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We present a statistical mechanics method to compute the average path length for random cases
of the Euclidean TSP. This illuminates the problem from a new perspective, and in the case of MAX
TSP reproduces some known results.

I. INTRODUCTION

The statistical mechanical approach to the study of combinatorial optimization problems has led to progress in a
number of ways [1]. The approach is based on identifying the cost function, which needs to be minimized, with the
energy of a physical system whose phase space is equivalent to the free adjustable parameters in the optimization
problem. This physical system is then studied with the techniques of statistical mechanics at arbitrary temperature
and the zero temperature configuration corresponds to the optimal solution. Here we are concerned with applying
this statistical mechanical approach to the traveling salesman problem, in particular its Euclidean geometric version.
The problem is to find the optimal (either minimal or maximal [2]) closed circuit length to visit N cities or points
where the distance between the points ¢ and j is given by d;;. The order in which the cites are visited is encoded
in a permutation ¢ € X where Xy, the group of permutations of N objects, acts as the phase space. For a given
permutation

D(U) = Zdtn,ai_u (1)

is the total distance traveled and corresponds to the cost function.

Our interest is in the stochastic case of the TSP in which the d;;’s are chosen from some probability distribution.
For the Euclidean case, this probability distribution is determined by taking the cities as points ry,r; - --ry in some
connected domain D in R¢ where each point is independently distributed from the others with the same probability
density function p(r). The distance between the points 4 and j is simply the Euclidean distance on R? given by
d;; = |r; —r;|. In this stochastic formulation, the quantities we are concerned with are averages over the locations of
the cities. Our primary focus of attention is on computing the average optimal path length for randomly distributed
cities in the limit of many cities. This quantity is of interest in its own right since path lengths for particular instances
have been shown to be sharply peaked about this average [3], and it has been traditionally employed to test heuristics
[4]. We also compute the number of paths of given length which characterizes some of the difficulty of finding the
optimum one.

Statistical mechanical approaches to the TSP have been considered in the past, though most progress has been
with the independent link version in which there is no correlation, such as the triangle inequality, between the random
distances [5-9]. Recently we have devised a new statistical mechanical technique to compute the average path length
for the Euclidean problem [10, 11]. Our method will be shown to be exact in the limit of large N while keeping the
domain D fixed. The method yields integral equations that determine the average at any temperature, dimension and
topology, but at present only for the leading term proportional to IV, the number of cities, as N — oo. Since for the
usual (minimal) TSP, this term vanishes at zero temperature, as the average minimal path length behaves as N1—1/¢
[3], our method is of most interest for the maximal TSP [2], where the average maximal path length does grow as N.

We first present our formalism and give some evidence that it is correct at finite temperature. We then proceed to
investigate the zero temperature limit corresponding to the optimum and find that the integral equations reduce to
minimization equations. A fascinating aspect of our approach is that the ansatz used to solve these zero temperature
equations can be constructed by considering a simple class of algorithm for solving the TSP, notably the greedy
algorithm.



II. FORMALISM

The fundamental object of the statistical mechanics approach is the partition function which acts as a kind of
generating function. It is given by the following sum over all possible paths at temperature 1/ (for the maximal
problem we take 8 to be negative).

Zy = ! > exp(-BD(o N, > eXP( BZIr g, 1)- 2)
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Where the N points {rf,rd---  r%} are chosen independently in some domain D € R? with probability density p(r)
(the points have superscript ¢ to distinguish them from the dummy integration variables introduced later). The path
is made closed by defining rd = rf%,. For this so-called “quenched” problem, it is incorrect to take the average over
the location of the points at this stage, instead it should be performed after the average path length is computed. We
take the leading term proportional to N and determine the average path length per city as:

Ez_%%m 3)

The average is denoted by an overline and rather than evaluating it explicitly it will be obtained by considering a
large number of cities and requiring that their average density follows the desired p(r).

To motivate our approach, consider a discrete problem consisting of M sites at points r;l- (usually spaced regularly
on a lattice), and imagine that there are n; cities at site j. A path through the NV cities is specified by the sequence of
site indices ji, jo2 ... jn, but to ensure that site j is visited precisely n; times a Kronecker delta constraint is applied.
Then for any function f(), we may write the sum over all permutations defining the paths as:

M M
Z f 01’ 027 rZN) = Z an!(snhzz=15k,jm f(rj T, Ty) (4)
ocEXN J1,J2...in=1 k=1

We take a continuum version of this identity presuming that it is valid for sufficiently smooth functions.

