
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 75(3) (2019), Pages 322–342

Bad drawings of small complete graphs

Grant Cairns Emily Groves Yuri Nikolayevsky

Department of Mathematics and Statistics
La Trobe University, Melbourne 3086

Australia
G.Cairns@latrobe.edu.au

18908496@students.latrobe.edu.au

Y.Nikolayevsky@latrobe.edu.au

Abstract

We show that for K5 (respectively, K3,3) there is a drawing with i in-
dependent crossings, and no pair of independent edges cross more than
once, provided i is odd with 1 ≤ i ≤ 15 (respectively, 1 ≤ i ≤ 17). Fur-
thermore, using the deleted product cohomology, we show that for K5

and K3,3, if A is any set of pairs of independent edges, and A has odd
cardinality, then there is a drawing in the plane for which each element
in A cross an odd number of times, while each pair of independent edges
not in A cross an even number of times. For K6 we show that there is a
drawing with i independent crossings, and no pair of independent edges
cross more than once, if and only if 3 ≤ i ≤ 40.

1 Introduction

We consider planar drawings of finite simple graphs in which vertices are represented
as points, the edges are smooth arcs, joining distinct vertices, that do not self-
intersect or pass through any vertex, and when distinct edges meet they only do so
at common vertex endpoints, or at transverse crossings and in the latter case only
have finitely many such crossings. Recall that two edges are said to be independent
if they are distinct and not adjacent, and a drawing is good if no pair of adjacent
edges cross one another, and each pair of independent edges cross at most once [15].
A crossing of two independent edges is called an independent crossing.

Definition 1.1 We say that a graph drawing is bad if it is not good, but that it is
tolerable if no pair of independent edges cross more than once.

Note that in tolerable drawings, pairs of dependent edges are allowed to cross any
number of times. Obviously, all good drawings are tolerable and as we will see, there
are more tolerable drawings than good ones. For example, it is easy to see that in any
good drawing of K4, there is at most one crossing; it follows that good drawings of
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Kn have at most
(
n
4

)
crossings [3] and this upper bound is attained for a straight-line

drawing with the vertices at the vertices of a regular n-gon. But there are tolerable
drawings of K4 in which all 3 pairs of independent edges cross; see Figure 1.

Figure 1: Tolerable drawings of K4 with zero to three independent crossings respec-
tively

As another example, consider K5, which has 15 pairs of independent edges. We
will show below in Section 4, there is a tolerable drawing of K5 in which all 15 pairs
of independent edges cross exactly once. To set this in context, note that K5 cannot
be drawn as a thrackle in the plane [7]; that is, it cannot be drawn in the plane so
that each pair of independent edges cross exactly once, and adjacent edges do not
cross. Moreover, K5 cannot be drawn as a generalized thrackle in the plane [8]; that
is, it cannot be drawn in the plane so that each pair of independent edges cross an
odd number of times, and adjacent edges cross an even number of times. Also, K5

cannot be drawn as a superthrackle in the plane [4]; that is, it cannot be drawn in
the plane so that each pair of edges (independent or not) cross exactly once.

Good drawings of small complete bipartite graphs have also been considered in
the literature; see for example [9].

In this paper we study bad drawings and tolerable drawings of small complete
graphs, and small complete bipartite graphs. We present two kinds of results. The
first kind concerns the existence of tolerable drawings having a certain number of
independent crossings.

Theorem 1.1

(a) For each odd integer i with 1 ≤ i ≤ 15, there is a tolerable drawing of K5 with
i independent crossings.

(b) For each odd integer i with 1 ≤ i ≤ 17, there is a tolerable drawing of K3,3 with
i independent crossings.

(c) For each integer i with 3 ≤ i ≤ 40, there is a tolerable drawing of K6 with i
independent crossings.

The existence of drawings described in the above theorem is presented explicitly
in Section 4. Conversely, we will see below that for each of these graphs, there are
no tolerable drawings having a number of independent crossings other than those
indicated in Theorem 1.1. In order to explain this in greater detail, we require some
terminology.
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Definition 1.2 For a graph G, let PG denote the set of pairs of independent edges
of G. We will say that a subset A of PG is 2-realisable if there is a drawing of
G in the plane for which each element in A cross an odd number of times, while
each element of PG\A cross an even number of times. Further, we say that such a
drawing 2-realises A.

