
One of the great new discoveries of modern card magic is called the Gilbreath 
Principle. It is a new invariant that lets the spectator shuffl e a normal deck of 
cards and still concludes in a grand display of structure.

One of the great new discoveries of modern mathematics is called the Man-
delbrot set. It’s a new invariant that takes a “shuffl e” of the plane and still 
concludes in a grand display of structure.

The above is wordplay; the connections between the invariants of 

a random riffl e shuffl e and the universal structure in the Mandelbrot 

set lie far below the surface. We’ll only get there at the end. This chap-

ter gives some very good card tricks and explains them using our new 

“ultimate” Gilbreath Principle. Later in this chapter, the Mandelbrot 

set is introduced. This involves pretty pictures and some even more 

dazzling universal properties that say that the pretty pictures are hid-

den in virtually every dynamical system. We’ll bet you can’t yet see any 

connection between the two parts of our story.

Right now, let’s begin with our tricks.

The Gilbreath Principle

To try the Gilbreath Principle, go and get a normal deck of cards. Turn 

them face-up and arrange them so that the colors alternate red, black, 

red, black, and so on, from top to bottom. The suits and values of the 

cards don’t matter, just the colors. With this preparation, you’re ready 

Chapter 5

From the Gilbreath Principle

to the Mandelbrot Set
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62 Chapter 5

to fool yourself. Give the deck a complete cut, any place you like. Hold 

the deck face-down as if your are about to deal cards in a card game. 

Deal about half the deck face-down into a pile on the table. The ac-

tual number dealt doesn’t matter; it’s a free choice. You now have two 

piles, one on the table, one in your hands. Riffl e shuffl e these two piles 

together. Most people know how to shuffl e (see fi gure 1). Again, the 

shuffl e doesn’t have to be carefully done. Just shuffl e the cards as you 

normally do, and push the packets together.

Here comes the fi nale: Pick the deck up into dealing position, and 

deal off the top two cards. They will defi nitely be one red/one black. 

Of course, this isn’t so surprising since it happens half the time in a 

well- shuffl ed deck. Deal off the next two cards. Again, one red/one 

black. Keep going. You’ll fi nd each consecutive pair alternates in color. 

In a well- shuffl ed deck, one might naively expect that this would hap-

pen about 
/ / /1 2 1 2 1 2# # #g

26 terms
6 7 8444 444  of the time (which is less than two chances 

in a hundred million). In fact, the odds are actually somewhat better 

than that, namely, about one chance in seven million. We will explain 

how we arrive at this number at the end of this chapter.

Before proceeding, you might want to fi gure out how it works. It’s 

pretty easy to see that no matter how the cards are cut, dealt, and 

shuffl ed, it’s a sure thing that the top two cards are one of each color. 

When we try this out on our students, it’s quite rare for anyone to be 

able to see why the next pair is red/black. We don’t recall a single stu-

dent providing a full, clear argument for the whole story.

What is described above is called Gilbreath’s First Principle. It was 

discovered by Californian Norman Gilbreath, a mathematician and 

lifelong magician, in the early 1950s. We’ll have more to say about 

Figure 1. A riffl e shuffl e
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from the gilbreath principle to the mandelbrot set    63

Gilbreath at the end of this chapter. The second and ultimate prin-

ciples are coming. 

The red/black trick can be performed as just described. Thus, set 

up a deck of cards alternating red/black and put them in the card 

case. Find a spectator and proceed as directed above. Take the cards 

out of the case. Ask the spectator to give the deck a few straight cuts, 

deal off any number of cards into a pile on the table, and then riffl e 

shuffl e the pile on the table with the pile still in hand. As this happens, 

you might appear to be carefully studying the spectator (you might 

even fake making a few notes on a pad). You can promise that “This 

is an ordinary deck, not prepared in any way.” Take the deck of cards 

and put them under the table. Say that you’re going to try to separate 

the cards by sense of touch: “I promise I won’t look at the cards in any 

way. You know, red ink and black ink are made up of quite different 

stuff. It used to be that red ink had nitroglycerine in it. Guys in prison 

used to scrape if off the cards. Anyway, I’ll try to feel the difference 

between red and black and pair them up.”

All you do is take the cards off the top in pairs. Pretend to feel care-

fully and perhaps occasionally say, “I’m not sure about these,” and so 

on. If, as you display the pairs, you order them so each has a red on top 

followed by a black (you’ll fi nd they appear to come out in random 

order), assemble the pairs in order and you’re ready to repeat the 

procedure instantly.

