), (G′′), (H ′′) and (I ′′) is attached
at u. First suppose that there is a branch (A′′) attached at u in Tp, then S(T ) =
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(
⋃k

i=1 Si) ∪ {u} and so |S(T )| =
∑k

i=1 |Si|+ 1, implying that

γg(T
2
p ) ≤ |W |+ 1 = (

k∑
i=1

|Wi|) + 1 = |w1|+ (
k∑

i=2

|Wi|) + 1

= (|S1| − 1) + (
k∑

i=2

|Si|) + 1 =
k∑

i=1

|Si| = |S(Tp)| − 1 ≤ γg(Tp)− 1,

a contradiction. Suppose now that no branch (A′′) is attached at u. Then the set
M consists of W1 and the vertices labeled b of branches B2, B3, . . . , Bk is a global
dominating set of T 2. The number of such vertices labeled b in each Bi, with i 6= 1,
equals to |Wi|. Therefore we obtain

γg(T
2
p ) ≤ |M | = |W | =

k∑
i=1

|Wi| = |W1|+
k∑

i=2

|Wi|

= (|S1| − 1) +
k∑

i=2

|Si| = (
k∑

i=1

|Si|)− 1 ≤ γg(Tp)− 1,

a contradiction.

Hence from now on we will assume that each branch Bi belongs to Q′′, i = 1, 2, . . . , k.

Note that according to the definition of pruned subgraph, at most one branch (A′′)
is attached at u in Tp, and since diam(T ) = 8, at least two branches among branches
(D′′), (F ′′), (G′′), (H ′′) and (I ′′) are attached at u.

Case 3. There is a branch among (E ′′), (G′′) or (I ′′) attached at u in Tp. In this
case, the set M consisting of vertices labeled c in branches of {(E ′′), (G′′), (I ′′)} plus
vertices of Wi not in branches of {(E ′′), (G′′), (I ′′)} is a global dominating set of T 2.
Using the fact that the number of vertices labeled c in branch Bj ∈ {(E ′′), (G′′), (I ′′)}
is less than |Wj|, we deduce that

γg(T
2
p ) ≤ |M | <

k∑
i=1

|Wi| =
k∑

i=1

|Si| ≤ |S(Tp)| ≤ γ(Tp) = γg(Tp),

a contradiction. In the next case, we may consider that each Bi belongs to {(A′′),
(B′′), (C ′′), (D′′), (F ′′), (H ′′)}.

Case 4. Bi ∈ {(C ′′), (D′′), (F ′′), (H ′′)} for every i ∈ {1, 2, . . . , k}. Clearly
⋃k

i=1 Si

does not dominate u in Tp and (
⋃k

i=1 Si) ∪ {u} is a dominating set of T . Hence

γ(Tp) = 1 +
∑k

i=1 |Si|. Now consider the following two subcases. Suppose that at
least one branch among (F ′′) and (H ′′) is attached at u. In this case, the set M
consists of the vertices labeled c in all branches attached at u is a global dominating
set of T 2

p . Since the number of vertices labeled c in each branch attached at u equals
to the number of support vertices of that branch, we obtain:

γg(T
2
p ) ≤ |M | =

k∑
i=1

|Si| = γ(Tp)− 1 = γg(Tp)− 1,
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a contradiction. Now suppose that no branch among branches (F ′′) and (H ′′) is
attached at u. Hence each Bi belongs to {(C ′′), (D′′)}. Since diam(T ) = 8, at least
two branches of (D′′) are attached at u in Tp. It follows that the set M that consists
of the vertex labeled d in one branch (D′′) plus vertices labeled b of the other branches
attached at u is a global dominating set of T 2

p . Hence we obtain:

γg(T
2
p ) ≤ |M | =

k∑
i=1

|Si| = γ(Tp)− 1 = γg(Tp)− 1,

a contradiction. Therefore there is at least one branch among (A′′) and (B′′) attached
at u in Tp.

Case 5. Bi = (A′′) for one i ∈ {1, 2, . . . , k}. Without loss of generality let i = 1.
Suppose there are some branches among branches (B′′),(C ′′) and (H ′′) attached at
u in Tp. Then S(Tp) = (

⋃k
i=2 Si) ∪ {u} and so |S(T )| = 1 + (

∑k
i=2 |Si|). Also since

diam(T ) = 8, there exist at least two branches among branches (D′′),(F ′′) and (H ′′)
attached at u in Tp. Hence the set M that consists of the vertices labeled c in all
branches attached at u is a global dominating set of T 2. Now since the number of
vertices labeled c in each branch Bi ∈ {(B′′), (C ′′), (D′′), (F ′′), (H ′′)} equals |Si|, we
obtain:

γg(T
2
p ) ≤ |M | =

k∑
i=2

|Si| = |S(Tp)| − 1 ≤ γ(Tp)− 1 = γg(Tp)− 1,

a contradiction. Hence every Bi belongs to {(A′′), (D′′), (F ′′)}. Note that a tree with
such branches is a tree of the family τ (see Figure 9).

Case 6. There are some branches (B′′) attached at u in Tp. By case 5, there is
no branch (A′′) attached at u in Tp. If there are some branches among (D′′) and

(F ′′) attached at u in Tp, then the set
⋃k

i=1 Si does not dominate the vertices of

NTp(u) in branches (D′′) and (F ′′) but (
⋃k

i=1 Si) ∪ {u} is a dominating set of Tp.

It follows that γ(T ) = 1 +
∑k

i=1 |Si|. On the other hand, the set M that consists
of the vertices labeled b of branches (D′′) and (F ′′) plus vertices of Wi of branches
Bi /∈ {(D′′), (F ′′)} attached at u in Tp, is a global dominating set of T 2

p . Now since
the number of vertices labeled b in branch Bi ∈ {(D′′), (F ′′)} equals |Wi| we have:

γg(T
2
p ) ≤ |M | =

k∑
i=1

|Wi| =
k∑

i=1

|Si| = γ(Tp)− 1 = γg(Tp)− 1,

a contradiction. Hence all the branches attached at u in Tp are among (B′′),(C ′′)
and (H ′′). We will show that T has exactly one branch (B′′) attached at u. Suppose
to the contrary, at least two branches (B′′) are attached at u. In this case the set M
that consists of the vertices Wi of each branch Bi ∈ {(C ′′), (H ′′)} plus vertex u is a
global dominating set of T 2. Hence

γg(T
2
p ) ≤ |M | ≤

k∑
i=1

|Si| − 1 ≤ γ(Tp)− 1 = γg(Tp)− 1,
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a contradiction. Consequently, T has one branch (B′′) attached at u and all the other
branches are among (C ′′) and (H ′′). Now since diam(T ) = 8, at least two branches
of (H ′′) are attached at u in Tp. It is clear then such a tree T belongs to family τ
(see Figure 10). �

We conclude this paper by mentioning that the problem of characterizing all graphs
G such that γg(G) = γg(G

2) remains open. Although the case of trees was solved
in this paper, it is still interesting to see the case of the unicyclic graphs or more
generally the cactus graphs.
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