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ABSTRACT

Musical form and syntax in Western classical music are hi-
erarchically organised on different timescales. One of the
most important features of this structure is the organisation
of modulations between different keys throughout a piece.
Music theoretical research has established taxonomies of
prototypical modulation plans for different modes and mu-
sical forms. However, these prototypes still require empiri-
cal validation based on quantitative statistical methods and
cannot be retrieved automatically so far.

In this paper, we present a novel method to infer proto-
typical modulation plans from musical corpora. A modu-
lation plan is formalised as a transposition-invariant proba-
bilistic model over the underlying pitch class distributions
based on a hierarchical pitch scape representation. Proto-
typical modulation plans can be learned in an unsupervised
manner by training a mixture model (similar to a Gaussian
mixture model) on the data, so that different prototypes ap-
pear as distinct clusters.

We evaluate our approach by performing hierarchical
clustering on a corpus of more than 150 Baroque pieces,
with the extracted clusters showing excellent agreement
with the most common prototypes postulated in music
theory. Our method bears a great potential for mod-
elling, analysis and discovery of hierarchical key struc-
ture and prototypes in corpora across a broad range of
musical styles. An accompanying library is available at:
github.com/robert-1lieck/pitchscapes.

1. INTRODUCTION

The hierarchical structure of a piece in Western classical
music is strongly determined by musical form [1] and har-
monic syntax [2, 3], based on different aspects, such as
repetition and variation of the rhythmic, melodic and har-
monic content and hierarchical relations between different
harmonies.

A central aspect that links musical form and harmonic
syntax is the modulation plan of a piece. Western musicol-
ogy assumes a number of prototypical modulation plans
that describe the overarching tonal structure of a piece,
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such as I-V-I for pieces in major or i—III-i for pieces in mi-
nor [1]. These prototypes have a long-standing history in
musicology and have emerged from inspection of numer-
ous individual pieces and agreement among experts. How-
ever, a quantitative validation based on statistical meth-
ods constitutes an important supplement to confirm and
refine the music theoretic findings. Furthermore, they can-
not be automatically retrieved from musical data, which
impedes large-scale investigations and the application to
other styles and genres of music.

In this paper, we present a method to retrieve prototypi-
cal modulation plans from large corpora of musical pieces
in an unsupervised manner. This is achieved by modelling
the overall corpus as a mixture of multiple prototypes, sim-
ilar to how Gaussian mixture models [4] can be applied to
clustering in Euclidean space. A prototype is represented
by a transposition-invariant Bayesian model that describes
the pitch content of a piece (pitch class distributions) on
multiple time scales. Modelling is based on a novel pitch
scape representation of the musical content, which allows
to account for the hierarchical structure inherent to both
musical form and harmonic syntax. We evaluate our model
on a corpus of more than 150 Baroque pieces, with the ex-
tracted clusters showing excellent agreement with the most
common prototypes postulated in music theory.

By providing a solid statistical approach to modelling
prototypical modulation plans, we make an important con-
tribution to connecting music theory and empirical science.
Our approach relies on minimal prior assumptions, works
on simple pitch data, and learns prototypes in an unsu-
pervised manner, which bears a great potential for mod-
elling, analysis and discovery of hierarchical key structure
and prototypes in corpora across a broad range of musical
styles.

In the remainder of the paper, we describe the underly-
ing pitch scape representation in Section 2, introduce the
probabilistic Bayesian model that is used to learn proto-
types and prototype mixtures from musical corpora in Sec-
tion 3, and present and discuss the results of our evaluation
in Section 4.

2. PITCH SCAPES

‘We model prototypical modulation plans based on a novel
pitch scape representation of the musical content. Pitch
scapes (see Figure 1 for an illustration) represent the pitch
content of a piece on multiple time scales and can be for-
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Figure 1. Pitch scape (Prelude in C major, BWV 846, Jo-
hann Sebastian Bach). The two time values can be speci-
fied in start-end-coordinates (¢, and t.) or in center-width-
coordinates (¢, and t,,).

mally defined as the conditional probability distribution of
the pitch classes for a given section of the piece:

Definition 1 (Pitch Scape). A pitch scape S is a function
that maps each proper time interval [ts,t.] (ts < te) to a
pitch class distribution

11
G RxR—[0,1]", > &(r|tste)=1. (1)
=0

A pitch scape can equivalently be conceived as a condi-
tional probability distribution &(r | ¢, t.) with three vari-
ables or a vector-valued function &(ts,t.) in two vari-
ables.

