
LESS IS MORE: FASTER AND BETTER MUSIC VERSION
IDENTIFICATION WITH EMBEDDING DISTILLATION

Furkan Yesiler1 Joan Serrà2 Emilia Gómez3,1
1 Music Technology Group, Universitat Pompeu Fabra, Barcelona, Spain

2 Dolby Laboratories, Barcelona, Spain
3 European Commission, Joint Research Centre, Seville, Spain

furkan.yesiler@upf.edu

ABSTRACT

Version identification systems aim to detect different rendi-
tions of the same underlying musical composition (loosely
called cover songs). By learning to encode entire record-
ings into plain vector embeddings, recent systems have
made significant progress in bridging the gap between ac-
curacy and scalability, which has been a key challenge for
nearly two decades. In this work, we propose to further
narrow this gap by employing a set of data distillation
techniques that reduce the embedding dimensionality of
a pre-trained state-of-the-art model. We compare a wide
range of techniques and propose new ones, from classi-
cal dimensionality reduction to more sophisticated distilla-
tion schemes. With those, we obtain 99% smaller embed-
dings that, moreover, yield up to a 3% accuracy increase.
Such small embeddings can have an important impact in
retrieval time, up to the point of making a real-world sys-
tem practical on a standalone laptop.

1. INTRODUCTION

The concept of music versions is as old as the concept of
music itself. Before the existence of recorded music, lis-
tening to a piece mostly meant listening to a version of
it. Nowadays, with the advancements in recording tech-
nologies, most music we listen to comes in recorded form.
Nevertheless, musicians keep creating their own versions
of existing songs for various reasons, including commer-
cial ones (for example, to attract new audiences), political
ones (to connect people or make a stance), and artistic ones
(to re-imagine a song with a personal touch).

Version identification (VI) is the task of automatically
detecting different renditions of the same underlying mu-
sical composition. VI systems are mainly focused on re-
trieval, aiming to find all renditions of a query song in
a reference database. Although creating new versions is
common practice, defining the characteristics that enable
us to perceive the links connecting different renditions of

c© F. Yesiler, J. Serrà and E. Gómez. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: F. Yesiler, J. Serrà and E. Gómez, “Less is more: Faster and
better music version identification with embedding distillation”, in Proc.
of the 21st Int. Society for Music Information Retrieval Conf., Montréal,
Canada, 2020.

the same piece is not a straightforward task [1, 2]. Based
on quantitative evidence, many successful systems exploit
tonal and melodic descriptors that are invariant to the typ-
ical differences among versions, including the differences
in timbre, tempo, structure, lyrics, and so on [3–5]. By
further processing such descriptors, the ultimate goal is to
obtain representations that allow inferring links among ver-
sions.

The accuracy-scalability trade-off stands as a key chal-
lenge in version retrieval. The early, alignment-based
systems [6, 7] incorporated musical know-how to cap-
ture the similarities among versions, resulting in strong
performances. However, due to the scarcity of data,
and their dependence on complex representations and
computationally-intensive algorithms, they ended up in
limited evaluation environments and, ultimately, not be-
ing suitable for industrial-size databases. With the re-
lease of the Million Song Dataset [8], researchers were
further encouraged to address the scalability issue by ex-
ploring embedding-based systems that encode songs into
more compact vectors. Although offering significant im-
provements for the scalability aspect, the performance
of such systems failed to match their predecessors [9].
Recent embedding-based systems that use deep learning
techniques pave the way to encapsulate the similarities
among versions in ways that are both efficient and accu-
rate [5, 10–12].

The main use case of version retrieval in commercial
settings is to detect copyright infringement cases in me-
dia streaming platforms and live performance venues or
events. Such application scenarios require having fast and
scalable solutions. For example, more than 500 h of video
content are uploaded to YouTube every minute 1 , and han-
dling the music licensing aspect of that requires having
accurate and scalable systems that can identify the cases
where a video includes a copyrighted piece of music.

In this paper, we investigate a number of ways to im-
prove the scalability of existing embedding-based VI sys-
tems that use neural networks as encoders. Specifically,
our goal is to reduce the size of embedding vectors without
compromising the accuracy of the systems. Since embed-
dings can be pre-computed, reducing their size is crucial
to improve data storage and, more importantly, retrieval

1 https://www.cnbc.com/2018/03/14/with-over-1-billion-users-heres-
how-youtube-is-keeping-pace-with-change.html



time. For this purpose, we consider three core state-of-the-
art strategies, namely unsupervised dimensionality reduc-
tion, neural network pruning, and knowledge distillation.
Apart from introducing a number of techniques from other
fields to VI research, we also consider a novel knowledge
distillation loss for metric learning, which aims to opti-
mize a clustering evaluation metric. Moreover, inspired
by transfer learning applications, we propose a technique
called latent space reconfiguration, to show that learning a
compact and efficient latent space is facilitated by using a
pre-trained feature extractor due to its stronger priors, com-
pared with using a randomly-initialized one. Our exper-
iments suggest that the performance of a pre-trained net-
work can be preserved, or even improved, while shrinking
the embedding vectors down to less than 1% of their origi-
nal sizes. We evaluate our approach on a publicly-available
test set, and share our code, instructions for using a newly-
contributed training dataset and supplementary materials
(SM) on Github 2 .