To be honest, the trick as just described is only “okay.” It’s a bit too 

close to the surface for our tastes. Over the years, magicians have in-

troduced many extensions and variations to build it up into something 

terrifi c. As an example, we’ll now describe a fairly elaborate presenta-

tion developed by the magician and insurance executive Paul Curry. 

The following unpublished creation has many lessons.

The performer gets a spectator to stand up and asks two quite per-

sonal questions: “Are you good at telling if someone else is lying? If 

you had to, do you think you could lie so that we couldn’t tell?” It’s a 

curious asymmetry of human nature that a large number of people an-

swer yes to both questions (we owe this observation to Amos Tversky).

The props for this effect are a deck of cards and a personal com-

puter (used as a score keeper). The performer asks the spectator to 

cut and shuffl e the cards. Then two piles of ten or so cards are dealt 

off. The performer takes one of them and calls out the colors for each 

card, red or black. The spectator’s job is to guess when the performer 
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64 Chapter 5

lies. This is carried through, one card at a time. After each time, the 

performer shows the actual card and enters a score of correct or incor-

rect. This is continued for ten or so steps. At the end, the computer 

gives a tally of, say, “Seven correct out of ten, above average.”

Now the tone changes. It is the spectator’s turn to lie or tell the truth. 

What’s more, it won’t be the performer who guesses “lie or truth.” The 

computer will act as a lie detector. The spectator looks at the top card 

of the pack and decides (mentally) whether to lie or not. Depending 

on which decision he or she makes, the spectator taps the “R” or “B” 

key on the computer to indicate red or black. The computer responds, 

accurately determining if a lie is told. The messages vary from time to 

time but the computer is always right. This has an eerie effect, quite 

out of proportion to the trick’s humble means.

How does it work? The deck is set up initially with red/black alter-

nating throughout. The spectator cuts the deck several times and deals 

some cards into a single pile on the table. The performer might patter 

about poker and bluffi ng or lie detector machines. The two piles are 

riffl e shuffl ed together by the spectator, who then deals them into two 

piles, alternating left, right, left, right, and so on, until ten or so cards 

are in each pile. The spectator hands either pile to the performer. 

Here is the key to the trick. Because of the Gilbreath Principle, each 

consecutive pair of cards contains one red and one black after the riffl e 

shuffl e. Dealing alternately into two piles ensures that the cards are of 

opposite colors in the two piles as we work from top to bottom. Thus, 

if the top twenty cards of the deck after shuffl ing are RBBRBRRBRB-

BRRBBRRBBR, then after dealing into two alternate piles, we have

R B

B R

B R

R B

R B

B R

R B

B R

R B

B R

If the top of the left- hand pile is red, the top of the right- hand pile is 

black. The same holds for the second cards, and so on. The spectator 
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from the gilbreath principle to the mandelbrot set    65

hands either packet to the performer who looks at the cards, calls out 

colors, and lies or not each time. There is no preset pattern. Just do 

as you please, using funny tones of voice and making faces if that’s 

your style. The spectator guesses “lie or truth,” the performer shows 

the card, and enters “C” or “W” each time, depending on whether the 

guess is correct or wrong. 

The second secret lies here. After each guess is entered on the com-

puter, the performer taps the space bar if the actual card in question 

is red, and does not tap if the actual card is black. This variation goes 

unnoticed amidst all the banter, and it tells the computer the actual 

colors of the cards in the performer’s pile. By taking opposites, the 

computer now knows the actual color of each card in the spectator’s 

pile. When the spectator goes through his or her pile (and whatever 

complex thought processes are required), he or she fi nally presses the 

“R” or “B” key. The computer compares each of the spectator’s entries 

with the known color and determines if a lie has been told.

It will help the presentation if a separate set of messages is prepro-

grammed for each card. Thus, the computer might announce, “You 

lie” or “Tsk-tsk—don’t try that again” for lies, or “You’re trying to trick 

me—you told the truth” when the spectator isn’t lying. This takes a 

modest amount of preparation but is worth the effort.

When Paul Curry fi rst performed this for us, personal computers 

and programmable calculators were far in the future. He hand- built 

a complicated gadget with displays, wires, and switches all over it to 

carry out this simple task. He later published a pencil and paper ver-

sion of the trick in his wonderful book Paul Curry Presents. Because this 

loses the wonderful effect of the computer as lie detector, it is not as 

good as the version above. 

