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Abstract

In this paper, we prove that there are no projective planes of order 12
admitting a collineation group of order 9.

1 Introduction

A finite projective plane is one of the most fundamental concepts in finite geometry.
For every prime power ¢ there exists a projective plane of order g, because the
desarguesian plane PG(2, q) gives an example of a projective plane of order ¢. But
the order of any known finite projective plane is always a prime power. Is the order
of any finite projective plane a prime power? For this question, Bruck and Ryser
proved the following remarkable theorem in 1949 [8].
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The Bruck-Ryser Theorem Ifn =1 or2 (mod4), there does not exist a projective
plane of order n unless n can be expressed a sum of two integral squares.

For example, this theorem yields that there does not exist a projective plane of
order n, where n < 25, if n = 6, 14, 21, or 22. Therefore, the smallest composite
integer not covered by the Bruck-Ryser Theorem is 10.

In [26] there is an interesting description of the search for a projective plane
of order 10. There exists a projective plane of order n if and only if there exists a
complete set of n—1 mutually orthogonal Latin squares of order n. Euler conjectured
that there is no pair of orthogonal Latin squares of order n if n = 2 (mod 4). It was
proved that this conjecture is false for all orders greater than six (see [9, 10, 27, 28]).
This raised the hope for the existence of a projective plane of order 10. Many
mathematicians were interested in a projective plane of order 10. At first it was
proved that the projective plane has a trivial collineation group [2, 17, 31]. Lam and
his colleagues started the research of this problem in 1980 and after a huge effort,
finally proved the non-existence of a projective plane of order 10. They examined the
weight enumerator of the vector space generated by the rows of the incidence matrix
of a putative projective plane of order 10. They used computers for the exhaustive
research and the computer time was about 2,000 hours on a CRAY.

The next composite order not covered by the Bruck-Ryser theorem is 12. Actually
it is still unknown whether or not a projective plane of order 12 exists. The study of
projective planes of order 12 was begun by Janko and van Trung in 1980. Now let
G be be a collineation group of a projective plane of order 12. Janko and van Trung
proved in their articles [15, 16, 18, 19, 20, 21, 22, 23] that G has the following four
properties.

(i) G is a {2, 3}-group.

(ii) If |G| = 6, then G is an abelian group.

(iii) If |G| = 4, then G is a cyclic group.

(iv) If |G| = 3 or 4, then G is not an elation group.

Horvatic-Baldasar, Kramer, and Matulic-Bedenic [6, 7] showed that |G| divides
16 or 9. Suetake [30], Akiyama and Suetake [3] showed that |G| divides 4 or 9.
Morover Akiyama and Suetake [4] proved that if |G| = 9, then G is an elementary
abelian group and is not planar.

Projective planes of order 15 were studied in [1, 13, 29].

Kang and Ju-Hyun Lee [25] studied an explicit formula and its fast computational
algorithm for projective planes of prime order. The GAP System for Computational
Discrete Algebra [12] is very useful (however we did not use the system). Casiello,
Indaco, and Nagy [11] , on the computational approach to the problem of the exis-
tence of a projective plane of order 10, quite recently implemented a new enumerative
procedure using the GAP System in order to considerably reduce the computational
time of some essential parts.

This paper is a sequel of [4] and we prove the following theorem.
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Theorem There are no projective planes of order 12 admitting a collineation group
of order 9.

Any finite projective plane of order n contains a symmetric transversal design
STD;[n,n] as a substructure. Conversely any symmetric transversal design STD;
[n,n] can be uniquely extended to a projective plane of order n, up to isomorphism.

Let m = (Q, L, J) be a projective plane of order 12 with a collineation group G of
order 9 and D = (P, B, I) be the symmetric transversal design STD;[12, 12] contained
in 7 having the automorphism group G¥“2. Then we determine explicitly all types
of the action on P and B of GG in Sections 4 and 5. If G contains a nontrivial planar
element, we prove that the subplane of order 3 fixed point wise by the collineation
does not exist in Section 6. Otherwise, we prove the nonexistence of m by availing
the groupring Z[G| in Section 7. We used a computer for both cases. We also have
the following result from the theorem.

Corollary If G is a collineation group of a projective plane 7w of order 12, then G
is cyclic and |G| divides 3 or 4.

Throughout this paper all sets are assumed to be finite. Most definitions and
notation are standard and are taken from [5, 14, 24].

2 Preliminaries

In this section we state some basic definitions and results about a projective plane
and a symmetric transversal design, which will be needed to prove our result.

Notation 2.1 Let D = (P, B, ) be an incidence structure, where P is a point set,
B is a block set and [ is an incidence relation, that is, I is a subset of P x B. Then for
p € Pand B € B, pI B denotes (p, B) € I. Forp € Pset (p) = {X € B| pIX} and for
B € Bset (B) = {x € P| zIB}. If D is a projective plane, since B> B — (B) € 27
is a one-to-one mapping, we identify B with (B) for B € B.

Notation 2.2 Let (G, A) be a permutation group acting on the set A, which is not
always faithful, and H a non empty subset of G. Then set Fy(H) = {x € A| 2" =
xzforall we€ H} and O5(H) = |FA(H)|. If H = {p}, especially set Fa({p}) = Fa(p)
and O ({p}) = 0r(¢). tA(G) = tp denotes the number of orbits of the permutation
group (G, A).

Lemma 2.3 (Burnside-Frobenius) Let G be a permutation group acting on a set
A and t the number of orbits of (G, \). Then

tHG = Oa(a).

aeG

Lemma 2.4 Let 7 = (Q, L, J) be a projective plane. Let ¢ be a collineation and G
a collineation group of w. Then

Oo(p) = 0c(p) and to(G) = t.(G).
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Lemma 2.5 Let 7 = (Q, L, J) be a projective plane. Let ¢ be a collineation of ™
with 6o(p) # 0. Then one of the following statements holds:

(i) ¢ is a generalized elation. That is, there exist L € Fr(p) and p € Fg(p) such
that Fo(p) C (L), Fr(e) C (p), p € (L), where L, p are called an azis, a
center of o respectively. In this case, since the axis and the center of ¢ are
unique for m respectively, ¢ is called a (p, L)-generalized elation.

(ii) ¢ is a generalized homology. That is, there exist L € Fr(p) and p € Fo(p)
such that Fo(p) C (L)U{p}, Fr(v) C (p)U{L}, p & (L), where L, p are called
an axis, a center of ¢ respectively. In this case, since the axis and the center
of ¢ are unique for m respectively, ¢ is called a (p, L)-generalized homology.

(iii) ¢ is planar. That is, the substructure (Fg(p), Fr(p)) of m is a projective plane
(a subplane of ).

Lemma 2.6 Let 7 = (Q,L,J) be a projective plane. Let ¢, T €Aut m such that
o1 =Tp. Then Fo(p)" = Folp) and Fr(p)" = Fr(p).

Definition 2.7 Let D = (P,B,I) be an incidence structure. Then D is called a
symmetric transversal design STD [k, u], if the following axioms are satisfied, where
A, k, u are positive integers and k£ > 2:

(i) For B € B, |(B)| = k.

(ii) There exists a partition of P = PyUP;U- - -UPj_1 such that for any 0 <i < k—1
|P;| = w and for distinct p,q € P

0 if p, g € P; for some i,
wn@i={ ) .

otherwise

(Po, - .., Px_1 are called point classes of D. We denote the set of point classes
by Q(D).)

(iii) The dual structure D¢ of D also satisfies (i) and (ii).

(The point classes of D? By, ..., B_1 are called block classes of D. We denote the
set of block classes by A(D).)

In this definition we give some remarks. From the definition it follows that & = uA
and |P| = |B| = uk. Since B > B+ (B) € 27 is a one-to-one mapping, we identify
B with (B) for B € B.

Lemma 2.8 Let D = (P,B,1) be an STD, [k, u] with a set of point classes Q(D) =
{Po,...,Px_1} and a set of block classes A(D) = {Bo,...,Br_1}. Let P; = {pu;,
Puit1, - - - 7pui+(u—1)} and Bj = {Buja Buj-l—la sy Buj+(u—1)} (0 S Za] S k— ]-) Let
NO,O e NO,kfl

N = (nr,s)Ogr,sgkufl = : :
Nie—1o - Ni—1gp—
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be the incidence matrixz of D corresponding to these numberings of the points and the
blocks, that is

nm:{ 1 ifpIB,

0 otherwise '’

where each N;; (0 <1i,7 <k —1)is a u x u matriz. Then the following statements
hold.

(i) Each N;; (0 <1,7 <k —1) is a permutation matriz of degree v and

KE AN ... A

NNT - NP | M KE |
RIS
AN ... M kE

where E is the identity matriz of degree w and J s the u X u all one matriz.

(11) Let ¢ € Sym P U B such that P¥ = P and BY = B. We define ¢y, ¢, €
Sym{0,1,...,ku—1} by ¢ : p, — pyes, Bs — Bgey (0 < 1,5 < ku —1).
Then the following hold.

e o € Aut D < pIB if and only if p*IB¥ (p € P,B € B) <= n,; =
nyes go0 (0 <18 < ku—1).

o Ifp € Aut D, then from the definition of STD, it follows that ¢ induces
permutations on both QD) and A(D). Let these permutations be ¢ and o
respectively.

Lemma 2.9 [3] Let D = (P,B,I) be an STD,[k,u] with the set of point classes
Q = Q(D) and the set of block classes A = A(D). Let ¢ €Aut D and let G an
automorphism group of D. Then

Op () + 0a(p) = O5(0) + a(w) and 0p(G) + OA(G) = 05(G) + 0a(G).

The following result is well-known (see Proposition 7.19 in [5]).

Lemma 2.10 Let m = (Q, L, J) be a projective plane of order n. Choose ro, € Q
and Lo, € L such that ro € (Ly). Set P = Q\(Le) and B = L\(r). Let
(roo)\{Loo} = {LosL1,...,Ln—1} and (Loo)\{re} = {ro,71,-..,7n-1}. Set P; =
(Li)\{reo}, Bj = (r)\{Leo} (0 < 4,5 < n—1), Q@ = {Py,P1,...,Pu_1} and
A ={By,Bi,...,B,_1}. Then the substructure D = (P,B,I) (I = JN(PxB)) of w
is an STDq[n,n] having the set of point classes Q and the set of block classes A. In
this case we say that D is the STD1[n, n] with respect to a point ro, and a line L.

Lemma 2.11 Let # = (Q, L, J) be a projective plane of order n. Choose 1o, € Q
and Lo € L such that 1o, € (Loo). Let D = (P, B, 1) be the STD4[n,n] with respect
t0 Too and Leo. Set Q = Q(D) and A = A(D). Let G be a collineation group of w
such that Lot = Lo and roo” = 1o for all p € G. Then the following statements
hold.
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(1) For all p € G, plpu € Aut D.

(i1) G > u+— plpus € Aut D is a monomorphism. (In the rest of the paper, we
identify p|pug with p.)

(i1i) Both G > pu+—— p € Sym Q and G 3> p+— ﬁ € Sym A are homomorphisms.

3 Projective planes of order 12 admitting a collineation group
of order 9

We assume the following in this section.

Hypothesis 3.1 7 = (Q, L, J) is a projective plane of order 12 admitting a coll-
ineation group G of order 9.

Lemma 3.2 [18] 7 does not have an elation of order 3.

Lemma 3.3 [4] G is an elementary abelian group of order 9 and the substructure
(Fo(Q), Fr(G)) of m is not a subplane of 7.

Lemma 3.4 [4] Let p € G\{1}. If m = (Fo(u), Fz(w)) is a subplane of w, then the
order of my is 3.

Lemma 3.5 Let p € G, L € L and r € (L). If p is a (r, L)-generalized elation,
then r € Fo(G) and L € Fp(G).

PROOF. Let £ € G. Now £ 'ué = pis a (r°, L¢)-generalized elation. Since the
center r and the axis L of p are unique for u, respectively, r* =r and L¢ = L. O

Lemma 3.6 If u € G\{1}, then one of the following (1) to (5) holds:

[ Oa(p) | O5(1) | Oa(p) | Op (1)
(1) planar 3 9 3 9
(2) | (roo, L)—g.e. | mg 0 0 N
(3) | (reo, Loo)-g.€. | m3 0 ns 0
(4) | (r,Leo)-g-e. 0 o n 0
(5) | (Too, Loo)-g-e€. 0 0 0 0

where na, ng,ny € {3,6,9}, r € (Loo)\ {700} and L € (roo)\{Loo}-

PROOF. If p is planar, (1) holds by Lemma 3.4. Suppose that p is not planar. Then
1 is a generalized elation. The axis of p is a line through 7., and the center of p is
a point on L. If Ly is the axis of p, then (3), (4) or (5) holds. If L., is not the
axis of y, then there exists a line L € (7o) \{Loo} such that L is the axis of u. This
yields that the center of y is r,. Therefore (2) holds. O
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Lemma 3.7 G\{1} contains a planar collineation, if and only if G is not semireqular

on P = 0Q\(Lx) and also on B = L\(rs).

PROOF. Suppose that G is not semiregular on P and also on B. Then there exist
v € G\{1}, M € L such that M & (r.,), M? = M. There also exist 7 € G\{1}, p €
P such that p™ = p. Set L = pry, € L. Suppose that G\{1} does not have a planar
collineation. Then 7 is a (rs, L)-generalized elation and L € F;(G) by Lemma 3.5.
Set M N Ly =7 and M N L =s. Thus r, s, 7, are not collinear and these points are
fixed by ¢. This yields that ¢ is planar, which is a contradiction. Therefore G\{1}
contains a planar collineation.

The converse is clear. Thus we have the lemma. O

Since |G| = 9, G fixes a point r, and a line L, with 7o, € (Ls). Let D =
(P,B,I) be the STD;[12,12] with respect to ro and Ls,. Actually, P = O\(Ls),
B =L\(re) and Q = {Poy, P1,..., P11}, A ={By,Bi,...,B11} are point classes and
block classes of D respectively, where (700)\{Loo} = {Lo, L1, .-, L11}, (Loo)\{rec} =
{7’0,7”1, c. ,7”11}, PZ = (Lz)\{roo} and Bj = (T’])\{Loo} (0 S Z,j S 1]_)

Lemma 3.8 The sizes of G-orbits on Ly, are as follows:
Case 1 (1,1,1,1,1,1,1,3,3);

Case 2 (1,1,1,1,3,3,3);
Case 3 (1,1,1, ,9);
Case 4 (1,3,3,3,3);
Case 5 (1,3,9).

Proor. If G has G-orbits on L., different from Cases 1 to 5, then the sizes of
G-orbits on Ly, is (1,1,1,1,1,1,1,1,1,1,3). Then there exists p € G\{1} such that
|Fiz.)(1)| = 13. This is contrary to Lemma 3.2. 0

4 The case that G\{1} contains a planar collineation

In this section we consider the case that G\{1} contains a planar collineation. We
assume Hypothesis 3.1 and also the following in this section.

Hypothesis 4.1 G\{1} contains a planar collineation.

Then, by Lemma 3.7, G does not act semiregularly on P, nor on B. In the rest of
this section, for each of Cases 1 to 5 obtained in Section 3, if that case occurs, we
determine the actions on Q U A of ¢ and 7, where G = (p, 7). Moreover, if (1)
fixes a class X € QU A, we also determine the action on X of ¢(7). We will show
in Section 6 that actions on 2 U A of ¢ and 7 yield explicitly the actions on P U B

of (7).

Lemma 4.2 Case 1 does not occur.
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PROOF. Let ¢ be a planar collineation in G\{1}. Then 0 (¢) = 3. This is contrary
to the assumption of Case 1. O

Lemma 4.3 If Case 2 occurs, then one of the following two types holds.

Type 1 (i) G = (¢,7),

0 = (Po)(P1)(P2)(P3, Ps, Ps)(Ps, Pr, Ps)(Po, Pro, P11),

@ = (Bo)(B1)(B2)(Bs, By, Bs)(Bs, By, Bs)(Bg, Bio, Bi1),

7 = (Po)(P1)(P2)(Ps, Ps, Ps)(Ps, Pz, Ps)(Po, Pro, Pi1),

7 = (Bo)(B1)(B2)(Bs, Bs, Ba) (B, Br, Bs ) (By, Bio, Bu1).

(ii) ¢ fizes three points of P; for 0 <i < 2 and three blocks of B; for 0 < j < 2. Also

G acts semiregularly on both P\ Fp(p) and B\Fg(p), while (1) acts semiregularly on
both Fp(p) and Fi(p).

Type 2 (i) G = (p,7),

@ = (Po)(P1)(P2)(Ps, P, Ps)(Ps, Pr, Ps)(Po, Pro, Pia),
6 = (BO)(BI)( )(837 347 35)(86a 877 BS)(BQa BlOa Bll);
7 = (Po)(P1)(P2)(P5)(Pa)(Ps)(Ps, Ps, Pr)(Po, Pro, Pi1),

7 = (Bo)(B1)(B2)(Bs)(B4)(Bs)(Bs, Bs, B7)(By, Bio, Bi1).
(ii) ¢ fizes three points of P; for 0 <i < 2 and three blocks of B; for 0 < j < 2. Also

G acts semiregularly on both P\ Fp(p) and B\Fg(p), while (1) acts semiregularly on
both Fp(p) and Fi(p).

PROOF. Let ¢ be a planar collineation in G\{1}. Then we can assume that ¢ =
(Po)(P1)(P2)(Ps3, Ps, Ps)(Ps, Pz, Ps)(Po, Pro, P11) and ¢ = (By)(B1)(Bz)(Bs, Bs, Bs)
(Bg, By, Bs)(Byg, Big, B11), where ¢ fixes three points of P; for 0 < ¢ < 2 and three
blocks of B; for 0 < j < 2.

(a) Assume that there exists 7 € G\(p) with Fp(7) # 0. Since 7 is planar
by Lemma 3.6, 0o(7) = 0A(7) = 3. Applying the Burnside-Frobenius theorem to
the permutation group (G, A), we have 0a(¢) + Oa(T) + Oa(pT) + Oa(p*T) = 21.
This yields Oa(¢7) + 0a(0*7) = 15. Since Oa(p7) # 12 and O (p*7) # 12, by
Lemma 3.2, (Oa(¢7),0a(¢*T)) = (6,9) or (9,6). Considering ? instead of ¢ if
necessary, we may assume that (6a(p7),0a(p?7)) = (6,9). Now 7 and ¢*r are
generalized elations having L, as an axis. Therefore 0p(¢o7) = 0p(p*7) = 0. From
this we have 0o (¢o7) + 05(p7) = Oa(@T) + 0p(pT) = 6 + 0 = 6. Similarly we have
Oa(p?7) + 05(p*1) = 9.