2. RELATED WORK

2.1 Version identification

Like many other systems in music information retrieval
(MIR), VI systems extract audio descriptors to obtain rel-
evant information from signals, including mid-level ones,
such as pitch class profiles (PCP) [7, 13–16] and predom-
inant melody [4, 10, 17], or low-level ones, such as the
constant-Q transform (CQT) [18–20]. To achieve invari-
ance against the changes in musical characteristics, fur-
ther processing steps have been proposed, including beat-
synchronous features for handling tempo variations [13,15,
21], and the optimal transposition index for handling pitch
transpositions [6, 7, 14, 15]. Many rule-based VI systems
use alignment algorithms to then compare these represen-
tations, resulting in long retrieval times.

Embedding-based VI systems are designed to obtain
compact representations that speed up the retrieval phase.
Compact embeddings reduce the required storage and fa-
cilitate similarity estimation through the use of efficient
nearest-neighbor libraries implementing common metrics
like Euclidean or cosine distances. Early attempts of
such systems use techniques like the 2D Fourier trans-
form, principal component analysis, and linear discrimi-
nant analysis for encoding and dimensionality reduction
operations [21, 22].

Current deep learning-based systems learn non-linear
transformations that map the feature representations into
embedding vectors of various sizes, ranging from 300
to 16,000. Xu et al. [23] and Yu et al. [11] train their
convolutional networks with a classification loss, but ob-
tain the embedding vectors to use in the retrieval phase
from the penultimate layer of their networks. Doras and
Peeters [10], and Yesiler et al. [5] formulate the network
training as a metric learning setting, in which they use the
triplet loss for optimizing distances among training sam-
ples.

2 https://github.com/furkanyesiler/re-move

2.2 Metric learning

This line of research is concerned with learning functions
that produce low distance values between semantically
similar data points, and high values otherwise. The early
approaches include learning Mahalanobis distances [24]
with linear [25, 26] or non-linear [27] transformations.
Parametrizing such transformations with neural networks
was pioneered by Chopra et al. [28] and Salakhutdinov and
Hinton [29], and the research domain combining these two
concepts is often called deep metric learning.

Deep metric learning methods offer new solutions re-
garding how to exploit the semantic relations among data,
often by formulating or revising loss functions. The triplet
loss [30], similar to LMNN [26], manipulates the distances
between genuine and impostor pairs with an energy-based
approach. The ProxyNCA loss [31], similar to NCA [25],
and NormalizedSoftmax loss [32], similar to cross entropy
loss, maximize the likelihoods of samples being close to
particular class proxies. The group loss [33] incorporates
the idea that similar elements should belong in the same
class by using replicator dynamics [34]. Although there
is a variety of deep metric learning losses, each one with
distinctive advantages, the triplet loss variants remain the
popular (and almost unique) choice in MIR research.

2.3 Model reduction

2.3.1 Neural network pruning

Pruning a large neural network can preserve the orig-
inal performance while eliminating more than 90% of
its weights [35–38]. The main challenge is to identify
the importance of connections and weights, and previous
techniques explored the use of absolute weight magni-
tudes [36–38] and the Hessian of the loss function [35].
Pruning operations can be performed layer- or network-
wise, in a one-shot or an iterative fashion, and combined
with quantization or clustering. To the best of our knowl-
edge, network pruning has not been considered for VI, nor
further explored in MIR systems in general.

2.3.2 Knowledge distillation

Bucilă et al. [39], and later Hinton et al. [40], explored the
idea where a small neural network (the student model) is
trained with the guidance from a wide, deep, and better-
performing network (the teacher model). In the metric
learning context, some works explored this idea with a
slightly changed formulation: Classical knowledge dis-
tillation methods use teacher networks to guide the stu-
dents on individual examples, but metric learning methods
exploit similarity relations among samples. For this, re-
searchers proposed methods that match a number of prop-
erties between the embeddings obtained from the teacher
and the student models, including the ranks of retrieved
samples [41], distances between samples [42], class likeli-
hood distributions [43], and absolute positions of embed-
dings in the latent space [44]. With few exceptions [45,46],
distillation techniques are largely under-explored in MIR,
and we believe that no attempt has been done within VI.



Randomly-initialized weights MOVE-16k weights Newly-learned weights

Select weights to mask

+ +

Iteration 1, 2, … 

+

Iteration 0

+ +

Teacher model

+

Guide with 

pairwise distances

+

Student model Student model

+

Pre-trained model

Replace linear layer

a) Network pruning b) Knowledge distillation c) Latent space reconfiguration

+ +

Student model Student model

Figure 1: An overview of neural network-based embedding distillation methods. The hollow arrows denote training
process, the boxes with dashed and with solid outlines denote feature extractors and fully-connected layers, respectively.

