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Abstract

For any finite group G, and any positive integer n, we construct an as-
sociation scheme which admits the diagonal group Dn(G) as a group of
automorphisms. The rank of the association scheme is the number of
partitions of n into at most |G| parts, so is p(n) if |G| ≥ n; its param-
eters depend only on n and |G|. For n = 2, the association scheme is
trivial, while for n = 3 its relations are the Latin square graph associated
with the Cayley table of G and its complement.

A transitive permutation group G is said to be AS-free if there is no
non-trivial association scheme admitting G as a group of automorphisms.
A consequence of our construction is that an AS-free group must be either
2-homogeneous or almost simple.

We construct another association scheme, finer than the above scheme
if n > 3, from the Latin hypercube consisting of n-tuples of elements of
G with product the identity.

1 Introduction

An association scheme consists of a finite set Ω and a collection of non-empty binary
relations R1, . . . , Rr (where r is the rank of the scheme) such that

(a) the relations form a partition of Ω2;

(b) one of the relations (say R1) is equality;

(c) all relations are symmetric;
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(d) given i, j, k ∈ {1, . . . , r}, there is a non-negative integer pkij such that, for all
(a, b) ∈ Rk, there are exactly pkij points c ∈ Ω such that (a, c) ∈ Ri and
(c, b) ∈ Rj .

In the literature, conditions (b) and (c) are sometimes relaxed. But it is important
for our application to keep these conditions. (See [1, 3] for discussion of this point.)

Representing the relations Ri by matrices Ai, the conditions in the definition can
be expressed as follows:

(a) A1 + · · ·+ Ar = J , where J is the all-1 matrix;

(b) A1 = I, the identity matrix;

(c) each matrix Ai is symmetric;

(d) for any i, j, k, we have AiAj =

r∑

k=1

pkijAk; so the span of A1, . . . , Ar over R is an

algebra (whose structure constants pkij relative to this basis are non-negative
integers).

See [2] for more on association schemes.

Let G be a group and n an integer at least 2. The diagonal group Dn(G) is a
permutation group of degree |G|n−1, acting on the set of right cosets in Gn of the
diagonal subgroup {(g, g, . . . , g) : g ∈ G}. It is generated by the following elements:

(i) the group Gn acting by right multiplication;

(ii) the automorphism group of G, acting simultaneously on each coordinate;

(iii) the symmetric group Sn, permuting the coordinates.

(Permutations in (ii) and (iii) have well-defined actions since the diagonal subgroup
is preserved by these elements.) It is well known that

• Dn(G) is a faithful action of the group (Gn)(Out(G)×Sn) if and only if G has
trivial centre;

• Dn(G) is primitive if and only if G is characteristically simple.

From now on, throughout the paper, we assume that G is finite. (Infinite diagonal
groups are well-defined, but association schemes only make sense on finite sets.)

In the case where G is a finite simple group, these “simple diagonal groups” and
their primitive subgroups form one of the classes in the O’Nan–Scott theorem [4,
Theorem 4.1A].

The trivial association scheme has just two relations, equality and inequality; its
automorphism group is the symmetric group. More generally, we regard a structure
as being trivial if it is invariant under the symmetric group.
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In [3], a permutation group G on Ω is said to be AS-free if it is not contained in the
automorphism group of a non-trivial association scheme. This definition is similar
in spirit to many classical definitions in permutation group theory. For example, a
group is

• transitive if there is no non-trivial G-invariant subset of Ω;

• primitive if it is transitive and there is no non-trivial G-invariant partition of
Ω;

• 2-homogeneous if there is no non-trivial G-invariant undirected graph on Ω.

It is shown in [3] that an AS-free group must be 2-homogeneous, or almost simple,
or of diagonal type Dn(G) with n ≥ 4 and G simple. Our purpose here is to construct
an association scheme invariant under the diagonal group, and hence show that the
last case cannot occur.

2 The pre-association scheme

We begin by constructing a “pre-association scheme” on the set Gn (a structure
satisfying conditions (a), (c) and (d) of the definition, but with (b) replaced by “R1

is an equivalence relation on Ω”). Then factoring out the equivalence relation gives
the required association scheme.