Suppose that Fq(p) N Fo(T) # 0. Then Fo(p) = Fo(r) = {Po, P1, P2}. If there
exists p € Py such that p¥ = p™ = p, then (Fo(G), F-(G)) is a subplane of 7 of
order 3. This is contrary to Lemma 3.3. Therefore Fp,(¢) N Fp,(7) = 0.

Since Op(p7) = Op(¢*7) = 0, G acts semiregularly on Py\(Fp,(p) U Fp,(T)).
Therefore 9 = |G|||Po\(Fp,(v)U Fp,(7))| = 6. This is a contradiction. Thus Fg(¢)N
Fo(1) = 0. Therefore (0q(p*7),05(0*1)) = (0,9) by Lemma 3.6. Let ro(# 7o) be
the center of p?7. Then ry € Fo(G) by Lemma 3.5. Set By = (19)\{Loo} € A. By a
similar argument to that the above, Fg, () N Fp,(7) = (). There exists L € (rg) such
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that L#’™ = L and L is fixed by @ or 7. Therefore L is fixed by ¢ and 7. This is also
a contradiction.

(B) Assume that Fp(p) = 0 for all p € G\(p). Let 7 € G\(p). We may
assume that Oa(7) < Oa(p7) < Oa(p?T). Since Oa(T) + Oa(oT) + Oa(P?T) = 18,
(OA(T),0a(0T),0a(0%T)) = (3,6,9) or (6,6,6). 7, o7 and > are generalized elations
having L., as an axis by Lemma 3.6. The center of each collineation of 7, 7, and
@7 is an element of F{;_(¢). Set mg = (Fo(p), Fz(¢)). Then g is a subplane of
7 of order 3. Now T|,q = ¢T|rs = ¢°T|ss and this is an elation of mg having L., as
an axis. We may assume that the center of 7|, is 7o. Therefore 7|, fixes all lines
through the point r. Let My, My, My be these lines except L.,. Since My, My, My
are fixed by ¢ and 7, these three lines are fixed by any collineation in G.

Assume that (0a(7),0a(¢7), 0a(¢?7)) = (3,6,9). Then F,_)(¢) = Fi,..)(7) and
Fio)(9) C Flooy(oT) N Er ) (¢?7). The center of each collineation of 7, ¢7, and ¢*7
is 7oo. If there exists M € (re) such that M¢ # M, M¥™ = M and M¥?' 7 = M,
then M = M¥, because M¥™ = M = M#'T yields M = M*¥. This is a contradiction.
Therefore Fi,_y(o7) N Fiyoy(0?7) = {Loo, Mo, My, Mo} = F,)(¢) = Fry(7). In
this case we have Type 1.

Assume that (0a(7),0a(¢7),0a(p*T)) = (6,6,6). Then F(,_(¢) C F.)(T) N
Fooy(7) N Flyy(9?7). The center of each collineation of 7, o7, and ¢?7 is re. If
there exists M € (ry) such that M¥ # M, M™ = M and M¥™ = M, then M = M¥,
because M™ = M = M%7 yields M = M?¥. This is a contradiction. Therefore
Foy(T) NV E,y(@T) = Firo (). By a similar argument, F,_)(7) N Fi,.)(p*1) =
Fiooy(o7) N Fpy(9?7) = i) (¢). In this case we have Type 2. O

Lemma 4.4 If Case 3 occurs, then one of the following three types holds.

Type 3 (1) G={p7),
= (Po)(P1)(P2)(Ps, Ps, Ps)(Ps, Pz, Ps)(Po, Pro, P11),
= (Bo)(B1)(B2)(Bs, By, Bs ) (Bs, Br, Bs ) (Bg, Bio, Bi1),
= (Po)(P1)(P2)(Ps, Ps, Po)(Pa, Pr, Pro)(Ps, Ps, P11),
= (By)(B1)(B2)(Bs, Bs, By) (Ba, By, Bio) (Bs, Bs, Bi1).

(11 FEach of ¢, T, o1, ©*1 fizes three points of P; for 0 < i < 2 and three blocks of
B; for 0 < j < 2. Any two point sets of Fp(p), Fp(T), Fp(pT), and Fp(p*T) are
disjoint from each other. Any two block sets of Fs(p), Fs(7), Fs(pT), and Fg(p?T)
are disjoint from each other.

Type 4 (i) G = (p,7),

¢ = (Po)(P1)(P2)(Ps, P, Ps)(Ps, Pr, Ps)(Po, Pro; P1),
p = (Bo)(B1)(Bz2)(Bs, Ba, Bs ) (Bs, By, Bs ) (By, Buo, Bi1),
7 = (Po, P1, P2)(Ps, Ps, Po) (P, Pz, P1o)(Ps, Ps, Pu1),

7 = (Bo)(B1)(B2)(Bs, Bs, By) (Ba, Br, Buo) (Bs, Bs, Bi1)-

(ii) ¢ fizes three points of P; for 0 < i < 2 and three blocks of B; for 0 < j < 2.
Also G fizes any block of Fg,(p), and G acts semiregularly on the each block set
of Bo\Fp,(¢), Bi\Fp,(¢), and B\ Fp, (). Moreover, (T) acts reqularly on the both
block sets Fg, () and Fg,(p).
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Type 5 (i) G = (p,7),

¢ = (Po)(P1)(P2)(Ps, Pa, Ps)(Ps, Pz, Ps)(Py, Pro, Pi1),
¢ = (By)(B1)(B2)(Bs, By, Bs)(Bs, Br, Bs)(Bg, Bio, Bi1),
7 = (Po)(P1)(P2)(Ps, Ps, Po)(Pa, Pz, P10)(Ps, Ps, P11),

7 = (Bo)(B1)(B2)(Bs, Bs, By ) (By, Bz, Bio)(Bs, Bs, Bi1).

(ii) ¢ fizes three points of P; for 0 < i < 2 and three blocks of B; for 0 < j < 2.
Also (1) acts regularly on Fp, () for 0 < i <2, and G acts regularly on P;\Fp,(¢)
for 0 < i < 2. Moreover, (1) acts regularly on Fg () for 0 < j < 2, and G acts
regularly on B;\Fp,(¢) for 0 < j <2.

PROOF. Suppose that Case 3 occurs. Let ¢ be a planar collineation in G\{1}. Then
we may assume that 3 = (Po)(P1)(P2)(Ps, Ps, Ps)(Ps, Pz, Ps) (Po, Pio, i) and & =
(Bo)(B1)(Bs)(Bs, By, Bs)(Bg, Bz, Bs ) (By, B1o, B11), where ¢ fixes three points of P; for
0 < i < 2 and three blocks of B; for 0 < j < 2. Let ¢"° = (po)(p1)(p2)(p3, D1, P5)

(P, 7, P8) (P9, Pr0o, P11), 97 = (pr12)(p13) (P1a) (P15, P16, Pr7) (P1s, Pros o) (Par, Doz, P23),

<PP2 = (p24)(p25)(p26)(p27>P28,p29)(p30>]931>P32)(p33,p34>]935) and F(Lw)(¢) = {Too,rm
r1,72}. We distinguish two cases.

Case 1. Suppose that there exists 7 € G\(p) with Fp(7) # (. Then 7 is planar
and F(;,_)(7) = {reo, 70,71, 72}. Since (Fo(G), F£(G)) is not a subplane of (Q, L, J)
by Lemma 3.3, Fp(p) N Fp(1) = 0.

() Suppose that Py" = Py. Since 7 induces a permutation on {Pgy, P, P2},

P17 =Py and Py = Py. Let 77 = (po, pr, p2) (03) (Pa) (p5) (p6, s, p7) (Po; 1o, p1a),

Pt = (p12, P13, P1a) (P15) (P16) (P17) (P18, P20, P19) (P21, P2z, P23) and
772 = (paa, P25, P26) (P2r) (P2s) (P20) (P30, P32, P31 ) (P33, P34, P35 ). Therefore
<PT7’0 = (po, P1, P2)(P3, Pa, Ps) (s ) (P7) (P&) (P9, P11, P10);
o™ = (p12, 13, P1a) (P15, P16, P17) (P18) (Pr9) (P20) (P21, P23, P22),
@TP; = (P24, P25, P26) (P27, P28, P29) (P30) (P31) (P32) (P33 D355 D34)
9027—730 = (p())]917]92)(]93,]95,]94)(]?6,p7,pg)(pg)(plo)(pll)7
©*1" " = (P12, P13, P14) (P15, P17, P16) (P18, Pro, P20) (P21) (P22 ) (p23) and

P2

@27 = (p247p257p26)(p277p297p28)(p307p317p32)(p33>(p34>(p35)-

Thus any collineation of ¢, 7, ¢7, ©?7 is planar. Therefore 7 = (Po)(P1)(P2)
(7)3, P@, 7)9)(7)4, P7, Plo)(Pg), Pg, 7311). By the assumption, 7~' = (BO)(Bl)(BQ)
(Bs, Bg, Bo) (B, Bz, Bio)(Bs, Bs, B11). Thus we have Type 3.

(B) Suppose that Py" # Py. Then we may assume that 7 = (Py, P1, P2)(Ps)(Ps)
(7)5)(736, 7)7, 7)8)(7397 ,P/lg,/'Pn) or (730, Pl, PQ)(Pg)(P4)(P5)(P6, 7)87 P7) (Pg, 7)10, Pn).
If the former occurs, ©?7 = (P, P1, P2)(Ps, Ps, Pa)(Ps)(Pr)(Ps)(Po)(P1o)(P11) and
therefore ©?7 is neither a generalized elation nor a planar collineation. This is a
contradiction. Therefore T = (Py, P1, P2)(Ps3)(Ps)(Ps)(Ps, Ps, Pr)(Po, Pio, Pi1). Set
S = (Foly), Frz(¢)). Then S is a subplane of 7 of order 3. And also 7|s is a (74, Lo )-
elation of S for some 0 < ¢ < 2 and 7 fixes all lines of F{,,(¢) through ;. In this
case we can reduce to case («) by considering r; instead of 7.
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Case II. Suppose that for all u € G\(¢), Fp(u) = 0. Then Oa(p) = 3, Op(p) =
0, o) + 6a(s) = 0201 + Or() = 3 and (Bo(p).0 ) = (0% o 5.0 e
G = {p,7). Then we may assume that 0o(7) < Oo(p7) < 0o(p?7). In this case
(6a(7), Oa(e7), a(v?7)) = (0,0,0), (0,0,3), (0,3,3) or (3,3,3).

(7) Suppose that (0a(7), 0 (p7),0a(¢?7)) = (0,0,0). Then 7 = (Py, P1, P2)
(Ps,Ps, Po)(Ps, Pr, Pro)(Ps, Ps, Pu) and (0s(7), 05(07), 05(077)) = (3,3,3). Any
collineation of 7, 7, or 7 is a generalized elation having the axis L.,. We may
assume that the center of 7 is ro. We distinguish three cases.

e Suppose that both ¢7 and ¢*7 have the center ro. Then (v-1) Fj, () = Fp,(¥)
or (-2) |Fiy ()| = |Fs,(¢7)| = |F,(9?7)| = |Fp, ()| = 3 and By = Fpg,(7) U
Fp,(o7) U Fp,(¢*T) U F,(¢) is a disjoint union.

e Suppose that the center of o7 is ry and 7o is not the center of @?r. In
this case we may assume that the center of ¢?7 is r1. Therefore (7-3) |Fg, ()| =

|FBO(907_)| = |FBO(90)| =3, |FB1(9027_)| = |Fp,(p)| = 3 and Fp,(7), Fp,(7), F5,()
do not intersect each other. Moreover F, (©*7) N Fp, (@) = 0.

e Suppose that the centers of 7, ¢7, ¢*r are different each other. Then we
may assume that the center of o7 is r; and the center of ¢?7 is 7. Therefore (-

4) |Fpy ()| = |Fuo(@)| = 3, |F,(97)| = |Fi, ()| = 3, |F,(¢°7)| = |F, ()| = 3,
FBO(T) N FBO((ID) = ®’ FBI((IDT) N FBI((ID) =) and FB2(9027_) mFBQ((p) = 0.

(7-1) yields Type 4.

Assume that (7-2) occurs. Let p € Fp,(¢). Then p™ € Fp,(p). Let B be the
block through p and p™. Then B € Fi(p). Since p, p™ € (B), we have p™, e (B7).
Therefore B and B” are through the point p”. But B, B™ € B; for some 0 < i < 2.
This is a contradiction. Thus (v-2) does not occur.

Assume that (y-3) occurs. Since G acts semiregularly on B\ (Fg, (¢*7) U Fg, (¢)),
9(|B:\(Fp, (0*T) U Fi,(p))| = 6. This is a contradiction. Thus (7-3) does not occur.

Assume that (y-4) occurs. Since G acts semiregularly on By\(Fg,(7) U Fp,(¢)),
we have 9||Bo\(Fp,(7) U Fp,(¢))| = 6. This is a contradiction. Thus (vy-4) does not
oceur.

(8) Suppose that (0o (7),0a(¢7), 0a(¥*1)) = (0,0,3). Since Oo(1) = Og(eT1) = 0,
we may assume that 7 = (Po, P1, P2)(Ps, Pa, Ps)(Ps, Pr, Ps)(Po, Pro, Pi1). Therefore
021 = (Py, P1, Pa) (P3)(Py) ... (Pi11). This is contrary to 0o (¢*7) = 3. Thus (§) does
not occur.

(€) Suppose that (0o (7), 0o (¢7), 0a(L?*7)) = (0,3,3). Since Oq(1) =0, Oo(pT) =
3, we may assume that 7 = (Po, P1, P2)(Ps, Ps, Pa)(Pes, Pz, Ps)(Po, Pio, P11). There-
fore 21 = (Po, P1, P2) (P3, P, Ps) (Ps)(Pr) ...(P11). This is contrary to 0o (¢*r) =

3. Thus (e) does not occur.

(¢) Suppose that (0o(7), 0o (pT),0a(?*7)) = (3,3, 3). Then since

(05(7), 05(¢7), 05(2°7)) = (0,0,0)and fo(7) = fa(y7) = 3,
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we may assume that

T = (Po)(P1)(P2)(Ps, Ps, Ps)(Ps, Pr, Ps)(Po, Pro, P11),
(Po)(P1)(P2)(Ps, Ps, Po)(Pu, Pz, Pro)(Ps, Ps, Pu1)
or (730, 7)1, PQ)(Pg)(P4)(P5)(P6, 7)8, 7)7)(739, Plo, Pn).

If the first case on T occurs, then c/p\Q; = (Po)(Py) ... (P11). This is a contradiction.
The second case on 7 yields Type 5. If the third case on 7 occurs, we have a
contradiction by the same argument as in (7-2). O

Lemma 4.5 Let G = (p, 7). In Case 4, if both ¢ and T are planar and Fo(p) N
Fa(r) =0, then Fir.)(p) = Fr.,)(7)-

PROOF. Suppose that both ¢ and 7 are planar and Fo () N Fo(T) =0, Fir_ () #
Firy(7). Then Fi_)(¢) N Fip (1) = {rec}. Let x € Fp(y) and y € Fp(7). Since
x,y are not contained in the same point class, there exists B € B such that = € (B)
and y € (B).

Assume that there exists z1(# z) € (B) such that x; € Fp(p). Then |(B) N
Fp(p)| = 3, B € Fp(p) and therefore (B) = (B¥) 5 y¥. Moreover y¥ # y and y¥ €
Fp(7). Let L be the extension to a line in £ of B. Then (L) N (L) is fixed by both
¢ and 7. This is a contradiction. Therefore {B} N Fp(p) = {z}, (B)NFp(1) = {y}.

Moreover (B) N (Loo) € Fir.o)(¢) U Firy(7). If we move points x € Fp(p) and
points y € Fp(7), the number of these lines L (the extensions to lines in £ of the
blocks B) is 81. Therefore these lines L intersect with L., in the points except
Fioy (9)UFiy (7). BUt [{X € £] X # Loy (X) N (Loo) & Fito () U R (1)} =
6 x 12 = 72. This is a contradiction. Thus we have the lemma. O

Lemma 4.6 If Case 4 occurs, then one of the following three types holds.

Type 6 (i) G = (p,7),

¢ = (Po)(P1)(P2)(Ps, Ps, P5)(Ps, P, Ps)(Po, P10, Pr1),

@ = (Bo)(B1)(B2)(Bs, By, Bs)(Bs, Br, Bs) (B, Buo, Buu),

7 = (Po, P1, P2)(Ps, Ps, P5)(Ps, Pz, Ps)(Po, Pio, P11),

(ii) ¢ fizes three points on P; for 0 < i < 2 and three blocks of B; for 0 < j < 2.
(©*1) acts semiregularly on both P; and B; for 3 <i,j <11.

Type 7 (i) G = (p,7),

¢ = (Po)(P1)(P2)(Ps, Ps, P5)(Ps, Pz, Ps)(Po, P10, Pi1),

¢ = (Bo)(B1)(B2)(Bs, By, Bs)(Bs, Br, Bs) (B, Buo, Buu),

7 = (Po, P1, P2)(Ps, Ps, P1)(Ps, Pz, Ps)(Po, Pio, P11),

(ii) ¢ fizes three points of P; for 0 < i < 2 and three blocks of B; for 0 < j < 2.
(oT) acts semiregularly on both P; and B; for 3 <i,j < 5. (©*1) acts semiregularly
on both P; and B; for 6 <1i,5 < 11.
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Type 8 (i) G = (p,7),

¢ = (Po)(P1)(P2)(Ps, Pa, Ps)(Ps, Pz, Ps)(Py, Pro, Pi1),

@ = (Bo)(B1)(B2)(Bs, By, Bs)(Bs, Br, Bs) (B, Bio, Buu),

7 = (Po, P1, P2)(P3)(P1)(P5)(Ps, Ps, Pr)(Po, Pro, Pi1),

T = (By, By, Bs)(B3)(By)(Bs)(Bs, Bs, B7)(Bg, Big, Bi1)-

(ii) ¢ fizes three points of P; for 0 <i < 2 and three blocks of B; for 0 < j < 2.

