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ABSTRACT

While audio chord recognition systems have acquired
considerable accuracy on small vocabularies (e.g., ma-
jor/minor chords), the large-vocabulary chord recognition
problem still remains unsolved. This problem hinders the
practical usages of audio recognition systems. The diffi-
culty mainly lies in the intrinsic long-tail distribution of
chord qualities, and most chord qualities have too few sam-
ples for model training.

In this paper, we propose a new model for audio chord
recognition under a huge chord vocabulary. The core con-
cept is to decompose any chord label into a set of musically
meaningful components (e.g., triad, bass, seventh), each
with a much smaller vocabulary compared to the size of
the overall chord vocabulary. A multitask classifier is then
trained to recognize all the components given the audio
feature, and then labels of individual components are re-
assembled to form the final chord label. Experiments show
that the proposed system not only achieves state-of-the-art
results on traditional evaluation metrics but also performs
well on a large vocabulary.

Large-vocabulary chord transcription is a difficult task, as
the number of chord qualities is large, and the distribution
of training chord classes is extremely biased. For example,
the Billboard dataset [2], a human-annotated dataset, con-
tains 230 different chord qualities, or equivalently, 2,749
distinct chord classes 1 . While the first 10% chord quali-
ties cover 93.86% of the data, the last 50% chord qualities
only cover 0.35% of the data altogether 2 . Such a long-
tailed chord distribution makes it extremely hard to model
rare chord qualities.

To bypass the problem, former systems typically adopt
two kinds of strategies: chord quality simplification and

1 We here assume that each chord quality can be combined with all
possible 12 roots except for the N chord.

2 In calculation, the chord quality counts are weighted by their dura-
tions.
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Figure 1. A visualization of chord quality distribution in
our collected chord dataset. Each chord quality is denoted
by a block whose size is proportional to its number of ap-
pearances. Labels for small blocks are omitted.

The second approach, instead, turns chord label classifi-
cation into a structured estimation problem, and this study
belongs to this category. To achieve this, a unified structure
representation of chord symbols is required. Chromagram-
like representations are often adopted for chord recognition
as it is a direct reflection of acoustic features and often led
to a good performance in practice [16, 20].

However, Chromagram-like representations miss some
of the musical semantics that are important references for
human transcribers. One example features two chords
E:min7/b3 and G:maj6 which are very similar in the
chromagram as they share the same chord notes {G, B, D,
E} and bass G. However, they are quite different in musical

1. INTRODUCTION
chord structure representation. The first approach maps
complex chord qualities into simpler ones (e.g., to map
C:maj7, C:maj9, C:maj11 etc. all to C:maj), and
therefore suppress the number of different chord classes.
Then, a classifier is trained based on the simplified chord
vocabulary. The most common mapped chord vocabulary
is the major/minor vocabulary, which consists of merely
12 major chords, 12 minor chords, and a non-chord label.
However, this is often an over-simplification, especially for
some pop and jazz chords with richer expressions than ma-
jor/minor chords do.
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semantics as one is a major chord and the other is minor.
Moreover, in audio chord recognition, some chord degrees
are more important than others. For example, a wrong triad
is regarded as a more severe problem than a wrong ninth
or other extensions. Such intuition is not directly reflected
in a chromagram-like representation of a chord.

We believe that structured representation is the key to
large-vocabulary chord recognition, yet a more musically
meaningful representation is needed. In this paper, we
propose a new representation method by chord structure
decomposition. We also present a multitask classifica-
tion model comprised of a Convolutional Recurrent Neural
Network (CRNN) and a Conditional Random Field (CRF),
that utilize such representation into the audio chord recog-
nition system.

Audio chord recognition is an important task for content-
based music information retrieval and has been actively
studied for 20 years [22]. Audio chord recognition sys-
tems typically follow a two-stage process: feature extrac-
tion and chord sequence decoding. For traditional mod-
els, chromagram [19, 22, 23] is the most widely used fea-
ture for chord recognition as it reflects the acoustic prop-
erties of a chord. There are also other attempts for hand-
crafted features, such as the tonnetz feature [12]. For the
sequence decoding model, template matching and Hidden
Markov Models (HMMs) [24, 27] are adopted to decode
the most likely chord sequence. Considering the relation-
ship of chord labels and other musical concepts (e.g., beats,
keys), complex HMMs and other Dynamic Bayesian Net-
works (DBNs) are also used for joint decoding [19, 23].

