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ABSTRACT

Musical schemata theory entails the classification of
subphrase-length progressions in melodic, harmonic and
metric feature-sets as named entities (e.g., ‘Romanesca’,
‘Meyer’, ‘Cadence’, etc.), where a musical schema is char-
acterized by factors such as music content and form, po-
sition and tonal function within phrase structure, and in-
terrelation with other schemata. To examine and auto-
mate the task of musical schemata classification, we de-
veloped a novel musical schemata classifier. First, we
tested methods for exact and approximate matching of
user-defined schemata prototypes, to establish the notions
of identity and similarity between composite music pat-
terns. Next, we examined methods for schemata prototype
extraction from collections of same-labelled annotated ex-
amples, performing training and testing sessions similar to
supervised learning approaches. The performance of the
above tasks was verified using the same annotated dataset
of 40 keyboard sonata excerpts from pre-Classical and
Classical periods. Our evaluation of the classifier sheds
light on: (a) ability to parse and interpret music informa-
tion, (b) similarity methods for composite music patterns,
(c) categorization methods for polyphonic music.

1. INTRODUCTION

Schemata have been characterised by psychologists as ‘the
building blocks of cognition’ [17], enabling an understand-
ing of the world in packages of knowledge. Similarly,
musical schemata can be thought of as ‘minimal meaning-
ful’ entities, enabling coherent interpretations of Classical
phrases. Musical schemata theory is studied and developed
by musicologists as a means of classifying short passages
in musical works, mainly from the Classical period [2,10].

Aiming to model musical schemata theory, we consider
the development of computational systems that create and
update definitions for prototypes of schemata categories
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Figure 1. Musical schemata are considered as sequences
of schema-events.

from annotated music examples. This work builds on a rel-
atively small amount of existing research in computational
modeling of musical schemata theory [8, 9, 18].

The novel system will enable the study of higher-level
operations and reasoning in content-based music informa-
tion retrieval than has been possible to date, and facilitate
further research with machine learning approaches in mu-
sic pattern extraction [15, 19, 20].

2. TASK DESCRIPTION AND BACKGROUND

2.1 Musical schemata in Classical keyboard works

A musical schema is defined as a stereotypical progres-
sion of schema-event elements (Figure 1): a feature-set
consisting of notes from two melodic movements (melody
and bass) and harmonic and metric information [7, 10]. A
schema is characterized by its content, that is, the number
and type of its constituent schema-events, but also as part
of phrases and even greater morphological entities such as
paragraphs, periods, etc., as well as its position, tonal func-
tion, and any interrelations with other schemata.

An interesting aspect of the theory is the notion of a
prototype for a set of similar progressions. The extraction
of schemata prototypes is a learning process and musical
schemata theory is an example-based approach, meaning
that knowledge about a schema prototype is obtained and
updated from examples and not by rules.
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Figure 2. Annotated example with melodic move-
ment separation (horizontal lines), harmonic regions, and
schemata notes (diamonds). The first line of the score has
a ‘Meyer’ instance and the second, a ‘Prinner’. Excerpt
from Wolfgang Amadeus Mozart, Piano Sonata no.16 in C
major K545 1st movement Allegro mm.1-8.

2.2 Modeling musical schemata theory

We implemented example-based machine learning with the
development of a musical schemata classifier. The classi-
fier works in three steps: making observations of the music
data, comparing these observations to stored schema pro-
totypes, and identifying schema-class similarity.

2.2.1 Observations

To classify music patterns such as musical schemata,
the input needs to be processed so that only relevant,
‘schematic’ material is considered. As described previ-
ously, musical schemata are viewed as progressions of
schema-events, and for that reason we consider two types
of ‘observations’: a) schema-states, and, b) schema-state
combinations/progressions. We will refer to these ele-
ments as ‘low-’ and ‘high-observations’ respectively. The
schema-states are schema-voice and schema-event sam-
ples, a kind of low-level form of music understanding
for small feature-sets. Combining these schema-state el-
ements, we can create schemata instances/samples that are
comparable to musical schemata prototypes and thus, per-
form similarity and classification tasks.

Creating the schema-state observations is a pre-
processing step, independent from the tasks of recogni-
tion and learning, but the observation process can utilize
information from stored prototypes to select only known
(stored) schema-states and, thus, reduce the number of
schema-event state observations.