(1) acts semiregularly on both P; and B; for 3 < i,j < 5. (p1) acts semiregularly
on both P; and B; for 6 < i,j < 8. (¢*7) acts semiregularly on both P; and B; for
9<1,5 <11

PROOF. Suppose that Case 4 occurs. Let ¢ be a planar collineation in G\{1}. Let
G = (p,7) and Fiz_)(¢) = {reo,70,71,72}. Then (7) acts regularly on {r,r1,72}.
We may assume that @ = (Py)(P1)(P2)(Ps, P, Ps)(Ps, Pz, Ps)(Po, Pro, P11) and ¢ =
(Bo)(B1)(Bs)(Bs, By, Bs)(Bg, Bz, Bs)(By, Bio, B11), where ¢ fixes three points of P; for
0 <7 < 2 and three blocks of B; for 0 < j < 2. Applying the Burnside-Frobenius
theorem to the permutation group (G,A), we have Oa(T) + Oa(pT) + Oa(P*T) =
9. Then, since we may assume that Oa(7) < Oa(p7) < Oa(p?T), we find that
(OA(T),0a(0T),0a(p*T)) = (0,0,9), (0,3,6) or (3,3,3) holds.

(«) Suppose that (Oa(7),0a(pT), 0a(©*1)) = (0,0,9). Since Oa(7) = 0, (1) =0
and 0o (1) = Op(7).

Assume that 0(7) # 0. Now 7 is a (rs, L)-generalized elation for some L €
(roo)\{Loo} by Lemma 3.6. Since L¥ = L by Lemma 3.5, L € F;(G). Let L; be the
line of 7 through r, corresponding to P; (0 <4 < 11). Then since {Lg, L1, Lo}" =
{Lo, L1, Ly}, Ly € F(G). This is a contradiction. Therefore 0o (7) = 0p(7) = 0 and
HA(T) = 93(7’) =0.

Since Oa(p7) = 0, the similar argument yields 0q(p7) = Op(p7) = 0 and
Oa(p7) = 05(¢7) = 0. Since Y7 is a (reo, Loo)-generalized elation by Lemma 3.5,
0a(p?1) = 9. Therefore 7 = (Po, P1, P2)(Ps, Pa, Ps)(Ps, Pz, Ps)(Po, Pro, Pr1). It also
follows that (¢?7) acts semiregulary on both P; and B; for 3 < 4,5 < 11. Thus we
have Type 6.

() Suppose that (0a(7),0a(e7),0a(p*T)) = (0,3,6). Then, o(7) = bp(1) = 0
and Oa(7) = Op(7) = 0 hold by the same argument as in («), because da(7) = 0.
Since Oa(p7) = 3, by Lemma 4.5 o7 is a generalized elation. Let Fip_(p7) =
{r3,74,75, s }. From the assumption of Case 4, it follows that {rq, 71,79} N{rs, r4, 75}
= 0. o718 a (Too, Loo)-generalized elation by Lemma 3.5. Therefore

7A: = (P()a Pla 7)2)(7)37 P57 P4)(7D67 P77 P8)(P97 73107 Pll)

and
T = (B()a Bla BQ)(837 857 B4)(B67 877 B8)(897 8107 Bll)-

It also follows that (y7) acts semiregularly on both P; and B; (3 < 4,5 < 5) and
(@*1) acts semiregularly on both P; and B; (6 <i,j < 11). Thus we have Type 7.
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(7) Suppose that (Oa(7),0a(pT), O0a(©*7)) = (3,3,3). Then all 7, o1, ©*1 are
generalized elations by Lemmas 3.5 and 4.5. For p # £ € {o, 7,07, 07}, Fa(u) N
Fa(€) =0 and Fo(p) N Fo(€) = 0. In this case we have Type 8. O

Lemma 4.7 If Case 5 occurs, then the following holds.

Type 9 (i) G = (p,7),

0 = (Po)(P1)(P2)(Ps, Pa, Ps)(Ps, Pz, Ps)(Po, Pro, P11),

8
(BO)(BI)(BQ)(B37B4aB5)(867B77 )( 978107811)
T = (Po, P1, P2)(Ps, Ps; Po)(Pa, Pz, Pro)(Ps, Ps, Pi1),
T= (807BlaBQ)(83786789)(847877810)( 87811)-
(i) ¢ fizes three points of P; for 0 <1 < 2 and three blocks of Bj for 0 < j < 2.

PROOF. Suppose that Case 5 occurs. Let ¢ be a planar collineation in G\{1}. Let
G = (p, 7). Then 0q(1) = Op(7) = 0 and Oa(7) = O5(7) = 0. By considering the
assumption of Case 5, we have Type 9. a

5 The case that G\{1} does not contain a planar collineation

If G\{1} does not contain a planar collineation, then G is semiregular on P =
O\(Lw) or G is semiregular on B = L\(ry) by Lemma 3.7. In this section we
assume Hypothesis 3.1 and the following.

Hypothesis 5.1 G\{1} does not contain a planar collineation and G is semiregular

on Q\(Loo).

Then every p € G is a generalized elation of m with L., as an axis.

In the rest of this section, we investigate the actions on both QU A and P U B of
¢ and 7, where G = (¢, 7), as in Section 4 under these assumptions. The extensions
of pand T on PUB Wﬂl be determined in Section 7.

Lemma 5.2 Case 1 does not occur.

PROOF. Suppose that Case 1 occurs. Let G = (¢, 7) and F(;_)(G) = {reo, 70,71,

T9, T3, 74,75}, Since [{r;| r; is the center of u for some pu € G\{1} }| < 4, there exists
1 < j < 5 such that r; is not a center of any collineation of ¢, 7, 7, p?7. Therefore
G acts semiregularly on (r;)\{Ls} and therefore 9 = |G|||(7;)\{ Lo }| = 12. This is
a contradiction. a

Lemma 5.3 Case 2 does not occur.

PROOF. Suppose that Case 2 occurs. Let G = (¢, 7) and F(,_(G) = {reo, 70,71, 72}

If there exists i € {00, 0, 1,2} such that r; is not the center of any collineation €
G\{1}, then G acts semiregularly on (7;)\{ Lo} and therefore 9 = |G|||(r;)\{ L }| =
12. This is a contradiction. Thus the centers of ¢, o7, p*7, 7 are different each other.
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The Burnside-Frobenius Theorem yields O (@) +0a(o7) + 0a(0?*7) +04(7) = 21.
Since we may assume that 0a () < Oa(pT) < Oa(p*T) < Oa(T), we find that

(Oa(0), 0a(07), 0a(*T),04(7)) = (3,3,6,9) or (3,6,6,6),

here we may also assume that the center of 7 is 7o.. Set &1 = {L € (roo)\{Loo}| L™ =
L} and &y = {L € (ro)\{Loo}| L™ # L}. We remark that |®3] = 3 or 6, because
Oa(T) = |®1] =9 or 6. Then G induces a permutation group on ®; (i = 1,2). Since
G acts semiregularly on @5, we have 9 = |G|||®3|. This is a contradiction. O

Lemma 5.4 If Case 3 occurs, then the following hold.
Type 10 (i) G = (¢, 7),

¢ = (Po)(P1)(P2)(Ps, Ps, P5)(Ps, P, Ps)(Po, Pro, Pr1),
© = (Bo)(B1)(B2)(Bs, By, Bs ) (Bs, Br, Bs ) (Bo, Bio, Bi1),

7 = (Po, P1, P2)(Ps, Ps, Po)(Pa, Pz, P10)(Ps, Ps, P1),

T = (Bo)(B1)(B2)(Bs, Bs, By) (B, Br, Bio) (Bs, Bs, Bi1)-

(ii) G acts semireqularly on P and |Fg,(7)| = |Fp, (¢7)| = |Fp,(p*7)| = 3.

PROOF. Let G = (p, 7). Then we may assume that

o = (Bo)(B1)(Ba)(Bs, By, Bs)(Bs, Br, Bs)(Bo, Bio, Bi1),
and 7 = (By)(B1)(Bs2)(Bs, B, By)(Ba, B, Bio)(Bs, Bs, Bi1)-

Let Fip y(G) = {rec,70,71,72}. A similar argument as in Lemma 5.2 yields that
centers of ¢, T, o7, @1 are different from each other. Therefore we may assume
that the center of ¢ is 7. Since fq(p) = 3 by Lemma 3.6, we may assume
that (Z = (PO)(Pl)(PQ)(P:},P4,P5)(P6,P7,P8)(P9,P10,P11). Since Hg(u) = 0 for
all n e G\<g0>, T = (Po,Pl,'Pz)(Pg,P(a,’Pg)(’Pz;,P7,P10)(P5,P8,P11). Since the cen-

ters of o, T, T, p?7 are different from each other, we may assume that |Fp,(7)| =
|F31(907_)| = |FB2(9027_)| =3.

Lemma 5.5 If Case 4 occurs, then one of the following four types holds.

Type 11 (i) G = (¢, 7),

= (Po, P1, P2)(Ps3, Pa, Ps)(Ps, Pz, Ps)(Po, Pro, Pr1),

= (Bo, B1, B2)(Bs, By, Bs) (Bs, B, Bs ) (By, Bio, Bi1),

7 = (Po)(P1)(P2)(Ps)(P1)(Ps)(Ps, Pr. Ps)(Po, Pro, P11),
7 = (Bo)(B1)(B2)(B3)(Ba)(Bs)(Bs, Br, Bs)(By, Bio, B ).
(ii) G acts semireqularly on both P and B.

Type 12 (i) G = (p, 7),

¢ = (Po, P1, P2)(Ps, Pa, P5)(Ps, Pr, Ps)(Po, Pro, P11),
()5 (BQ,Bl,Bg)(Bg,84,85)(36,87,38)(39,810,811),

T 0)(P1)(P2)(Ps3)(Ps)(Ps)(Ps, Pr, Ps)(Po, Pi1, Pro),

T =

(P
7 = (Bo)(B1)(B2)(B3)(B4)(Bs)(Bs, Br, Bs) (B, Bi1, Bio)-

ASTESY!

\]2
I
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(ii) G acts semireqularly on both P and B.

Type 13 (i) G = (¢, 7),

(5 = (P07 7317732)(733, Pu, P5)(7D677D77 738)(73977310, 7311)
é: (Boa31752)(33,34755)(56,37758)( 9, Z3’10,5’11)

7 = (Po)(P1)(P2)(Ps)(P1)(Ps)(Ps)(Pr)(Ps)(Po. Pio, Pr1).
T = (Bo)(B1)(B2)(Bs3)(B4)(Bs)(Bs ) (Br) (Bs) (Bg, Bio, Bi1)-

i) G acts semiregularly on both P and B.

=
(i

Type 14 (i) G = (¢, 7),

¢ = (Po)(P )(732)(733,734,735)(736,737,738)(7397731077311);
6 (BO)(BI)(BQ)(B3734765)(86a87738)(89a810a811)7
T = (Po, P1, P2)(P3)(P1)(P5)(Ps, Pz, Ps)(Po, Pi1, Pro),
? = ( 07BlaBQ)(BB)(B4)(B5)(B6787788)(8978117810)
(ii) G acts semiregularly on both P and B.

PrROOF. Let G = (p, 7). By the assumption of Case 4, any collineation in G is a
(reos Liso)-generalized elation. Therefore G acts semiregularly on 5. We may assume
that Oa(p) < Oa(p) < Oa(7) for all p € G\{1}. The Burnside-Frobenius theorem
yields 0a(p) + 0a(oT) + 0a(0?T) + 0a(7) = 12 and therefore () = 0, 3.

Suppose that 0 (¢) = 0. Then we may assume that

© = (By, By, B2)(Bs, By, Bs)(Bs, Br, Bs)(By, Bio, B11) and
@ (Po, P1, P2)(Ps, Py, Ps)(Ps, Pr, Ps)(Pg, Pro, P11). Since Oa(7) = 6,9,
(Bo)(B1)(B2)(Bs)(B4)(Bs)(Bs, Br, Bs) (B, Bio, Bi1),

( O)(Bl)(82)(83>(84)(85>(867B?aB8)(8978117810> or
(Bo)(B1)(B2)(B3)(Ba)(B5)(Bs) (B7) (Bs) (By, Bo, Bua)-

(Oé) Suppose that T = (Bo>(Bl)(Bz)(Bg)(B4)(B5>(B6,87,88)(89,810,811) Then
Oa(r) = 6. Since o7 = (Bo, B1, B2)(Bs, By, Bs)(Bs, Bs, Br)(By, Bi1, Bio), Oa(eT) = 0.
Therefore 7 = (PO)(Pl)(PQ)(P3)(P4)(P5)(P6, P7, Pg)(Pg,Plo,Pll). In this case we
have Type 11.

(B) Suppose that T = (BO)( 1)(32)(83)(34)(85)(86,37,88)(89,311,310). Then
HQ( ) = 6. Smce @T = (BQ, Bl, Bg)( 3, 34, 85)(86, Bg, 37)(89)(311)(310), HQ(QPT) = 3.
Therefore 7 = (Py)(P1)(P2)(Ps)(P1)(Ps)(Ps, Pz, Ps)(Po, P11, P1o). In this case we
have Type 12.

(")/) Suppose that 7 = (Bo)(Bl)(BQ)(B;g)(84)(85)(86)(87)(88>(Bg, Blo, BH>.

Then fq(7) = 9. Since

o7 = (Bo, By, By)(Bs, By, Bs) (Bs, Br. Bs)(Bo, Bi1, Buo),

Oa(p7) = 0. Therefore 7 = (Po)(P1)(P2)(Ps)(P4)(Ps)(Ps)(Pr)(Ps)(Po, Pro, P11). In
this case we have Type 13.

Suppose that 0o (@) = 3. Then Oq(p) = Oq(pT) = Oo(P?*r) = Oa(7) = 3. Since
o = (Bo)(Bl)(Bg)(Bg,84,35)(86,87,38)(39,810,811), QQ((,D) = 3. Therefore 6 =
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(730)(731)(732)(7337 P, 7)5)(7367 Py, 738)(739, Pro, Pn) and % = (Bo, 51, 32)(33)(54)
(B5)(B6, 87, Bg)(Bg, 811, 810). SiHCG 99(’7’) = 99((,07') = 3, 7A: = (Po, Pl, 7)2)(733)(7340
(P5)(Ps, Pz, Ps)(Pog, P11, Pro). In this case we have Type 14. O

Lemma 5.6 If Case 5 occurs, then the following hold.

Type 15 (i) G = (¢, 7),

@ = (Po)(P1)(P2)(Ps, 7’4, Ps)(Ps, Pz, Ps)(Po, Pro, Pu1),
()5 = (BO)(BI>(BQ)(B37 B47 85)(867 877 BS)(897 8107 Bll);
7 = (Po, P1, P2)(Ps, Ps, Po)(P1, Pr, P10) (Ps, Ps, Pu1),

T = (B(), Bl) Bg)(Bg, B6a Bg)(B4, 87, 810)(857 BS) Bll)

(ii) G acts semireqularly on both P and B.

PROOF. There exists ¢ € G\{1} such that x(¢) = 3 by the assumption of Case 5.
Since 0p(p) + Oa(p) = O5(p) + ba(p) and Op(p) = 0, O5(p) + Oa(yp) = 3. Since ¢
is a (reo, Loo)-generalized elation, dq(p) = 3 and therefore 65(p) = 0. There exists
7 € G\(p) such that Oo(7) = 0 by the assumption of Case 5. Then Ox(p7) =
Oa(p?7) = 0. Therefore T, o7, P?T are (rs, Lo )-generalized elations. Hence 0q(7) =
0o (p7) = Oa(¢?7) = 0 and 05(7) = O5(pT) = O5(p?7) = 0. Thus we have Type 15.0

Lemma 5.7 Let G be a collineation group of order9 of m = (Q, L, J). If G\{1} does
not contain a planar collineation, then one of Types 10 to 15 occurs, up to duality

of .

PrROOF. From Lemmas 5.2 to 5.6, and Lemma 3.7, the lemma holds. O

6 Types1to9

In this section we consider Types 1 to 9 in Section 4 and we show that none of these
types occurs, by considering the first 36 rows of the incidence matrix of D, which
corresponds to the subplane of order 3.

Let D = (P, B, I) be the STD;[12, 12] with the set of point classes 2 = {P,, ...,
P11} (0 < i < 11) and the set of block classes A = {By,...,B11} (0 < j < 11). Let
Pi = {p12i, P12i+1, - - - Przi1 } (0 <4 < 11) and B; = {Bigj, Bizj41, - - -» Bigj11} (0 <
j < 11). Let H = (h;j)o<ij<ias be the incidence matrix corresponding to the
numberings po, ..., p1as and By, ..., By of points and blocks of D and set H,; =
(h12r+i,123+j)0§i,j§11 for 0 < r,s < 11. Then Hr,s (O < r,Ss < 11) is a permuta—
tion matrix and H = (H,s)o<rs<11. Moreover set H; = (h;;)o<i<ss0<j<143. Then

x9NV >

Hy = (H,s)o<r<20<s<11- At first we determine the form of H; for each type of Types

1 to 9. We need several symbols for that.

Notation 6.1 (i) Let A; be the set of 12 x 12 permutation matrices
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Co| O3 O3 O
Os|Cy Cy Cs
Os|Cs Cy Cy |’
03 02 Cg Cl

where C; (0 <i < 3) are 3 x 3 cyclic matrices.
Let Ay be the set of 12 x 12 permutation matrices

P O3 O3 Oy
g_ O3 Cy Cp Oy
O3 C3 Cp Cy |’
O3 Cg¢ C; Cy
where P is a 3 x 3 permutation matrix and C; (0 < i < 8) are 3 x 3 cyclic matrices.
A O3 O3 Oy
. . C& B C& Ck
Let A3 be the set of 12 x 12 permutation matrices 0, 05 C 05 |’ where
O3 O3 O3 D
A, B,C, D are 3 x 3 permutation matrices.
Zo,o To1 To2
(ii) For a 3 x 3 matrix X = | z10 211 212 | = (%i;)o<ij<2 With entries from

T20 T21 T22

{0,1} and f,g €Sym{0,1,2}, we define X9 = (y; j)o<ij<2 by ¥ij = Tirjo (0 <
i,7 < 2). In particular, for r, s € {1,2}, set XU"/*) = X(%) where f = (0, 1,2).
Then, let ®; be the set of 12 x 12 permutation matrices

Co 4 Cy Cs

Xy X X X3
Xo(lvl) Xl(lvl) X2(171) X3(171)
X0(272) X1(272) X2(272) X3(272)

Co 4 Cy Cs

Xo X1 Xo X3
X0(271) X1(271) X2(2=1) X3(2=1)
X0(172) X1(172) X2(172) X3(172)

Co 4 Cy Cs

Xo X1 Xo X3
X0(071) X1(071) X2(0=1) X3(0=1)
X0(072) X1(072) X2(0=2) X3(0=2)
X; (0 <i < 3) are 3 x 3 matrices.