Pitch scapes are inspired by scape plot visualisations, to
which we draw the connection in Section 2.1, while Sec-
tion 2.2 describes how to compute pitch scape estimates
for a given piece.

2.1 Pitch Scape Visualisation

Scape plot visualisations were introduced in [5,6] to depict
key estimates for different sections of a piece in a hierar-
chical triangular plot and have since been used for a variety
of visualisation tasks [7-11].

Visualising the entire information contained in a three-
dimensional pitch scape in a single two-dimensional plot
is difficult. However, there are two convenient ways to vi-
sualise the relevant information. First, the 12 components
can be visualised separately by creating one scape plot per
pitch class. This preserves the entire information but does
not foster musical intuition because information about si-
multaneous events is scattered across multiple plots. Alter-
natively, a key finding algorithm can be employed [12-15]
to map the pitch class distribution of each point to a colour
value. This corresponds to a key-scape plot of the pitch
scape. For illustration, we show in Figure 2 an overlay
of the 12 separate pitch-scape plots and the corresponding
key-scape plot.

The colour mapping for a key-scape plot can be realised
in different ways. We use a template-based key finder that
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Figure 2. Separate pitch-scape plots and resulting key-
scape plot for the prelude in C major, BWV 846, Johann
Sebastian Bach (colour legend for keys on the right).

provides a score value for each major and minor key. The
scores can be transformed into a probability distribution
p(k) using a soft-max function. After choosing a unique
colour for each key, p(k) can be used to interpolate be-
tween colours by computing their weighted average. To
define the colour for each key, we let the hue value vary
either along the circle of fifths or chromatically, which has
complementary advantages. Fifth-based hue maps related
keys to similar colours, while chromatic hue allows to bet-
ter distinguish them. We add a lightness offset to distin-
guish major and minor keys and map the entropy of p(k)
to saturation. Entropy-based saturation allows to indicate
regions with uncertain key classification and avoids unin-
terpretable colour blends.

2.2 Pitch Scape Estimates

The pitch scape of a piece is computed from its musical
content and reflects the probability of a certain pitch class
to occur within the specified time interval. As we are work-
ing in a Bayesian framework, we model the pitch scape of
a piece as a posterior estimate given a prior distribution
and the observed notes. To formally define the pitch scape
estimate of a piece, we first define its pitch class density:

Definition 2 (Pitch Class Density). The pitch class den-
sity (| t) for pitch class 7 at time t corresponds to the
normalised pitch class counts over all tones that sound at
time t

S(m|t) = [rmod12=x], (@

T 2
max{1, |Ti|} =
where Ty is the multiset of all tones (as integers in MIDI
pitch representation) sounding at time t; [[ - || is the Iverson



bracket, which equals 1 if its argument is true and 0 other-
wise; and the max avoids division by zero for silent parts
where Ty = () is the empty set.

Using the pitch class density, we define the pitch scape es-
timate as follows:

Definition 3 (Pitch Scape Estimate). The posterior esti-
mate of the pitch scape &(r | ts,t.) for pitch class m and
time interval [ts, t.] is

prior counts

1 ~ =~ te
S(r|tarte) = 50 [H/ts s(rltydt], @3
—_——

normalisation overall pitch class counts

where the integral over the pitch class density computes the
overall pitch class counts, ¢ > 0 specifies the prior counts,
and the leading term ensures proper normalisation.

Using zero prior counts ¢ = 0 thus corresponds to using
the average pitch class density as pitch scape estimate (in
Bayesian terms this would be a maximum likelihood esti-
mate). In contrast, using a prior count of ¢ = 1, which is
done throughout the paper, corresponds to a Bayesian max-
imum posterior estimate with a uniform prior over pitch
classes (¢ = 1 corresponds to a uniform Dirichlet distribu-
tion, which is the appropriate conjugate prior for the cate-
gorical distribution over pitch classes). Note that choosing
¢ > 0 also circumvents the zero-count problem for silent
parts.