To avoid any confusion, let us emphasise that in the above definition we impose
no restrictions on the numbers of crossings of pairs of adjacent edges. (Specifications
for sets of arbitrary pairs of edges, whether adjacent or not, have been previously
considered; see for example [19, 21]). For a given graph G and given subset A of PG,
it is natural to ask whether A is 2-realisable, and if so, is there a tolerable, or even
good, drawing that 2-realises A. For example, for K4, there are 6 edges and the set
PK4 of independent pairs has three elements. So there are 23 = 8 possible subsets of
PK4. However, exploiting the S4 symmetry, one easily sees that up to a relabelling
of the vertices, there are just 4 essentially different subsets of PK4, having 0, 1, 2,
3 elements respectively. As shown in Figure 1, these subsets are all 2-realisable. In
fact, the subsets having 0 or 1 element have a good drawing, while the subsets having
2 or 3 elements have tolerable drawings, but no good ones.

If G is K5, K3,3 or K6, and A ⊂ PG is 2-realisable, we will see that the cardi-
nality of A satisfies the corresponding inequality in Theorem 1.1. For K5 and K3,3,
this result is immediate from Kleitman’s Theorem (see Section 6). We present the
stronger statement (see Theorem 6.2):

Theorem 1.2 If G is K5 or K3,3 and A ⊂ PG, then A is 2-realisable if and only
if its cardinality satisfies the corresponding condition of Theorem 1.1(a) or (b).

A similar result does not hold for K6; for example, as we explain in Section 7,
there are 3-element subsets of PK6 that are 2-realisable and there are 3-element
subsets of PK6 that are not 2-realisable. However, one does have:

Theorem 1.3 If A ⊂ PK6 is 2-realisable, then the cardinality of A satisfies the
condition in Theorem 1.1(c).

Our proofs of Theorems 1.2 and 1.3 use the deleted product cohomology machin-
ery. We recall this briefly in Section 5.

Notice for G = K5 and G = K3,3, the above results do not claim that tolerable
drawings exist for every 2-realisable set A ⊂ PG. Indeed, we strongly suspect that
this is not the case; see Remark 3.4. In Section 3 we give examples of graphs G and
subsets A ⊂ PG which are 2-realisable but not 2-realised by any tolerable drawing.

In order to give the reader further familiarity with the concepts, we begin in the
following section with a complete account of the graph K2,3, where the situation is
sufficiently simply that calculations can be readily done by hand. We show that
every subset of PK2,3 is 2-realised by a tolerable drawing.

Remark 1.1 Since submitting this paper we learnt of a preprint of Jan Kynčl which,
while its approach is different, has results having nontrivial intersection with those of
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this paper; the preprint [20] was posted to the arXiv in 2016. In particular, the notion
of 2-realisable sets was introduced in [20]; there, 2-realisability is called independent
Z2-realizability. The K5 part of the above Theorem 1.2 is an immediate consequence
of [20, Theorem 3]. We make a further comment on Kynčl’s work in Remark 7.1
below.

2 The complete bipartite graph K2,3

The graph K2,3 has 6 edges. For each edge, there are two independent edges, so this
gives 6 pairs of independent edges. Thus PK2,3 has 26 = 64 subsets. For G = K2,3,
the symmetry group S3 × Z2 has order 12. It acts naturally on PK2,3 and one can
compute the number of orbits using the “lemma that is not Burnside’s” [24]. It
is clear that by taking complements, the number of orbits of subsets of PK2,3 of
cardinality i is the same as the number of orbits of subsets of cardinality 6 − i.
Furthermore, the group S3 ×Z2 clearly acts transitively on the set of subsets having
just one element. So it suffices to consider the action of S3×Z2 on the set of subsets
of PK2,3 of cardinality 2, and on the set of subsets of cardinality 3. The number
of fixed points for the action is given in Table 1; the vertices in the two parts of
K2,3 are labelled 1, 2, 3 and 4, 5 respectively. In the first column we have typical
elements of conjugacy classes; in the second, the number of elements in the conjugacy
class. From this we have that for subsets of cardinality 2 there are 36/12 = 3 orbits;
representatives for these orbits are as follows:

{(14)(25), (14)(35)}, {(14)(25), (24)(35)}, {(14)(25) (15)(24)}.

Similarly, for subsets of cardinality 3 there are also 36/12 = 3 orbits, and represen-
tatives for these orbits are as follows:

{(14)(25), (14)(35), (24)(35)}, {(14)(25), (15)(24), (24)(35)},
{(14)(25), (14)(35), (15)(34)}.

Hence, up to relabelling, there are 13 essentially distinct subsets A of PK2,3; there
are 1, 1, 3, 3, 3, 1, 1 such subsets having 0, 1, 2, 3, 4, 5, 6 elements respectively.
Each of these subsets is 2-realised by a tolerable drawing, as shown in Figure 2; note
that the cardinalities of A in this Figure are not in increasing order. The first 5 of
these are good drawings. The other subsets cannot be 2-realised by good drawings.
Indeed, there are only 6 good drawings of K2,3 up to isomorphism [17], and two of
these (with 3 crossings) correspond to the same subset of PK2,3.