3. METHODOLOGY

3.1 Embedding distillation

Our study focuses on a set of techniques for improving the
scalability of existing VI systems in the retrieval phase by
reducing the size of the embeddings, rather than building a
novel network architecture. 3 We hypothesize that a high-
capacity encoder is still needed to extract the essential in-
formation from complex and noisy signals such as current
tonal representations. However, once a reliable encoder is
obtained, it can be used for training a second model that
outputs embeddings with a lower dimensionality, ideally
without compromising accuracy. Due to the goal of having
smaller embeddings that yield a similar performance, we
call this set of methods embedding distillation techniques.

3.2 Data

Our models are developed with the Da-TACOS training set
that we make available under Creative Commons BY-NC-
SA 4.0 license together with this publication. It features
a training partition of 83,904 songs in 14,499 cliques (or
unique works), and a validation partition of 14,000 songs
in 3,500 cliques. The annotations for the songs are ob-
tained using the API of secondhandsongs.com. We
share the crema-PCP features [47] and the related meta-
data. Further detail on the contributed dataset is available
in SM.

3.3 Model architecture and training details

Our methods require to start from a pre-trained and suf-
ficiently reliable model. For this, we take advantage of
the publicly-available MOVE model [5], together with its
pre-trained weights. Nonetheless, we believe all methods
introduced here can be applied to other embedding-based
systems using neural networks (initial results are available
in SM).

3 To illustrate the benefits of using smaller embeddings, consider com-
puting distances between a query and a reference database with 10 M em-
beddings. This takes us (with a simple brute-force, double-loop Euclidean
distance function) 0.32 s using d = 256, but the elapsed time increases
up to 4.75 s for d = 4k, and to 18.43 s for d = 16k (the embedding size
of MOVE [5]). Although the absolute values are subject to change based
on computational resources, for real-world applications on portable de-
vices, such differences in magnitude for the retrieval time (from 0.32 to
18.43 s) may drastically affect user experience and product appeal.

MOVE uses crema-PCP features X ∈ [0, 1]12×T as in-
put, where T is the number of frames, pre-computed with
non-overlapping windows of 93 ms. The model outputs
embedding vectors v = f(X) ∈ Rd, where d is the em-
bedding size. The original work reports results for d be-
tween 128 and 32 k, and shows a clear accuracy drop for
d < 2048 (the final model employs a rather high dimen-
sionality d = 16 k). In contrast, the dimensionalities we
consider in this work are d = {128, 256, 512, 2048}.

To find a suitable learning rate and an optimizer for each
experiment setting, we perform a grid search over both
stochastic gradient descent and Ranger 4 optimizers and
initial learning rates in {0.0001, 0.001, 0.01, 0.1}, using
our validation set. The full training lasts for 70 epochs, and
we decrease the learning rate by a factor of 10 at epochs 50
and 60. We save the model weights that result in the best
performance on the validation set. The remaining training
details and design decisions follow the ones made by the
MOVE authors [5]. All neural network models are trained
using PyTorch [48], and the hyper-parameter values used
for each experiment can be found at our repository.

3.4 Methods for embedding distillation

3.4.1 Classical unsupervised techniques

Before going into complex solutions, we investigate the
benefits of using classical dimensionality reduction tech-
niques for embedding distillation. For this, we use prin-
cipal component analysis (PCA), independent component
analysis (ICA), and Gaussian random projection (GRP)
techniques. Each model is fit using the training set embed-
dings obtained with MOVE-16k, and applied to the eval-
uation set embeddings. We use the implementations from
the scikit-learn library [49] and change only the number of
target components.

3.4.2 Pruning

Based on the approach of Han et al. [37], we study whether
we can prune the dimensions of the latent space con-
structed by MOVE-16k in an iterative way. Although prun-
ing the weights of all layers throughout the network is the
most common practice, the underlying idea can be applied

4 https://github.com/lessw2020/Ranger-Deep-Learning-Optimizer



to only the final linear layer of the model in order to obtain
embeddings with fewer dimensions. Denoting the weights
of the linear layer of MOVE-16k as W ∈ Rd×f , where d
is the size of the embeddings and f is the number of in-
put connections to the linear layer, we compute the mean
of the absolute values per row for W and sort the rows
based on these mean values. At the end of each iterationm
(m ∈ {0, 1, ...}), the weights of the top 50% rows are re-
stored to their initial values from Iteration 0 and retrained.
The weights of the bottom 50% rows are zeroed-out and
not considered for the next iterations (Figure 1(a)) .