The relative weight of the overall pitch class counts,
computed in the integral in (3), depends on the scale on
which time is measured. Throughout the paper, we mea-
sure time in quarter notes, so that a time interval of one
quarter note has the weight of a single observation. That
means, for instance, a single pitch sustained for two quarter
note adds two to the respective overall pitch class counts;
two different pitches sustained for one quarter note add
half a count each; and three pitches sustained for an eight
note add one sixth count each. Thus, for small time inter-
vals the prior counts c introduce a significant bias towards
a uniform pitch class distribution, while for large time in-
tervals they have a vanishingly small weight relative to the
overall pitch class counts (e.g. a 32-bar piece in 4/4 yields
a total of 128 pitch class counts, so that the prior counts
do not cause a major change of the estimated pitch class
distribution for the entire piece).

3. MODELLING KEY STRUCTURE

We define our model for mixtures of prototypes in two
steps. First, we define a probabilistic pitch scape model
of a transposition-invariant modulation plan (Section 3.1).
Based on this model for single prototypes, we define a mix-
ture model (Section 3.2) that incorporates explicit transpo-
sition and models a musical corpus as a mixture of multiple
prototypes.

3.1 Prototypes

The idea of a prototype is to specify an object that rep-
resents a subset of the data. In probabilistic modelling

this corresponds to defining a probability distribution for
which a subset of the data has a high likelihood. Addition-
ally, this distribution should be unimodal so that its mode
can be taken as a representative of all data points belong-
ing to that prototype. In n-dimensional Euclidean space,
prototypes can for instance be defined using multivariate
Gaussian distributions.

When defining prototypes for pitch scapes, we are fac-
ing some additional challenges that will be addressed in the
following. First, the output of a pitch scape is a categori-
cal distribution (over pitch classes), which has to be nor-
malised. Second, time is continuous so that a pitch scape
itself is an inherently continuous object. Third, the pro-
totypes postulated in music theory are formulated in terms
of scale degrees, which makes them transposition-invariant
(i.e. transposing a piece does not affect its relation to a spe-
cific prototype). The first two points will be addressed
in the following Section 3.1.1, the third point is resolved
in Section 3.1.3 and incorporated in the mixture model in
Section 3.2.

3.1.1 Definition

We address the first two points by defining a prototype as
a point-wise Dirichlet distribution with a time-dependent
parameter vector «. The Dirichlet distribution is the con-
jugate prior of a categorical distribution and acts as a like-
lihood function if the observations themselves are categor-
ical distributions, as it is the case for individual points in a
pitch scape (first point). Making its parameter vector time-
dependent additionally allows it to vary continuously over
the pitch scape (second point). Formally, a prototype is
defined as follows:

Definition 4 (Prototype). Given a function
a:RxR— R “

that maps each proper time interval [ts,t.] (ts < t.) to a
vector with positive entries, a prototype is defined as the
point-wise Dirichlet distribution with parameter vector c.
The likelihood of observing a pitch class distribution 11 for
the interval [ts,t.] given o is

p(Il |, ts,t.) = Dir(IT; a(ts, te)) - Q)
The log-likelihood of observing a full pitch scape S given
s

log Dir (G(ts, te); alts, te))dtsdte

0<t <t <T

logp(Gla)=%//

(6)

where T' is the duration of the piece.

The definition of the log-likelihood in (6) is equivalent to
the (negative) cross-entropy of an infinite number of uni-
form samples from the pitch scape. It differs from a sim-
ple integration of (5) only by the normalisation %, which
rescales it to the magnitude of a single observation and
makes it invariant to the duration of the piece. Note that
both (5) and (6) are probability density functions with the
usual implications (i.e. they can be greater than 1; their log
can be positive; their cross-entropy can be negative).