Our structure has one relation Rπ for each partition π of the set {1, . . . , n},
defined by the rule that for two n-tuples a = (a1, . . . , an) and b = (b1, . . . , bn),

a Rπ b if and only if (aib
−1
i = ajb

−1
j ) ⇔ (i ≡π j),

where i ≡π j means that i and j belong to the same part of π. The matrices of these
relations are symmetric and sum to the all-1 matrix. We prove that their span over
R is closed under multiplication.

Let Aπ be the matrix of the relation Rπ, the |G|n×|G|n matrix whose (a, b) entry
is 1 if a Rπ b, 0 otherwise. Let Bπ be the matrix of the relation Sπ defined by

a Sπ b if and only if (i ≡π j) ⇒ (aib
−1
i = ajb

−1
j ).

Thus we have
Bπ =

∑

π�σ

Aσ,

where � is the order in the lattice of partitions of {1, . . . , n} ordered by refinement,
with finer partitions below coarser ones. Now Möbius inversion in the lattice of set
partitions (see Stanley [9, Section 3.7]) shows that the Aπ can be expressed as linear
combinations of the Bσ. Thus the A and B matrices have the same span, and it
suffices to show that the span of the B matrices is closed under multiplication. (The
structure constants pkij will then be non-negative integers since the matrices Aπ are
zero-one matrices with pairwise disjoint supports.)
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The (a, b) entry of BπBσ counts the number of n-tuples c such that a Sπ c and
c Sσ b. This means that the ratios aic

−1
i agree on parts of π, while the ratios cib

−1
i

agree on parts of σ. This is zero unless the ratios aib
−1
i agree on parts of τ = π ∧ σ.

Assuming this does hold, we choose elements ui and vi such that ui is constant on
parts of π and vi constant on parts of σ, and such that uivi = aib

−1
i for all i.

We claim that this can be done in |G||π∨σ| ways, where |ρ| denotes the number of
parts of ρ. For if we choose the value ui, then the value of vi is determined. Moreover,
ui is constant on parts of π, so vj is determined on these parts; and vj is constant
on parts of σ, so uj is determined on these. We see that the values are determined
on a part of π ∨ σ by the choice, and the results follow.

Now each choice as above gives a unique c such that

aic
−1
i = ui, cib

−1
i = vi,

so the result is proved.

It is clear that these relations are invariant under right multiplication by all
elements of Gn, since (aigi)(bigi)

−1 = aib
−1
i . They are invariant under other trans-

formations:

(i) left multiplication by elements of H , since

(xai)(xbi)
−1 = x(aib

−1
i )x−1;

(ii) automorphisms of G acting coordinatewise.

3 Taking the quotient

The orbits of H acting by left multiplication as in (i) above are precisely the right
cosets of H in Gn. Invariance of the relations above shows that the quotient of the
structure by this equivalence relation has corresponding relations R̄π induced on it.
Now, if π is the universal relation, then Rπ is precisely the relation of lying in the
same right coset of H , and so R̄π is the relation of equality. So, as well as the other
relations defined above, we have recovered the one missing axiom for association
schemes.

Thus, we have constructed an association scheme on H\Gn (the set of right
cosets of H) invariant under right translation by Gn and automorphisms of G acting
coordinatewise.

To reach the full diagonal group we need to adjoin the symmetric group. This
clearly does not preserve the relations R̄π, but it induces “weak automorphisms” of
the association scheme; that is, it permutes these relations among themselves. Taking
the unions of orbits of Sn on the relations R̄π, we obtain an association scheme, whose
relations are indexed by the orbits of Sn on set partitions of {1, . . . , n}; that is, simply
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the partitions of the integer n, expressions of n as a sum of positive integers with
the summands in non-increasing order. See [2, Theorem 8.17].

The valency of the relation Rπ in the pre-association scheme is the number of
ordered |π|-tuples of distinct elements of G, and so is non-zero if and only if |G| ≥ |π|.
In particular, all relations are non-empty if and only if |G| ≥ n. Passing to the
quotient divides the valency by |G|, and merging orbits under Sn multiplies by the
number of set-partitions corresponding to a given partition of n. So, the rank is
equal to the number of partitions of n into at most |G| parts, and is equal to p(n) if
and only if |G| ≥ n. (Thanks to Cheryl Praeger for this observation.)