Z f 0'1) 025' /H ddr,H5<Np Z(SI‘—I'Z> (rlar27"'rN) (5)
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Throughout, we take the domain size to be unity in order to simplify the equations. The occupancy factors, n;, now
appear as the specified density p(r) of cities in space, so we have lost any explicit dependence on the locations, r, of
the original cities and in effect, have already performed the average.

We therefore write the partition function of the TSP as,

ZNO(/H ddrzH6<Np Zdr—rl> exp (—ﬂZ|ri—ri1|>. (6)

The factor of proportionality is a temperature independent entropy/degeneracy contribution which can be determined
by the discrete approach, or fixed by noting that Zn(0) = 1 in the original definition.
Rewrite this using a Fourier representation of the functional constraint:

/d eXp( /ddm )zN, (7)

where each integration over u(z) is up the imaginary axis. The object Zy defines a subsidiary statistical mechanical
problem with partition function given by,

N N N
N = /H d*r; exp (-52 Iri —ria| — Zu(ri)) ; (8)
i=1 i=1 i=0

which will be solved below.



For large N we may evaluate the partition function in Eq. (7) by the saddle point method in the limit where
N — oo keeping D fixed. The saddle point equation is

N

P =~ g = A0 ) =) ©

where the above expectation (denoted by angled brackets), defining p,(r), is in the system with partition function
Zn given in Eq. (8). Physically this approach can be thought of as choosing a site dependent chemical potential
which fixes the density of the (annealed) subsidiary problem to be the same as that of the specified (quenched) one
p(r) = pa(r).

To proceed, we find an expression for p,(r) by solving the subsidiary problem using transfer operator techniques.

EZv=TrTV (10)
where
T (r,x') = exp (—p(r)/2) exp (= f|r — r'[) exp (—p(r') /2) (11)
The ground state eigenfunction, corresponding to the maximal eigenvalue A, obeys
£ = A exp (—u)/2) [ '’ exp (=le =’ exp (—ule')/2) &) (12
and we have:
d1ln(N) 9
o(r) = — = r 13
Polr) = =g = £ (13)

Returning to the saddle point equation, p(r) = p,(r), we have that f = ,/p. This ensures that f is the eigenfunction
corresponding to the maximal eigenvalue as we note that it is positive and then appeal to the Perron-Frobenius
theorem.

Using the expression for f(r) the saddle point equation becomes:

!
Vo) =3 exp(- 1) [t exp (<le o) exp(- L5 ) 19
we rewrite this equation in terms of sy (r) given by exp(—pu(r)/2) = /p(r)/sxr(r).
_y—1 d,.! _ _ ! p(rl)
r)=2A /d r" exp (—f|r —1'|) () (15)
Using this in the value of the saddle point exponent we obtain,
In(Z
n(NN) = 2/ddr p(r)ln(sx(r)) +1In(N) — /ddr p(r) In(p(r)). (16)

From Eq. (15) we see that there is a whole family of solutions, {sy(r), A}, related by sy = a'/2s,y, for a > 0 and in
addition these solutions all have the same action. This apparent zero mode is an artifact introduced by the fact that
the constraint N [ d%r p(r) = [d Y, d(r —r;) is automatically satisfied. Thus we may chose A = 1.

In the case of a uniform d1str1but10n on a domain of unit volume we have our final result for the average path length
at inverse temperature 3 in terms of the quantity s(r) determined by a non-linear integral equation.

E = —268—3 [/ddr ln(s(r))]

_ [ a. g4 [ —r'|exp(=Blr —1'))
= /d r dr S(0)s(") (17)
where s obeys
_ , exp (=B|r —r'))
S(I‘) = /ddT T (18)
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FIG. 1: Theoretical prediction for the average path length E for two dimensional TSP on a box, sphere and torus as a function
of 3. Negative 3 corresponds to the MAX TSP.