Remark 2.1 Notice that in all the drawings in Figure 2, one can draw a vertical edge
between the two left-most vertices without crossing any other edge. The resulting
graph is K1,1,3 and the new edge is not part of any independent pair. Thus Figure 2
shows that every subset of PK1,1,3 can be 2-realised by a tolerable drawing.
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typical element # elements # fixed subsets of card. 2 # fixed subsets of card. 3

id 1
(
6
2

)
= 15

(
6
3

)
= 20

(12) 3 3 2
(123) 2 0 2
(45) 1 3 0

(12)(45) 3 3 2
(123)(45) 2 0 0

12 36 36

Table 1.

1

2

3

5

4

Figure 2: Tolerable drawings of K2,3

3 Intolerably bad examples

In this section, we exhibit a graph G and a subset of PG that is 2-realisable but
cannot be 2-realised by a tolerable drawing of G. Our graph G will be a disjoint
union of N edges. Since G has no adjacent edges, we have full control on its crossing
pattern, but having constructed such an example we will be able to construct a
connected example, as explained in Remark 3.1 below.

Lemma 3.1 If G is a disjoint union of edges, then any subset A of the set PG of
pairs of its independent edges is 2-realisable.

Proof: First draw the edges of G as disjoint line segments on the plane. Next, we
work through the elements of A successively and for every pair of edges {e, f} ∈ A,
we join an interior point of e to one of the endpoints v of f by a simple curve γ whose
interior does not meet any edge or vertex and γ only meets previously drawn curves
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at transverse crossings and that there are at most a finite number of such crossings,
and furthermore, no curves starting on a common edge meet at all. Having drawn
a curve γ for each element of A, then replace each curve γ by a curve passing along
the boundary of a thin strip centred on γ and a small semicircle centred at v, as in
Figure 3. �

e f

v

γ

e f

v

Figure 3: Construction of 2-realisable drawings

Remark 3.1 Suppose we have a graph G which is a disjoint union of N edges and
a subset A ⊂ PG that cannot be 2-realised by a tolerable drawing. Take a cycle
G′ of length 2N with G being its subgraph of even labelled edges (in some cyclic
order). Consider an arbitrary 2-realisation of A and add to it odd labelled edges of G′

arbitrarily to get a drawing of G′. Now define the subset A′ of pairs of independent
edges of G′ from the drawing (a pair belongs to A′ if the edges cross an odd number
of times). Then A′ is 2-realisable by design, but the drawing is not tolerable, because
if it were, then the drawing of G corresponding to A would have also been tolerable.

For n,m ∈ N, denote I = {1, 2, . . . , n} and let S be a set, of cardinality m, of
subsets of I. We define G to be the union of N = n + m pairwise disjoint edges
which we label ei, i ∈ I, es, s ∈ S. We then define A to be the set of pairs {i, s},
where i ∈ s. In a tolerable drawing, the first n edges must be pairwise disjoint, the
last m edges must be pairwise disjoint, and then one of the first n edges ei crosses
one of the last m edges es if and only if i ∈ s.

Lemma 3.2 In the above notation, for n = 5 and S = {I}∪{(i, j) : 1 ≤ i < j ≤ n},
there is no tolerable drawing that 2-realises A.

Proof: Suppose there exists a tolerable drawing that 2-realises A. The graph G here
is the disjoint union of 16 edges. Up to isotopy, the drawing of the edges e1, . . . , e5, eI
looks like the one in Figure 4, where we relabel the edges e1, e2, . . . , e5 if necessary
in such a way that the edge eI crosses them in the increasing (or decreasing) order
of labels.

We can ignore the edges ek,k+1, k = 1, 2, 3, 4, as they can be inserted at any stage.
This leaves us with the six edges, e1,3, e1,4, e1,5, e2,4, e2,5 and e3,5. Now for every
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eI
e1

e2

e3

e4

e5

Figure 4: Drawing of the edges e1, . . . , e5, eI

s = {i, j} ∈ S, i �= j, the edge es crosses the edges ei and ej , once each, and does
not cross any other edges of G. Referring to Figure 4 we say that the edge es is
left (respectively right) if the crossings of both ei and ej with es occur to the left
(respectively to the right) of their crossings with eI . Otherwise call the edge es
mixed. Consider e1,5. We need only consider the two possibilities that e1,5 is either
mixed or left since we can use the symmetry group Z2 × Z2 given by the reflection
about the line containing eI and the reflection (followed by relabelling the ei’s in the
reverse order) about the line containing e3. If e1,5 is mixed, then e2,4 must be right
(up to symmetry), and then e1,3 is left, and then e2,5 is right, and then e1,4 and e3,5
cross. If e1,5 is left, then there could be no more than two other left edges, and up
to reflection, we can have either e1,3, e1,4, or e1,3, e3,5, or e1,4, e2,4. It is then easy to
see that in each of the three cases, we get unwanted crossings one way or another
after adding the remaining three edges. If apart from e1,5, there is only one or no
left edge, a contradiction is also readily found. �

Remark 3.2 Note that Lemmas 3.1 and 3.2 give an example of a graph G and a
set A ⊂ PG that is 2-realisable but for which there is no tolerable drawing. As
pointed out by the referee, similar examples are known in the language of string
graphs (“there exist graphs which are not string graphs”).