3.4.3 Knowledge distillation

This set of experiments consider MOVE-16k as a teacher
model, and our goal is to train from scratch a student model
of the same size but with a lower embedding dimensional-
ity. Our approach is formulated in a deep metric learning
setting where the guidance of the teacher model is shaped
by the distances among samples (Figure 1(b)). In the ex-
periments described next, the weights of the teacher model
are frozen, and the weights of the student model are initial-
ized randomly.
Distance matching — Perhaps the most intuitive way of
guiding the student model is to match the distances ob-
tained from the student with the ones from the teacher, al-
lowing the two models to have different embedding sizes.
In our implementation, we pass the samples in each mini-
batch to both models, compute in-batch pairwise distances,
and use the mean absolute error between the pairwise dis-
tance matrices from the teacher model and the student
model to train the latter:

LDM
i =

∑
j

∣∣D(vs
i, v

s
j)−D(vt

i, v
t
j)
∣∣ , (1)

using

D(vi, vj) =
1

d
‖vi − vj‖2, (2)

where ‖ ‖ represents the Euclidean norm, and vs
i and vt

i the
embeddings of song i obtained with the student and teacher
models, respectively.
Cluster matching — Our second knowledge distillation
scheme aims to obtain a student model that constructs
clusters with both low intra-class and high inter-class dis-
tances. Assuming the teacher model holds this desired
property, we take advantage of this information to guide
the student model. To the best of our knowledge, this dis-
tillation criterion has not been explored in previous deep
metric learning research.

Our criterion exploits internal cluster evaluation met-
rics [50]. In the experiments reported here, we use the
Davies-Bouldin (DB) index [51], but other cluster evalu-
ation metrics can be used:

LDB
i = max

j 6=i

(
σi + σj
D(ci, cj)

)
, (3)

where σi denotes the average intra-class distance, com-
puted with a suitable distance measure D, and ci denotes
the centroid for class i. The DB index yields low values

for configurations that have low intra-class and high inter-
class distances.

In our implementation, we pre-compute the class cen-
troids using the MOVE-16k embeddings from the entire
training set. To match the dimensions of the centroids with
the student model embeddings, we train a linear projection
simultaneously with the student model. The intra-class
and inter-centroid distances are computed using only the
samples present in the mini-batch and their respective cen-
troids. After computing DB scores for each class in the
mini-batch, we average them to obtain the final loss value.

3.4.4 Latent space reconfiguration

Transfer learning applications take advantage of the strong
priors learned by the feature extractor part of successful,
high-capacity models that are trained on large datasets.
Inspired by this idea, we hypothesize that, by using the
feature extractor of a pre-trained model, we can ob-
tain a better-structured and lower-dimensional latent space
that cannot be obtained by training a randomly-initialized
model from scratch.

To test this idea, we use the pre-trained convolutional
layers of MOVE-16k as the feature extractor, remove the
final linear layer, and learn a new latent space with a
randomly-initialized linear layer using a metric learning
loss function (Figure 1(c)). Note that the original MOVE-
16k model is trained with a triplet loss, meaning that it
learned a distance metric parametrized by a neural net-
work. Our approach uses the non-linear part of that metric,
and ‘reconfigures’ the latent space and the distance met-
ric by optimizing a second loss function (hence the name
latent space reconfiguration). Our motivation is based on
two assumptions: (1) training losses play an important role
in shaping the latent space where the embeddings lie, and
(2) embeddings with lower dimensionalities may be suf-
ficient to successfully represent semantically meaningful
information, as long as the dimensions are effectively uti-
lized. Note that although this technique follows the same
procedure as transfer learning, the latter requires, by defi-
nition, distinct source and target tasks (or datasets), which
is not the case for the proposed technique. Focusing on
metric learning schemes, the term latent space reconfigura-
tion denotes the process of starting with an already learned
distance metric and modifying it to represent the semantic
relations in a more compact embedding space.

In our experiments, we consider 4 loss functions which
are explained below. The weights of the feature extractor
are frozen during the first epoch and updated with a lower
learning rate during the rest of the training. Batch normal-
ization is applied after the linear layer as in MOVE-16k.
Apart from using the loss functions below for latent space
reconfiguration, we also use them individually and train
models from scratch with the same settings to set baseline
models.
Triplet loss — We follow the triplet loss formulation used
by Yesiler et al. [5]. Distances among vectors are com-
puted using D as specified in Eqn (2):

LT
i = max (D (vi, v+)−D (vi, v−) +m, 0) , (4)



where vi corresponds to the anchor, v+ to the positive
sample, v− to the negative sample, and m = 1 is a mar-
gin hyper-parameter. For selecting which triplets to use,
we follow the hard-positive, hard-negative mining strategy
used by the authors.

ProxyNCA loss — Our implementation of ProxyNCA
loss [31] also uses the normalized squared Euclidean dis-
tance metric from Eqn (2). Every class in our training set
is represented with one proxy vector that is initialized ran-
domly and trained simultaneously with the model parame-
ters. In mathematical notation, the ProxyNCA loss can be
expressed as:

LP
i = − log

(
exp(−D(vi, y))∑
z∈Z exp(−D(vi, z))

)
, (5)

where y ∈ Rd denotes the proxy vector for the class of vi
and Z denotes the set of proxies for all classes different
than the one of vi.

NormalizedSoftmax loss — As proposed in [32], we im-
plement this function using the cosine distance. We ran-
domly initialize one proxy per class and update their pa-
rameters at each training step. We use

LN
i = − log

(
exp(〈vi, y〉/τ)∑
z∈Z exp(〈vi, z〉/τ)

)
, (6)

where 〈 〉 denotes cosine similarity, y ∈ Rd the proxy for
the positive class, Z the set of proxies for all classes, and
τ = 0.05 the temperature parameter.