2.2.2 Similarity

A fundamental task of the classifier is to perform compar-
isons of same-class information (e.g. states or schemata)
from different sources (e.g. observations, prototypes). The
matching of observations from a source score and a stored

schema prototype is the recognition process. To evalu-
ate our musical schemata classifier, these recognition re-
sults are compared/validated against schemata annotations,
a ‘ground-truth’, giving measures of recall and precision.

To perform comparisons, the idea is to define a similar-
ity metric for multi-feature elements and sequences, such
as schema-states and complete schemata, and utilize it to
identify and categorize them according to their content.

2.2.3 Class similarity

In addition to recognition and evaluation similarity, class
similarity is another type of similarity whereby common
relations amongst schema states and schemata observa-
tions of the same schema type are identified, hence, de-
scribing the properties of a schema family type. In this
study, a schema class is defined by a set of examples, an
example-base of high-level observations, and a class (sim-
ilarity) function that validates all its existing examples, act-
ing as the identity validator for all of them.

An interesting aspect of our classification method for
schemata is that, contrary to matching methods that cre-
ate a search-space for specific targets, our approach can go
beyond merely finding matches to existing schemata pro-
totypes to automatically identifying potential schemata.

3. METHODOLOGY

3.1 Method overview

The musical schemata classifier was developed by applica-
tion to incrementally more complex scenarios:

• Identification (labelled I hereafter). Initially, the
classifier performed musical schemata identification
with pattern matching techniques, identifying the ex-
act positioning of user-defined schema-family proto-
types in complete music parts;

• Recognition (labelled R and F). Next, we examined
the task of multiple and approximate recognition
of user-defined schema-family prototypes, to study
similarity-approximation methods for both single-
family prototypes (R) and collections of multiple
variants for a single schema class (F);

• Learning (labelled L). Finally, we tested the
schemata classifier on learning of schemata proto-
types from schema-annotated music examples.

The annotations were of a dataset of 40 keyboard sonata
parts (10 from Haydn, 10 from Mozart, and 20 from
Beethoven), containing annotations for 3 schemata types
(‘Meyer’, ‘Prinner’, and, ‘Cadence’). In total the num-
ber of unique annotations are: 17 generic and 23 ‘Meyer’
variations, 22 generic and 8 ‘Prinner’ variations, and, 40
generic and 15 ‘Cadence’ variations.

3.2 Model overview

The details of the model’s implementation are beyond the
scope of this paper and therefore the following provides
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Figure 3. Top view of the schemata classifier model.

only a high-level overview of the approach. 1 The clas-
sifier runs in sessions where information from up to five
sources is processed and combined (please see Figure 3).
The music-data source (Figure 3, DATA) supplies com-
plete sonata parts in MusicXML format sequentially, and
each input file follows the same information processing
path, where the input file is first converted into opera-
tional representations to perform score analysis and feature
extraction, and then extract state samples (schema-events
and -voices). The memory-data source (Figure 3, PROTO-
TYPES) is where schemata prototypes reside and are being
recalled for recognition. The feedback source (Figure 3,
FEEDBACK) inputs non-musical information to the model
and is utilized to pass annotations, such as schemata labels
for measure ranges. The run-time information of a session
is written to a session log (Figure 3, RUN-TIME LOG).
The learning operations are governed by a system profile
(Figure 3, PROFILE).

In general, the classifier creates and compares two
classes of information: a) schematic states, either schema-
events or schema-voices, and b) combinations and/or pro-
gressions of (a). The three basic operations that con-
nect these information sources all relate to similarity and
are: i) recognition, during which states and schemata from
memory and data are compared, ii) evaluations, where
the results from (i) are compared with annotations, and,
iii) adaptation, where the class similarity function of a
schema type is updated to include new entries to the ex-
ample base (the inclusion of a training observation).

The model also employs a number of task-specific func-
tions with smaller scope that aid the similarity functions
described above. For example, the results of feature ex-
traction (Figure 3, FE) are sent to both grouping func-
tions (Figure 3, GF, to extract schema-state and progres-
sion samples) and a schemata prototype instantiation func-
tion (Figure 3, SPi, to create comparable instances from
schemata prototypes).