With the development of deep learning, recent stud-
ies begin to focus more on features extracted by neural
networks, such as feed-forward Deep Neural Networks
(DNNs) [16] and Convolutional Neural Networks (CNNs)
[10, 17]. For the sequence decoding phase, beam search
and the Viterbi algorithm are widely used [1,18,28]. While
early papers in this area adopt a small and fixed vocabulary
like the major/minor vocabulary [1,16,17], recent work fo-
cuses more and more on larger vocabularies [7, 8, 20].

Strategies for structured representation of chords has
been widely discussed in the field of music generation and
analysis [4, 9], but not all of them are helpful in the con-
text of chord recognition problem. In audio chord recog-
nition, the HPA system [23] uses two latent variables, the
root-position form and the bass note, to model a chord in a
Hidden Markov Model. McFee and Bello [20] adopt a 36-
D vector to represent a chord, denoting a binary encoding
of its root, bass and chord degrees respectively. Then, a
plain 170-class classifier is adopted to decode chord sym-
bols from the features.

3.1 Chord Structure Representation

Most chord symbols can be regarded as a collection of
musically meaningful components: root, bass (for pos-
sible inversions), a triad type, and a set of extra notes,

Chord Root Triad Bass 7th 9th 11th 13th

G:maj G maj G N N N N

G:maj7 G maj G 7 N N N

G:7(b9) G maj G b7 b9 N N

G:min7/b3 G min Bb b7 N N N

B:hdim7 B dim B b7 N N N

A:sus4(b7) A sus4 A b7 N N N

C:9(13) C maj C b7 9 N 13

N N N N N N N N

Table 1. Some examples of chord structure decomposition.

which usually include certain 7th, 9th, 11th and/or 13th

degrees above the root. Different combinations of these
components form the large chord vocabulary that musi-
cians use. However, the possible choices for each com-
ponent are pretty limited. For example, the 7th

We now formally introduce our chord representation
method. We first define the chord components and their
possible labels:

Root← {N,C,C#/Db,D, ...,B}
Triad← {N,maj,min, sus4, sus2,dim, aug}
Bass← {N,C,C#/Db,D, ...,B}

Seventh← {N, 7,b7,bb7}
Ninth← {N, 9,#9,b9}

Eleventh← {N, 11,#11}
Thirteenth← {N, 13,b13}

Notice that we ignore incomplete triads like C:(1,5)
and C:(1), so these qualities will not appear in the triad
category. To make other chord degrees (e.g., the major 6th

in maj6 and min6) compatible with the representation,
we here adopt octave equivalent versions of these degrees
that match the form of the chord extensions listed above
(e.g., 6th to 13th).

By enumerating distinct labels for these components,
we can map the component labels into numeral values. The
enumerated values are all indexed from 1. We now define
the chord vector, the encoded form of chord used by our
models. The chord vector c = (c1, ..., c6) of a chord C is
defined as a 6-dimension vector. For non-chord class N, all
ci = 1. For any other chord label C, we have:

c1 = (TriadIndex(C)− 1) · 12 + RootIndex(C) + 1

c2

3 = SeventhIndex(C)

c4 = NinthIndex(C)

c5 = EleventhIndex(C)

c6 = ThirteenthIndex(C)

2. RELATED WORK
degree of a

chord, if exists, is most likely to be one among 7, b7 and
bb7 (in dim7 chords). This property is very helpful un-
der the context of audio chord recognition, as the number
of classes for chord label classification can be greatly re-
duced if we break down the chords into these components
and perform classification on each component instead.

3. PROPOSED METHOD = BassIndex(C)

c
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Figure 2. An overview of the system.

3.2 Model Architecture

The proposed chord recognition system consists of two
parts, the feature processor and the decoding model. The
feature processor transforms the low-level audio features
to the frame-wise activations for each chord component
value. The decoding model then decodes the final chord
sequence given the activations. An overview of the system
is shown in Figure 2.

3.2.1 Feature Processor

We first apply the Convolutional Recurrent Neural Net-
work (CRNN), a powerful architecture for audio feature
processing [3, 6, 20], to the input spectrogram. The audio
feature is first fed into convolutional layers. After each
convolutional layer, we perform batch normalization and
then a rectified linear function to introduce non-linearity.
Each convolutional layer adopts a 3 × 3 kernel size with
1× 1 zero padding to the input, except for the last two lay-
ers where no padding is applied on the frequency axis, in
order to reduce the feature size.