Group loss — Following the approach of [33], we use
Pearson’s correlation coefficient as the similarity metric
and replace the negative values with 0. We perform three
iterations for refining the class probabilities and, unlike the
original implementation, we select one anchor per class in
the mini-batch. The main loss is regular cross-entropy:

LG
i = − log

(
exp(lci )∑
t∈C exp(lti)

)
, (7)

where lci denotes the logit of sample i with respect to its
positive class c, and C denotes the set of all classes in the
training set. However, in group loss, logits are updated
with replicator dynamics using pairwise similarities [33].

4. RESULTS

4.1 Evaluation methodology

For development, we use the newly available dataset men-
tioned in Section 3.2 and detailed in SM. Results are then
evaluated on Da-TACOS benchmark subset [9], which
contains a non-intersecting set of cliques with respect to
our training and validation data. Da-TACOS contains
1,000 cliques with 13 songs each and 2,000 noise songs
that do not belong to any other clique and are not queried.
Following common practice, we report the performance of
our models using mean average precision (MAP) and mean
rank of the first relevant item (MR1) metrics.

Method d
128 256 512 2048

Baselines (no reduction, training from scratch)
Triplet 0.459 0.469 0.478 0.487
ProxyNCA 0.168 0.185 0.212 0.206
NormalizedSoftmax 0.445 0.470 0.475 0.422
Group 0.265 0.271 0.269 0.271
Unsupervised
PCA 0.494 0.507 0.507 0.507
ICA 0.456 0.425 n/a n/a
GRP 0.429 0.465 0.485 0.502
Knowledge distillation
Distance matching + Triplet 0.492 0.499 0.503 0.500
Cluster matching + Triplet 0.424 0.471 0.465 0.455
Latent space reconfiguration
Triplet 0.485 0.491 0.494 0.506
ProxyNCA 0.424 0.465 0.485 0.502
NormalizedSoftmax 0.513 0.524 0.525 0.525
Group 0.465 0.483 0.495 0.511

Table 1: MAP for different embedding sizes d when train-
ing from scratch (top) and when using pre-trained mod-
els and embedding distillation (middle-bottom). MAPs for
the original MOVE-4k and MOVE-16k baselines are 0.495
and 0.507, respectively (values equal to or above MOVE-
4k are highlighted in bold).

4.2 Embedding distillation experiments

Table 1 presents the exhaustive list of results for the meth-
ods described in Section 3. The baseline results (top block)
show that, when training from scratch, changing the loss
function of a network causes significant accuracy differ-
ences. It should be noted that all alternative losses we con-
sider achieve state-of-the-art performances in computer vi-
sion datasets. Nevertheless, our results suggest that they
may not generalize across other types of data or tasks, or
that they may be oversensitive to hyper-parameters or spe-
cific architectural decisions.

For unsupervised dimensionality reduction (second
block of Table 1), we find that PCA successfully projects
the information contained in MOVE-16k embeddings,
even when using 256 dimensions. This suggests that,
although achieving state-of-the-art performance, MOVE-
16k embeddings contain redundant information that can
be drastically compressed. GRP reaches a similar perfor-
mance as PCA with d = 2048, but the resulting perfor-
mance decreases when using lower-dimensional embed-
dings.

The initial experiments on pruning reached the same
performance as MOVE-16k after one iteration, that is, af-
ter reducing the dimensionality by 50%. However, fur-
ther pruning iterations drastically decreased MAP, up to
the point of yielding non-useful embeddings. Therefore,
we decided to stop iterating and not to report the corre-
sponding results.

Among the considered knowledge distillation tech-
niques (third block, Table 1), the additional distance
matching loss clearly increases the model performance



d MAP MR1
2DFTM [21] 50 0.275 155
Dmax [16] 5.5 k 0.322 132
SiMPle [14] 2.2 k 0.332 142
Qmax [7] 5.5 k 0.365 113
Qmax* [52] 5.5 k 0.373 104
EarlyFusion [15] 8.5 k 0.426 116
LateFusion [16] 5.5 k 0.454 177
MOVE [5] 4 k 0.495 42
MOVE [5] 16 k 0.507 40
Re-MOVE 256 0.524 38

Table 2: Comparison with existing VI systems using Da-
TACOS (taken from [9]). When not explicit, embedding
sizes d are estimated for a song duration of 3.5 min (see
text). Results for the proposed methodology are high-
lighted in bold.

compared with the case where only the triplet loss is op-
timized. However, the same advantage is not observed
with cluster matching using DB loss. We hypothesize that
this may be related to training an extra linear projection for
compressing the centroid embeddings to match the size of
the embeddings obtained with the student model.