1 See https://tinyurl.com/y5x2d99j for code and data.

3.3 Making music observations

The processing path for each music input element (a com-
plete sonata part) starts with the conversion of the Mu-
sicXML file into operational encodings (datapoints and
‘minimal segments’ [16]) to perform tonal and harmonic
score analysis and feature extraction, utilizing formalisms
in symbolic music processing from [14] and [4]. Next,
stylistic reduction, a combination of the aforementioned
analyses for the extraction of schematic information, se-
lects material from the score for the sampling of schema-
states (schema-voice and -event feature sets).

In addition to notated information available from the
MusicXML encoding, information about metric, tonal, and
harmonic properties is extracted utilizing task-specific al-
gorithms. Rhythm is extracted from the notated time sig-
nature of the input file and is embedded to operational
representations in the form of metric strength using [5].
Tonality is extracted from notation using ‘key’ and ‘mode’
attributes from MusicXML, but also using probe-tone pro-
files [12]. Harmony is extracted in segments using the Har-
mAn algorithm [16]. Complex voice separation is not un-
dertaken – rather, the outer notes, based on absolute pitch,
are considered to comprise melodic and bass movements.

3.3.1 Sampling schematic-states

After score analysis and feature extraction, the system has
enough information to extract schema-state samples. A
schema-voice is considered a monophonic sequence of dat-
apoints whose adjacent temporal interval is constrained
by extracted features that relate with metric information.
The extraction of schema-voices, often termed as music n-
grams, is in compliance with voice-leading rules [11]. The
schema-event sampling algorithm starts with score anal-
ysis information and ‘minimal segments’, and generates
schema-events, a type of temporal reduction with similari-
ties to time-span reduction described in [13]. First, each
‘minimal segment’ is assigned positional and (adjacent)
transitional ‘significance’ from two algorithms that weight
parameters from the ‘minimal segment’ properties and har-
mony. Then, a ‘minimal segment’ merger creates samples
from pairs of ‘minimal segment’ elements by combining
and selecting values for the schema-event characteristics.

The positional ‘significance’ of each ‘minimal segment’
is found using (1) and the weights in Table 1:

poSig = 1
3 (dpQ+ bStr + card) + outV p (1)

where poSig is the significance of the ‘minimal segment’,
dpQ is the overall quality of datapoints in the ‘minimal
segment’, bStr is the beat-strength value, card is the car-
dinality, and outVp is the bonus from movement in outer
voices.

Transitional ‘significance’ is calculated in a similar
manner but also considering the changes between the adja-
cent ‘minimal segment’ elements, mainly in harmony.

A schema-event sample has ontime and duration and
all the properties of a prototype schema-event but most
importantly, each schema-event sample is rated with the

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

168



Feature Factor
beat strength 2
harmony 2
cardinality 1.5
outer voices 2
complete datapoint in ‘minimal segment’ 1
starting datapoint in ‘minimal segment’ 1
ending datapoint in ‘minimal segment’ 0.25
middle datapoint in ‘minimal segment’ 0.125

Table 1. The manual weights for positional ‘significance’
(poSig) of single ‘minimal segment’ elements.

combined ‘significance’ ratings of its ‘minimal segment’
elements, allowing further thresholding and selection.

For example, the total number of datapoints and ‘min-
imal segment’ elements for the excerpt in Figure 2 is 124
and 95, respectively. Thresholding ‘minimal segment’ el-
ements using above-average positional ‘significance’ rat-
ings, event-sampling returns a total of 107 schema-event
samples in the following form: ((measure, time signature,
beat), (pitch-value of each voice’s datapoints: [melody,
bass]), (positional ‘significance’), (transitional ‘signifi-
cance’), (melody:harmony:bass, in scale-degrees)). For
example, the first sample of the excerpt in Figure 2 is:

((1, 4/4, 1.0), [C5∗, C4], (4.00), (2.00), (1 : − : 1))

At a later stage, the type of schemata and the position in
which they appear in prototypes are also added to each
sample.

With the extraction of schematic material, in the form
of schema-voices and schema-events, we have extracted
low-level observations, i.e. schema-states. These elements
are utilized later for the creation of complete schemata-
instances (high-level observations).

3.4 The memory module

The memory module stores the schemata prototypes and
handles creation, update and instantiation operations of
each prototype. It is the knowledge-base, a repository
of generic prototypes starting with definitions from [10],
where each schema prototype is represented as a sequence
of schema-events (please see Figure 1).