3.1.2 Proxy Function

To learn prototypes from data, we define « via a three di-
mensional real-valued proxy function « that has a set of
adjustable parameters 6 and an open parameter T

a7 RxRxR—>R. (7

The domain of interest is [0, 1] x [0, 1] x Z12 with the first
two arguments specifying the time interval in normalised
center-width-coordinates and the third specifying the pitch
class. The 7 component of « is then defined to be
AP (t, ) = €77 et ) ®)
with
t_c - %(ts +te) t_w = %(te - ts) 5 (9)
where 7' is the duration of the piece that is to be modelled.
3.1.3 Fourier Representation
We parameterise & as a Fourier series in three dimen-
sions [16]
a®n(x) = Z e x (10
n

where 7 (only in this equation!) is the mathematical con-
stant. The index vector n, wave vector k,,, and location
vector X are

X = (Lo, by, M) ne € {—N,,...,N.} (11)
n:= (Ne, Ny, N ) Ny € {=Nuy,..., Ny} (12)
Ky = (0cne, owne, 2557) ne € {—6,...,6}.  (13)

N, and N, allow to independently control the smoothness
(or bandwidth) of « for the center and width dimension,
respectively; 7 € Zjo represents the transposition of the
prototype (see below); and 0 = 1 — ﬁ is a scaling factor.
Scaling is required because we do not want & to have pe-
riodic boundaries conditions in the time dimensions. The
Nyquist frequency of the unscaled function is 2V, the scal-
ing factor thus stretches the function such that a critical
fraction of 7% is moved out of the interval [0,1]. This is
not relevant for the pitch dimension because the space of
pitch classes is inherently periodic and, moreover, we have
a complete discrete Fourier series that allows to represent
any function exactly. As «a is real-valued, 6,, and 6_,, are
complex conjugates and (due to the properties of the dis-
crete Fourier transform) all coefficients with n, = +6 are
real-valued. We can thus store the parameters 6 in a real-
valued array of dimensions (2N + 1,2N,, + 1,12).

As «a (and thus «) are periodic in the pitch dimen-
sion, the Fourier representation can be understood as a
transposition-invariant formulation of a prototype. When
creating a concrete instance of the prototype, 7 needs to be
specified and defines a specific transposition by inducing
a corresponding phase shift through the cyclic pitch class
space.

3.2 Mixture Model

In Section 3.1 we defined prototypes that have a point-wise
Dirichlet distribution (Definition 4) and adjustable parame-
ters 6. We will now build a transposition-invariant mixture

(ts te,TI)Ed

deD

Figure 3. Graphical representation of our mixture model.
© are the prototype parameters; ¢ and 7 the piece-specific
cluster index and transposition; « the deterministically
generated prototype instance; and I = &(t, t..) the pitch
scape values at intervals [ts, t.] (see text for more details).

model using these prototypes. The overall structure of the
model is shown in Figure 3 as a graphical model [17] and
will be explained in detail below.

Our model is similar to classical topic models for cor-
pora [18-20] with two nested levels. Each piece (or docu-
ment) d in the data set D is generated independently from
a specific prototype with parameters § = O, and transposi-
tion 7 (outer plate) and for a specific piece, each point II in
its pitch scape is generated independently (inner plate). !

3.2.1 Inference

We want to find parameters ©* that minimise the cross-
entropy (i.e. maximise the likelihood) of our data D

©* = argming —I—é‘ logp(D|0O), (14)
where
logp(D[©) = log» p(d|a'®7)p(c)p(r), (15)
deD c,T

is the data log-likelihood with the latent variables ¢ and 7
being marginalised out. The prior terms p(c) and p(7) are
assumed to be constant so that a priori no specific proto-
type or transposition is preferred. We use
logp(d|a) = ﬁ Z log Dir (IT; a(ts, te)) (16)
(ts,te,Il)ed

to approximate the piece likelihood (6) based on a finite
number of uniform samples. Marginalising out ¢ and 7
also readily yields the normalisation factor for the cluster
and transposition probability for a piece

ple,7|d) x p(d,e,7) = p(d] a(@C’T))p(C) p(t). (A7)

The optimal parameters ©* can be found by performing
gradient descent on the cross-entropy (14).

! The assumption of different points in the pitch scape being gener-
ated independently is obviously incorrect, which is common to all topic
models and the reason why they are not well suited to generate coherent
data (e.g. text or music). In fact, in a pitch scape the values at differ-
ent locations are highly correlated and would ideally be modelled as a
single continuous latent function. One approach to achieve this are Gaus-
sian processes (GPs) [21]. However, GPs are computationally expensive
and GPs for multi-class classification have complex kernel functions and
require approximations of the analytically intractable posterior distribu-
tion [21-23]. As we are primarily interested in extracting the mean pitch
scape (corresponding to the GP prior), which represents a specific proto-
type, we therefore chose the simpler approach of defining prototypes as a
point-wise Dirichlet distribution.