We remark that |A;] and |®;| (1 <4 < 3) are not big. Actually, |A;] = 3* = 81,

|Ag| = 62 x 32 =972, |A3] = 6 = 1296 and |®]| = |Py] = |P3| =4 x 3 X IX 6 x 3 =
1944.

, @5 the set of 12 x 12 permutation matrices

and ®3 the set of 12 x 12 permutation matrices

, where C; (0 <4 < 3) are cyclic matrices and

(iii) We define a 12x 12 permutation matrix X 9 = (y; :)o<i j<11 by yij = ir jo (0 <
i,j < 11) for a 12 x 12 permutation matrix X = (z;;)o<;j<11 and f € Sym{0,1,...
11}. In particular, we set X'V = X7

Y
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It follows that the actions of ¢ and 7 on both P and B in Types 1 to 9 are determined
explicitly from Section 4.

Type 1
(6-1-1) o = (z0)(z1)(x2)(x3, 4, x5) (6, T7, T8) (T9, T10, T11)(®12) (z13) (T14) (%15, T16, Z17) (T18, 19, T20)

(21, z22, 223) (w24 ) (w25 ) (w26 ) (T27, 28, 29) (€30, T31, £32) (X33, T34, T35) (%36, T48, T60) (T37, T49, T61) (238, T50, T62)
)

(
x39, 51, T63) (T40, 52, Te4) (T41, T53, Tes) (T42, T54, Tee ) (T43, T55, Te7)(Ta4, Ts6, T68) (Ta5, T57, T69 ) (T46, T58, T70)
x47, 59, 271) (272, T84, T96) (X73, T85, L97)(T74, T86, T98 ) (T75, T87, £99) (T 76, £88, T100) (T77, Z89, T101)(T78, T90, T102)

(
(
(279,91, 2103) (280, To2, T104) (281, £93, T105) (82, T94, T106) (83, 95, T107)(T108, 120, £132) (109, T121, £133)
(z110, 122, 134) (111, T123, T135) (112, T124, T136) (T113, 125, T137) (114, T126, T138)(T115, T127, T139)

(

Z116, 7128, %140) (117, €129, T141) (T118, %130, %142)(T119, %131, %143) and

T = (x0,x1,22) (23, %6, T9) (x4, 7, 210)(T5, T8, T11) (12, T13, T14) (T 15, 18, T21) (T16, T19, T22) (T17, T20, T23)
(z24, x25, 226 ) (T27, 30, £33) (@28, T31, T34) (29, T32, T35) (T36, T61, T50) (37, T62, T48) (XT38, T60, T49)(X39, Te4, T53)
(240,65, T51) (241, T63, T52)(T42, 67, T56) (%43, T6s, L54)(T44, T66, T55)(T45, T70, T59) (T46, 271, T57) (T47, T69, T58)
(w72, 285, 298) (T73, 86, T96 ) (€74, T84, T97) (%75, T8s, T101)(T76, 89, T99) (%77, 287, 100) (T78, 91, T104)

(279,92, 2102)(Z80, 90, 103 ) (281, To4, T107) (282, T95, T105) (83, £93, 106 ) (T108, 121, £134)(T109, T122, T132)
(z110,%120,%133) (111, T124, T137) (112, T125, T135) (113, T123, T136) (T114, T127, T140) (T115, T128, T138)

(z116, %126, %139) (117, 130, T143) (118, T131, 141) (T119, T129, T142), where z € {p, B}.

PROOF.  Since |Fp,(p)] = 3 (0 < i < 2), let Fp,(¢) = {po,p1,p2}, Fp,(p) =
{p12, P13, 14} and Fp, () = {pau, pas, P26} Since(p)acts semiregularly on Po\ Fp, (¢),

let ™ = (po)(p1)(p2) (P3, P4, D) (6, D7, Ps) (Do, P10, P11). Since () acts semiregularly
on Py, we may assume that 770 = (pg, p1, p2)(p3, Pe, Po) - - .. From this, we have

p3T = pe and therefore p3¥™ = p3™ = pg¥. This yields p,” = p;. By a similar
argument, it follows that

770 = (po, p1, P2)(P3, Ds; Po) (Pas 7, P10) (D5, Ps, p11). Similarly, we have
@Pl = (p12)(P13)(P14) (P15, P16, P17) (D185 P19, P20) (D21, P22, D23)s
T = (P127P13,p14)(p15729187p21)(p16,p197P22)(p17,p207P23)7
@PQ = (p24)(2925)(2926)(p27,p287P29)(P30ap31,p32)(29337p34,p35) and
TP = (p24,p25,p26)(p27,p307p33)(p28,p31,p34)(p29,p32,p35)‘
Since P;¥T =P; (3 <i < 5), we may assume that

o1 = (P36, P37, P3s) (P39, D10, Pa1 ) (Pa2, Pag, Pas) (Pas, Pas, Paz),

77 = (pas, Pag, Pso) (P51, P52, P53) (D54, Pss, Pss) (D57, Dss, Pso) and

<P7'P5 = (P60, P61, Pe2) (P63, P4, Pes) (Pes» Per, Pes) (P69, Pros P71 )-

Since @ = ...(P3, Py, Ps) ..., we may assume that o™V = (pss pag. peo) - - - -
From this, we have pss? = pug and therefore pss?™% = 3697 = pug?™ = pag. This
yields p3;¥ = py9. By a similar argument, it follows that

73UPAIPS = (p3g, Pas, Poo) (D7, Pags Per ) (Pass Psos Pez) - - - - Similarly, we have
P3sUP4UPs __

2 = ... (P39, P51, P63) (P10; P52, Pea) (Par1, P53, Pes) - - -

@P3IPIIPs = (pag, Psa, Pes) (Pas, Dsss Per) (Das, Ds6s Pes) - - - and

@3 IPAIPs — . (pas, P57, Peo) (Pas, Psss Pro) (Pazs Pso, Pr1) - - .. Thus

@P3IPAIPs — (psg. pas, Peo) (D37, Pag, Pe1) (Psss Psos Pe2) (P39, P51 Pes) (Pao, Ps2s Pes)

Pats D535 Des) (Pazs Psas Des) (Paz, P55, Per) (Daa, Ps6, Pes) (Pass P57, Peo) (Pa6 Psss Pro)
Pat, P59, Pr1)- Since

A~
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@r73IP1IPs — (psg, a7, D3s) (P39s Pao, Pa1) (Paz, Pa3, Paa) (Das, Pag, Par) (Pas, Pag, Pso)

(p51 » P52, p53) (p54, P55, p56) (p57, P58, p59) (p60, Pe1, p62) (p63, DPe4, p65) (p66, P67, p68)
(psg, P10, P71), from 7 = ©?(p7), it follows that

TPsIPsIPs — (psg, pe1, Pso) (D37, Peas Pas) (P3ss Peo, Do) (P39, Peas Ps3) (Pao, Des, Ps1)
(p41 » P63, p52) (p42, De7, p56) (p43, Des, p54) (p44, Dee, p55) (p45, Pro, p59) (p467 b, p57)
(p47, De9, p58)

Since P;¥"7 = P; (6 < i < 8), we may assume that
<P27'P6 = (p72,p73,p74)(p75,p76,p77)(p78,p79,p80)(p817p82,psg),
CPQT Pr = (p84,p85,p86)(p87,pss,p89)(p90,p91,p92)(p937p947p95) and

@27738 = (p967 Po7, p98)(p997p1007plOl)(p1027p1037p104)(p1057p1067 p107)

Since ¢ = ...(Ps, Pz, Ps) . .., we may assume that @PGUPNPS = (p72, Psd, p%)
. From thls we have pyf = pg4 and therefore pyf Y = pmw T = pgﬁ’ T
= pgs. This yields p73¥ = pgs. By a similar argument, it follows that

PoUPTIPs = (pra, Psas Pos ) (P73, Dss, Do7) (D7as Pse, Dos) - - - - Similarly, we have

PeUPTIPs — . (prs, Pst, Poo) (D76, Dsss P1oo) (P77, Pso, Prot) - - - »

2
2
P P19 —  (prs, Do, P102) (P79, Pot, P1ro3) (Pso, Po2, Proa) - - . and
2
2

PeUPTIPs — . (pst, Poss P10s) (Ps2, Poas Pro) (Psss Pos, P1o7) - - .. Thus

PsUP7UPs __ (P72, P84, Pos) (P73, Pss» Dot ) (P74, Pse, Pos) (D75, Ps7, Pog) (P76, Pss, P1oo)
(P77, P89, Pr01) (P78, Poos P1o2) (P19, Po1, Pr03) (Pso, Pozs P1oa) (Ps1, Pe3, Pros) (Ps2s Poas Pios)
(P83, Pos, P1o7). Since

9027'7%U7j7u738 = (p727p737 p74)(p75,p76,p77)(p78, p797p80)(p817p82,p83) (p847p85, p86)

(]987, DPss, Psg) (p90, Poa1, p92) (p937 Doa, p%) (]996, Por, pgs) (p99, P1o0, P101) (p102, D103, P104)
(p10s, P1o6; P1o7), from 7 = ©(p?7), it follows that

TPoIPTIPs — (pro, pss, Pos) (P73, Dse, Pos) (P74, Dsa, Por) (D75, Psss P1o1) (P76, Pso, Poo)
(p77,p87,p100) (p78,p91,p104)(p79,p92,p102) (pso,p907p103)(p81,p94,p107) (p82,p95,p105)
(p837 P93, p106)-

The actions of ¢ and 7 on Py U P1g U Py are obtained by the same argument as
the above, because 7%‘"27 =P; (9 <i<11). That is
@PoIPI0IPI = (pos, 120, Prs2) (D109, P121, P133) (P110s P122, P13a) (Prits D123, P13s)

(p112, P124, p136) (p113, P25, p137) (p114, D126, p138)(p115, P27, p139) (p116, P12s, p14o)
(p117, P129, p141) (pns, P130, p142) (p119, P31, p143) and

TPOUPIOUPI — (pyog, pra1, P1sa) (D109, P122: P1s2) (P110s P120s P1ss) (D111, Pi2a, Pist)
(pnz, DP12s, p135) (p113 D123, p136) (p114, P27, p140) (p115, P12s, p138) (p1167 D126, p139)
(p117, P130, p143) (pns, Pi31, p141) (p119, P129, p142)-

Therefore we have the actions of ¢ and 7 on P described in (6.1.1). Since the
permutation group (G,P) is isomorphic to the permutation group (G, B), we may
assume that the numbering of the actions of ¢ and 7 on B are the same as these on
the points. O

(6.1.2) Let f=(0)(1)(2)(3,4,5)(6,7,8)(9,10,11) eSym{0, 1,...,11}. Then
So Si Sy lA, A AL A AL Al A, AT A
le 53 54 55 BO Bof Bof2 Bl Blf Blf2 BQ Bzf Bzf2
Ss S. Ssloy, of o o of of o, cf c,f
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where S(), ce Sg S Al, AQ,BQ,C() S @1, AZ,BZ,C S CDQ (Z =1 2)

Proor. We remark that h;; = 1 <= p,IB; <= p/*IB;" <= hyy = 1 and
hij =0 <= p; AB; <= pi* AB;" <= hy j = 0, where p;* = py and B' = By,
for 0 <1,5 <143, p € G.
We define an action on P x B of G by (p, B)* = (p*, B*) for (p, B) € P x B.
Then, if A C P x B is a G-orbit, h; ; = hy ; for (p;, B;), (pr, Bj) € A.
Since (ps, Bs) = {(ps, Bs), (1, Bs), - - ., (p11, Bu1) },
(p3, Ba) = {(ps, B1), (1, Bs), (ps, Bs), (ps, Bz), (7, Bs), (ps, Bs), (po, Bo),
(P10, B11), (11, Bo) },
(p3, B5) = {(ps, Bs), (1, B), (ps, Bua), (ps, Bs), (p, Bs), (ps, Br), (po, Bu1),
(P10, Bo), (P11, Bio)},
(p3, Bs) = {(ps, Bs), (1, Br), (ps, Bs), (p6, Bo), (p7, Buo), (ps, Bu1), (po, Bs),
(p10734) (p11,B5)}
(ps, B7)“ = {(ps, Br), (pa, Bs), (ps, Bs), (ps, B1o), (p7, Bu), (ps, Bo), (po, Bu),
(p10735) (pn,B:«z)}
(ps, Bs)“ = {(ps, Bs), (pa, Bs), (ps, Br), (ps, B11), (97, Bo), (ps, Buo), (po, Bs),
(p107B3> (p11,B4)}
(p3, Bo)® = {(ps, Bo), (1, B1o), (ps, Bu1), (p6, Bs), (7, Ba), (ps, Bs), (po, Bs),
(p10; Br), (11, Bs) },
(p3, B10)® = {(ps, B1o), (1, B11), (ps, Bo), (06, Ba), (p7, Bs), (ps, Bs), (po, Br),
(10, Bs), (p11, Bs)}, and
(p3, B11)® = {(ps, B11), (1, Bo), (ps, Buo), (06, Bs), (p7, Bs), (ps, Ba), (po, Bs),
(p107BG)7 (pn, B7>}7
if we set hyo = hoo, 1 = ho1,ha = hoo and hy = hs s, hy = hs4, ..., hi1 = hg11, then

80 | gs gg gs ho hi1  heo h3 hsa hs
Hoo = olé & o |, where ¢ = hy ho h1 |, C1 = hs hs ha |,
’ s |Cs Ci O hi ha h ha hs h
Os | Ca Cs O 1 h2 ho 4 hs h3
he h7 hs ho  hio hi1
Cy = ( hs he hr ) and Cy = ( h11 hog hio ) Set SQ = HO,O - Al.
hz hs he hio hi1  ho

By repeating the argument similarly, we obtain

So Si S»

Hi = Ss Si S
Se Sr Ss

lar argument as above, we can find the remaining submatrices of H;. Note that
G acts semiregularly on Uyc;<p Pi X Usz<j<yy Bj- For example, since (ps, Bss)¢ =
{(ps, Bss), (p7, Bar), (P11, 338) (p4aB48) (ps, 349) (P9, Bso), (ps, Beo), (ps; Be1), (p1o,
Bea) }, we have hz 36 = hy 37 = hiigs = haas = hgao = hoso = s g0 = he 1 = hioe2-0

* kk

. ), where Sy, S1,...,9 € A;. By a simi-

The proof of statements which will appear in the remaining types are omitted,
because we can prove these by arguments similar to those used in Type 1.
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Type 2

236,48, T60) (237, T49, T61) (238, 50, T62) (39, T51, T63)
240,52, T64)(T41, T53, T65) (42, T54, Tee ) (€43, T55, T67)

x44,56,Tes)(T45, 57, Te9)(T46, 58, T70) (T47, T59, T71)

(

(

(

( (

( (

(z72, x84, T96 ) (x73, 85, T97 ) (T74, T86, T98 ) (T75, T8T, T99)

(z76, 88, 100)(T77, T89, T101)(T78, T90, T102) (T79, T91, T103)

(z80, 92, 104) (81, x93, T105)(T82, T94, T106) (783, T95, T107)

(z108, 2120, 2132) (€100, Z121, 2133)(T110, T122, €134 ) (T111, 123, £135)
(112, 2124, 2136) (2113, Z125, 2137)(T114, 126, £138) (T115, £127, £139)
(

116,128, %140) (117, £129, T141) (%118, €130, T142)(T119, 131, ©143) and

T = (®o, x1,x2) (23, %6, x9) (x4, x7, T10) (25, T8, T11)
x12,%13, 14)(T15, 18, T21) (T16, T19, T22) (@17, T20, T23
T24,T25, T26

X27,%30,T33)(T28,T31, T34

T36,T37,T38) XL39,T40,T41

)

29, T32, T35)
T42, T43, Ta4 )
)

(
(
(z45, 46, a7
(w57, 58, T59
(

)
)
)
)

(%54, 55, T56
%60, %61, T62)(T63, T4, Tes)(Te6, T67, Tes) (€69, T70, T71)

( (

( ) )

( ) )

(w48, 249, 250)(T51, 52, T53)

( ) )

(z72, 97, 286 ) (@73, T9s, T84 ) (T74, T96, T85) (T75, 100, T8Y)
(z76, 101, z87)(T77, T99, T88) (XT78, T103, 92)(T79, T104, T90)

(%80, 2102, 91)(T81, 106, ©95) (T82, T107, 93 ) (83, 105, T94)

(w108, 121, 2134) (%109, T122, 132) (2110, Z120, ©133 ) (T111, T124, T137)
(112,125, 2135) (113, T123, 136 ) (114, T127, T140) (T115, T128, T138)
(

Z116, %126, %139) (117, 130, £143)(T118, T131, T141) (T119, T129, T142), where z € {p, B}.
(6.2.2) Let f=(0)(1)(2)(3,4,5)(6,7,8)(9,10,11) €Sym{0,1,...,11}. Then

So So Syl Ay Ay A A AT AT A, A A
H=|S S, Ss|By Be By"| B, By B/ |By By B,”

Ss S Ss|Co Cof G o i o |y oy GF
where Sy, ..., Ss € A1, Ay, By, Cy € @3, Ay, B1,C € &1, Ay, By, Cy € Oy,
Type 3

(6.3.1) ¢ = (z0)(z1)(z2)(x3, x4, x5)(z6, 27, T8)(T9, T10, T11)
z12)(z13)(x14) (%15, T16, 17)(T18, 19, T20) (T21, T22, T23)
x24)(w25)(x26) (w27, T28, T29) (30, T31, T32) (€33, T34, T35)
36,248, 60) (T37, T49, T61) (238, 50, T62) (39, T51, T63)

x40, 52, Te4) (241,53, Te5)(T42, 54, Tee ) (43, T55, Te7)
Ta5,T57, 69 ) (T4a6, T58, T70) (Ta7, T59, T71)

x72, T84, T96) (T73, 85, To7) (T74, T86, T8 ) (75, T-T, T99)

= o~~~

x76, 88, £100)(Z77, T89, T101) (278, £90, T102) (79, 91, T103)
280,92, T104)(Z81, 93, T105) (282, T94, T106) (283, 95, T107)
108,120, 132)(Z109, 121, £133) (%110, 122, £134) (111, 123, £135)

(
(
(
(
(z44, 56, T68)
(
(
(
(
(

x112,T124,%136) (%113, €125, £137) (114, 126, €138 ) (T115, T127, T139)
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(r116, 7128, %140) (117, T129, ©141) (2118, £130, T142 ) (T119, 131, ©143) and

T = (xo0, x1,z2)(23)(x4)(5) (26, T8, 27)(T9, £10, T11)

(12,213, 214)(215) (®16) (217) (218, T20, T19) (21, 222, T23)
(224,25, x26)(x27)(w28)(229) (230, €32, 231) (233, T34, T35)
(z36, 72, 108) (T48, T84, T120) (T60, T96, T132) (37, T73, T109)
(z49, 85, 121)(T61, T97, 133) (238, T74, T110) (T50, T86, T122)
(z62, 98, 134) (39, T75, T111) (T51, T87, T123) (T63, T99, T135)
(%40, 276, 2112)(T52, Tss, T124) (T64, T100, T136 ) (T41, 77, 113)
(253,89, x125)(Z65, T101, 137)(T42, 278, T114) (T54, £90, T126)
(w66, T102, 138)(T43, T79, 115 ) (T55, To1, T127) (T67, 103, T139)
(z44, 80, z116)(T56, T92, T128) (T68, 104, T140 ) (T45, 81, T117)
(z57, 93, 129)(T69, T105, T141) (%46, 82, T118) (T58, 94, T130)
(

270,106, T142)(T47, 283, T119) (59, T95, £131)(T71, £107, £143), Where z € {p, B}.