We will not give programming details here. If you know a bit about 

programming, it’s an hour’s work (oh, all right, a few hours’ work). 

If you don’t, go fi nd a teenager. The Curry trick is a great example of 

how thought and presentation can turn a humble mathematical trick 

into great theater. Curry also invented perhaps the greatest red/black 

trick of all time: Out of This World. We can’t explain it here but it is 

defi nitely worth hunting down. 

So far we have explained Gilbreath’s First Principle. In 1966, Gil-

breath stunned the magical world by introducing a sweeping general-

ization, known as Gilbreath’s Second Principle. In the fi rst principle, 

alternating red/black patterns are used. Gilbreath discovered that any 
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66 Chapter 5

repeated pattern can be used. For example (go get a deck of cards), 

arrange a normal deck so that the suits rotate: clubs, hearts, spades, 

diamonds, clubs, hearts, spades, diamonds, and so on. Give the deck 

a random cut, deal any number of cards onto the table face-down in 

a pile (reversing their order), and riffl e shuffl e the two piles together. 

The top four cards will consist of one of each suit, no repeats, the next 

four cards will have one of each suit, and so on through to the bottom 

four cards in the deck.

Here is a simple variation. Remove all four aces, twos, threes, fours, 

and fi ves from the deck (twenty cards in all). Arrange them in rotation:

1, 2, 3, 4, 5, 1, 2 , 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5.

Cut this packet randomly, deal any number of cards face-down into a 

pile on the table, and riffl e shuffl e this pile with the rest of the cards 

from the packet. The top fi ve cards will be {1, 2, 3, 4, 5} in some order, 

the same for the next fi ve, the next fi ve, and the last fi ve cards. Dozens 

of tricks have been invented using these ideas. Often this principle is 

combined with some sleight of hand, making the trick unsuitable for 

this book. We have cleaned up one of them to make quite a perform-

able trick. Those knowing a bit of sleight of hand will be able to dress 

it more handsomely (see chapter 11 if you want to learn more). 

The following has served us well. It uses Gilbreath’s Second Prin-

ciple together with ideas from Ronald Wohl and Herbert Zarrow.

The rough effect is this: The performer asks if someone would like 

a lesson in cheating at cards. “A key to making big money is that you 

must learn to deal someone a good hand but also deal a better hand 

to yourself (or your partner).” With these preliminaries, the spectator 

cuts, shuffl es, and deals the cards (with a little help and kidding from 

the performer). The spectator deals a pat poker hand—a high straight 

(ace, king, queen, jack, ten), to one player and a better hand, a fl ush 

(all fi ve cards of the same suit), to himself. At the end, the spectator 

is as mystifi ed as everyone else. The performer cautions that the new 

skills are to be used for entertainment purposes only.

To perform this trick, the top twenty- fi ve cards of the deck must be 

prearranged. Remove any ten spades and three each of aces, kings, 

queens, jacks, and tens (of any suits). These are arranged with fi ve 

spades on the top, fi ve spades on the bottom, and the middle fi fteen 

cards in the rotation ace, king, queen, jack, ten, and so on, that is, as:

S S S S S A K Q  J 10 A K Q  J 10 A K Q  J 10 S S S S S.
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from the gilbreath principle to the mandelbrot set    67

Put these twenty- fi ve cards on top of the rest of the cards and put the 

cards in the card case.

Ask for a volunteer who wants to learn about cheating at cards. This 

may involve some funny interactions with the audience. Ask the vol-

unteer (let’s call her Susan) if she knows how to play poker—with all 

the poker on TV, many people do. But still, many people don’t. Take 

out the deck, turn it face-up and display a few poker hands, explaining 

one pair, two pairs, three of a kind, straight, and fl ush. Do this without 

disturbing the original top twenty- fi ve cards. Saying you’ll start easy, 

break the deck (it’s still face-up) at the run of fi ve middle spades, so 

you have only the original top twenty- fi ve in hand. Turn these face-

down and hand them to Susan. Say you’re going to get an idea of her 

dealing skills—ask her to deal any number of cards into a single pile 

on the table. The actual number doesn’t matter but it must be fi ve or 

more, and at most twenty. Now ask if she can shuffl e, and have her 

riffl e shuffl e the dealt pile with the rest of the twenty- fi ve cards. Tell 

her that poker is played by dealing around—have her deal fi ve hands 

as in a normal poker game. Comment on her technique. Have her 

look at one of the hands (turn it face-up, without changing the order, 

and comment on its value). Now have her assemble the fi ve hands in 

any order, keeping the packets of fi ve together.