3.5 Recognition

A core task of the schemata classifier is to assign/identify
prototype schema-states in low-level observations and
complete schemata prototypes in high-level observations,
with the latter consisting of pairs of schema-voices and
progressions of schema-events.

From the data part, post-stylistic analysis (please refer
to the data processing path in 3.3), the information of input
elements is converted into a set of state samples for voices
and events. From the memory part, a target space consist-
ing of schema-states and prototype schemata instances is
created according to extracted features (Figure 3, SPi).

3.5.1 Creating and thresholding schemata search space

After the extraction of schema-states, the classifier applies
an observation method to select and group state-samples
in schema-instances that are comparable to schemata
prototypes. Initially, schema-state samples are thresh-
olded based on their ‘significance’ ratings and, option-
ally, according to their similarity with prototype states.
When forming schemata samples, state-groups are fil-
tered by number of events (minimum/maximum), a min-
imum/maximum duration, and temporal regularity [6, 18].

3.5.2 Similarity between prototypes and constructs

When comparing extracted and prototype states and
schemata, these can either be exact or different, with the
latter case being comparable with a similarity metric.

3.5.3 Proto-state similarity

A schema-voice has a single melodic movement and is
characterized by the number of notes it contains. Matching
a schema-voice sample with a prototype schema-voice is a
sequence-similarity task and two voice-states are the same,
if their content is the same, regardless of the temporal re-
lations of the datapoints that comprise them. Considering
the order of appearance, the position of a datapoint in each
voice-state, the difference between schema-voice samples
and prototype schema-voices is measured as the sum of
differences of same position datapoints, also known as the
Hamming distance. For example, the distance dH between
schema-voices (in scale-degrees): a) 1,7,5,3, b) 1,7,4,3,
and c) 6,5,4,3, is: dH(a, b) = 1, dH(a, c) = 3, and,
dH(b, c) = 2.

The similarity between event-states is hierarchical, con-
sidering two layers of similarity for harmonic and melodic
information, and Boolean, meaning that differences are
not quantified. The harmonic information of two schema-
events can differ in type of harmony, expressed within the
tonal context (e.g., I, II, etc.) and in the arrangement of
the notes within the chord, the type of chord inversions
(e.g., 53, 63, etc.). To get a single numeric value from
the multi-feature comparisons of schema-events and main-
tain the types of difference, we consider different deci-
mal powers for each type of difference. Thus, difference
in harmonic type equals to 103, in chord type, to 102, in
melody, 101, and in bass, 100. Therefore, the possible
values from a schema-event state comparison are equal to
24 (0, 1, 10, 11,. . ., 1110, and 1111). For example, the
comparison between schema-events cSE with values (bass,
bass-intervals, melody) a) (1, 53, 5), b) (1, 63, 3), and
c) (3, 63, 1), is cSE(a, b) = 1110, cSE(a, c) = 111, and
cSE(b, c) = 1011. Temporal and metric information is not
considered for single event-states comparisons.

After the comparison with prototypical schema-states,
each schema-state sample can be tagged with the schema-
label and index it appears in prototypes.

3.5.4 Musical schemata similarity

Musical schemata similarity is handled as a sequence sim-
ilarity problem, similarly to voice-state similarity, but in-
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stead of counting the number of pitch-differences in same
order datapoints, schema-event differences are counted in-
stead. Thus, similarity between two schemata structures
can be expressed as the overall percentage of common
schema-events.

Approximation in schemata recognition is similar to
the methods presented in [3], using local, γ-, and global,
δ- variability thresholds, for schema-events and progres-
sions respectively. Thus, when comparing schema-event
progressions, there are two approximation thresholds, one
limiting the number and type of differences between
schema-events of the same position, and another limiting
the number of differences in the complete schema-event
progression.

3.5.5 Recognition workflow

The recognition process begins with the comparisons be-
tween prototypes and extracted state-samples. First, each
schema-state sample is tagged with the id and index of
their matching prototypes. Then schema-sampling oc-
curs, creating high-observations – progressions of schema-
event samples based on regularity and ‘significance’ rating
thresholds.