Remark 3.3 In contrast to the above lemma, when n = 4, a tolerable drawing exists
even when we take for S the set of all subsets of {1, 2, 3, 4} as shown in Figure 5.

Remark 3.4 We have seen above that for G equal to K4, K2,3 or K1,1,3, every 2-
realisable subset A ⊂ PG can be 2-realised by a tolerable drawing. Consider the
drawing of K5 in Figure 6. It is a 2-realisation of the set A = {(12)(34), (13)(24),
(14)(23)}, and it fails to be tolerable only because edge (13) crosses edge (45) twice
(in opposite directions); the other edges adjacent to vertex 5 do not cross independent
edges of the K4 having vertices 1, 2, 3, 4, and the drawing of this K4 is tolerable. We
suspect that there is no tolerable drawing of K5 that 2-realises the set A, but we have
not been able to prove this. The following argument for which we are thankful to
one of the referees proves that the problem is finite, for any graph G and any subset
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Figure 5: Tolerable drawing for n = 4 and S the power set of {1, 2, 3, 4}, with the
subsets of cardinality 0 and 1 omitted

A ⊂ PG, but the resulting number of cases, even for such a small graph, is probably
beyond the reach of a computer or by-hand proof. Given a tolerable drawing which
2-realises a subset A ⊂ PG, the pairs of adjacent edges may apriori cross any number
of times. To control this number we temporarily replace every crossing of a pair of
edges in A with a dummy vertex. Then by [30, Theorem 3.2], we can redraw the
resulting graph G′ in such a way that the set of pairs of crossing edges of G′ does
not increase and that the number of crossings is bounded by a number N(G′) which
depends (exponentially) only on the number of edges of G′; moreover, the analysis
of the proof of [30, Theorem 3.2] shows that the process of redrawing does not affect
the rotation diagrams in the vertices. Hence turning the dummy vertices back into
crossings we obtain a tolerable drawing of G which 2-realises A and which has no
more than N(G′) crossings between the pairs of adjacent edges in total.

1

5

3

4

2

Figure 6: A bad drawing of K5

Remark 3.5 As we remarked in the introduction, for K4 there are 3-element sets
A ⊂ PK4 that are 2-realisable but for none of these sets A is there a good drawing.
A natural open question is as follows: does there exist a graph G and an integer i
for which there exist 2-realisable subsets of PG of cardinality i but for none of these
is there a tolerable drawing? One might say that such an integer i is intolerable
for G. The results of this paper show that no such phenomenon exists for any of
K5, K3,3 or K6. Furthermore, there can be no intolerable integers for graphs that



G. CAIRNS ET AL. /AUSTRALAS. J. COMBIN. 75 (3) (2019), 322–342 330

are disjoint union of edges. To see this, consider all our edges drawn as straight
line segments passing through a single point, then replace each of them by a nearby
parallel segment, so that all the crossing points are pairwise distinct, and then remove
the crossings one by one by shortening the segments until we get the desired number
of crossings.

4 Tolerable drawings for the graphs K5, K3,3 and K6

The complete graph K5 has 10 edges and PK5 has 15 elements. (We note in passing
that for the complete graph Kn, the set PKn is the edge set of the Kneser graph
KGn,2). Up to relabelling, only 5 of these subsets of PK5 can be 2-realised by
good drawings; see [26, Figure 3.1] or [29, Figure 1.7]. They each have 1, 3 or 5
crossings. The first 3 drawings of Figure 7 are good, and have 1, 3 and 5 crossings
respectively. The remaining drawings of Figure 7 are tolerable and have 7, 9, 11, 13
and 15 independent crossings respectively.

As far as the 2-realisable subsets of PK5 are concerned, note that PK5 has 215

subsets, and that the group acting here is the symmetry group S5 of K5. There
is no difficulty in conducting the kind of symmetry reduction we employed for K2,3

is Section 2. For example, one finds that up to relabelling, there are 9 essentially
distinct subsets of PK5 of cardinality 3. They are:

{(12)(34), (13)(24), (14)(23)}, {(12)(34), (13)(24), (12)(35)},
{(12)(35), (13)(24), (14)(23)}, {(12)(34), (12)(35), (12)(45)},
{(12)(34), (12)(35), (15)(24)}, {(12)(34), (13)(25), (14)(25)},
{(12)(34), (15)(23), (14)(25)}, {(12)(34), (15)(34), (12)(45)},

{(12)(34), (13)(45), (15)(24)}.