Say, “That was practice; here comes the real thing. There is a high 

roller in second position and your partner is playing the fi rst hand. I’d 

like you to use your skills to deal a pat hand to the second player but 

make sure you give your partner a better hand.” Susan may look at you 

as if you are out of your mind. Anyway, have her deal fi ve hands in the 

normal fashion. Turn up the cards in second position one at a time. 

They will form an ace- high straight—shake her hand, and act as if the 

trick is over. “Susan, you’re really talented.” Then remember, “Wait. 

An ace- high straight is almost impossible to beat. The odds of getting 

an ace- high straight are about one in twenty-fi ve hundred. What about 

your partner?” Slowly turn over the cards in the fi rst player’s hand one 

at a time. They will form a fl ush in spades, handily beating the ace- 

high straight. Offer her your hand again with the comment, “Susan, 

you’re a poker genius.”

That’s a lot of dressing but it makes for a very entertaining few min-

utes. For you, our reader, understanding how it all comes together is 

a nice lesson in the beginnings of combinatorics. A fancier version of 

this trick involving some sleight of hand appears as U- shuffl e Poker in 

Zarrow, A Lifetime of Magic by David Ben.2
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68 Chapter 5

The Ultimate Gilbreath Principle

Up to now, we have seen two grand applications of Gilbreath’s two 

principles, utilizing reds and blacks as well as rotating sequences. It is 

natural to ask what other properties or arrangements are preserved by 

our riffl e shuffl e. This is actually a hard, abstract math question. What 

do we mean by “property or arrangement” and “preserved”? After all, 

if a deck of cards labelled {1, 2, 3, . . . , 52} is shuffl ed in any way, it still 

contains all these numbers only once. Clearly, this doesn’t count. Is 

looking at every other card allowed? 

Let us start by carefully defi ning what we mean by “shuffl e.” Con-

sider a deck of N cards labeled 1, 2, 3, . . . , N. A normal deck has N = 

52. The deck starts out in order, with card 1 on top, card 2 next, and 

card N on the bottom. By a Gilbreath shuffl e we mean the following per-

mutation. Fix a number between 1 and N, call it j. Deal the top j cards 

into a pile face-down on the table, reversing their order. Now, riffl e 

shuffl e the j cards with the remaining N − j cards. For example, if N = 

10 and j = 4, the shuffl e might result in: 

 1      4

 2      5

 3   5    6

 4   6  4   3

 5  " 7  3 " 7

 6   8  2   2

 7   9  1   8

 8   10    9

 9      1

 10      10

What we want to understand is just what arrangements are possible 

after one Gilbreath shuffl e? Two answers will be given. First, we will 

count how many different arrangements are possible. Second, we will 

give a simple description of the possible arrangements, which we mod-

estly call the Ultimate Gilbreath Principle.

Counting. The number of different permutations of N cards is 

N × (N − 1) × (N − 2) × ∙ ∙ ∙ × 2 × 1 = N! (read “N factorial’’). These 

numbers grow very rapidly with N. For example, if N = 10 then N! 

= 3,628,800, more than three and a half million. When N = 60, N! is 
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from the gilbreath principle to the mandelbrot set    69

larger than the number of atoms in the universe. Put another way, 

60! ≈ 8.32 × 1081, while the estimated number of atoms in the universe 

(according to the current theories) is less than 1081. 

Of course, after one Gilbreath shuffl e, not all arrangements are pos-

sible. At the end of this chapter we show that, with a deck of N cards, 

only 2N − 1 arrangements can occur. When N = 10, 2N − 1 = 512. When N = 

52, 251 ≈ 2.25 × 1015. This is still a large number (which makes the tricks 

confusing and interesting). As an example, the reader may check that, 

with four cards, the eight possible Gilbreath arrangements are:

1 2 2 2 3 3 3 4

2 1 3 3 2 2 4 3

3 3 1 4 1 4 2 2

4 4 4 1 4 1 1 1.

As an aside, we fi rst did the examples for decks of sizes N = 1, 2, 3, 4. 