After that, we apply a Bi-directional Long Short-Term
Memory (Bi-LSTM) layer to introduce temporal context
for chord recognition. Each direction has a hidden size of
96. Then, for each frame t, a linear unit transforms the hid-
den states for both directions into six vectors s(t,1)...s(t,6).
The softmax function is performed on each vector to get
the activation a(t,1)...a(t,6) for each component of the
chord vector:

a
(t,i)
k =

exp(s
(t,i)
k )∑Ni

k′=1 exp(s
(t,i)
k′ )

∀i = 1...6,∀k = 1...Ni (1)

Here, Ni denotes the vocabulary size of the i-th com-
ponent category. The loss of the neural network given the
ground-truth chord sequence C = {C(1), ..., C(T )} is de-
fined as weighted cross-entropy loss:

L = −
T∑
t=1

6∑
i=1

Ni∑
k=1

w
(i)
k I[k = c

(t)
i ] log(a

(t,i)
k ) (2)

Here, I[·] is the indicator function, and c(t)i denotes the i-
th component of the chord vector of C(t). w(i)

k is the class

weight factor for index k of the i-th component. We will
further explain it in section 3.3.

3.2.2 Chord Decoding Model

To decode the final chord sequence from the activation
vectors a, an intuitive way is to pick the class with the
largest activation values for each component and each
frame. However, this approach tends to produce excessive
chord changes as there is no transition penalty between two
frames. Also, it will be hard if we want to control the out-
put chord vocabulary V . Therefore, we propose a decoding
model by a linear Conditional Random Field (CRF).

The linear CRF takes the following form:

P (C | F) ∝ φ(C(1),F)

T∏
t=2

φ(C(t),F)ψ(C(t−1), C(t))

(3)
Here, F is the audio feature of the whole song and

C = {C(1), ..., C(T )} is the target chord sequence with
each C(i) ∈ V . The observation potential function φ takes
the form:

φ(C(t),F) = exp
6∑
i=1

Ni∑
k=1

I[k = c
(t)
i ] log a

(t,i)
k (4)

where a(t,i) are the activation vectors given by the Convo-
lutional Recurrent Neural Network (CRNN) and c(t) is the
encoded chord vector for C(t).

The transition potential function ψ takes the form:

ψ(C(t−1), C(t)) = exp
(
−d · I[C(t−1) 6= C(t)]

)
(5)

where d = 30 is a hyper-parameter that controls the degree
of transition penalty. A larger d penalize more on chord
transition and vice versa.

3.3 Class Re-weighting

Although we do not directly perform classification on dis-
tinct chord labels, the problem of class imbalance still per-
sists during model training. For example, some chord ex-
tensions are very infrequent in the training set, leading to
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Figure 3. An illustration of why ambiguous class label-
ing causes problems. In this example, the class bound-
aries of the positive class and the negative class cross each
other. Under the maximal likelihood principle, the accu-
racy of the positive class (with smaller prior than the nega-
tive class) is greatly harmed as its data likelihood is mostly
covered by the negative class. Class re-weighting allevi-
ates this problem to some extent.

excessive negative samples and insufficient positive sam-
ples for training. Generally, imbalanced training samples
make the training process biased as the model tends to fo-
cus more on optimizing classes with more samples.

We here stress another issue that potentially aggravates
this bias in learning-based automatic chord recognition
systems. Audio chord annotation is an ambiguous problem
even for human experts [11]. This means that the "ground
truth" chord label of a fixed audio piece may contain un-
certainty if annotated by different experts [15]. This may
cause class boundaries for different labels to cross each
other. In this case, we inevitably suffer from accuracy loss
for the ambiguity between classes, and classes with small
priors often suffer most (see Figure 3 for an example).

To make up for the bias, we introduce the class re-
weighting strategy by introducing a class-wise weight fac-
tor w(i)

k for each possible chord component value in equa-
tion (2). By the re-weighting term, we want classes with
fewer training samples to gain larger weights. We adopt
the following weight term:

w
(i)
k = min


(

n
(i)
k

maxk′ n
(i)
k′

)−γ
, wmax

 (6)

Here, n(i)k denotes the number of training samples for
class k for the i-th component. γ and wmax are hyper-
parameters, where 0 ≤ γ ≤ 1 is the balance factor and
wmax ≥ 1 is the clamping value. A smaller γ will result
in a more balanced weights and vice versa.

As previous chord recognition systems adopt smaller chord
vocabularies compared to us, it is hard to make a direct
comparison between different systems. Therefore, we di-
vide the experiment results into two parts.

In the first part, we will compare the performance of
our system on traditional chord evaluation metrics, most
of which perform evaluations on simplified chord vocabu-
laries. The evaluation metrics are calculated by the python
package mir_eval [26]. In the second part, we will di-
rectly evaluate the system performance on larger chord vo-
cabularies.