By Theorem 1.2, each of these subsets is 2-realisable. However, the difficulty is
in determining whether or not a given set can be 2-realised by a tolerable drawing.
For K5, we have not been able to resolve this problem, even for subsets of PK5 of
cardinality 3; see Remark 3.4 above, in which the subset A in Figure 6 corresponds
to the first subset above.

The graph K3,3 has 9 edges and 18 pairs of independent edges. Harborth [17]
determined that there are 102 good drawings of K3,3 up to isomorphism; there are
1, 9, 33, 48, and 11 good drawings with 1, 3, 5, 7, and 9 crossings, respectively. In
Figure 8, the first 5 drawings are good. The remaining drawings are tolerable and
have 11, 13, 15 and 17 independent crossings, respectively.

The graph K6 has 15 edges and 45 pairs of independent edges. It is known that
K6 only has good drawings with i crossings for 3 ≤ i ≤ 12 and for i = 15; see [26, 14].
Figure 9 gives examples of such good drawings. Figures 10 through 12 give tolerable
drawings having i independent crossings for i = 13, 14 and 16 ≤ i ≤ 40. Note that in
the drawings in Figures 11 and 12, the idea is that one extends the red lines out and
connects them up to a 6th vertex (at infinity, if one likes). It is perhaps easiest to
keep track of the independent crossings in these diagrams by comparing each drawing
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Figure 7: Tolerable drawings of K5

having i independent crossings with the drawing having i+3 independent crossings.
Note that the first drawing in Figure 11 and the last drawing in Figure 12 have a
5-fold symmetry and are easy to understand; in each of these drawings the blue and
black edges give a tolerable drawing of K5 with 15 independent crossings. In the first
case, each red line has 2 independent crossings with blue edges, while in the second
case, each red line has 3 independent crossings with blue edges and 2 independent
crossings with black edges.

5 Deleted product cohomology and the van Kampen–Wu

invariant

Consider a graph G, which we consider as a cell complex ; its “cells” are just its
vertices and its edges. The deleted product space G∗ of G is the subcomplex of the
cell complex G×G obtained by deleting all cells having nontrivial intersection with
the diagonal. A 1-cell in G∗ is of the form (v, e) or (e, v), where v is a vertex of G and
e is an edge that is not incident to v. For ease of presentation, we will denote these
1-cells ve and ev respectively. A 2-cell in G∗ is given by the pair (e1, e2), where e1, e2
are independent edges. We will denote this 2-cell e1e2. Notice that the group Z2 acts
on G∗; the nontrivial involution is determined by the map τ on G×G sending (x, y)
to (y, x). Since the map τ is fixed point free, the Z2 action is free. So the quotient
G∗ := G∗/Z2 is also a cell complex. For further information on the deleted product
space of a graph, see Mark de Longueville’s excellent text [12], which provides a clear
and clean exposition of this material.

We will be working with the cohomology of G∗, or equivalently, with the coho-
mology of the Z2-invariant cocycles on G∗; we say that these cocycles are symmetric.
Specifically, we work with the cohomology with coefficients in Z2. So a 2-cochain is
given by a function from the set of 2-cells to Z2; that is, it is just a marking of the
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Figure 8: Tolerable drawings of K3,3

Figure 9: Good drawings of K6 with 3 ≤ i ≤ 12 and i = 15 crossings.

2-cells with the symbols 0 or 1, or, if you like, it is determined by a subset of the
set of 2-cells (given by the 2-cells labelled 1), or again as a formal sum over Z2 of
2-cells. Of course, a symmetric cochain is just a symmetric labelling. So, for example
a symmetric 2-cochain is a sum of terms of the form e1e2 + e2e1, where e1, e2 are
independent edges. Similarly, a 1-cochain is a formal sum over Z2 of 1-cells, so a
symmetric 1-cochain is a sum of terms of the form ev + ve.
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13 14

16 17 18

19 20 21

22 23
24

Figure 10: Tolerable drawings of K6 with i = 13, 14 and 16 ≤ i ≤ 24 independent
crossings.

The differential of a 1-cochain ev (respectively ve) is the sum of the 2-cochains of
the form ee′ (respectively e′e) where e, e′ are independent and e′ is incident to v. The
differential of any 2-cochain is 0 (just because we are working with a cell complex
of dimension 2), so every 2-cochain is a 2-cocycle. A 2-cocycle is exact if it is the
differential of a 1-cochain.