Latent space reconfiguration results seem to justify our
hypothesis regarding the use of strong priors of a pre-
trained feature extractor (last block, Table 1). All con-
sidered alternatives outperform their baseline counterparts.
Moreover, we find that using probabilistic losses such as
NormalizedSoftmax and Group for latent space reconfig-
uration even outperforms the original model while reduc-
ing the embedding size by a large margin (128/16000 =
0.8%). Notice that, in addition to these advantages, la-
tent space reconfiguration does not suffer from the setbacks
of network pruning and knowledge distillation methods,
namely training a model for multiple iterations and using
two models simultaneously during training, respectively.

4.3 Comparison with the state of the art

Lastly, Table 2 compares our best result with state-of-the-
art methods. The second column, d, shows the size of
the smallest representation (per song) required for each
method to estimate pairwise similarities (equivalent to the
embedding dimensionality). As the results for the first
7 methods are computed with the publicly-available acoss
library [9], we use those implementations for estimating
the embedding sizes 5 . As the sizes of some representa-
tions depend on the song duration (SiMPle, Qmax, Dmax,
LateFusion) or tempo (EarlyFusion), we use 3.5 min and
102 bpm estimates, which correspond to average song du-
ration and bpm of the songs in Da-TACOS, respectively.

Re-MOVE, which stands for ‘reduced MOVE’, denotes
the model trained with latent space reconfiguration using
NormalizedSoftmax. With d = 256, it demonstrates rel-

5 For 2DFTM, the acoss library uses a 450-dimensional embedding
while the authors apply PCA to reduce the dimensionality to 50.

102 103 104

d

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
AP

MOVE
LateFusion

EarlyFusion
Qmax*
Qmax

DmaxSiMPle

2DFTM

Re-MOVE

Figure 2: MAP with respect to embedding dimensional-
ity d for Re-MOVE (red stars), MOVE (blue squares), and
other existing approaches (blue circles). Notice the loga-
rithmic axis.

ative performance increases of 3%, 6%, and 15% when
compared with MOVE-16k, MOVE-4k, and LateFusion
systems, respectively (Table 2). We also find that Re-
MOVE improves over MOVE for a wide range of dimen-
sionalities d ∈ [32, 2048] (Figure 2). Along with its state-
of-the-art performance, Re-MOVE provides a crucial ad-
vantage in terms of scalability, which positions it as the
most viable system from a practical point of view.

5. CONCLUSION

In this work, we have studied a set of techniques for re-
ducing the embedding sizes of existing VI systems, which
we consider under the name embedding distillation. We
have claimed that by using a pre-trained and high-capacity
network, we can train a second network that yields smaller
embedding vectors without a decrease in performance. To
investigate this idea, we have studied a wide range of tech-
niques, including classical dimensionality reduction, neu-
ral network pruning, and knowledge distillation methods.
Moreover, we have introduced latent space reconfigura-
tion, which is a technique that builds upon the non-linear
part of a distance metric learned by a pre-trained network
to construct a compact latent space with fewer dimensions.
Our results show that it is possible to reduce the embed-
ding dimensionality of a model while maintaining, or even
surpassing, its performance.

As future work, we plan to investigate further tech-
niques for compressing entire networks rather than just
embedding vectors. We emphasized the importance of
having smaller embeddings for real-world applications,
and we plan to demonstrate it further in carefully-designed
version retrieval scenarios that mimic real-world use cases.
Lastly, we believe that optimizing the existing methods to
make them applicable in industrial scenarios is a valuable
research direction, and we hope to facilitate bridging the
gap between academy and industry in MIR research.



6. ACKNOWLEDGMENTS

This work is supported by the MIP-Frontiers project, the
European Union’s Horizon 2020 research and innova-
tion programme under the Marie Skłodowska-Curie grant
agreement No. 765068, and by TROMPA, the Horizon
2020 project 770376-2.

7. REFERENCES

[1] D. R. Madoery, “Los procedimientos de producción
musical en música popular,” Revista del ISM, vol. 1,
no. 7, pp. 76–93, 2000.

[2] K. Mosser, “Cover songs: ambiguity, multivalence,
polysemy,” Philosophy Faculty Publications, 2008.

[3] J. Serrà, “Identification of versions of the same musical
composition by processing audio descriptions,” Ph.D.
dissertation, Universitat Pompeu Fabra, Spain, 2011.

[4] J. Salamon, J. Serrà, and E. Gómez, “Melody, bass line,
and harmony representations for music version iden-
tification,” in Proc. of the Int. World Wide Web Conf.
(WWW): Int. Workshop on Advances in Music Infor-
mation Research (AdMIRe), 2012, pp. 887–894.

[5] F. Yesiler, J. Serrà, and E. Gómez, “Accurate and scal-
able version identification using musically-motivated
embeddings,” in Proc. of the IEEE Int. Conf. on Acous-
tics, Speech and Signal Processing (ICASSP), 2020,
pp. 21–25.

[6] J. Serrà, E. Gómez, P. Herrera, and X. Serra, “Chroma
binary similarity and local alignment applied to cover
song identification,” IEEE Trans. on Audio, Speech,
and Language Processing, vol. 16, no. 6, pp. 1138–
1151, 2008.

[7] J. Serrà, X. Serra, and R. G. Andrzejak, “Cross recur-
rence quantification for cover song identification,” New
Journal of Physics, vol. 11, p. 093017, 2009.