4.1 Datasets

We use 1217 songs from Isophonics, Billboard and MARL
collections collected by Humphrey and Bello [11, 20] to
form the dataset. To make a fair comparison, we adopt the
5-fold cross-validation with the same train/validation/test
splits (60% for training, 20% for validation and 20% for
testing) as in [20].

4.2 Pre-processing

We extract the Constant-Q Transform (CQT) spectrogram
from the audio by the librosa [21] package with a sample
rate of 22050 and a hop length of 512. We use the pitch
range from midi note C1 (inclusive) to C7 (exclusive) with
36 filter banks per octave (252 CQT filter banks in total).

Data augmentation is performed by the pitch-shifting
operation (from -5 semitones to +6 semitones) on the train-
ing set. Augmented features are directly calculated by
shifting CQT spectrograms. The annotated chord labels
are shifted accordingly.

4.3 Model Training

We use the Adam optimizer [14] to optimize the neural
network parameters with a scheduled learning rate adjust-
ment. To begin with, we use a learning rate 1e-3. If the
validation loss does not improve in 5 epochs, we decrease
the learning rate by 90%. We stop training after the learn-
ing rate drops below 1e-6.

In each epoch, a 1000-frame segment (approximately
23.2 seconds) is randomly selected from each song. 24
such segments form a mini-batch for gradient calculation.

4.4 Comparative Results

We first evaluate the performance of our system under tra-
ditional metrics proposed by [25]. For different metrics,
the model outputs and ground truth chords are first mapped
to some small vocabularies by removing extra notes and/or
inversions. The scores are calculated by their matching
percentages. The adopted metrics are: root only, root and
thirds, major/minor chords, basic triads, sevenths, tetrads
and MIREX (at least three correct notes between reference
and estimated chords). All of these scoring methods ig-
nore extended chord degrees (e.g., ninth, eleventh and thir-
teenth).

max = 10); (3) ACE18: an early design

4. EXPERIMENTS

To evaluate the effect of our chord representation versus
a plain classifier, we also perform evaluations on a modi-
fied version of the model, which contains a linear layer and
a flat softmax output layer for all possible combinations of
roots and chord types present in the dataset. The model
is denoted by "Flat" in Figure 4. Other compared models
are (1) Ours: the proposed model without re-weighting;
(2) Ours+R: the proposed model trained with re-weighting
factors (γ = 0.5, w
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Figure 4. Comparison of median weighted recall scores.

of our model submitted to the MIREX 2018 contest [13]
trained on the full vocabulary without beat alignment post-
processing; (4) CGRU: A Convolutional Gated Recurrent
Units (CGRU) model by [20]; (5) KHMM: A k-stream
HMM by [5]; (6) DNN: A deep convolutional network
by [11]; (7) Chordino: the classic baseline with template
matching and HMM by [19].

In the results, Our system outperforms the baseline sys-
tems in all metrics, indicating that our system has a good
performance on simplified chord vocabularies, even if the
system is not trained for these vocabularies on purpose.

We can also see that the model with class re-weighting
actually does not outperform the model without class re-
weighting. The main reason is that class re-weighting as-
sumes a more balanced class distribution, which is not the
case of our test dataset. We will show in section 4.5.1
that class re-weighting actually has a better performance if
we penalize the misclassification error of different classes
equally, regardless of their frequency in the test dataset.

4.5 Performance on Large Chord Vocabulary

4.5.1 Evaluation on Common Chord Labels

To evaluate the chord recognition system on a large chord
vocabulary, we first evaluate the system performance on
common chord labels. We construct the target chord vo-
cabulary V that includes the following chord qualities:

• Basic triads: maj, min, aug, dim

• Inverted triads: maj/3, maj/5, min/b3, min/5

• Seventh chords: maj7, 7, min7, dim7, hdim7

• Extended chords: maj9, 9, min9, 11, 13

• Suspended chords: sus4, sus2, sus4(b7)

• Slash chords: maj/2, maj/b7, min/2, min/b7

• Non-chord class: N

All chord qualities except N can be applied to 12 roots,
resulting in 301 distinct chord classes. Under such a con-
straint, the model will not output other chord classes. To
define the evaluation metrics, we use D to denote all pairs
of estimated chords and reference chords (in vocabulary
V ) over the test dataset on the same frame. The per-class
accuracy accchord(C) for chord class C ∈ V can be de-

Model Frame-wise Acc. Class-wise Acc.