To summarise:

Theorem 1 There is an association scheme on H\Gn with rank equal to the number
of partitions of n with at most |G| parts, (so p(n) if and only if |G| ≥ n), which is
invariant under the diagonal group Dn(G).

For example, when n = 3, we obtain the Latin square graph of the Cayley table
of G and its complement. The valency of the complement is (|G| − 1)(|G| − 2), so it
is non-empty if and only if n > 2.

4 AS-free groups

As noted above, a permutation group is AS-free if it preserves no non-trivial associa-
tion scheme. A transitive permutation group is primitive if it preserves no non-trivial
equivalence relation on its domain; a primitive group is basic if it preserves no Carte-
sian structure on its domain [7]. Moreover, a permutation group is 2-homogeneous
if it acts transitively on the set of 2-element subsets of its domain; and a group G is
almost simple if T ≤ G ≤ Aut(T ) for some non-abelian finite simple group T .

Theorem 2 An AS-free permutation group is primitive and basic, and is either 2-
homogeneous or almost simple.

Proof This is a combination of a theorem in [3] and the result of this note. Specif-
ically, if G is imprimitive, then it preserves the group-divisible association scheme,
whose relations are “equal”, “same part of the G-invariant partition”, and the rest.
If G is primitive but not basic, it preserves a Hamming scheme (see [2]). If G is
basic, then according to the O’Nan–Scott Theorem, it is affine (that is, has an el-
ementary abelian regular normal subgroup), or diagonal, or almost simple. If G is
affine, then the matrices of the G-orbits on pairs belong to the group algebra of the
regular normal subgroup, and so commute; adding each non-symmetric matrix to its
transpose then gives an association scheme, whose rank is the number of G-orbits on
2-sets plus one (for the diagonal), so is trivial if and only if G is 2-homogeneous. If
G is contained in Dn(T ) for some non-abelian simple group T , then G preserves the
symmetrised conjugacy class scheme of T . And finally, if G is contained in Dn(T ) for



P.J. CAMERON AND S. EBERHARD/AUSTRALAS. J. COMBIN. 75 (3) (2019), 357–364 362

n > 2, then G preserves the association scheme constructed above, which is trivial
only in the case n = 2. (We have |T | ≥ 60, so relations corresponding to partitions
with at most 60 parts are non-empty.)

Note that any 2-homogeneous group is AS-free. There exist AS-free almost simple
groups which are not 2-homogeneous, but the situation is not well understood. We
record here some examples taken from [3]:

• PSL(3, 3) and PSL(3, 3).2, degree 234 (numbers (234, 1) and (234, 2) in the
GAP list);

• M12, degree 1320 (number (1320, 1));

• J1, degree 1463, 1540 or 1596 (numbers (1463, 1), (1540, 1) and (1596, 1));

• J2, degree 1800 (number (1800, 1)).

5 Further remarks

5.1 Latin squares

A Latin square of order n can be regarded as an orthogonal array of strength 2 with
3 factors [5, p. 2]: this means that we can represent it with a set of n2 triples of
the form (row,column,entry) so that, in any pair of positions, each of the n2 possible
entries occurs exactly once. If G is a group, we can describe the orthogonal array
coming from the Cayley table of G very simply: it is the set of triples (x, y, z) ∈ G3

with xyz = 1. It is clear that this set is invariant under G3 acting as follows:

(g, h, k) : (x, y, z) �→ (h−1xk, k−1yg, g−1zh).

Moreover, the set also admits automorphisms of G acting coordinatewise, as well as
permutations of the three coordinates with a small twist: xyz = 1 implies yzx = 1
and z−1y−1x−1 = 1, so odd permutations must be combined with inversion. So
this set of triples admits D3(G) (though the action is slightly different from the one
described earlier).

The corresponding Latin square, as an n× n array, is obtained by indexing rows
and columns by G and writing z in the (x, y) cell if xyz = 1. The “traditional”
Cayley table has z in position (x, y) if z = xy. For the record, we match up these
two representations with ours.

• The usual Latin square has (x, y) entry (xy)−1, so is obtained from the tradi-
tional description by the permutation of letters which replaces each letter by
its inverse.