[8] T. Bertin-Mahieux, D. P. W. Ellis, B. Whitman, and
P. Lamere, “The million song dataset,” in Proc. of the
Int. Society for Music Information Retrieval Conf. (IS-
MIR), 2011, pp. 628–634.

[9] F. Yesiler, C. Tralie, A. Correya, D. F. Silva, P. Tovsto-
gan, E. Gómez, and X. Serra, “Da-TACOS: A dataset
for cover song identification and understanding,” in
Proc. of the Int. Society for Music Information Re-
trieval Conf. (ISMIR), 2019, pp. 327–334.

[10] G. Doras and G. Peeters, “Cover detection using dom-
inant melody embeddings,” in Proc. of the Int. Society
for Music Information Retrieval Conf. (ISMIR), 2019,
pp. 107–114.

[11] Z. Yu, X. Xu, X. Chen, and D. Yang, “Temporal pyra-
mid pooling convolutional neural network for cover
song identification,” in Proc. of the Int. Joint Conf. on
Artificial Intelligence (IJCAI), 2019, pp. 4846–4852.

[12] F. Zalkow and M. Müller, “Learning low-dimensional
embeddings of audio shingles for cross-version re-
trieval of classical music,” Applied Sciences, vol. 10,
no. 1, p. 19, 2020.

[13] D. P. W. Ellis and G. E. Poliner, “Identifying ‘cover
songs’ with chroma features and dynamic program-
ming beat tracking,” in Proc. of the IEEE Int. Conf.
on Acoustics, Speech and Signal Processing (ICASSP),
vol. IV, 2007, pp. 1429–1432.

[14] D. F. Silva, M. Y. Chin-Chia, G. E. A. P. A. Batista,
and E. J. Keogh, “SiMPle: assessing music similarity
using subsequences joins,” in Proc. of the Int. Society
for Music Information Retrieval Conf. (ISMIR), 2016,
pp. 23–29.

[15] C. J. Tralie, “Early MFCC and HPCP fusion for robust
cover song identification,” in Proc. of the Int. Society
for Music Information Retrieval Conf. (ISMIR), 2017,
pp. 294–301.

[16] N. Chen, W. Li, and H. Xiao, “Fusing similarity func-
tions for cover song identification,” Multimedia Tools
and Applications, vol. 77, no. 2, pp. 2629–2652, 2018.

[17] R. Foucard, J. Durrieu, M. Lagrange, and G. Richard,
“Multimodal similarity between musical streams for
cover version detection,” in Proc. of the IEEE Int. Conf.
on Acoustics, Speech and Signal Processing (ICASSP),
2010, pp. 5514–5517.

[18] Z. Rafii, B. Coover, and J. Han, “An audio fingerprint-
ing system for live version identification using image
processing techniques,” in Proc. of the IEEE Int. Conf.
on Acoustics, Speech and Signal Processing (ICASSP),
2014, pp. 644–648.

[19] T. J. Tsai, T. Prätzlich, and M. Müller, “Known-artist
live song ID: a hashprint approach,” in Proc. of the Int.
Society for Music Information Retrieval Conf. (ISMIR),
2016, pp. 427–433.

[20] P. Seetharaman and Z. Rafii, “Cover song identification
with 2D Fourier transform sequences,” in Proc. of the
IEEE Int. Conf. on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2017, pp. 616–620.

[21] T. Bertin-Mahieux and D. P. W. Ellis, “Large-scale
cover song recognition using the 2D Fourier Transform
magnitude,” in Proc. of the Int. Society for Music Infor-
mation Retrieval Conf. (ISMIR), 2012, pp. 241–246.

[22] E. J. Humphrey, O. Nieto, and J. P. Bello, “Data driven
and discriminative projections for large-scale cover
song identification,” in Proc. of the Int. Society for
Music Information Retrieval Conf. (ISMIR), 2013, pp.
149–154.

[23] X. Xu, X. Chen, and D. Yang, “Key-invariant convolu-
tional neural network toward efficient cover song iden-
tification,” in Proc. of the IEEE Int. Conf. on Multime-
dia and Expo (ICME), 2018, pp. 1–6.



[24] P. C. Mahalanobis, “On the generalized distance in
statistics,” Proc. of the National Institute of Sciences
of India, vol. 2, no. 1, pp. 49–55, 1936.

[25] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhut-
dinov, “Neighbourhood components analysis,” in Ad-
vances in Neural Information Processing Systems 17
(NeurIPS), 2004, pp. 513—-520.

[26] K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance
metric learning for large margin nearest neighbor clas-
sification,” in Advances in Neural Information Process-
ing Systems 18 (NeurIPS), 2005, pp. 1473–1480.

[27] D. Kedem, S. Tyree, F. Sha, G. R. Lanckriet, and
K. Q. Weinberger, “Non-linear metric learning,” in Ad-
vances in Neural Information Processing Systems 25
(NeurIPS), 2012, pp. 2573–2581.