For a given drawing f of G in the plane, we define the symmetric 2-cocycle Φf (G)



G. CAIRNS ET AL. /AUSTRALAS. J. COMBIN. 75 (3) (2019), 322–342 334

25 26 27

28 29
30

31 32 33

34 35 36

Figure 11: Tolerable drawings of K6 with 25 to 36 independent crossings.

as follows: if e1, e2 are independent edges, we assign the number 1 to the 2-cells e1e2
and e2e1 if e1, e2 cross an odd number of times, and 0 otherwise.

Definition 5.1 The van Kampen obstruction is the symmetric cohomology class
o(G) of Φf(G).

Where useful, we will also consider the corresponding form Φf (G) onG∗, and iden-
tify the symmetric cohomology class o(G) with the element [Φf(G)] ∈ H2(G∗,Z2).
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37 38

39 40

Figure 12: Tolerable drawings of K6 with 37 to 40 independent crossings.

The van Kampen–Shapiro–Wu Theorem The class o(G) is well defined, inde-
pendent of the drawing. Moreover, if o(G) = [α] for some symmetric 2-cocycle α,
then there is a drawing f of G in the plane with α = Φf (G).

Notice that in the obvious manner, every subset A ∈ PG determines a symmetric
2-cocycle, and every symmetric 2-cocycle determines a subset A ∈ PG. The van
Kampen–Shapiro–Wu Theorem can be reformulated in terms of 2-realisable subsets:

Theorem 5.1 Consider a graph G with van Kampen symmetric cohomology class
o(G) ∈ H2(G∗,Z2). Then a subset A of PG is a 2-realisable crossing set if and only
if the element of the symmetric cohomology group H2(G∗,Z2) corresponding to A is
equal to o(G).

A key application of this machinery is:
The Wu–Tutte Theorem o(G) = 0 if and only if G is planar.

Remark 5.1 We should mention that it is well-known that the early literature on
the deleted product cohomology contained a number of errors. Errors in [25] were
observed by Ummel [34] and Barnett and Farber [6]. An error in [11] was discussed
by Sarkaria [27] and Barnett and Farber [6]. Sarkaria’s paper [27] is a very attractive
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and readable work, but it also has errors that have been discussed by Skopenkov
[32], van der Holst [36], Barnett [5], and Schaefer [28].

Remark 5.2 The history of this material might also merit a few comments, since
there are confusions in the literature, possibly in part reflecting the divide between
the fields of topology and combinatorics. The original notions came from van Kam-
pen’s 1932 paper [37], just 2 years after Kuratowski’s famous 1930 Theorem and
2 years prior to Hanani’s version [10] of what is now known as the Hanani–Tutte
Theorem. The “deleted product” obstruction was introduced by van Kampen for
measuring the non-embeddability of an n-dimensional simplicial complex in R

2n, but
only for n ≥ 3. (Related results were published by Flores in 1933 [13]). This work was
later clarified, reformulated in cohomological language, and extended to dimension
2 in 1955 by Wu (subsequently translated into English [38, 39, 40] in 1958-1959, and
later elaborated with a slightly different argument in his 1965 book [41], in English)
and in 1957 by Shapiro [31]. In fact, Wu was a well-known topologist, in part because
of his 1950 work on what is known as the Wu class, and Wu’s 1955–1959 embedding
work was widely read by topologists at the time; for example, see [16]. Later in 1970,
as Levow [22] writes,“Tutte [33] rediscovered the van Kampen–Shapiro–Wu charac-
terization of planar graphs”. It seems that Tutte’s paper brought this topic to the
attention of combinatorialists, and motivated much of the subsequent investigations;
although Tutte’s paper uses topological arguments and some topological language
(chain and coboundary), it never uses the word cohomology, or even differential. The
theorem known as the Hanani–Tutte Theorem, which says that a graph is planar if
it can be drawn in the plane so that each pair of independent edges cross an even
number of times, is an immediate consequence of the result we have called the Wu–
Tutte Theorem, and many would regard the two as being essentially the same result.
Wu presented the Wu–Tutte theorem in [39] and also proved it in [41, p. 210]; he
called it Kuratowski’s Theorem!

6 Drawings of K5 and K3,3

We will require the following beautiful result, which was stated without proof in [2],
and proved in Abrams’ thesis [1, Theorem 5.1].

Theorem 6.1 For K5 and K3,3, the deleted product is a closed surface. Moreover,
K5 and K3,3 are the only graphs for which the deleted product is a closed surface.

As the proof of this result is quite short, we include it for the convenience of the
reader.