3.5.6 Schemata recognition output

The recognition process returns schema-labelled segments
of the score and a set of high-observations, rated with the
degrees of matching (percentage) with stored prototypes.

3.6 Learning prototypes

Learning musical schemata prototypes is about the extrac-
tion and update of schema-event progressions from anno-
tated observations. To achieve this goal, we consider an
example-base for each schema prototype class – a repos-
itory of observations within a music excerpt. After the
recognition process, if the input from feedback suggests a
label for a temporal region, then all observations of that
segment become training observations and are added to
the example-base for that particular schema-label. Main-
taining an example-base for each schema-type, we retain
access to all the information therein. Processing the ele-
ments of the example-base, we examine a class function
that extracts relations that are common to all observations
that are stored in the example-base repository of a schema.
The class function validates all the example-base and is
also used for recognition of unlabelled observations.

3.6.1 Class similarity function

To extract prototypes from an example-base of a schema
class, we need to identify the harmonic and melodic re-
lations that are common in all exemplars. The algorithm
first generates schema-samples and returns variable-length
progressions of schema-events that are then converted into
harmonic and melodic progressions within the tonal con-
text of the segment (in chord and scale degrees). These
contextualized progressions are then sorted by number of

schema-events, and the progressions with the highest fre-
quency of appearance and maximum number of events are
selected for prototypes.

3.7 Evaluation

The tasks of recognition and learning are evaluated in
terms of recall and precision with schemata annotations in
measure-level detail. The comparison of the recognition
results is Boolean, meaning that the temporal range and la-
bel of a recognized schema must match exactly; otherwise
they will be considered false-positives.

4. COMPUTATIONAL EXPERIMENTS

We tested four configurations of the musical schemata clas-
sifier to gradually achieve the goal of prototype extrac-
tion. First, we tested a pattern matching configuration aim-
ing for maximum accuracy in identifying a single schema-
type (label I). The second scenario examined approximate
matching of a single-schema (label R). The third config-
uration tests approximate matching of a schema-family,
including variations (label F). The last scenario tests the
learning algorithm and the extraction of a prototype for an-
notated examples (label L).

4.1 Maximum accuracy for a user-defined schema

The first model configuration for the schemata classi-
fier examined methods for the extraction of schema-voice
states and exact schemata matching for two schemata
types, namely ‘Meyer’ and ‘Prinner’ (please see Figure 2
for their generic types). The configuration uses datapoints,
extracted tonalities, and no harmonic information. The al-
gorithm creates a search-space of schema-voice samples
and filters them in pairs, with temporal regularity, to com-
pare them with schemata prototypes. There is no variation
in matching and no information preservation after each in-
put element. A recognition example of the algorithm and
its configuration is shown in Figure 4.

4.2 Approximate recognition for multiple user-defined
schemata targets

The task of approximate recognition of multiple schemata
prototypes is examined with two model configurations,
matching ‘Meyer’, ‘Prinner’, and ‘Cadence’ schemata.
The first case searches for generic approximations (omis-
sions and thresholds in similarity metrics) of each schema
family prototype, by first tagging all the extracted schema-
states with labels and positions of similar correspond-
ing elements in prototypes and then recognizes complete
schemata by combining elements with the same schema
class tag under temporal limitations. The second case
recognizes approximations of schema families (collections
of variants), performing comparisons between schema-
samples and class functions that validate all the variants
of a schema class. The type of matching approximation
of the second case includes those of the first case, but also
hierarchical comparisons, considering harmonic similarity
first, as a prerequisite, and voice similarity second.
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CT ST Vmin Vmax Emin Emax T Mr Br Trel val

M P 0.5 11 0 0 5 0.5 0.5 E 6

Figure 19: Duplication of schema-events. Which pair of schema-event pairs is
considered valid? Why consider the complete area from the start until measure 7
(Beethoven Ludwig van Piano Sonata op.27 no.2 C sharp minor 2nd movement,
mm 1-7).

4. System limitations in specificity. As stated previously, after achieving
maximum recall in a search-case, the next goal was to maximise precision by
filtering out false positives. The usual case was to increase the specificity of the
temporal filters until either precision perfected or, more often, a true positive
was excluded, in which case the last search score with the best recall was kept.
There were cases, however, that even though maximum search specificity was
applied, due to the density and diversity of notes in the music surface, false-
positives were unavoidable.