[28] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a
similarity metric discriminatively, with application to
face verification,” in Proc. of the IEEE Computer Soci-
ety Conf. on Computer Vision and Pattern Recognition
(CVPR), 2005, pp. 539––546.

[29] R. Salakhutdinov and G. Hinton, “Learning a nonlinear
embedding by preserving class neighbourhood struc-
ture,” in Proc. of the Int. Conf. on Artificial Intelligence
and Statistics, vol. 2, 2007, pp. 412–419.

[30] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet:
a unified embedding for face recognition and cluster-
ing,” in Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2015, pp. 815–823.

[31] Y. Movshovitz-Attias, A. Toshev, T. K. Leung, S. Ioffe,
and S. Singh, “No fuss distance metric learning using
proxies,” in Proc. of the Int. Conf. on Computer Vision
(ICCV), 2017, pp. 360–368.

[32] A. Zhai and H. Wu, “Classification is a strong base-
line for deep metric learning,” in Proc. of the British
Machine Vision Conference (BMVC), 2019, p. 91.

[33] I. Elezi, S. Vascon, A. Torcinovich, M. Pelillo, and
L. Leal-Taixe, “The group loss for deep metric learn-
ing,” ArXiv: 1912.00385, 2019.

[34] J. Weibull, Evolutionary Game Theory. Cambridge,
MA: The M.I.T. Press, 1995.

[35] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain
damage,” in Advances in Neural Information Process-
ing Systems 2 (NeurIPS), 1989, pp. 598––605.

[36] S. J. Hanson and L. Y. Pratt, “Comparing biases for
minimal network construction with back-propagation,”
in Advances in Neural Information Processing Systems
1 (NeurIPS), 1988, pp. 177—-185.

[37] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both
weights and connections for efficient neural networks,”
in Advances in Neural Information Processing Systems
28 (NeurIPS), 2015, pp. 1135––1143.

[38] J. Frankle and M. Carbin, “The lottery ticket hypoth-
esis: Finding sparse, trainable neural networks,” in
Proc. of the Int. Conf. on Learning Representations
(ICLR), 2019.

[39] C. Bucilă, R. Caruana, and A. Niculescu-Mizil,
“Model compression,” in Proc. of the ACM SIGKDD
Int. Conf. on Knowledge Discovery and Data Mining
(KDD), 2006, pp. 535—-541.

[40] G. Hinton, O. Vinyals, and J. Dean, “Distilling the
knowledge in a neural network,” ArXiv: 1503.02531,
2015.

[41] Y. Chen, N. Wang, and Z. Zhang, “Darkrank: Acceler-
ating deep metric learning via cross sample similarities
transfer,” in Proc. of the AAAI conference on Artificial
Intelligence, 2018, pp. 2852–2859.

[42] W. Park, D. Kim, Y. Lu, and M. Cho, “Relational
knowledge distillation,” in Proc. of the IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR),
2019, pp. 3967–3976.

[43] J. Han, T. Zhao, and C. Zhang, “Deep distillation met-
ric learning,” in Proc. of the ACM Multimedia Asia,
2019.

[44] L. Yu, V. O. Yazici, X. Liu, J. van de Weijer, Y. Cheng,
and A. Ramisa, “Learning metrics from teachers:
Compact networks for image embedding,” in Proc. of
the IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR), 2019, pp. 2907–2916.

[45] G. Meseguer-Brocal, A. Cohen-Hadria, and G. Peeters,
“DALI: A large dataset of synchronized audio, lyrics
and notes, automatically created using teacher-student
machine learning paradigm,” in Proc. of the Int. Society
for Music Information Retrieval Conf. (ISMIR), 2018,
pp. 431–437.

[46] C.-W. Wu and A. Lerch, “Automatic drum transcrip-
tion using the student-teacher learning paradigm with
unlabeled music data,” in Proc. of the Int. Society for
Music Information Retrieval Conf. (ISMIR), 2017, pp.
613–620.

[47] B. McFee and J. P. Bello, “Structured training for large-
vocabulary chord recognition,” in Proc. of the Int. So-
ciety for Music Information Retrieval Conf. (ISMIR),
2017, pp. 188–194.

[48] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Brad-
bury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,
M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An imper-
ative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems
32 (NeurIPS), 2019, pp. 8024–8035.



[49] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay, “Scikit-learn: Machine learning in Python,” Jour-
nal of Machine Learning Research, vol. 12, pp. 2825–
2830, 2011.

[50] Y. Liu, Z. Li, H. Xiong, X. Gao, and J. Wu, “Under-
standing of internal clustering validation measures,” in
IEEE Int. Conf. on Data Mining, 2010, pp. 911–916.

[51] D. L. Davies and D. W. Bouldin, “A cluster separation
measure,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. PAMI-1, no. 2, pp. 224–227,
1979.

[52] J. Serrà, M. Zanin, C. Laurier, and M. Sordo, “Unsu-
pervised detection of cover song sets: Accuracy im-
provement and original identification,” in Proc. of the
Int. Society for Music Information Retrieval Conf. (IS-
MIR), 2009, pp. 225–230.