(6.3.2) Let f=(0)(1)(2)(3,5,4)(6,8,7)(9, 11, 10),
g = (07 2, 1)(3)(4)(5)(6a 7, 8)(9a 11, 10)3 h = (07 2, 1)(3a 9, 4)(6)(7)(8)(97 10, 11)a
k= (0,2,1)(3,4,5)(6,8,7)(9)(10)(11) €Sym{0,1,....11}. Then

So Si Syl Ay Ao AT | A At A | A AN A
Hi=| 8 Sy S5|A A A7 A9 AF AF| 47 A% A" |,

Ss St Ss|As Af AT | Ayt At A | A AR AN
where Sg, S1,...,5% € Az and Ag, A1, Ay are 12 x 12 permutation matrices.

Type 4
(641) ¢ = (z0)(z1)(z2) (23, x4, ®5)(z6, 27, 28) (T9, T10, T11)

z12)(z13)(x14) (%15, T16, 17)(T18, 19, T20) (T21, T22, T23)
x24)(x25)(x26) (227, T28, 29) (230, €31, T32) (233, T34, T35)
36, 248, 60) (37, T49, T61) (238, 50, T62) (39, T51, T63)
Z40,T52, T64)(Ta1, 53, Tes ) (T42, Ts4, Te6 ) (T43, T55, T67)

(

Ta4,T56,268)(Ta5, T57, T69)(T46, T58, T70) (Ta7, T59, T71)
(
)

(

(

(

(

(

(z72, 84, x96)(x73, 85, T97 ) (T74, T86, T98 ) (T75, T8T, T99)

(%76, 88, 2100) (277, T89, ©101) (278, 90, T102) (%79, 91, T103)
(280,92, x104) (281,93, T105) (282, To4, T106) (283, T95, T107)

(z108, 2120, 2132) (€100, Z121, 2133)(T110, T122, £134) (T111, L123, £135)
(z112, 124, %136 ) (113, T125, T137) (114, T126, T138) (T115, T127, T139)
(

Z116, %128, 2140)(T117, 129, ®141)(T118, 130, T142) (%119, ©131, £143), where = € {p, B}.

T = (po, p12, p24)(P1, P13, P25 ) (P2, P14, P26) (D3, P15, P27)

P4, p16,028) (5, P17, P29)(P6, P18, P30) (P7, P19, P31)

P8, P20, P32) (P9, P21,P33) (P10, P22, P34) (P11, P23, P35)

P36, P72, P108) (P48, P84, P120) (P60, P96, P132) (P37, P73, P109)

P49, P85, P121) (P61, P97, P133) (P38, P74, P110) (P50, P86 s P122)

P62, P98, P134) (P39, P75, P111) (P51, P87, P123) (P63, P99, P135)

P40, P76, P112)
)

D53, P89, P125) (P65, P101, P137) (P42, P78, P114) (P54, P90, P126)

(
(
(
( (
( (
( (P52, Pss, p124) (P64, P100, P136) (P41, P77, P113)
( (
( )

D66, D102, P138) (P43, P79, P115) (P55, Po1, P127) (P67, P103, P139)
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(paa, pso, p116) (P56, P92, P128) (P68, P104, P140) (P45, P81, P117)

(P57, P93, P129) (P69, P105, P141) (P46, P82, P118 ) (P58, P94, P130)

(P70, P106, P142) (P47, P83, P119) (P59, P95, P131) (P71, P107, P143) and

= (Bo)(B1)(B2)(Bs, Be, Bg)(Ba, Br, B10)(Bs, Bs, B11)

(Bi12, B13, B14)(Bis, Bis, B21)(Bie, Big, B22)(B1i7, B2o, B23)
(B24, Bas, Bas)(Bar, B3o, Bas)(Bas, Ba1, B34)(Bag, B32, B3s)
(B36, Br2, B10s)(Bas, Bsa, B120)(Beo, Boe, B132)(Ba7, B3, Bio9)
(Bao, Bss, Bi121)(Bs1, Bo7, Bi133)(Bss, Bra, B110)(Bs0, Bse, B122)
(Bs2, Bos, B134)(Bsg, Brs, B111)(Bs1, Bst, B123)(Bes, Bog, B13s)
(Bao, Bre, B112)(Bs2, Bss, B124)(Bea, B1oo, B136)(Ba1, Br7, B113)
(Bs3, Bsg, Bi2s)(Bes, Bio1, B137)(Baz2, Brs, B114)(Bsa4, Boo, B126)
(Bs6, B1o2, B13g)(Bas, Brg, B11s)(Bss, Bo1, Bi27)(Bes7, B1o3, B139)
(Baa, Bso, B116)(Bss, Boz, Bi2s)(Bss, B10o4, B140)(Bas, Bs1, B117)
( (Bas, Bs2, B11s)(Bss, Boa, B13o)
( (Bs9, Bos, Bi31)(Br1, Bior, B143)-

Bs7, Bos, B129)(Beg, B1os, B141

(
(
(
)(
)
(
)
Bro, Bios, B142)(Bar, Bss, B119)

(6.4.2) (i) For a 3 x 3 matrix P = (p;;)o<i j<2, set

Po,2 Poo Po,2 Po,1 Po2 Poo
pll = P12 Pi1o Pi1a and PP = P11 P12 Pio
P22 P20 P21 P21 P22 P20
P O3 O3 O3
(i) For S = gg gg gi 55 € @y set
O3 Cs Cr Cy
P O3 O3 O3 pl O3 O3 O3
oo _ | 05 G Gy Cy 0y Gy Co C
O3 Cs C3 Oy O3 Cs C3 Cy |’
O3 Cg Cg Cf O3 Cy Cg (7
P O3 O3 Os P2l O; 05 O4
o O3 C7 Cy O x O3 C7 Cy Cy
St = Oy C; Cs Cs and 5 = O; Cy C5 Cy
O3 C; Cg Cg O3 C; Cy Cg

(6.4.3) Let f = (0)(1)(2)(3,5,4)(6,8,7)(9,11,10) €Sym{0, 1,...,11}. Then
S S, Sy | Ay Ay A Ay Ay A2f2

H, = S G A R G N I Y ) A1f2 Ay At Aof2
Sp* 0 g =D g G ) | A AT AT A, A A
A AT AT
Ay A7 A |,
Ay A A

where Sy, S1, Sy € Ay and Ay, Ay, Ay are 12 x 12 permutation matrices.
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Type 5

(6.5.1) ¢ = (z0)(z1)(z2)(x3, x4, x5)(z6, 27, T8)(T9, T10, T11)
z12)(213)(z14) (%15, 216, 217) (T18, T19, T20) (21, 222, T23)
x24)(w25) (226 ) (w27, T28, T29) (230, T31, T32) (€33, T34, T35)
36,248, 60)(T37, T49, T61) (38, 50, T62) (39, T51, T63)

Z40,T52, T64)(Ta1, 53, Tes ) (T42, Ts4, Te6 ) (T43, T55, T67)

(

Ta4,T56,268)(Ta5, T57, T69)(T46, T58, T70) (Ta7, T59, T71)
(
)

(

(

(

(

(

(z72, x84, x96)(x73, 85, T97 ) (T74, T86, T98 ) (T75, T8T, T99)

(%76, 288, 2100)(T77, T89, ©101) (78, 90, T102) (79, Z91, T103)
(280,92, x104) (281,93, T105) (282, T94, T106) (283, T95, T107)

(z108, 120, %132) (109, 121, £133) (110, T122, 134) (T111, 123, T135)
(z112, 124, %136) (113, T125, T137) (114, T126, T138) (T115, T127, T139)
(

116,128, %140) (117, ©129, T141) (2118, 130, ©142)(T119, 131, ©143) and

T = (w0, x1,%2)(x3, 6, T9) (x4, 7, T10)(T5, T8, T11)
x12,213,214)(T15, T18, ©21) (216, 19, T22) (%17, T20, T23)
x24,T25,226) (227, T30, 233)(T28, £31, 234) (T29, 32, £35)
x36, 72, 108 ) (%48, T84, T120)(T60, T96, 132)(T37, T73, T109)
Z49,T85,x121)(T61, T97, T133) (38, T74, T110)(T50, T86, T122)
62,98, T134)(x39, 75, 111 ) (T51, T87, T123) (T63, T99, T135)
)

53,89, T125)
Z66, 102, £138) (243, 79, T115) (255, To1, T127)(T67, £103, £139)

Z44,80,2116)(T56, Te2, 128 )(T6s, €104, £140)(T45, T81, £117)

-

69,105, £141) (46, T82, £118)(T58, T94, £130)

(

(

(

(

(

(%40, 276, 2112)(T52, Tss, T124) (T64, T100, T136 ) (T41, 77, 113)
(

(

(

(z57, %93, T129
(

(
(
(
(
(w65, 2101, 7137)(T42, T78, ©114) (T54, T90, T126)
)
(
(
)

270,106, T142)(T47, 283, T119) (59, T95, £131)(T71, £107, £143), Where z € {p, B}.

(6.5.2) Let f = (0)(1)(2)(3,5,4)(6,8,7)(9, 11, 10),

g=1(0,2,1)(3,9,6)(4,10,7)(5,11,8), h = (0,2,1)(3,11,7)(4,9,8)(5, 10, 6),

k=(0,2,1)(3,10,8)(4,11,6)(5,9,7) € Sym{0,1,...,11}. Then
So S1 Sal Ay At AT A Al AR | A AL A
Hi=| S5 Si Ss|A A AT A2 A" AR AT AF AN
Se Sr S| Ay At AT A9 A ALK AT AN AN

where Sy, ..., S € A; and Ay, Ay, Ay are 12 x 12 permutation matrices.

Type 6
(6.6.1) ¢ = (z0)(z1)(z2)(x3, 4, x5)(z6, 27, T8)(T9, T10, T11)

(z12)(z13)(z14)(z15, T16, T17) (T18, T19, T20) (T21, T22, T23)
(z24)(x25)(x26) (z27, 28, T29) (230, 31, 232) (X33, T34, T35)
(%36, 248, T60)(T37, T49, T61) (238, T50, T62) (739, T51, T63)
(240,52, T64) (241,53, T65)(T42, 54, Tes ) (43, T55, Te7)
(z44, 56, T68) (a5, T57, T69 ) (T46, T58, T70) (Ta7, T59, T71)
(z72, x84, 96 ) (x73, 85, T97 ) (T74, T86, T98 ) (T75, T8T, T99)
(z76, 88, 100)(T77, T89, T101)(T78, T90, T102) (T79, T91, T103)
( )(

280,92, 104)(Z81, 93, T105) (282, T94, T106) (283, 95, T107)

136



K. AKITYAMA ET AL./AUSTRALAS. J. COMBIN. 74 (1) (2019), 112-160

(108,120, 2132) (109, 121, 133)(T110, T122, 134 ) (2111, £123, £135)
(x112, 7124, %136) (%113, T125, £137) (114, T126, €138 ) (T 115, T127, T139)

(r116, 7128, %140) (117, T129, ©141) (2118, £130, ©142 ) (T119, 131, ©143) and

T = (0,12, 24) (71, 13, ©25) (22, 14, T26) (T3, T16, T29)
(za,z17, T27) (25, T15, T28) (%6, T19, T32) (T7, 20, T30)
(z8, 18, x31)(x9, 22, x35) (10, x23,33)(T11, T21,X34)
(z36, 49, T62) (37, T50, T60 ) (238, T48, T61)(T39, T52, T6s)
(240,53, 263) (241,51, Te4)(T42, T55, Tes ) (T43, T56, L66)

(%44, 254, 267)(T45, T58, T71) (46, T59, T69) (T47, T57, T70)

(z72, 85, 98) (%73, 86, T96 ) (T74, T84, T97 ) (T75, T88, T101)

(z76, 89, T99) (77, T87, 100)(XT78, T91, T104 ) (T79, T92, T102)

(z80, 90, 103) (81, T94, T107)(T82, T95, T105) (783, T93, T106)

(108, z121,2134) (2100, Z122, 2132)(T110, €120, €133 ) (T111, 124, £137)
(112,125, 2135) (€113, £123, 2136 ) (T114, T127, T140) (T115, 128, £138)
( )

116,126, 139)(Z117, 130, £143) (118, 131, £141)(Z119, T129, T142), where x € {p, B}.

(6.6.2) Let f = (0)(1)(2)(3,4,5)(6,7,8)(9, 10, 11),
g=1(0,1,2)(3,4,5)(6,7,8)(9,10,11) € Sym{0,1,...,11}. Then

So S1 S2| Ao Ao(f;alj Ao(f,lz)
Hl = 52 SO Sl AO(LQQ) Ao(f g ) Ao(f,g )
Si Sy Syl A9 A9 4 U9)

A, Al(f;JQ) A1(f’12) Ay 2 AQ(f;,IQ) Az(f’12)
2
A9 A, U9 A B0 | 4,087 4,070 4, ()
2 2
Al(l,g) Al(f .9) Al(f,g) AQ(LQ) Ag(f .9) AQ(f,g)

where Sy, S1,55 € Ay and Ay, A; and A, are 12 x 12 permutation matrices.

Type 7
(6.7.1) ¢ = (z0)(z1)(z2)(z3, x4, x5) (w6, 27, 28)(T9, T10, T11)

z12)(z13)(x14) (%15, T16, 17)(T18, 19, T20) (T21, T22, T23)
x24)(25)(x26) (w27, T28, T29) (T30, 31, T32) (%33, T34, T35)
%36, 248, 60) (37, T49, T61) (238, 50, T62) (39, T51, T63)
x40, 52, Te4) (241,53, Te5)(T42, 54, Tee ) (43, T55, Te7)

x44,56,Tes)(T45, 57, Te9)(T46, 58, T70) (T4a7, T59, T71)

(

(

(

( (

( (

(z72, 84, 96 ) (x73, 85, T97 ) (T74, T86, T98 ) (T75, T8T, T99)

(z76, 88, 100)(T77, T89, T101) (278, T90, T102) (T79, T91, T103)
(280,92, x104) (281,93, T105) (282, To4, T106) (283, T95, T107)

(z108, 2120, 2132) (€100, Z121, 2133)(T110, T122, £134) (T111, L123, £135)
(112, 2124, 2136) (€113, Z125, 2137) (T114, 126, £138) (T115, £127, £139)
(

116,128, %140) (117, £129, T141) (%118, €130, €142 )(T119, 131, ©143) and

T = (w0, z12, x24) (1, 213, x25) (T2, T14, T26) (T3, T16, T29)
(x4, 17, T27) (25, T15, T28) (T6, T19, T32) (T7, T20, T30)
(z8, 18, x31)(z9, T22, T35) (10, T23, 33 ) (T11, T21, T34)

(

36,61, 50)(237, 62, T48)(Z38, 60, T49)(Z39, T64, T53)

137
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x40, 65, T51)(241, 63, T52)(T42, 67, T56) (43, T68, T54)

%44, 266, T55)(T45, T70, ©59) (T46, 71, T57) (T47, T69, T58)

x72, 285, 298)(T73, T86, ©96 ) (€74, T84, T97) (T75, T88, T101)

76,89, %99)(x77, 87, T100) (%78, 91, T104)(T79, T92, T102)

80, 90, €103 )(Z81, To4, T107) (82, T95, 105 ) (83, €93, T106)

108, %121, %134) (109, 122, £132) (110, T120, 133) (T111, T124, T137)

x112,7125,135)(%113, €123, £136) (114, 127, £140 ) (115, T128, £138)

~ o~ o~ ~ o~ o~ ~ o~

116,126, 139)(Z117, 130, £143)(Z118, 131, £141)(Z119, T129, T142), Where x € {p, B}.

(6.7.2) Let f = (0)(1)(2)(3,4,5)(6,7,8)(9, 10, 11),
g=1(0,1,2)(3,4,5)(6,7,8)(9,10,11) €eSym{0,1,...,11}. Then

So S1 So| A AMD 40D
Hl - SQ SO Sl AO(fVQQ) AO(LQQ) AO(fQ’QQ)
Sy, Sy S AO(fQ,g) A9 4,09

A, Al(f271) Al(fvl) Ay AQ(fQJ) A2(f71)
A9 A U9 4 (P97 | 4, (00" 4, (2% 4, (Fe®)

Al(l’g) Al(fQ,g) Al(f,g) AQ(LQ) AQ(fQ,g) Az(fyg)

where Sy, S1, 5 € Ay and Ay, Ai, Ay are 12 x 12 permutation matrices.