No Re-weighting 0.7719 0.3475
(0.3,10.0) 0.7609 0.3745
(0.5,10.0) 0.7459 0.4022
(0.7,20.0) 0.7146 0.3738
(1.0,20.0) 0.6577 0.3832

Table 2. Mean frame-wise accuracy and mean class-wise
accuracy for the proposed model with different class re-
weighting factors (γ,wmax) for training. The re-weighting
factors are shown in the model column.

fined as:

accchord(C) =

∑
(Cest,Cref )∈D I[Cest = C]I[Cref = C]∑

(Cest,Cref )∈D I[Cref = C]

(7)
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Figure 5. The quality confusion matrix of model trained
with re-weighting factors γ = 0.5, wmax = 10.

We believe that a good chord recognition system should
have high frame-wise accuracy, as well as a low bias
among different chord classes. For example, a system with
high bias may recognize all samples of one chord class
C into another, resulting in a low score for accchord(C).
Therefore, we want the average of accchord(C) over all
chord classes as high as possible in the class-wise measure-
ment. Formally, we define the mean frame- and class-wise
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accuracy as:

accframe =
1

|D|
∑

(Cest,Cref )∈D

I[Cest = Cref ] (8)

accclass =
1

|V |
∑
C∈V

accchord(C) (9)

We evaluate our system with different class re-
weighting parameters under these two metrics. The re-
sults are shown in Table 2. From the results, we can see
that all models with class re-weighting have a lower mean
frame-wise accuracy and a higher mean class-wise accu-
racy compared to the model without class re-weighting.
This indicates that class re-weighting alleviates the class
bias problem to some extent while leading to a trade-off
that the frame-wise accuracy is harmed.

We also show the within-root quality confusion ma-
trix (i.e., quality confusion matrix when the estimated root
is correct) of the model trained with re-weighting factors
(γ = 0.5, wmax = 10) in Figure 5 for error analysis. Two
major trends can be observed. First, most quality errors
are from mapping complex chord qualities to simpler ones.
For example, maj9, 9 and min9 are mapped to maj7, 7
and min7; tetrads are mapped to triads. Second, certain
extended chord qualities like 13 and 11 are hard to be de-
tected. Despite of the label bias, we also suspect that anno-
tated extended qualities may omit some degrees in practice
(e.g., a missing eleventh in a 13 chord) but the omission
is not always annotated in the test set. The misclassifica-
tion of 11 chords to sus4(b7) is also reasonable as a 11
chord without a third and a ninth has the same pitch classes
as a sus4(b7) chord.

4.5.2 Evaluation on Chord Components

To further evaluate the system’s performance on a large
chord vocabulary, we adopt a full chord vocabulary (i.e.,
a chord vocabulary containing all chord qualities present
in the dataset) for the decoding process and evaluate the
class-wise accuracy for each chord component. For the
root and bass category, we are interested in if their rela-
tionship (chord inversion) is correctly detected. The slash
notation is defined as the interval between bass and root.
For example, In the chord quality maj/5, the fifth of the
chord is the bass note. Accuracy on slash notations reflects
the model’s ability to detect chord inversions.

Also, we want to evaluate how class re-weighting af-
fects the accuracy of rare chord component labels. There-
fore, we experiment with different hyper-parameters for
class re-weighting and make a comparison as shown in
Figure 6.

In Figure 6, it is clear to show that the model with no re-
weighting declines to predict certain extensions including
11 and 13. When class re-weighting is adopted, we can
observe an accuracy boost for these components. However,
the trade-off of class re-weighting is the fact that it harms
the accuracy of some other classes as well as providing
false positive predicts.

Also, it can be observed that the accuracy for a specific
component class has a positive correlation with the number
of its appearances in the dataset. Some label components
surely have too few samples for the model to learn the cor-
rect acoustic and semantic properties, resulting in a low
accuracy even if class re-weighting is performed.

In this paper, we propose a method to perform audio chord
recognition on a large chord vocabulary. The core idea of
the model is to recognize each chord component instead
of the whole chord label itself, and each chord compo-
nent has a much smaller vocabulary that is easier for the
model to handle. We show by experiment that the model
acquires state-of-the-art performance on traditional chord
evaluation metrics. Also, we demonstrate its ability to de-
tect rare chord component values.

However, the model still has several unsolved issues.
First, the model still has strong class bias even if we adopt
the re-weighting strategy, and the model performance on
some rarest chord component values are still not satisfac-
tory. Second, the proposed representation is not yet per-
fect. More theoretical analysis and experiments are re-
quired to design the best chord representation method for
the audio chord recognition task.

We also stress the class ambiguity issue with regard to
the datasets. Although a class-balanced dataset is nearly
unfeasible in the realm of audio chord recognition, we
would like to call for datasets with more precise annota-
tions as well as a more thorough analysis of currently avail-
able datasets.

5. CONCLUSION
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