3.2.2 Hierarchical Clustering

Training the mixture model on a data set allows to perform
unsupervised clustering with a fixed number of clusters.
However, our motivation is a comparison with the proto-
types described in the music theory literature. Instead of
choosing a fixed number of clusters, we are rather inter-
ested in how clusters split hierarchically from more generic
prototypes to more specific ones. We therefore take a hier-
archical top-down clustering approach.

We start by training a single prototype on the whole cor-
pus and perform a binary split of this cluster by using it to
initialise a mixture of two prototypes, while adding mini-
mal noise (10~8) to the parameters @ to allow the clusters
to properly split. This procedure is then recursively and
separately applied to the resulting prototypes. To this end,
the probability p(d | ¢’) of a piece d to fall into the parent
cluster ¢’ is used as a weight in (15) when training the two
child clusters. This ensures a clear assignment between
parent and child clusters and implies that only pieces that
fell into the parent cluster influence the children.

After establishing a hierarchy of prototypes in this way,
we perform a joint refinement of the resulting clusters. To
this end, all final child clusters are combined in a single
model while lifting the parent-specific piece weights. This
serves a two-fold purpose. First, the prototypes may be
sharpened as interactions between the clusters can now be
exploited. Second, it acts as a sanity check for the estab-
lished hierarchy: If the child clusters remain stable in the
refinement phase, this indicates consistency of the hierar-
chical splitting.

4. EVALUATION
4.1 Experimental Setup

The model was implemented in PyTorch [24] and the
parameters © were optimised via gradient descent using
the Adam optimiser [25]. The “warm start” with pre-
initialised clusters was realised by using a small initial
learning rate (10~°) to allow for the mean and variance
estimators (internals of the Adam optimiser) to stabilise
before reaching the normal learning rate (10~2).

We trained our model on a corpus of 155 Baroque
pieces in MIDI format by Johann Sebastian Bach (84%:
WTK III; Brandenburgisches Konzert No. 5; Inventions
and Sinfonias), Georg Friedrich Hindel (4%: HWV 264,
Movement 2, 4, 9, 10, 11, and 13; HWV 435), and
Domenico Scarlatti (12%: Sonatas), see Appendix C for
a complete list. As opposed to later periods with an in-
creasing amount of chromaticism, the modulation plans
of Baroque pieces are expected to more closely conform
to the respective prototypes. Each piece was sampled by
choosing interval start and end points on a uniform time
grid of n = 50 points, resulting in n(n — 1)/2 = 1225
samples per piece.

Hierarchical clustering was performed up to depth 3
(8 final clusters) with subsequent refinement (see Sec-
tion 3.2.2). The hierarchy and final prototypes are shown
in Figure 4 and discussed below.

4.2 Results and Discussion

The root cluster, which was trained on the entire corpus,
represents a generic diatonic prototype. It does not un-
ambiguously belong to a particular mode, being classified
as minor based on ‘Albrecht’ profiles (as in Figure 4) and
major based on ‘“Temperley’ profiles. This is also reflected
in the separate pitch-scape plots (Table 1 in Appendix B),
which have strong weights for the entire pentatonic seg-
ment of the line of fifths (C—G-D-A-E). This can be inter-
preted as confirming the view that Baroque music is fun-
damentally diatonic.

The initial split results in a clear separation of major and
minor keys, with cluster (0) and all its descendants being
globally classified as minor pieces while (1) and its descen-
dants are classified as major. From now on we can see a
pronounced weight on the tonic pitch class (C for major,
A for minor) at the beginning and end of a piece in the
separate pitch-scape plots. This split into major and mi-
nor prototypes again is an important finding that confirms
these two modes to be dominant in Baroque music.

4.2.1 Prototypes in Minor

The next split of the minor cluster separates the two most
common prototypes. Prototypical minor-mode pieces are
assumed to either modulate to the key of v (the dominant)
or to the key of III (relative major) before returning to i
(tonic), which corresponds to (0,0) and (0,1) and their de-
scendants, respectively. Note that the cluster (0,1,0) also
has a strong tendency to modulate to III, which becomes
more apparent when using ‘“Temperley’ profiles.