By enumerating all possibilities by hand, we saw the answer 2N − 1. If 

this is the right answer, it is so neat that there must be an easy proof. 

Notice that having a neat count is different from having a neat descrip-

tion. We give our descriptions next, followed by an appeal for help in 

inventing a good trick. The proofs are given at the end of the chapter.

The Ultimate Invariant(s)

To describe the results, we need some way of writing things down. For 

a deck of cards originally in order 1, 2, 3, . . . , N, record a new order 

(we call it π) by letting π(1) be the card at position 1, π(2) be the card 

at position 2, . . . , and π(N ) be the card at position N. Thus, if the new 

order of a fi ve- card deck is 3, 5, 1, 2, and 4, then π(1) = 3, π(2) = 5, 

π(3) = 1, π(4) = 2 and π(5) = 4. This may seem like a complex way to 

talk about something simple, but we can’t proceed without it. Thus, 

we can now say that “π is a Gilbreath permutation” is shorthand for “A 

deck of N cards starting in order 1, 2, 3, . . . , N is in fi nal order π(1), 

π(2), . . . , π(N ) after one Gilbreath shuffl e.”

The fi nal thing we need is the notion of the remainder modulo j. If 
we take a fi xed number j (e.g., j = 3), then any number (e.g., 17) has 

some remainder when divided by j. For example, 17 has remainder 

2 when divided by 3. In this case, we say 17 is 2 modulo 3. A set of 

numbers are distinct modulo j if their remainders are distinct. Thus, 12 

and 17 have remainders 0 and 2 and so are distinct modulo 3, whereas 
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70 Chapter 5

14 and 17 are not, since 14 and 17 both have the same remainder 2 

modulo 3. With all these prerequisites, here is our main result. The 

abstract- looking statement is followed by some very concrete exam-

ples. The proof is given below.

Theorem. The Ultimate Gilbreath Principle. For a permutation 

π of {1, 2, 3, . . . , N }, the following four properties are equivalent:

1. π is a Gilbreath permutation.

2.  For each j, the top j cards {π(1), π(2), π(3), . . . , π(j)} are 

distinct modulo j.
3.  For each j and k with kj < N, the j cards {π((k − 1)j + 1), 

π((k − 1)j + 2), . . . , π(kj)} are distinct modulo j.
4.  For each j, the top j cards are consecutive in 1, 2, 3, . . . , N.

Here is an example illustrating the theorem. For a ten-card deck, we 

can deal off four cards into a small pile on the table (one by one) and 

then riffl e shuffl e them to lead to the arrangement π below:

4

5

6

3

7

2

8

9

1

10.

Thus, π is a Gilbreath permutation, so it satisfi es (1) by defi nition. The 

theorem now says that π has many special properties. For example, 

consider property (2). For each choice of j, the remainders modulo j 
of the top j cards are distinct. When j = 2, the top two cards, 4 and 5, 

have distinct remainders 0 and 1 modulo 2. When j = 3, the top three 

cards, 4, 5, and 6, are 1, 2, 0 modulo 3. This works for all j up to N, no 

matter what Gilbreath shuffl e is performed. 

Property (3) is our refi nement of the original general Gilbreath 

Principle. For example, if j = 2, it says that, after any Gilbreath shuffl e, 

each consecutive pair of cards contains one even value and one odd 
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from the gilbreath principle to the mandelbrot set    71

value. If the even cards are red and the odd cards are black in the 

original arrangement, we have Gilbreath’s First Principle. The small 

refi nement is that we do not need to assume that N is divisible by j; the 

last k cards still have distinct remainders when divided by j, provided 

k < j and the number of cards preceding these cards is a multiple of j.
The fi nal one, property (4), needs some explanation. Consider our 

Gilbreath permutation π (written sideways to conserve space):

4 5 6 3 7 2 8 9 1 10.

The top four cards (here 4 5 6 3) were consecutive in the original 

deck. (They are out of order, but the set of four started out as consecu-

tive). Similarly, for any j the top j cards were consecutive in the original 

deck for any j.
The point of all of this is that any one of these parts gives a complete 

characterization. For example, if π is a Gilbreath permutation then π 

satisfi es property (3) for all j. Conversely, if π is any permutation sat-

isfying property (3) for all j, then π arises from a Gilbreath shuffl e. In 

one sense, this is a negative result. It says that there are no new hidden 

invariants—Gilbreath discovered them all. On the other hand, now we 

know and can stop brooding about this.