Type 8
(6'8-1) ¢ = (z0)(z1)(x2)(x3, 24, z5) (6, T7, 28) (T9, T10, T11)

z12)(®13)(z14) (215, 216, T17) (T18, 19, T20) (T21, T22, T23)
x24)(w25) (226 ) (w27, T28, T29) (30, T31, T32) (€33, T34, T35)
36, 48, T60 ) (37, Ta9, T61) (238, T50, T62) (T39, T51, T63)
Z40,T52, T64)(Ta1, 53, T6s ) (T42, Ts4, Te6 ) (T43, T55, T67)

(

Ta4,256, T68) (T45, T57, 69 ) (246, T58, T70) (T47, T59, T71)
(
)

(

(

(

(

(

(w72, 284, 296) (273, T85, To7) (€74, T86, T98 ) (T75, T8T, T99)

(%76, 288, 2100) (277, T89, ©101) (78, 90, T102) (%79, T91, T103)

(z80, 92, 104) (81, x93, T105)(T82, T94, T106) (783, T95, T107)

(z108, 120, %132) (109, 121, £133) (110, T122, 134) (T111, 123, T135)
(z112, 124, %136 ) (113, T125, £137) (114, T126, 138) (T115, T127, T139)
(

Z116, %128, 140)(T117, 129, £141)(T118, £130, T142) (119, €131, £143) and

T = (0,12, 24) (71, 13, ©25) (22, 14, T26) (T3, T16, T29)
x4, 17, 227)(T5, 15, T28) (T6, £19, £32) (L7, T20, T30)

x8, 18, 231)(T9, 22, *35)(T10, 223, £33) (T11, T21, T34)
x36, 37, €38 ) (39, T40, T41)(T42, T43, Ta4)(Ta5, Ta6, Ta7)
T48,T49, %50 )(T51, 52, T53) (T54, T55, Ts6 ) (T57, T58, T59)
%63, 64, T65) (T66, T67, T68 ) (€69, 70, T71)

x72,%97,286) (273, Tos, T34)(T74, 96, Z85)(T75, £100, £89)

(
(
(
76,101, 87) (77, T99, x88 ) (T78, 103, 92)(T79, T104, T90)

80, 102, £91)(Z81, T106, 95 )(T82, 107, T93) (83, T105, T94)

108, %121, %134) (109, 122, £132)(T110, T120, 133) (T111, T124, T137)

(
(
(
(
(%60, 261, T62)
(
(
(
(
(

x112,125,%135)(%113, €123, £136) (114, 127, £140 ) (T115, T128, £138)

138
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(r116, 126, %139) (117, £130, ©143) (118, €131, ©141) (T119, T129, T142), where = € {p, B}.

(6.8.2) Let f = (0)(1)(2)(3,4,5)(6,7,8)(9,10,11),
=(0,1,2)(3,4,5)(6,7,8)(9,10,11) eSym{0,1,...,11}. Then

So Si Sy| Ay AUTY AU
Ho=| S, Sy S| A9 A, 4,07
S, Sy S Ao(f,g) Ao(l’g) AO(fQ,g)

A, Al(fQ,l) A, Ay AQ(fQ,l) A,

Al(fagz) A1(1’92) Al(f2’92) A2(1’92) AQ(fQ,gz) A2(f792)

Al(f?g) A9 A9 | 4,9 AZ(fQ,g) A,(9)

where Sy, S1, Sy € Ay and Ay, Ay, As are 12 x 12 permutation matrices.

Type 9
(6.9.1) ¢ = (z0)(z1)(z2)(x3, 4, x5)(z6, T7, T8)(T9, T10, T11)

(z12)(z13)(z14)(z15, T16, T17) (218, T19, T20) (T21, T22, T23)
z24)(x25)(z26) (T27, T28, T29) (T30, T31, T32) (X33, T34, T35)

36,248, 60) (37, T49, T61) (238, 50, T62) (39, T51, T63)

x40, 52, Te4) (241,53, Te5)(T42, 54, Tee ) (€43, T55, Te7)

44,256, T68) (T45, T57, 69 ) (T46, T58, 70) (T47, T59, T71)

x72, T84, 296 )(x73, 85, T97)(T74, T86, T98 ) (T75, T8T, T99)

76,88, 100)(T77, 89, T101)(T78, T90, 102)(T79, T91, T103)
280,92, T104)(Z81, 93, T105) (282, To4, T106) (283, T95, T107)

2108, 2120, £132) (€109, 121, £133) (110, T122, £134) (T111, £123, £135)
x112,2124,2136) (€113, 125, £137) (T114, T126, 2138 ) (T115, £127, £139)

(
(
(
(
(
(
(
(
(
(

116,128, %140) (117, €129, T141) (2118, 130, ©142)(T119, 131, ©143) and

T = (w0, z12, x24) (1, x13, x25) (T2, T14, T26) (T3, T16, T29)
x4, z17,T27)(T5, 15, T28) (%6, T19, T32) (T7, T20, T30)

xg, x18, 231)(T9, T22, 235 )(T10, 223, £33) (T11, Z21, 34)
x36, 72, 2108) (237, £73, T109) (238, £74, T110) (39, 75, T111)
240,276, 2112)(T41, T77, 113 ) (T42, 78, T114) (%43, 79, T115)

Z44,780,%116)(T45,T81,T117)(T46, T2, 118)(T47, 83, T119)

(

(

(

( )

( )(

(z48, 84, T120)(T49, T85, 121)(T50, T86, T122) (T51, T8T, T123)
(z52, 88, 124)(T53, T89, T125) (T54, T90, T126) (T55, T91, T127)
(256,92, x128) (257, T93, T129) (258, To4, 130) (59, £95, £131)
(%60, 296, 132)(T61, T97, ©133) (T62, 98, T134) (T63, 99, T135)
(z64, 100, 136 )(T65, 101, £137) (T66, T102, T138) (T67, 103, T139)
(

Z68, 104, 140) (269, T105, £141)(T70, T106, T142) (T71, T107, ©143), where z € {p, B}.

(6.9.2) Let f = (0)(1)(2)(3,4,5)(6,7,8)(9,10,11) €Sym{0,1,...,11}. Then
So S1 So|An A Al | AT A A | AT A AT
Hi=| S Sy Si|A AT A A7 A Ay | AT Ay A
Si Sy SolAy A A A7 AT A AL A, A
where Sy, S1, Sy € Ay and Ay, Ay, As are 12 x 12 permutation matrices.

139
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Lemma 6.2 All matrices H, of (6.1.2), (6.2.2), (6.3.2), (6.4.3), (6.5.2), (6.6.2),
(6.7.2), (6.8.2) and (6.9.2) do not exist. Therefore none of Types 1 to 9 can occur.

PROOF. Any matrix H; of (6.1.2), (6.2.2), (6.3.2), (6.4.3), (6.5.2), (6.6.2), (6.7.2),

Ep Ji2 Ji2
(6.8.2) and (6.9.2) must satisfy HHI = Jio FEia Jio |, where Eiy is the
Ji2 Jiz By

identity matrix of degree 12 and .Ji5 is the all one 12 x 12 matrix by Lemma 2.8. But
it follows that there do not exist matrices H; having these forms and satisfying this
equation, using a computer. O

7 Types 10 to 15

In this section we consider Types 10 to 15 in Section 5 and we show that none of
these types can occur.

Definition 7.1 Let m,n be positive integers. Let R,S be m x n matrices with
entries from Z. Then we say that R is equivalent to S if there exist a permutation
matrix X of degree m and a permutation matrix Y of degree n such that S = X RY.

The actions of ¢ and 7 on both P and B in Types 10 to 15 are determined explicitly
from Section 5.

Type 10

(7-10-1) ¢ = (z0,x1,z2)(x3, x4, 25)(x6, T7, T8)(T9, 10, T11)
(z12, 213, z14)(T15, 16, 17) (T18, T19, T20) (21, T22, T23)
%24, T25, T26) (27, T28, T29

Z30,231,232)(L33, T34, T35

X36,248,L60)\L37,T49,T61)(T38, 50, L62)(L39,L51, 63

T42,T54,T66

)

)

( ) )
( ) )
( )(za3, z55, Te7)
T44, %56, T68)(Ta5, T57, T69) )( )

T46, T58, L70

)
)
)

T40,T52, T64)
) Ta7,T59, T71
)

(

( )
( )
(z41, 53, T65)
( )
x72, T84, 296 )(x73, 85, T97)(T74, T86, T98 ) (T75, T8T, T99)

76,288, 2100)(T77, T89, ©101) (278, 90, T102) (T79, 91, 103)
280,92, T104)(Z81, 93, T105) (282, T94, T106) (283, 95, T107)

2108, 2120, £132) (€109, 121, £133) (Z110, T122, £134) (T111, £123, £135)
Z112, %124, %136 ) (113, T125, £137)(T114, T126, T138) (T115, T127, T139)

(
(
(
(
(
(
(
(
(
(

Z116, %128, 2140)(T117, 129, ®141)(T118, 130, T142) (%119, ©131, £143), where = € {p, B},

T = (po, p12, p24)(P1, P13, P25 ) (P2, P14, P26) (D3, P15, P27)
P4, p16,028) (5, P17, P29)(P6, P18, P30) (P7, P19, P31)

P8, P20,P32) (P9, P21, P33) (P10, P22, P34) (P11, P23, P35)

P36, P72, P108) (P37, P73, P109) (P38, P74, P110) (P39, P75, P111)

pas, ps1,p117) (P46, P2, P118)(Pa7, P83, P119)

P49, pss, p121) (P50, Ps6, P122) (P51, P87, P123)

(

(

(

(P40, p76, P112) (P41, P77, P113) (P42, P78, P114) (P43, P79, P115)
(

(p48 » P84, P120

(

)(
Da4, P80, P116)(
)(
)

D52, P88, P124) (P53, P89, P125) (P54, P90, P126) (P55, P91, P127)
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(P56, P92, P128) (P57, P93, P129) (P58, P94, P130) (P59, P95, P131)

(P60, P96, P132) (P61, P97, P133) (P62, P98, P134) (P63, P99, P135)

(P64, P100, P136) (P65, P101, P137) (P66, P102, P138) (P67, P1035 P139)
(P68, P104, P140) (P69, P105, P141) (P70, D106 P142) (P71, P107, P143) and
T = (Bo)(B1)(B2)(Bs, Bs, By)(Ba, Bz, B10)(Bs, Bs, B11)

(Bi12, Bi4, B13)(Bis, Bis, B21)(Bie, Big, B22)(B1i7, B2o, B23)
(B24, Bas, Bas)(Bar, B3o, Bas)(Bas, Ba1, B34)(Bag, B32, B3s)
(Bse, Br2, Bios)(Bs7, Brs, Bio9)(Bss, Bra, B110)(Bs9, Brs, B111)
(Bao, Br6, B112)(Ba1, Br7, B113)(Baz, Brs, B114)(Bas, Brg, B11s)
(Baa, Bso, Bi16)(Bas, Bs1, B117)(Bas, Bs2, B118)(Bua7, Bs3, Bi19)
(Basg, Bsa, B120)(Bag, Bss, B121)(Bso, Bse, B122)(Bs1, Bs7, B123)
(Bs2, Bss, B124)(Bs3, Bgg, B125)(Bsa, Boo, B126)(Bss, Bo1, Bi27)
(Bse, Boz, Bi2s)(Bs7, Bos, B129)(Bss, Boa, B130)(Bs9, Bos, B131)
(Beo, Boe, B132)(Be1, Bo7, B13s)(Bs2, Bos, B134)(Bes, Bog, B13s)
(Bs4, Bioo, B13s)(Bes, Bio1, B137)(Bss, Bioz2, Bi3s)(Be7, B103, B139)
(Bss, Bioa, B140)(Bs9, B1os, B141)(Bro, B1oe, B142)(B71, Bio7, B143).

(7.10.2) There are the following 16 G-orbits on P.

Qo = {po, p1, P2, P12, P13, P14, P24, P25, P26 },

Q1 = {ps3,p4,Ps5, P15, P16, P17, P27, P28, P29 },

Q2 = {ps, p7, s, P18, P19, P20, P30, P31, P32},

Qs = {p9, P10, P11, P21, P22, D23, P33, P34, D35},

Q4 = {p36, P48, P60, P72, P84, P96, P108, P120, D132},

Qs = {p37,P49,D61, P73, P85, P97, 109, P121, P133 }»

Qs = {P38, P50, D62, P74, P86, P98, P110, P122,P134 },

Q7 = {p39, P51, P63, P75, P87, P99, P111, D123, P135 }»

Qs = {p40, P52, P64, D76, P88, P100, P122, P124, P136 }

Qo = {pa1, P53, P65, D77, P89, P101, P113, P125, P137 },

Q10 = {p42, P54, P66, D78, P90, P102, P114, P126,P138 }

Q11 = {p43, P55, P67, P79, P91, P103, P15, P127,P139 }»

Q12 = {pad4, P56, 168, P80, P92, P104, P16, D128, D140 }»

Q13 = {pa5, P57, P69, P81, P93, D105, P117, P129, D141 },

Q14 = {pa6, P58, P70, P82, P94, D106, P118, P130, D142},

Q15 = {pa7, P59, P71, D83, P95, P107, P119, P131, D143 }-
There are the following 18 G-orbits on B.

Co = {Bo, B1, B2},

C1 = {Bi2, B13, Bi4},

Co = {B24, Bas, Bas },

Cs = {Bs, B4, Bs, Bs, Bz, Bs, By, B1o, B11},

C4 = {Bi1s, B16s, B17, B1s, B19g, B2o, B21, B22, B23},

Cs = {Ba7, B2g, B2g, B3o, B31, B32, B33, B34, B35},

Cé = {Bss, Bas, Beo, B2, Bs4, Bos, B1os, B120, B132},

Cr = {Bs3r, Bag, Be1, Br3, Bss, Bo7, B1og, Bi21, B133},

Cs = {Bss, Bso, Be2, B4, Bse, Bos, B110, B122, B134},

141
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Co = {Bs39, Bs1, Be3s, Brs, Bs7, Bog, B111, B123, B135},

C10 = {Buo, Bs2, Be4, Bre, Bss, B1oo, B122, B124, B136 },
C11 = {Bua1, Bs3, Bes, Br7, Bsg, Bio1, B113, B12s, B137},
Ci2 = {Ba2, Bs4, Bes, Brs, Boo, B1o2, B114, B126, B13s },
C13 = {Buas, Bss, Ber, B, Bo1, B1o3, Bi1s, B127, B139},
C14 = {Bua, Bse, Bes, Bso, Bo2, Bio4, B116, B128, B14o},
C15 = {Buas, Bs7, Beg, Bs1, Bgs, Bios, B117, B129, B141},
C16 = {Buas, Bss, Bro, Bs2, By4, B1oe, B11s, B130, B142},
Ci7 = {Bar, Bsg, Br1, Bs3, Bos, Bio7, B119, B131, B143}.

Set go = po, @1 = D3, G2 = P6, 43 = P9; qa = P36; I5 = D375 46 = P3s, q7 = P39, s =
P10, 99 = Pa1, Qo = Pa2, qui = Pa3, Q12 = Paa, Q13 = Pas, Q14 = Pas, 15 = Pay and
Co = By, C1 = Bz, C3 = By, C3 = Bs, Cy = Bys, C5 = By, Cg = Bgg, C7 =
Bsz, Cs = Bsg, Cg = Bsg, C19 = Ba, Ct1 = Bu, C1a = Bz, Ci3 = Buyz, Ciy =
By, Ci5 = Bus, Ci¢ = Bag, Ci7 = By

For 0 <i<17and 0 < j < 15set m;; = |C; N (g;)| and D;; = {a € G| C;* €
(g;)}. Then m;; = |D;;| (0 <i<17, 0 <j <15). Each m;; depends only on C;
and Q; not on C; and ¢;. For a non-empty subset X of G, set X = Z a € Z[G].

aceX

15 —
Set M = (mi’j)0§i§17’ 0<j<15 and Ai,i’ = Z Dl‘ijZ‘/’j(il) for 0 S i,i/ S 17.
7=0

(7.10.3) (i) For 0 <i#i' <17

0 ity e ({03}, {14}, {2,5}),

G otherwise.
(ii) For 0 <14 <17
([ 12(7) it i =0,
12(pT7) if 1 =1,
Aii =9 12(p%7) if i =2,
12 if3<i<5,
12+G\{1} if6<i<17.

\

ProoOF. (i) Let @ € G. Then there exist 0 < j < 15 and (5,7) € D;; x Dy
such that o = 8y~ 1, if and only if there exist 0 < j < 15 and v € G such that
Cia c ((]jwil) and Cy € (q]"yil).

Suppose that {i,7'} = {0,3}, {1,4} or {2,5}. Then there do not exist 0 < j < 15
and y € G such that C;* € (¢,7 ") and Cy € (g7 ). Therefore A, = 0.

Suppose that 6 < i # i < 17. If a = 1, there do not exist 0 < j < 15 and
v € G such that C;* € (¢;7 ') and Cy € (¢;7 ). If a # 1, there exists only one
(7,7) € {0,1,...,15} x G such that C;* € (qﬂ_l) and Cy € (qﬂ_l). Therefore
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Suppose that 0 < i # ¢ <5, {i,7'} & {{0,3}, {1,4}, {2,5}}or 0<i <5, 6<
i <17or 0 <i <5, 6 <i<17. Then exists only one (j,7) € {0,1,---,15} x G
such that C;® € (¢;7 ") and Cy € (¢;,7 ). Therefore A;; = G
(ii) Let o € G. Then, there exist 0 < j < 15 and (5,7v) € D;; x Dy ; such that
a = fy71, if and only if there exist 0 < j < 15 and v € G such that C;* € (qﬂ_l)
and C; € (¢;7).

If a € (1), there exist twelve (j,7) € {0,1,...,15} x G such that Cy = Cy® €
(¢;7"") and Cy € (g7 ). If a & (7), there do not exist (j,7) € {0,1,...,15} x G
such that Cp = C;® € (¢;,7 ) and Cy € (¢, ). Therefore Agg = 12(7'/\>.

— —_—

By a similar argument, A;; = 12(¢7) and Ay s = 12(p72) hold.

Suppose that 3 < i < 5. If @ = 1, there exist twelve (j,7) € {0,1,...,15} x G
such that C; = C;* € (¢;7 ') and C; € (¢ ). If a # 1, there do not exist 0 < j < 15
and v € G such that C;* € (¢;7 ") and C; € (¢;7 ). Therefore A;,; = 12.