III. FINITE TEMPERATURE

The formalism presented above yields the correct high temperature expansion as a series in 3, and has also been
tested by comparison with Monte Carlo simulation of the TSP at finite temperature [11]. Except for the case of
closed symmetric domains to be discussed below, we have not found any non-trivial analytic solutions of the nonlinear
equations (17) and (18). For the special closed domains, such as a disc and torus in two dimensions, a constant
solution exists. The significance of this observation is that the annealed approximation, in which the average over
cities is taken at the level of the partition function Eq. (2), is exact for these domains.

For the sphere, the annealed/quenched equations have a constant solution with:

2 1 d?r e P = 2m

=3 s, ma +e~VTA/2) (19)

S

leading to an expression for the average path length,

R UL
B2 +4m - 2(eV™h/2 +1)

(20)

Note that in the limit 8§ — —oo, the path length becomes the half circumference corresponding, as is the case for all
the closed domains, to the maximum distance two points can be apart.

For a torus we find that the equations yield

8 /4 ﬂe—ﬁ/2cosﬂ
2 _ ° _ ,—B/2cosb _
s 52 /0 (1-e “Seosd ) dé (21)

As f — —00, the integral can be approximated and again the path length becomes the maximum distance two points
can be apart, E — 1//2.

For most domains, including the traditional square box domain, the quenched result is different from the annealed
approximation and there is little hope of a general analytic solution. In this case, our primary tool is the iterative
numerical solution of Eq. (18) which is stable and can be solved to any required accuracy.

Figure (1) shows the average path length for each of the three two-dimensional domains we have considered. For
the sphere this is given by (20), for the torus it is based on numerical integration of (21) and for the box we resort
to an iterative solution of the original quenched equations. The accuracy of this iterative technique is confirmed by
reproducing the results for the other domains. In all these cases we have also performed Monte Carlo simulations and
obtain excellent agreement with the theory. At large positive 8 the topology starts to become unimportant and each
domain has average path length ~ 2/3 as expected for a two dimensional TSP.



-05+ —
1 _
2
<] = ]
<
i}
-15+ —
2 _
25 | | |
0 0.2 0.4 0.6 0.8
Path length

FIG. 2: Theoretical prediction for the entropy, the log of the number of paths, for two dimensional TSP on a box as a function
of the path length.

IV. COUNTING PATHS

The partition function also contains information about the number of paths that contribute at given temperature
or path length. We first compute the entropy as:

50 (14 522) o (18 [ e

Then by inverting the expression for the path length obtained from equations (17) and (18), the entropy can be
re-expressed as a function of path length. However, even for the closed domains discussed in the last section, this
last step cannot be performed analytically. For the case of a two dimensional square domain, a numerical solution is
shown in figure 2.

The significance of the entropy in this problem is that the number of paths of given length is:

N(E) ~ N! N5 (23)

Of course, as for our expressions for the path length, this N dependence arises from our way of solving the problem and
does not correctly describe the region where path lengths scale as N'=1/¢. However in the case of the one dimensional
wallpaper problem [12], where the number of paths is given by an Eulerian number, we can independently recover
this form with S(E) matching our results.

Most interest attaches to the shortest paths, and in this regime (though remaining with our N scaling), we can
make some analytic progress. At least for closed domains leading to constant s, we can expand for large § to find
E ~d/B, and S(B)/N ~ —dIn(B), so we expect N'(E) ~ N!(E/N)?.

V. ZERO TEMPERATURE LIMIT

In this section we investigate the low temperature behavior of Egs. (17,18) and extract formulae for the average
optimum path length. We write s(r) = exp(—pw(r))t(r) so Eq. (18) becomes

— 1| + Bw(r"))
t(r") '
We require that the decomposition in terms of w(r) and #(r) is such that In(¢(r))/8 — 0 as |§| — oo permitting us

to evaluate the integral on the right hand side of Eq (24) via the saddle point method as |3| — co. The saddle point
equation determines the function w(r) through:

exp (~pu) tlr) = [ at LA (24)

(25)

wir) = min (' = x| = w(r) = (' = 1 = 0",y



where the min is replaced by max for the maximal (negative ) case.

The point r*(r) is the point about which the action in the saddle point is minimal. It is tempting to suggest a
tentative interpretation of r*(r) in terms of an algorithm for finding the optimum. We take a local algorithm that
selects cities one by one and determines the next city on the path solely on the basis of the location of the present
city. This local class of algorithms is natural from a physical perspective but is severely restricted, and indeed does
not include many well known algorithms for solving the minimal TSP, however for the leading large N behavior we
are concerned with, it is sufficient. Then r*(r) is interpreted as the location of the subsequent city to be chosen by
the algorithm if the current city is at r. In other words, if the ¢’th city is at r, the (i + 1)’th is at r*(r).