Property (2) is our new Ultimate Gilbreath Principle. We haven’t 

seen it elsewhere and it is the key to proving the theorem. What we 

don’t see is any way of making a good trick. In the hope of angering 

some readers into making progress in this direction, here is an unsuc-

cessful attempt.

You, the performer, show ten cards, each with a unique number, 

1, 2, 3, . . . , 10. The patter goes as follows: “Did you ever have to help 

your kids with their math homework? It’s getting pretty complicated. 

Our kids are doing binary, ternary, and octal arithmetic. They came 

home with something they call ‘modulo j.’” Explain modulo j (as we 

did before) and then continue, “Their teacher says the following stunt 

always works.” The cards are arranged in order, say, 1, 2, . . . , 10. They 

can be ordinary playing cards or index cards with bold numbers writ-

ten on them. Have the spectator cut the packet, deal any number onto 

the table, and then shuffl e the two packets together. Explain: “The 

top two cards are a full set modulo 2, so one should be even and the 

other odd. Let’s take a look. Now, the top three cards form a complete 

set modulo 3. Turn over the next card.” Explain how it’s true: “Let’s 
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72 Chapter 5

see—4, 5, 3, well 3 is 0 modulo 3, and 4 is 1 modulo 3 and 5 is 2 mod-

ulo 3, so it worked then. Let’s see the next card. . . .” This continues 

for as long as you have the nerve to keep talking. 

To be honest again, we haven’t had the courage to try this trick 

out on our friends. It just doesn’t seem very good. What’s worse, the 

pattern described in property (4) of the theorem might be obvious. 

Indeed, this is the way (4) was discovered. We had proved the equiva-

lence of (1), (2), and (3) without knowing (4). When we tried the 

trick out, we noticed (4). Its discovery makes the proof much easier. 

Take a look at the proof in the following section.

The Mandelbrot Set

The Mandelbrot set is one of the most amazing objects of mathemat-

ics. Figure 2 shows a picture of the Mandelbrot set. A close look reveals 

a “leafy” quality on the edge of everything. Consider the bottom re-

gion of fi gure 2. We blow this area up in fi gure 3. Now, new “leafy” fi x-

tures appear. The bottom region of fi gure 3 is expanded to reveal the 

dazzling structure in fi gure 4. Figures 5 and 6 take closer and closer 

looks. Each reveals a rich, detailed structure.

There are many computer programs on the Web that allow explo-

ration of the Mandelbrot set.3 The appearance of refi ned structure 

keeps going forever. It has engaged the best minds in mathematics, 

physics, and biology. Moreover, as explained below, the pattern is “uni-

versal.” It appears in many other seemingly unrelated systems.

This is a chapter on shuffl ing cards and the Gilbreath Principle. We 

hope the reader is as surprised as we were to learn that there is an 

intimate connection between shuffl ing cards and the Mandelbrot set. 

The story is hard to tell, so here is a roadmap to what’s coming. We 

begin with a simple procedure: squaring and adding. This is really all 

that is needed to defi ne the Mandelbrot set. Next, we determine when 

repeated squaring and adding leads to a periodic sequence. Card shuf-

fl ing and the Gilbreath Principle now enter to describe the way the 

points of this sequence are ordered. All of the activity up to now has 

taken place with one- dimensional, “ordinary” numbers. The Mandel-

brot set lives in two dimensions. Only then can the Mandelbrot set be 

properly defi ned. At the end, we give a whirlwind tour of the Mandel-

brot set, explain its universality, and enter a plea for help in fi nding 

two- dimensional shuffl es that will explain the last remaining mysteries.
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from the gilbreath principle to the mandelbrot set    73

Squaring and Adding. Repeated squaring is a familiar proce-

dure. Starting with 2, we get 2, 4, 16, 256, 65536, . . . , off to infi nity. 

Starting with a number less than 1, say with 1/2, we get 1/2, 1/4, 

1/16, 1/256, 1/65536, . . . . This sequence tends to zero. We will have 

to deal with negative numbers. Starting at −1 and repeatedly squar-

ing gives −1, 1, 1, 1, 1, 1, . . . . Things become more interesting if a 

fi xed number is added each time after. Suppose 1 is added each time. 