• Represent the cosets of H in G3 by noting that each coset contains a unique
element of the form (x, y, 1); we regard this as indexing a cell (x, y) of a square
array. Now the relation corresponding to the partition 2 + 1 of 3 makes two
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of the three coordinate ratios equal. So consider two coset representatives
(a1, a2, 1) and (b1, b2, 1). If the first and third coordinate ratios are equal then
a1 = b1; so this is the relation “same row”. Similarly, equality of the second and
third rations is the relation “same column”. In the remaining case, a1b

−1
1 =

a2b
−1
2 , which is equivalent to a−1

2 a1 = b−1
2 b1; so this is the relation “same

letter” if we put entry y−1x in cell (x, y). So this Latin square is obtained from
the orthogonal array form by the permutation of columns which replaces each
column label by its inverse.

We now extend this to higher dimensions. A group G defines a Latin hypercube
L, the set of n-tuples (g1, . . . , gn) of group elements whose product is the iden-
tity; these form an orthogonal array of strength n − 1. The set is invariant under
cyclic permutations of the group elements, and reversal together with inversion:
(g1, . . . , gn) �→ (g−1

n , . . . , g−1
1 ). Now we can define a map from Gn to L by the rule

(a1, . . . , an) �→ (g1 = a−1
1 a2, g2 = a−1

2 a3, . . . , gn = a−1
n a1).

This map is invariant under left multiplication by elements of H , so induces a bijec-
tion H\Gn → L. Now the cyclic shift on L is realised by the cyclic shift on H\Gn,
while the reversal-and-inversion of L is induced by reversal on H\Gn. Thus the di-
hedral group is a group of weak automorphisms of the association scheme on H\Gn

with relations Rπ, and fusing orbits gives an association scheme. This association
scheme does not admit the full diagonal group, since only elements of the dihedral
group act as coordinate permutations. (In the case n = 3, the dihedral group is
equal to the full symmetric group.)

5.2 Isomorphisms

There exist superexponentially many strongly regular graphs with certain parame-
ters, for example Latin square graphs.

Our construction potentially gives many (though not superexponentially many)
non-isomorphic association schemes of relatively large rank with the same parame-
ters. As noted earlier, the parameters depend only on n and |G|, so we can choose
an order for which many groups exist. It is known that the number of groups of
order q = 2d is about qc(log2 q)

2
, with c = 2

27
[6, 8]. However, we have not proved that

non-isomorphic groups give non-isomorphic association schemes. We hope that work
in progress by the first author with Bailey, Praeger and Schneider will resolve this
in the affirmative for diagonal groups Dn(G) for n > 2.

References

[1] P. P. Alejandro, R.A. Bailey and P. J. Cameron, Association schemes and per-
mutation groups, Discrete Math. 266 (2003), 47–67.

[2] R.A. Bailey, Association Schemes: Designed Experiments, Algebra and Combi-
natorics, Cambridge University Press, Cambridge, 2004.



P.J. CAMERON AND S. EBERHARD/AUSTRALAS. J. COMBIN. 75 (3) (2019), 357–364 364

[3] Peter J. Cameron, Coherent configurations, association schemes, and permuta-
tion groups, pp. 55-71 in Groups, Combinatorics and Geometry (ed. A. A. Ivanov,
M. W. Liebeck and J. Saxl), World Scientific, Singapore, 2003.

[4] John D. Dixon and Brian Mortimer, Permutation Groups, Springer, New York,
1996.

[5] A. S. Hedayat, N. J.A. Sloane and John Stufken, Orthogonal Arrays: Theory and
Applications, Springer-Verlag, New York, 1999.

[6] Graham Higman, Enumerating p-groups, I: Inequalities, Proc. London Math. Soc.
(3) 10 (1960), 24–30.

[7] C. E. Praeger and C. Schneider, Permutation Groups and Cartesian Decomposi-
tions, London Math. Soc. Lecture Notes 449, Cambridge University Press, Cam-
bridge, 2018.

[8] Charles C. Sims, Enumerating p-groups, Proc. London Math. Soc. (3) 15 (1965),
151–166.

[9] Richard Stanley, Enumerative Combinatorics, Volume 1, Cambridge University
Press, Cambridge, 1997.

(Received 16 May 2019; revised 11 Oct 2019)