Proof: In order for the deleted product G∗ of a graph G to be a closed surface,
one requires that each edge (i.e., 1-cell) in G∗ be incident with exactly two faces.
This occurs precisely when, for each edge e in G and each vertex v ∈ G that is not
incident with e, there are exactly two edges in G that are incident with v and are
independent of e. Rephrasing this yet again we obtain the following necessary and
sufficient condition:
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(∗) for each edge e in G, the graph G− e obtained by deleting e and the interior of
all adjacent edges, is a union of disjoint cycles.

Now K5 and K3,3 satisfy condition (∗), and so their deleted products are closed
surfaces. On the other hand, if a graph G satisfies (∗), it must have at least 5
vertices. It is easy to verify that if G has 5 vertices and satisfies (∗), then it is K5,
and if G has 6 vertices and satisfies (∗), then it is K3,3. One checks readily that no
graph with more than 6 vertices can satisfy (∗). �

Kleitman proved that for odd m,n, any two drawings of Km,n (or of Kn) have
equal numbers of independent crossings, mod 2 [18]. The result was independently
proved for good drawings by Harborth [17], and another proof, again for good draw-
ings, was given by McQuillan and Richter [23]. In particular, all drawings of K5 and
K3,3 have an odd number of independent crossings. The following result, which is a
rewording of Theorem 1.2, is a converse to Kleitman’s Theorem:

Theorem 6.2 For G equal to K5 or K3,3, every odd subset A of PG is 2-realisable.

Proof: By Theorem 6.1, G∗ is a closed surface. Consequently, the cohomology space
H2(G∗,Z2) has dimension one. Hence the exact 2-cocycles form a codimension one
vector subspace of the space Z of 2-cocycles in G∗. So exactly half the 2-cocycles
are exact, and half are not exact. Because G∗ is a closed surface, the differential
of each 1-cell is the sum of two faces. It follows that all exact 2-cocycles are the
sum of an even number of faces. Hence, because of their number, the set of exact
2-cocycles is precisely the set of 2-cocycles that are the sum of an even number of
faces. Now consider the first drawings f of G in Figures 7 and 8 respectively. It
has only 1 independent crossing. So the corresponding cocycle Φf(G) in G∗ is a
single face. It follows that o(G) �= 0. Thus for any drawing g of G in the plane, the
corresponding cocycle Φg(G) in G∗ is the sum of an odd number of faces; i.e., the
number of independent crossings is odd. Conversely, by the van Kampen–Shapiro–
Wu Theorem (see Theorem 5.1), every such cocycle is obtained from such a drawing.

�

7 Drawings of K6

According to our calculations, K∗
6 has 45 faces and 60 edges, and the differential from

the space of symmetric 1-cochains has rank 35. Using Theorem 5.1, a 2-realisable
crossing set of K6 is given by a cochain of the form Φf (K6) + α, for some drawing
f of K6, where α is an element of the image of the differential. Choose f to be
the first drawing of Figure 9, and consider the 235 possible elements α. For each
cochain Φf (K6) + α, one just adds the numbers of 1’s to obtain the “cardinality”.
Performing this on a personal computer using Mathematica, we found that there is
no 2-realisable crossing set for K6 with cardinality in {0, 1, 2, 41, 42, 43, 44, 45}. This
establishes Theorem 1.3. For completeness, we will give below a proof of Theorem 1.3
that does not rely on computer computations, or the use of the deleted product
cohomology.
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We conclude this study with some further comments on the 2-realisable crossing
set ofK6. First notice that there are tolerable drawings ofK6 with just 3 independent
crossings, but not all subsets A ⊆ P with 3 elements are 2-realisable. Indeed, in any
drawing, every pair of independent 3-cycles must cross each other an even number
of times, by the Jordan curve theorem. Since K∗

6 has 45 faces and the differential
has rank 35, the symmetric cohomology H2(K∗

6 ,Z2) has dimension 10. Notice also
that there are 10 ways of separating the vertices of K6 into two 3-element subsets.
For each such partition, the two 3-element subsets give a copy of the disjoint union
2K3 of two 3-cycles; there are 9 potential crossing of the edges of one 3-cycle with
the edges of the other, but as we just remarked, there must be an even number of
such crossings. This gives 10 conditions on H2(K∗

6 ,Z2) for o(K6). These conditions
do not uniquely determine o(K6); for instance, the zero element satisfies them all,
but o(K6) �= 0 as K6 is not planar. Consider the induced K3,3 subgraphs in K6. For
a 2-realisable set A ⊂ PK6, the intersection A ∩ PK3,3 must have an odd number
of elements, by Kleitman’s theorem. There are 10 such induced K3,3 subgraphs, so
there are 10 conditions of this kind. However, it turns out that these conditions
are not independent, so they also do not by themselves uniquely determine o(K6).
Similarly, for the induced K5 subgraphs in K6, for a 2-realisable set A ⊂ PK6, the
intersection A∩PK5 must have an odd number of elements. This gives 6 conditions
on H2(K∗

6 ,Z2) for o(K6). Together, the above conditions are sufficient. One has:

Theorem 7.1 The subset A of PK6 is 2-realisable if and only if the following three
conditions are satisfied:

(a) for each induced K5 subgraph of K6, the intersection A ∩ PK5 has an odd
number of elements,

(b) for each induced K3,3 subgraph of K6, the intersection A ∩ PK3,3 has an odd
number of elements,

(c) for each induced 2K3 subgraph of K6, the intersection A∩P (2K3) has an even
number of elements.