Intriguingly, we will see that effectively guessing some (local) heuristics for r*(r) will enable us to obtain some
solutions to Eq. (25) and in [11], we have explored this approach for a variety of one-dimensional examples. For
example, for the minimal TSP we take r*(r) = r corresponding to picking the closest city. This algorithm has been
known to be incorrect since the very earliest days of the TSP, however in the present context we only use it to
demonstrate that the contribution to the path length proportional to N vanishes. To see this, use it to solve Eq. (25)
finding w(r) = 0. The leading term in the path length, according to Eq. (17) is:

Ex?2 / d%r w(r) (26)
D

which therefore vanishes. A more detailed analysis taking proper account of the fluctuations in ¢(r) gives the corrections
to this term at small but finite temperature as a series in 1/8. More interesting might be corrections for finite N at
zero temperature as this would measure the first non-vanishing O(N'~1/?) contribution to the path length, but we
have not yet been able to address this with our formalism.

We therefore move to the MAX TSP. In this case we consider a greedy algorithm which selects the city most distant
from the present one. In the case of the closed symmetric two dimensional domains, the torus and sphere, this next city
is always at half the maximum period, 1, distance away: r*(r) = r +1/2. We therefore have w(r) + w(r +1/2) = |1]/2,
and because of the symmetry of the space w(r) takes the constant value [1|/4. Using Eq. (26) for the path length
we regain the maximum average path length as half the maximum period which we earlier found from taking the low
temperature limit of the full solutions in Eq. (20) and (21).

In the case of a unit hypercube —%, %]d (it is convenient to shift the coordinates to be symmetric), consider the
greedy heuristic; we start on the outermost layer of points in the hypercube and we join points on this surface to
those that are diametrically opposed. The procedure is then repeated eating away the hypercube until we arrive at
the center. This entails matching the point r with —r. This heuristic was shown to give the optimal path length for
d = 2 [13]. The solution w(r) = |r| is in fact a solution to the maximal version of Eq. (25). This can be verified as
we note that the function

h(r) = |r —x'| = r'| (27)

is bounded as
h(r) < Ir| (28)
by the triangle inequality. The bound is achieved at r*(r) = —r, confirming that w(r) = |r| is indeed a solution. We

note that this solution exists in any domain D (centered at the origin) satisfying the property that if r € D then
—r € D. The ground state path length generated by this greedy heuristic is

E = dér 2|r| = 2d+1/ dr |r|. (29)
¢ [0,3]

This general formula gives £ = 0.5, 0.765196, 0.960592, in one, two and three dimensions respectively, in agreement
with the results of [13].

VI. CONCLUSIONS

We have shown how a statistical mechanics approach can address the TSP. We have considered a stochastic Eu-
clidean version of the problem and concentrated on computing the value of the average optimal path, but have also
shown that the method can predict the number of paths of given length. The method sheds new light on the problem
and it is that, rather than any specific results, that we wish to emphasize. In particular, it is fascinating that the
solution to the zero temperature equations is illuminated by considering a local greedy algorithm.



The derivation we have presented relies heavily on singular distributions, and although results have been confirmed
by simulations and various sanity checks, a more secure foundation (probably discrete) would be welcome. A significant
reason to explore this direction would be a better understanding of finite N corrections to our formalism that we hope
may have a bearing on the minimal TSP.

Besides the main concern with maximal and minimal versions of the Euclidean TSP in the traditional square
domain, we would like to point out several interesting issues. Firstly, the closed symmetric domains such as sphere
and torus in two dimensions have a significantly simpler solution (they are also expected to have simpler finite N
corrections [4]). It is not clear that this is or should be reflected in heuristics. Secondly, our formalism is able to
accommodate non-uniform distributions of cities and this may allow it to be applied to generalized TSP versions in
which the cities cluster [2]. Thirdly, although the method is certainly geometric, being based on points in the domain
D in R?, the norm need not be Euclidean. Indeed, in [11], we considered other norms, though we interpreted them as
potentials between points on a closed polymer.
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