Suppose that 6 < i < 17. If a = 1, there exist twelve (j,7) € {0,1,...,15} x G
such that C; = C;* € (¢;7 ') and C; € (g7 ). If a € G\{1}, there exists only
one (4,7) € {0,1,...,15} x G such that C;* € (¢, ') and C; € (¢;7 ). Therefore

(7.10.4) (i) For 0 <i #4 <17

15 0 if {7} € {{0,3}, {1,4}, {2.5}},
Zmi,jmi/,j = 8 if 6 S 1 7é i S ]_7,
j=0 9  otherwise.

(ii) For 0 <1i < 17
15 36 if0<i<2,
> omif=q 12 if3<i<5,
=0 20 if6<i<1T.

(iii) For 0 <4 <17
15
Zmi,j =12.
=0

ProOOF. (i) and (ii) hold by acting the trivial character of G on two equations in
(7.10.3). Since there are twelve (i,a) € {0,1,...,15} x G such that C; € (¢;* ),
(iii) holds. O

(7.10.5) For 0 < < 17, the following hold, up to ordering of m;o m;1 ... my15.

(i) If 0 < i < 2, then (mzo mi1 ... migs) = (00...03333), (00...0 11334),

12 11
(00...0111144)0r(00...01111225).

10 10
(11) If3§l§5, then (mw mi1 ... mi715): (OOOO 1 1].)
12
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(111) If 6 S 1 S 17, then (miyomiyl...mi,m) = (0 0...0 1111222 2) or

8
(00...011...123).
N—_— —

7 7
Proor. This assertion holds from (7.10.4) (ii), (iii). O

(7.10.6) (m;;)o<i<s, 0<j<15 coinsides with the folowing matrix, up to equivalence.

0000O0OO0OO0OO0OO0OO0OO0O33¢0 33
0000O0OO0O0O0OO0OO0330¢03¢03
0000O0OO0O0O3300O0O03320
1111111111 100100
11111111 10011O0T10
1 111111001111O0¢0°1

Proor. This assertion holds from (7.10.4) and (7.10.5). O

(7.10.7) There exists the following unique M, up to equivalence.

o o o0 o0 o0 o0 00000 3 3 0 3 3
o o0 o0 o0 0 o0 o000 3 3 00 3 0 3
o o0 o0 o0 0 o0 o0 3 3 0000 3 3 0
111111 11 1 1 1 0 0 1 0 O
111111 11 1 0 01 1 010
1111 1 1 1 0 0O 1 1 1 1 0 0 1
o o0 o0 o0 1 1 2 0 3 1 1 1 1 0 01
1111 00 3 1 0 O0OO0OOOT1T 1 2
M= o o0 o0 2 0 2 1 1 0 0 2 0 2 1 1 0
o o0 2 0 0 2 1 1 0 2 0 2 01 1 0
0o 0 2 2 2 0001 00 1 1 2 01
02 0 0 2 01 1 0 0 2 2 01 1 0
0 2 0 2 1 1 0 0 1 2 0 00 0 2 1
02 2 0 0 0 0 2 1 1 1 0 2 0 0 1
2 0 0 0 2 01 1 0 2 00 2 1 10
20 0 2 0 0 0 2 1 1 1 2 00 01
20 2 0 1 1 0 0 1 0 2 0 0 0 2 1
22 000 2 001 0 01 1 2 01

Proor. Using a computer, the assertion holds from (7.10.4), (7.10.5) and (7.10.6).
a

Lemma 7.2 Type 10 does not occur.

PRrOOF. Using a computer, it follows that there does not exist (D; ;)s<i<11, 0<j<15
corresponding to the submatrix (m;;)e<i<11, 0<j<15 of the matrix M of (7.10.7).
Therefore the lemma holds. O

The proofs of the following results in Types 11 to 15 are omitted, because they
are similar to the results in Type 10.

Type 11

(7.11.1) ¢ = (20, 212, 224) (%1, 13, T25 ) (2, 14, T26) (T3, T15, T27)
(24,16, 228) (5,217, T29)(T6, Z18, 30) (27, T19, T31)

(z8, 220, x32)(T9, 21, x33) (10, 22,34 )(T11, T23, X35)
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X36,248,L60)\L37,T49,T61)(T38, 50, L62)(L39,L51, L63

)( )( )
x40, 52, T64)(T41, 53, 65) (42, T54, Tee ) (T43, T55, T67)
)( )( )

)
)

1447x567x68) 46, L58,L70)(L47,T59, T71
)

( (

( (

( (%45, 57, Tog
(z72, 84, T96 ) (x73, 85, T97 ) (T74, T86, T98 ) (T75, T8T, T99)
(z76, 88, 100)(T77, T89, T101)(T78, T90, T102) (T79, T91, T103)
(z80, 92, 104) (81, x93, T105)(T82, T94, T106) (783, T95, T107)

(z108, 2120, 2132) (€100, Z121, 2133)(T110, T122, £134) (T111, L123, £135)
(112,124, 2136) (2113, Z125, 2137) (T114, 126, £138) (T115, £127, £139)
(

116,128, %140) (117, €129, T141) (%118, 130, T142)(T119, 131, ©143) and

T = (®o, x1,x2) (23, x4, x5)(z6, x7, 28)(T9, 10, T11)
x12, %13, 14)(T15, 16, T17) (€18, T19, T20) (@21, T22, T23
T24,T25, T26

27, %28, 229 )(T30,T31,L32

T36,T37,T38

)

33, T34, T35)

39,40, T41 )
)

)
)

T42,T43,T44)
) (@57, 58, T59
)

(
(z45, a6, a7
(
(

(%54, 55, T56
Z60, 61, T62)(T63, 64, T65)(T66, T67, T68)(T69, 70, L71)

( (

( ) )

( ) )

(w48, 249, 250) (T51, T52, T53)

( ) )

(z72, %85, 98) (%73, 86, T96 ) (T74, T84, T97 ) (T75, T8S, T101)
(z76, 89, T99)(x77, T87, T100)(XT78, T91, T104 ) (T79, T92, T102)

(%30, 290, 2103) (%81, T94, T107)(T82, T95, £105) (%83, 93, 106)

(w108, 121, 2134) (%109, T122, 132) (2110, Z120, ©133 ) (T111, T124, T137)
(112,125, 7135) (113, T123, 136 ) (£114, T127, T140) (T115, T128, T138)
(

Z116, %126, %139) (117, 130, £143)(T118, T131, T141) (T119, T129, T142), where z € {p, B}.
(7.11.2) There are the following 16 G-orbits on P and on B.

Yo = {zo, 21, x2, %12, 213, 214, T24, T25, 26 },

V1 = {x3, x4, x5, 215, 16, T17, T27, T28, 229 },

Vo = {z¢, 27, 28,218, 19, 20, £30, T31, T32 },

V3 = {9, 10, %11, T21, T22, T23, T33, L34, T35},

V4 = {x36, T37, T38, T48, T49, T50, T60, T61, T62 },

Vs = {239, x40, T41, 51, T52, T53, T63, T64, L65 |,

Ve = {x42, 243, T44, T54, T55, 56, T66, L67, L68 },

V7 = {45, 46, Ta7, T57, T58, 59, 69, £70, T71 ),

Vs = {x72, T73, T74, T84, T85, T86, T96, TIT, TO8 },

Yo = {x75, 76, T77, T87, T88, T89, T99, £100, 101 },

Y10 = {z78, T79, T80, 90, 91, T92, T102, 103, T104 },

V11 = {zs1, x82, 83, L93, L4, L5, £105, L1065 L107 }

Y12 = {x108, 2109, £110, €120, T121, 122, £132, £133, £134 },
V13 = {z111,T112, 113, T123, T124, T125, T135, T136, T137 },
V14 = {z114, 115, 116, T126, T127, T128, T138, T139, £140 },

Vis = {z117, 118, T119, 129, T130, 131, T141, £142, T143 }, where (¥, z) € {(Q,p), (C, B)}.

Set qo = po, @1 = P3, @2 = De; 43 = P9, Q1 = P36, G5 = P39; G = P42, G7 = Pas; (8 =
P72, 99 = P75, q10 = P78, 11 = P81, 12 = P1os, 413 = Pi11, 14 = Pii4, G5 = P117
and Cy = By, C1 = B3, Cy = Bg, U3 = By, Cy = Bsg, C5 = Bgg, C5 = By, C7 =
Bys, Cs = Brp, Cy = Bys, Cig = Brg, C11 = Bgi, Cia = Bigg, Ci3 = Bii1, Ciu =
B4, Ci5 = Bur.
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For 0 < 1,5 <15 set m;; = |Q; N (C;)| and D;; = {a € G| ¢, € (C;)}. Then
m;; = |D; ;| (0 <1i,7 <15). Each m;; depends only on Q; and C; not on ¢; and Cj.
15 .

Set M = (mi7j)0§i,j§15 and Ai,i/ = Z l/):jDi/J(il) for 0 < i,’il < 15.
=0
(7.11.3)

Set I = {0,1,2,3}, I = {4,5,6,7}, I, = {8,9,10,11} and Iy = {12,13, 14, 15}.
(i) For 0 <i#1¢ <15

G/m if i #£4 €I, forsomek € {0,1},
A =9 G\(p27) if i #£4¢ €l forsomek € {2 3},
G if i€l i el forsomek#I1e{0,1,2,3}.

(ii) For 0 <i <15
o 12—1—@ if i€ I, forsome k€ {0,1},
" 124 G\(g?7) if i€ I, for some k € {2,3}.

(7.11.4) Let Iy, ..., I3 be the symbols used in (7.11.3).
(i) For 0<i#£i <15

i |6 ifi#iel, forsomeke{0,1,2,3},
- MM =13 9 if i€, el forsomek#1¢€{0,1,2, 3}
]_

(ii) For 0 <i <15
15
ZmiJ? = 18.
=0

(iii) For0<:< 15

15
Z m;; = 12.
Jj=0

Lemma 7.3 There does not exist an M = (m; j)o<ij<15. Therefore Type 11 does
not occur.

Type 12

(7.121) ¢ = (zo, 12, z24)(x1, 213, T25) (T2, T14, T26 ) (T3, T15, T27)
(24,16, 228) (5,217, T29)(T6, £18, 30) (27, T19, T31)
xg, 20, 232)(T9, 21, 233)(T10, 222, 34)(T11, Z23, £35)
36, 248, 60) (37, T49, T61) (238, 50, T62) (39, T51, T63)
Z40,T52, T64)(Ta1, 53, T6s ) (T42, Ts4, Te6 ) (T43, T55, T67)
Ta5,T57, 69 )(T4a6, T58, T70) (Ta7, T59, T71)

T44,T56, T68)

x72, T84, T96) (T73, 85, To7) (T74, T86, T98 ) (75, T-T, T99)

(
(
( (
( (
( (
( )

276,88, £100)(Z77, T89, T101) (278, £90, T102) (79, T91, T103)
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(280,92, x104) (281,93, T105) (282, To4, T106) (283, 95, T107)

(108,120, 2132) (109, 121, 133)(T110, T122, 134 ) (2111, £123, £135)
(r112, 7124, %136) (%113, T125, £137) (114, T126, €138 ) (T 115, T127, T139)
(

116,128, %140) (117, €129, T141) (%118, 130, T142)(T119, 131, ©143) and

T = (®o, x1,x2) (23, x4, x5)(x6, x7, 28) (9, 10, T11)
x12, %13, 14)(T15, 16, T17) (€18, T19, T20) (@21, T22, T23
T24,T25, T26

27, %28, 229 )(T30,T31,L32

T36,T37,L38) XL39,T40,T41

)
33, T34, T35)
45, T46, T4T)

)

)
)

T42,T43,T44)
) (@57, T58, T59
)

(
(
(
(

(%54, 55, T56
%60, %61, T62)(T63, T4, Tes)(Te66, T67, Tes) (%69, £70, T71)

( (

( ) )

( ) )

(w48, 249, 250) (T51, 52, T53)

( ) )

(z72, %85, 98) (%73, 86, T96 ) (T74, T84, T97 ) (T75, T88, T101)
(z76, 89, T99)(x77, T87, 100)(XT78, T91, T104 ) (T79, T92, T102)

(x50, 290, 2103) (%81, T94, T107)(T82, T95, £105) (%83, 93, 106)

(w108, 7133, 7122) (%109, T134, £120) (2110, Z132, T121 ) (T111, T136, T125)
(w112, %137, 123)(®113, T135, T124) (2114, T139, T128 ) (T115, 140, T126)
(

x116, %138, 127)(T117, 142, ©131)(T118, 143, 129) (%119, T141, £130), Where = € {p, B}.

(7.12.2) There are the following 16 G-orbits on P and on B.

Yo = {zo, 1, %2, T12, 13, T14, T24, T25, T26 }

V1 = {z3, x4, x5, 15, T16, T17, T27, T28, T29 },

Y2 = {w6, 7, x8, 18, 19, T20, T30, T31, T32 },

V3 = {x9, 210, %11, T21, T22, T23, T33, T34, T35},

V4 = {x36, 237, 238, 48, T49, 50, L60, T61, L62 |,

Vs = {x39, 240, Ta1, T51, T52, 53, T63, £64, L65 ),

Ve = {42,243, Ta4, T54, T55, T56, T66, L67, L68 )

V7 = {45, x46, Ta7, T57, T58, 59, T69, L70, L71 },

Vs = {x72, 273, X74, T84, T85, 86, L96, £97, T98 },

Yo = {75,276, 77, T87, T88, T89, L99, £100, L101 },

Y10 = {78, x79, 80, 90, £91, 92, £102, £103, £104 },

V11 = {xs1, r82, x83, 93, To4, 95, £105, £106; £107 },

Y12 = {x108, 109, T110, €120, T121, £122, 132, T133, £134 },
Vi3 = {x111, %112, 113, 123, T124, 125, T135, £136, £137 },
V14 = {@114, %115, T116, T126, T127, £128, 138, £139, £140 },

Vis = {2117, T118, T119, 129, T130, T131, T141, T142, T143 },where (¥, z) € {(Q,p), (C, B)}.

147

Set g0 = Po, ¢1 = P3, G2 = Pe, 43 = D9, Q4 = D36, ¢5 = D39, §6 = P42, ¢7 = D5, 8 =

P72, 99 = P75, qi0 = P78, q11 = P81, 912 = P1og, d13 = Pi11, 14 = P1i4,

qi5 = P17

and Cy = By, Cy = B3, Cy = Bg, C3 = By, Cy = Bsg, C5 = B3y, Cs = Baa, C7 =
Bys, Cg = Bry, Cy = Bz, C19 = Brs, C11 = Bgi1, C12 = Bios, Cis3 = Bi11, Cuu =

Bis, Ci5 = Bur.
The symbols m; ;, D;;, M and A, are the same as in Type 11.

(7.12.3)

Set Iy = {0,1,2,3}, I = {4,5,6,7}, I, = {8,9,10,11} and I3 = {12, 13,14, 15}.

(i) For 0<i#4 <15
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G\ (1) if 1 #4 €1, forsomek € {0,1},

G\(p?*r) if i#£7d el

G\lpr)  if i €I,

G if i€, €l forsomek#1e€{0,1,2, 3}
(ii) For 0 <i <15

A =

12—1—@ if i€ I, forsomek € {0,1},
Aii =19 12+ G\(p2?1)  if i€ Ly,

—

12+ G\ (7 if i€ ls.

(7.12.4) Let Iy, ..., I3 be the symbols used in (7.12.3).
(i) For 0<i#£i <15

im‘ I if i#1¢ €1, forsome k€ {0,1,2,3},
« WS 9 if dedy, i el for some k #1 € {0,1,2,3}.
ji

(ii) For 0 <i <15
15
Zmi7j2 = 18.
=0

(iii) For 0 <i <15

15
Z m;; = 12.
j=0

Lemma 7.4 There does not exist an M = (m; j)o<ij<i5. Therefore Type 12 does
not occur.

Type 13

(7-13-1) ¢ = (zo, 12, z24)(T1, 13, T25) (T2, T14, T26 ) (T3, T15, T27)
(24,16, 228) (5,217, T29)(T6, £18, £30) (27, T19, T31)
xg, 20, 232)(T9, 21, 233)(T10, 222, 34)(T11, 223, £35)
%36, 248, 60) (37, T49, T61) (238, 50, T62) (39, T51, T63)
Z40,T52, T64)(Ta1, 53, T6s ) (T42, Ts4, Tee ) (T43, T55, T67)
Ta5,T57, 69 ) (T4a6, T58, T70) (Ta7, T59, T71)

T44,T56, T68)

x72,T84,296) (273, L85, 97) (%74, T86, T98) (T75, T87, T99)

(
(
(
76,288, 2100)(T77, T89, ©101) (278, 90, T102) (T79, 291, 103)
280,92, T104)(Z81, 93, T105) (282, To4, T106) (283, £95, T107)
108, %120, €132) (109, €121, £133) (110, T122, 134) (T111, 123, T135)

x112,T124,%136)(Z113, 125, £137) (114, 126, £138 ) (T115, T127, T139)

o~ o~~~ o~~~ o~~~

116,128, %140) (117, €129, T141) (2118, 130, €142 ) (T119, 131, ©143) and

T = (zo, 1, x2)(x3, x4, 5)(T6, 7, x8)(T9, T10, T11)

(x12,713,214) (15, 16, T17)(T18, T19, T20) (21, T22, T23)
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x24,225,226)(227, 28,29 ){(T30, 31, L32 1'337333473335)
X36,237,238)(L39,T40,T41)(T42,T43,T44 1'457334673347)
X48,249, T50

69, T70, T71)

(

(

(%57, 258, T59)
63, T64,T65 (
(

)
)
51,52, 53) (54, T55, T56
)
)

) )
) )
) )
60, T61,%62) ( T66, T6T, T68)
x72, %73, x74)(T75, T76, T77) (T78, T79, T80 ) (T81, T82, T83
) )

)
)

x84, 85, T86) (T87, 88, 89) (T90, To1, T92)(T93, T94, T9s

o~~~ o~ o~ o~~~ o~ o~

96, 97, T98) (T99, 100, €101 ) (102, 103, £104) (%105, 106, £107)

%108, T121,%134)(Z109, 122, £132) (110, 120, £133)(T111, T124, T137)
x112,T125,2135) (%113, €123, £136)(T114, 127, £140 ) (T115, T128, T138)

Z116,%126,2139)(T117, 130, ©143)(T118, €131, 141 ) (%119, T129, T142), Where = € {p, B}.