The forward direction of Theorem 7.1 is clear from the above discussion, and re-
mains true if we replace K6 by an arbitrary graph (in which case, one may replace in
condition (c) the disjoint union of two 3-cycles by a disjoint union of any two cycles).
We established the sufficiency of the conditions directly by computer computation.
The result is closely related to van der Holst’s theorem [35, Theorem 4], which holds
for arbitrary graphs G and which says that the symmetric deleted product coho-
mology H2(G∗,Z2) is generated by subdivisions of K5’s and K3,3’s, and by 2-tori
resulting from pairs of disjoint cycles. Note that K6 has subgraphs which are non-
trivial subdivisions of K5 but it was not necessary to consider these in Theorem 7.1.

Proof of Theorem 1.3: We use the forward direction of Theorem 7.1 (which did not
require computer computation). Suppose that A is a 2-realisable crossing set for K6.
One needs to show that 3 ≤ #A ≤ 40. If A has only 0, 1 or 2 elements then it is
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easy to find an induced K3,3 subgraph for which A ∩ PK3,3 is empty, contradicting
condition (b) of Theorem 7.1. So it remains to show that #A ≤ 40. Indeed, one has
the following general result.

Lemma 7.1 If n ≥ 6 and A is a 2-realisable crossing set for Kn, then #A ≤ �8
3

(
n
4

)�.
Proof: By condition (c) of Theorem 7.1, for a plane drawing of a complete graph Kn,
the number of crossings of any two independent 3-cycles (i.e., 3-cycles which have no
common vertices) must be even. Therefore if a subset A ⊂ PKn is 2-realisable, then
from the nine pairs of independent edges defined by a pair of independent 3-cycles,
at least one pair (and in general, an odd number of pairs) does not belong to A. For
n ≥ 6 one has 1

2

(
n
3

)(
n−3
3

)
pairs of independent 3-cycles. A pair of independent edges

belongs to (n − 4)(n − 5) pairs of independent 3-cycles, and so the complement A′

to A in PKn must be of cardinality at least

1
2

(
n
3

)(
n−3
3

)
(n− 4)(n− 5)

=
1

3

(
n

4

)
.

Thus, since #PKn = 3
(
n
4

)
, we have #A ≤ 3

(
n
4

)− 1
3

(
n
4

)
= 8

3

(
n
4

)
. �

In the case n = 6, the above lemma gives #A ≤ 40, as required. �

Remark 7.1 In [20], Kynčl gives a somewhat stronger result than Theorem 7.1.
Indeed, according to [20], the pair of above conditions (a) and (c) are sufficient,
but that individually, neither of these conditions is sufficient by itself. In fact, by
computer computation we have verified that in Theorem 7.1, any two of the three
conditions is sufficient, but no single condition is sufficient by itself. Note that in the
above proof of Theorem 1.3 we have only used conditions (b) and (c).

8 Future work

As a direct extension of this paper, it would be interesting to know the cardinality
of the elements of the 2-realisable crossing sets of K7; it has a drawing with only 9
independent crossings, and so by Kleitman’s Theorem, all 2-realisable crossing sets
of K7 are odd; do all odd numbers between 9 and 105−x occur, for suitable x? More
specifically, from our considerations, the pertinent questions seem to be:

1. Is it the case that for each odd integer i with 9 ≤ i ≤ 91, there is a 2-realisable
subset of PK7 of cardinality i?

2. Is there a tolerable drawing of K7 with 91 independent crossings?

Note that a positive answer to (1) together with a negative answer to (2) would
resolve the question posed in Remark 3.5: does there exist a graph G and an integer
i for which there exist 2-realisable subsets of PG of cardinality i but for none of these
is there a tolerable drawing?
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[10] H. Hanani, Über wesentlich unplättbare kurven im drei-dimensionalen raume,
Fundamenta Mathematicae 23 (1934), 135–142.

[11] A.H. Copeland Jr., Homology of deleted products in dimension one, Proc. Amer.
Math. Soc. 16 (1965), 1005–1007.

[12] M. de Longueville, A course in topological combinatorics, Universitext, Springer,
New York, 2013.
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