Starting with 0, squaring and adding 1 gives 02 + 1 = 1, squaring and 

adding 1 repeatedly gives 12 + 1 = 2, 22 + 1 = 5, 52 + 1 = 26, . . . off to 

infi nity. If instead we add −1 each time, we get 0, 02 − 1 = −1, (−1)2 − 1 

= 0, 02 − 1 = −1, (−1)2 − 1 = 0, . . . . This sequence bounces back and 

Figure 5. A further enlargement 
(image created by Paul Neave, 
neave.com)

Figure 6. An even further enlargement
(image created by Paul Neave, 
neave.com)

Figure 3. Enlarging part of the Mandel-
brot set (image created by Paul 
Neave, neave.com)

Figure 4. A further enlargement of part 
of the Mandelbrot set (image created 
by Paul Neave, neave.com)

Figure 2. The Mandelbrot set 
(image created by Paul Neave, 
neave.com)
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74 Chapter 5

forth between 0 and −1 forever. It’s the same if we add −2 each time. 

This time the sequence goes 0, −2, 2, 2, 2, 2, . . . . Adding any number 

smaller than −2 or larger than 0 leads to a sequence that tends to in-

fi nity. Starting points between −2 and 0 lead to bounded sequences. 

(They don’t get arbitrarily far from 0 as time goes on). They are in 

the Mandelbrot set.

Periodic Points. Adding certain special numbers leads to se-

quences that cycle in a fi xed pattern. Let c be the value added after 

each squaring. Thus, the sequences are: 

0, 02 + c = c, c 2 + c, (c 2 + c)2 + c = c 4 + 2c 3 + c 2 + c, . . .

If such a sequence is to return to 0, then eventually one of the iterated 

terms must vanish. Consider the term c 2 + c. When is this 0? If c 2 + c = 0 

then either c = 0 or c + 1 = 0, i.e., c = −1. We saw above that adding −1 

each time gives 0, −1, 0, −1, 0, −1, . . . , a pattern with “period 2.” Con-

sider the next term c 4 + 2c 3 + c 2 + c. Which values of c make this 0? The 

value c = 0 works but we have seen this before. If c ≠ 0, we can divide 

through and consider c 3 + 2c 2 + c + 1. This is a cubic equation and there 

is a rather complicated formula for the roots of a cubic polynomial 

that shows that in this case, the value

1.75487. . .c
6

100 12 69

100 12 69

2

3

2
– – – –

3

3
=

+

+
=

works. Using this value for c, we get

0, −1.75487 . . . , (−1.75487 . . . )2 − 1.75487 . . . = 1.32471 . . . , 0, . . .

This pattern continues, repeating every third step. We say that c = 

−1.75487 . . . is a “period three” point.

The same scheme works to get points of a higher period. For ex-

ample, squaring c 4 + 2c 3 + c 2 + c and adding c gives c 8 + 4c 7 + 6c 6 + 6c 5 + 5c 4 
+ 2c 3 + c 2 + c. This gives two new values of c, both of which lead to points 

of period four. These are c = −1.3107 . . . and c = −1.9407 . . . . These in 

turn lead to the repeated sequences

c = −1.3107 . . . :  0, −1.3107 . . . , 0.4072 . . . , −1.1448 . . . , 0, . . .

and

c = −1.9407 . . . :  0, −1.9407 . . . , 1.8259 . . . , 1.3931 . . . , 0, . . . .

Diaconis_FINALS.indb   74Diaconis_FINALS.indb   74 9/14/11   11:28 AM9/14/11   11:28 AM

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 



from the gilbreath principle to the mandelbrot set    75

New periodic sequences occur for each possible period. These can be 

found by fi nding the values of c where the nth iterate of “squaring and 

adding c” vanishes. They turn out to be exactly described by Gilbreath 

permutations.

The Shuffling Connection. To make the connection with shuf-

fl ing cards, write down a periodic sequence starting at zero. Write 

a one above the smallest point, a two above the next smallest point 

and so on. For example, if c = −1.75487 . . . (a period three point), 

we have:

. . . . . . . . .0

2

1 75487

1

1 32471

3

–

For the two period four sequences, we get for c = –1.3107 . . . :

. . . . . . . . . . . . .0

3

1 3107

1

0 4072

4

1 1448

2

– –

and for c = –1.9407 . . . :

1.9407 . . . 1.8259 . . . . 1.3931 . . . .0

1 42 3

–

For a fi xed value of c, the numbers written on top code up a permu-

tation that is a Gilbreath shuffl e. Here is the decoding operation. For 

example, when c = −1.3107 . . . , the numbers on top are 3 1 4 2. Start 

with the 1 and go to the left (going around the corner if you have to). 