(7.13.2) There are the following 16 G-orbits on P and on B.

Yo = {0, 1, x2, 12,13, T14, T24, T25, 26 },

V1 = {3, 24, x5, 15, T16, T17, T27, T28, T29 },

Vo = {z¢, 27, 28,218, 19, 20, £30, T31, T32 },

V3 = {x9,x10, %11, 21, T22, T23, T33, T34, T35},

V4 = {x36, 237, 238, T48, T49, 50, L60, T61, L62 |,

Vs = {x39, 240, Ta1, T51, T52, 53, T63, £64, L65 ),

Ve = {42,243, Ta4, T54, T55, T56, T66, L67, L68 )

V7 = {45, 46, Ta7, T57, T58, 59, T69, L70, L71},

Vs = {x72, 273, 274, 84, X85, T86, £96, 97, L8 },

Yo = {x75, 76, 77, 87, 88, 89, 99, £100, £101 },

V1o = {x78, x79, T80, 90, T91, 92, 102, €103, £104 },

V11 = {xs1, r82, x83,T93, To4, 95, L105, £106; £107 },

Y12 = {x108, 109, T110, €120, T121, £122, 132, T133, £134 },
Y13 = {z111, 2112, £113, £123, T124, T125, £135, £136, £137 }»

Vs = {1'1147 X115, 2116, L126,L127, 128,138, L139, 33140}7

Y15 = {2117, T118, £119, 129, T130, T131, T141, 142, T143 }, where (¥, z) € {(Q,p), (C, B)}.

Set qo = po, q1 = P3, 2 = Pe; q3 = P9, G4 = P36, G5 = D39, §6 = P42, q7 = P45, @8 =
D72, Q9 = P75, q10 = P78, q11 = P81, Q12 = P1og; 13 = Pi11, q14 = P114, q15 = P1i7
and Cy = By, Cy = B3, Cy = Bg, C3 = By, Cy = Bsg, C5 = B3y, Cs = Baa, C7 =
Bys, Cg = Bry, Cy = Bz, C19 = Brs, C11 = Bgi1, C12 = Bios, Ci3 = Bi11, Ciu =

B4, Cis = By,

The symbols m; ;, D;;, M and A;; are the same as in Type 11.

(7.13.3)

Set Iy = {0,1,2,3}, I = {4,5,6,7}, I, = {8,9,10,11} and I3 = {12, 13,14, 15}.

(i) For 0 < i # 1 <15,

—

G\ (7) it i€l

—

Ay = G\(@?1) if i £ € I,
G ifie]k,iléfl

for some k € {0, 1,2},

for some k #£ 1€ {0,1,2,3}.

149
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(ii) For 0 <i <15

—

o 12+ G\(7) if i€ I, forsome k€ {0,1,2},

’ 12+ G\(27)  if i€l

(7.13.4) Let Iy, ..., I3 be the symbols used in (7.13.3).
(i) For 0<i#£i <15

125 6 ifi#i'el, forsomek e {0,1,2,3},
« MiuiMii =9 if i€ I,,i' €1, for some k #1¢{0,1,2,3}.
iz

(ii) For 0 <1 < 15,
15
Zmzﬂ? = 18.
=0

(iii) For 0 <i <15

15
Z m;; = 12.
j=0

Lemma 7.5 There does not exist an M = (m; ;)o<ij<i5. Therefore Type 13 does
not occur.

Type 14

(7.14.1) ¢ = (20, z1,22) (3, 24, %5) (w6, T7, T8) (T9, T10, T11)
x12,213,214)(T15, 16, 17)(T18, T19, T20) (21, T22, T23)

Z24, 225,226 )\T27, 28,29 ){L30,L31,L32)(T33, T34, T35

38, T50, L62

T40, 252, T64 X42,T54,266)\T43, T55, T6T

)
)
) ) )
37,49, T61) )(z39, 51, T63)
) ) )
) ) )

(
(
(
(

T44,T56, 68 )\ T45, 57, L69)(L46, T58, L70

)
)

T36, T48, T60)
)
) T47,T59, T71
)

77,289, T101)(T78, T90, T102) (79, T91, T103)

(
(
(
(%41, 253, Tos
(
(
76,88, T100)

= =

x80, 92, 104 ) (281, 93, T105)(T82, T94, T106 ) (€83, T95, T107)
108,120, 132)(Z109, 121, £133) (%110, 122, £134) (111, 123, £135)

(z113, %125, €137) (T114, T126, T138 ) (T115, T127, T139)

(

(

(

(

(

(w72, 284, 296) (273, T85, T97) (74, T86, T98) (T75, T87T, T99)
(

(

(

(z112, %124, 136
(

)
2116, 2128, 2140) (2117, €129, £141) (2118, £130, T142) (119, 131, T143) and

T = (0,12, 24) (71, 13, ©25) (22, 14, T26) (T3, T15, T27)
x4, T16, x28)(T5, 17, T29) (%6, T18, T30)(T7, T19, T31)
x8, 20, x32)(T9, 21, *33)(T10, 222, T34)(T11, T23, T35)
36,37, €38) (%39, T40, T41)(T42, T43, Ta4)(Ta5, Ta6, Ta7)

x63, 64, T65)(T66, T67, T6s) (69, £70, L71)

(

(

(

(w48, 249, 250)(T51, T52, ©53 ) (€54, T55, T56) (57, T58, T59)
(%60, T61, T62

(

(

)( (
)( (

x72, 85, x98)(x73, 86, T96 ) (T74, T84, To7)(T75, T8S, T101)
)( )

76,89, T99)(x77, 87, %100)(T78, 91, T104)(T79, T92, T102)
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280,90, 2103 )(Z81, T94, T107) (282, T95, 105) (283, €93, T106)
108,133, 122)(Z109, 134, £120) (%110, 132, T121 ) (111, 136, T125)

x112,7137,%123)(%113, 135, £124) (114, 139, £128 ) (T115, £140, £126)

—~ o~ o~ o~

x116, %138, 127)(T117, 142, ©131)(T118, 143, 129) (%119, T141, £130), Where = € {p, B}.

(7.14.2) There are the following 16 G-orbits on P and on B.

Yo = {zo, 1, x2, T12, 13, T14, T24, T25, T26 },

V1 = {x3, 24, 5,215, T16, 17, T27, T28, L29 },

Vo = {z¢, 27, 28,218, 19, 20, £30, T31, T32 },

V3 = {x9,x10, %11, 21, T22, T23, T33, T34, T35},

V4 = {x36, T37, T38, T48, T49, T50, T60, T61, T62 },

Vs = {x39, T40, T41, T51, T52, T53, T63, T64, T65 },

Ve = {@42, T43, T44, T54, T55, T56, T66, T6T, T68 },

V7 = {x45, x46, 247, T57, T58, T59, T69, 70, L71 },

Vs = {x72, 273, T74, T84, T85, 86, L96, £97, L98 },

Yo = {x75, 76, T77, T87, T88, 89, T99, £100, 101 },

Y10 = {z78, T79, T80, 90, T91, T92, T102, 103, T104 },

Y11 = {zs1, T82, T83, T93, 94, T95, T105, 1065 L107 }

Y12 = {x108, 2109, 110, £120, T121, £122, 132, £133, £134 },
Vi3 = {x111, %112, 2113, 123, T124, 125, T135, £136, £137 },
Y14 = {z114, 2115, 116, £126, £127, 128, £138, £139, £140 },

Vis = {2117, 118, Z119, T129, 130, T131, T141, 142, T143 }, where (¥, 2) € {(Q,p), (C, B)}.

Set qo = po, @1 = P3, @2 = De; 43 = P9, G4 = P36, G5 = P39, G = P42, G7 = Pas; (8 =
Pr2, 99 = P15, qi0 = Prs, 11 = P81, 12 = P1os, ¢13 = Pi111, 14 = Pii4, q15 = P11v
and CO = BO 01 = Bg, 02 = BG, 03 = Bg, 04 = Bg(;, 05 = ng, 06 = B42, 07 =
Bys, Cg = Bry, Cy = By, Cig = Brg, C11 = Bgi, Cia = Bigs, Ci3 = B, Ciu =
B4, Ci5 = B,

The symbols m; ;, D;;, M and A;; are the same as in Type 11.

INE
(7.14.3) Set I, = {0,1,2,3}, I, = {4,5,6,7}, I, = {8,9,10,11}, and I; =
{12,13,14, 15}.

(i) For 0 < i # 4 < 15,

;. —

G\(¢) if ©#14 € lo,
G\ (1) it i 44 €l
Ay = G\/<go\27> if @1 #14" € Iy,
G\ler)  if i#i €l
| G if 1€ly,i el forsomek#I1e€{0,1,2,3}.

(ii) For 0 <i <15

—

12+ G\ (¢p) if i€ I,
. 124+ G\(1) if 1€,
. 12+ G\(p?r)  if i€ I,

12+ G\(pr)  if i€l
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(7.14.4) Let Iy, ..., I3 be the symbols used in (7.14.3).
(i) For 0<i#£i <15

125 |6 ifi#i' el forsomek e {0,1,2,3},
HEEAL 9 if iel, 7 el forsomek#Il¢e{0,1,2,3}.

(ii) For 0 <i <15
15
Zmzﬂ? = 18.
=0

(iii) For 0 <i <15

15
Z m;; = 12
j=0

Lemma 7.6 There does not exist an M = (m; ;)o<ij<i5.- Therefore Type 14 does
not occur.

(7-15-1) ¢ = (z0,x1,z2)(x3, x4, 25)(x6, T7, T8)(T9, 10, T11)
x12, %13, x14)(T15, 16, 17) (€18, T19, T20) (21, T22, T23)

Z24,225,226)\L27,T28, 29 X33, T34, L35

X36,248,L60)\L37,T49,T61)(T38, 50, L62)(L39,L51,L63

T40,T52, T64 T42,T54,T66

)
)

30, 31, T32)
)
) (w43, T55, T6T
)

(
(
(
(
(
(

—_ — —

)
)
)
)

T44,T56, L68)\T45,T57,L69 ) (L46, L58, L70)(T47, T59, T71

)
)
)
)
)
)

(
(
(
(%41, 253, Tos
(
(
)

(

(

(

(

(

(z72, 84, x96)(x73, 85, T97 ) (T74, T86, T98 ) (T75, T8T, T99)
(z76, 88, 100) (77, 89, T101)(Z78, T90, T102)(T79, T91, T103)
(280,92, x104) (281,93, T105) (282, To4, T106) (283, T95, T107)

(z108, 2120, 2132) (€100, Z121, 2133) (€110, T122, £134) (T111, L123, £135)
(z112, %124, %136) (113, T125, T137) (114, T126, 138) (T115, T127, T139)
(

116,128, %140) (117, €129, T141) (2118, 130, ©142)(T119, 131, ©143) and

T = (w0, z12, x24) (1, 213, x25) (T2, T14, T26) (T3, T15, T27)
x4, T16, 28)(T5, 17, T29) (w6, T18, T30)(T7, T19, T31)

xs, 220, 32)(T9, 21, T33) (210, 22, 34)(T11, T23, T35)
x36, 72, 2108) (237, £73, T109) (238, £74, T110) (239, 75, T111)
240,276, 2112)(T41, T77, 113 ) (T42, 78, T114) (T43, 79, T115)

Z44,780,%116)(T45,T81,T117)(T46, T2, 118)(T47, 83, T119)

(

(

(

( )

( )(

(z48, 84, T120)(T49, T85, 121)(T50, T86, T122) (T51, T-T, T123)
(252,788, 124) (253, T89, T125) (54, T90, 126 ) (55, T91, T127)
(256,92, x128) (257, T93, T129) (258, T94, 130) (59, T95, £131)
(%60, 296, 132)(T61, To7, ©133) (T62, 98, T134) (T63, 99, T135)
(z64, 100, 136 )(T65, 101, £137) (T66, T102, T138) (T67, 103, T139)
(

Z68, 104, 140) (69, T105, £141)(T70, T106, T142) (T71, T107, ©143), Where z € {p, B}.

(7.15.2) There are the following 16 G-orbits on P and on B.

Yo = {zo, 21, x2, 12,213, 14, T24, T25, 26 },
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V1 = {x3,24, x5, %15, 16, T17, T27, T28, T29 },

Vo = {z¢, 27, 28,218, 19, 20, £30, T31, T32 },

V3 = {x9,x10, %11, T21, T22, T23, T33, T34, T35},

Vi = {36, T48, T60, 72, T84, 96, £108, £120, L132 },
Vs = {x37, 249, T61, T73, T85, T97, £109, T121, 133 },
Ve = {38, 50, T62, 74, T86, 98, T110, £122, L134 },
Y7 = {39,251, 63, 75, T87, T99, T111, £123, 135},
Vs = {x40, 52, T64, 76, T88, 100, T112, T124, 136 }»
Yo = {41, %53, 65, T77, T89, 101, T113, T125, £137 },
Y10 = {@42, T54, Te6, T78, T90, T102, T114, T126, T138 },
V11 = {@43, T55, T67, 79, T91, T103, T115, T127, T139 },
V12 = {x44, T56, T68, T80, 92, £104, L1165 L128, £140 }»
V13 = {xa5, T57, T69, L81, 93, £105, £117, 129, £141 },
V14 = {46, 58, 70, T82, T94, T106, T118, T130, 142 },

Vis = {za7, T59, 271, 83, T95, 107, T119, T131, T143 }, where (¥, z) € {(Q,p), (C, B)}.

Set qo = Po, ¢1 = D3, G2 = D6, G3 = P9, G4 = P36, G5 = D37, G6 = D38, Q7 = P39, (s =
P10, 9 = Pa1, Q10 = P42, Q11 = P43, Q12 = Paa, Q13 = P45, G4 = Pas, G15 = pay and
Co = By, C1 = By, Cy = Bg, C3 = By, Cy = Bsg, C5 = B3y, Cg = Bsg, C7 =
B397 C{8 = B40a C{9 = B417 C110 = B42, C111 = B43, C{12 = B44, C{13 = B45, C{14 -
Bys, Ci5 = Buy.

The symbols m; ;, D;;, M and A;; are the same as in Type 11.
(7.15.3) (i) For 0 <i#4d <15

—

G\(p) if 0<i#4d <3,
Aig =9 G\{1} if 4<i#4 <15,
G if 0<i<3, 4<i' <15

(ii) For 0 <i <15

—

124G\ if 0<i<3,

T 124 G\1) if 4<i<15.
(7.15.4) (i) For 0 <i#4 <15
15 6 if0<i#Ad <3,
> migma; =4 8 ifd4<ii <15
=0 9 if 0<i<3, 4<7 <15
(ii) For 0 <i <15
o 18 if0<i<3,
> st - |
AR 20 if4<i<15.
7=0
(iii) For 0 <i <15

15
Z m;; = 12.
j=0
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(7.15.5) For 0 <1 < 15, the following hold, up to ordering of m; o, m;1, ..., m;15.

(1) If0§2§3, (mw,m%l,,mz,lg)):(()()() 11...1 222) or
7 6

(00...011...1 3).

6 9
(11) If 4 S 1 S ]_5, (mi70,mi,1,...,mi715) = (O 0...01111222 2) or

8

(00...011...123).

7 7
(7.15.6) There are exactly 119 M, up to equivalence. They are My, My, ..., M9,
where each matrix of My, ..., My3 contains 3 as an entry but each matrix of My, .. .,
M9 does not. My, M, ..., Mys, M4 are given in the Appendix and the authors have
the list of the remaining matrices Ms, ..., M.

(7.15.7) There does not exist (D;;)i<i<oo0<j<15 corresponding to the submatrix

SexdhUS) >

Lemma 7.7 Type 15 does not occur.

THEOREM There are no projective planes of order 12 admitting a collineation
group of order 9.

PrRoOOF. The theorem holds from Lemmas 6.2, 7.2, 7.3, 7.4, 7.5, 7.6 and 7.7. O
The theorem and [3] yield the following corollary.

Corollary If G is a collineation group of a projective plane 7w of order 12, then G
is cyclic and |G| divides 3 or 4.

Appendix
001 00 1|1 1 0 0 2 2 0 1 0 2 1
10 2 1 0/0 0 2 2 1 1 1 00 1 0
11 0 1 1[2 0 1 1 0 0 0 0 2 0 2
1 1 1 1 1/0 2 0 0 0 0 2 2 1 0 0
3 0 1 0 0/]0O 0 0 0 T 1 1 I 1 1 2
031 00[/001 1001 1 1 2 1
01 3 1 1|1 1 0 0 0 2 00 1 0 1
M| 0103 0j000 12111101
=111 1 0 3{o0 11 2 00110 0
0 0 01 2|0 1 2 0 01 2 00 1 2
000 1 0 0|1 2 12 100200 2
000 1 00|21 102 020210
100 1 1/0 2 0 2 0 1 0 0 2 2 0
1 0 1 2 1/2 01 0 0 0 0 2 0 2 0
1 10 0 1/2 0 0 2 0 2 2 1 0 0 0
2 2 0 1 0[/1 2 2 0 1 100 0 0 O
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1 o1 11 0 O O 1 2 2 O 2 O 1 O
1 11 0O 2 O 1 2 O O 2 1 1 0 O
1 1 0 112 O 1 2 O O 1 O O 2 0 1
o1 1 10 1 2 O O 1 O 1 O O 2 2
o 2 1 0j]0 o 0 O O 1 1 1 2 2 0 2
o o 1 2]0 1 0 2 0 1 2 2 0 0 0 1
o1 2 0|2 2 0 1 0 2 O O O 1 1 O
My = o1 o 2|12 0 O O 1 O O 2 1 1 2 0
1 2 0 oflO O O 2 2 1 1 O O O 2 1
2 0 0 1|1 2 O 1 O O O O 2 O 1 2
1 0 0o 2(0 11 0 2 2 0O O O 2 0 1
1 0 2 0(2 0O 1 0 2 O 1 1 O O o0 2
2 01 0j0O0 1 1 0 O O 2 1 0 2 2 0
o 2 o0 1|1 2 2 0 1 0 2 O 1 0 0 O
o o0 2 10 0 2 2 1 0 O O 2 1 1 O
21 0 0|1 O 2 1 0 2 O 2 1 O O0 O
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