The i—v—i modulation plan of cluster (0,0,0) and (0,0,1)
is one of the two standard prototypes for minor pieces. In
(0,0,1), the v is more pronounced and the middle section
also has a certain tendency to modulate to III, possibly even
including a short VII passage (see ‘Temperley’ profiles).
This corresponds to a i—III-(VII)—v—III-i modulation plan,
which is a common subtype of the i—v—i prototype that fea-
tures two fifth-related, modally distinct key pairs: i—v and
MI-VII.

Cluster (0,1,0) and (0,1,1) both fall under the general i—
IT-i prototype. The (0,1,0) cluster has a less pronounced
III, which may be partly due to the III being at differ-
ent locations in the corresponding pieces, thus leading to
smoothing/averaging. According to ‘Krumhansl’ profiles,
there is a tendency for modulation to v in the middle sec-
tion and ‘Temperley’ profiles classify larger parts of the
middle section as III. Cluster (0,1,1) has an additional
modulation to the iv after the III, possibly with a short re-
turn to the i in between (again this could also be an effect of
averaging over multiple pieces), representing the common
subtype i—III-(1)—iv-i.

4.2.2 Prototypes in Major

Major pieces are generally assumed to modulate to V be-
fore going back to I. However, this general prototype can
be elaborated in different ways. For the split of the major
cluster (1), we see a very pronounced I-V-I prototype on
the left with (1,0) and its child (1,0,0).
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Figure 4. Results of hierarchical clustering with subsequent refinement. To visualise the prototypes, the transposition pa-
rameter 7 was fixed to minimise the accidentals of the diatonic root cluster. The corresponding absolute keys are shown in
the chromatic colour scale (right). However, only relative keys (scale degrees) bear interpretable meaning as the prototypes
are inherently transposition-invariant. Prototypes are labelled with a hierarchical index; the final prototypes (after refine-
ment) are labelled with the corresponding modulation plan in Roman numeral notation; numbers on the arrows indicate the
number of pieces falling into the respective cluster. Key estimates for colouring are computed using ‘Albrecht’ [14] tem-
plates; the final prototypes are repeated using ‘Krumhansl’ [12] and ‘Temperley’ [13] templates to improve interpretability.
For better disambiguation, Figure 5 and Figure 6 in Appendix A show chromatic and fifth-based colouring in comparison.

The remaining three clusters all belong to one of the
most common elaborations of the I-V-I prototype with an
additional vi (relative minor) passage after the V. The V
passage is most clearly pronounced in the (1,1,0) cluster,
to a lesser extent in the (1,1,1) and even less in the (1,0,1)
cluster (see especially the ‘Krumhansl’ profiles). Notably,
(1,1,1) has an additional ii passage after the vi.

The I-vi-I and the I-vi—ii-I cluster taken separately do
not contradict expectations from music theory, but due to
the missing V they are less typical than the other prototypes
so far. However, when being combined with the I-V-vi-I
cluster, theses clusters form the very common subtype I-
V-vi—ii—I [1]. This is typical in Baroque music but also in
modern Pop music, where on the chord-level this sequence
is known as “the four chord song” (optionally with a IV
as an equivalent pre-dominant replacement of the ii). This
combination of multiple prototypes suggests the existence
prototype sub-spaces.

5. CONCLUSION

To address the problem of modelling and automatic re-
trieval of prototypical modulation plans from a corpus
of musical pieces, a probabilistic Bayesian model of

transposition-invariant prototypes was introduced. This
model was based on a novel hierarchical pitch scape repre-
sentation of the musical content. We learned prototypical
modulation plans from a corpus of Baroque pieces, empir-
ically confirming common prototypes postulated in music
theory. Extending the conventional music theoretical con-
cepts, we found that continuous prototype sub-spaces can
be generated as the superposition of multiple prototypes.

Our approach relies on minimal prior assumptions,
works on simple pitch data and delivers robust results
while being scalable to large data sets. It can therefore
be applied to model, analyse and discover hierarchical key
structures and prototypes in a wide range of musical styles
and genres, including diachronic studies of musical form
and syntax in Western classical music, the influence of
style- and composer-specific elements, and the investiga-
tion of modulation plans in other genres such as Jazz, Pop
and Rock music. Therefore, our approach is suited for nu-
merous applications and contributes a valuable method for
music information retrieval.
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