CT ST Vmin Vmax Emin Emax T Mr Br Trel val

M M 0.5 5 0 2 1,2 0 1 E 6

Figure 20: The values were manually configured to match annotated instances
but this seems unavoidable (Mozart Wolfgang Amadeus Piano Sonata KV.283
no.5 in G major, 1st movement, mm.38-42).

5. Representation issue. There were a few cases of false positives due to
the search-system’s schema-voice representation. Implementing a more robust
and elaborate calculator for melodic interval operations that will consider the
note names and their position in score (e.g. ‘morphetic’, Meredith et al., 2002)
will solve this issue.

32

Figure 4. Identification of a generic ‘Meyer’ instance. The
parameters from left to right: Manual search configuration
for generic ‘Meyer’ prototype with temporal distance be-
tween events in a range between 0.5 and 11 beats, and 0
for schema-event durations, for a single tonality (5) and 0.5
regularity threshold for temporal intervals in each melodic
movement, and maximum (6) thresholding in inter-event
temporal regularity. From Ludwig van Beethoven, Piano
Sonata in C-sharp minor op.27 no.2 2nd mvt mm.1-7.

4.3 Approximate recognition of extracted schema
family type from examples

This computational experiment examines prototype extrac-
tion and classification. The algorithm maintains reposito-
ries of exemplars for each schema-type separately, from
which prototype forms of schemata are extracted utilizing
a class function. The validity of the extracted prototypes is
examined by evaluating the recognition performance with
the extracted prototypes on previously unseen examples.

5. RESULTS

The identification task (Figure 5, I<SCHEMA>) achieved high
recall and precision for both schemata types, indicating
that basic music information processing of the classifier is
working as it should.

The recognition models, due to approximate match-
ing, have increased recall but lower precision (Figure 5,
(Figure 5, R<SCHEMA>, F<SCHEMA>). The first configu-
ration that tests family-prototype generic approximation
(Figure 5, R<SCHEMA>) can be very imprecise, as approx-
imating the prototypical form can yield completely un-
related patterns. The second configuration (Figure 5,
F<SCHEMA>) has slightly lower recall from the first but in-
creased precision, due to more targeted approximations
with the use of a class function.

The learning model (Figure 5, L<SCHEMA>) achieved
low recall, due to occasional erroneous prototype extrac-
tions and even lower precision, because of the highly-
generalised extractions of prototypes.

6. FINDINGS AND DISCUSSION

This paper presented a prototype model architecture for
musical schemata classification. It is among a small hand-
ful of computational models for extracting instances of
such high-level music-theoretic concepts from input staff
notation.

Figure 5. The F1 score of all musical schemata identifica-
tion models.

The computational model that was developed for a mu-
sical schemata classifier was tested under different tasks
and configurations, and proves to be a reliable framework
that can facilitate classification operations regarding mu-
sical patterns. The use of structured music information
(i.e. the ‘low’ and ‘high’ observations) enabled high-level
operations such as comparisons of abstract patterns, and
the methods that were developed to produce them can
be further fine-tuned. Moreover, the maintenance of an
example-base proved very helpful in prototype extraction,
as it provides transparency of operations. Furthermore, the
repository of a learning session can be reused in other ses-
sions, transferring learned knowledge.

The model was tested on a small dataset and its expan-
sion both in number and types of schemata annotations is a
natural future task. There are numerous improvements that
can be applied in this prototype model by fine-tuning indi-
vidual functions. For example, the sampling mechanisms
for schema-states and progressions can become adaptive
to local context, instead of global, part-wise features, and
thus become more accurate. Another interesting and in-
formative development would be the comparison of this
model’s performance with popular classifiers for sequen-
tial data, such as convolutional and recurrent neural net-
works. In addition, extending the classification capabil-
ities of the model to include information concerning the
position and function of schemata within phrases could be
useful for both learning and discovery of schemata. Lastly,
even the current abilities of the schema classifier can be
utilized to support content-based retrieval on digital score
libraries. The sampling method is independent from the
model and, thus, large databases of digital scores can be
represented as samples, or even symbolic fingerprints [1].
In addition, on top of a database representation for mu-
sic scores, a query language for music patterns (as musi-
cal schemata) would provide a flexible interface for a user-
defined content-based music information retrieval.
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