This gives (1324). This is “cycle notation’’ for a permutation. It is read 

as “1 goes to 3, 3 goes to 2, 2 goes to 4, and 4 goes back to 1.” Rewrite 

this by putting the numbers 1, 2, 3, 4 in a row, and under them put 

what they go to in the cycle, as:

1 2 3 4

 3 4 2 1.

The reader may practice by taking the example c = –1.9407. . . . As 

we have seen above, it is 2, 1, 4, 3. Starting with 1 and going to the left 

gives the cycle (1234), and fi nally the two- line arrangement

1 2 3 4

 2 3 4 1.

The point of all this decoding is that the arrangement on the bot-

tom line is always a Gilbreath permutation, and furthermore, every 
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76 Chapter 5

cyclic Gilbreath permutation of length n appears exactly once from a 

period n value of c.
We were told this result by Dennis Sullivan, who attributes it to the 

great mathematicians John Milnor and William Thurston. These are 

three of the greatest mathematicians of the twentieth century—the 

latter two are winners of the Fields Medal (often called “the Nobel 

Prize of mathematics”). Whomever this result belongs to, it sets up 

a fascinating connection that is just beginning to be understood. We 

state it as a formal theorem below along with further comments.

The Full Mandelbrot Set at Last. All of the activity above has 

been confi ned to the one- dimensional line. The Mandelbrot set lives 

in two dimensions. There is a notion of “square and add c’’ in two di-

mensions. The values of c where repeated squaring and adding stays 

bounded are exactly the points of the Mandelbrot set. Working in the 

plane, the values of c are two- dimensional: c = (c
1
, c

2
).

Figure 1 shows the Mandelbrot set. The values on the x- axis be-

tween −2 and 0 are the points discussed above. The big central heart- 

shaped region is called the cardioid. It is surrounded by blobs, and 

each of these is in turn surrounded by smaller blobs (and so ad in-

fi nitum). One of the main open research problems concerning the 

Mandelbrot set has to do with the values of c (now (c
1
, c

2
)) that give 

periodic sequences from the squaring and adding process. It is con-

jectured that each blob (the big ones, the smaller ones, and so ad 

infi nitum) contains one of those periodic points. Proving this con-

jecture would lead to the resolution of the outstanding local connec-
tivity conjecture. Sullivan told us about the connection with shuffl ing 

because shuffl es parameterize the periodic points on the x- axis. Is 

there some kind of two- dimensional shuffl e that parameterizes the 

two- dimensional periodic points? We don’t know but we’re thinking 

hard about it. 

 Some Math with a Bit of Magic 

Squaring and adding makes perfect sense in two dimensions, taking a 

point z to z 2 + c. There is a simple geometric description: A point z in 

two dimensions is described by its coordinates (x, y). Figure 7 shows 

(x, y) plotted as a dot with the line connecting the dot to 0. Also shown 

is the angle θ that the point (x, y) makes with the x- axis. To square the Figure 7. Squaring a complex point

(x2 – y2, 2xy)

(x, y)
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from the gilbreath principle to the mandelbrot set    77

point (x, y), we square the distance along the line connecting (x, y) to 

0, double the angle to 2θ, and plot the new point. The new point can 

be given in coordinates as (x 2 − y 2, 2xy). Call this (x ′, y′). Adding c = 

(c
1
, c

2
) gives (x′ + c

1
, y′ + c

2
). This is repeated using the same value of 

c each time. If this procedure, starting at 0, leads to points that stay 

inside a large enough circle around 0, we put c in the Mandelbrot set. 

Figure 2 shows all such values of c.
A comprehensive picture book about the Mandelbrot set is Chaos 

and Fractals: New Frontiers of Science, by H. O. Peitgen, H. Jürgens, and 

D. Saupe.4 A discussion of shuffl ing and the Mandelbrot set can be 

found in the paper “Bounds, Quadratic Differentials, and Renormal-

ization Conjectures” by D. Sullivan.5 To observe professionals talking 

among themselves about the Mandelbrot set, see T. Lei’s book The 
Mandelbrot Set: Theme and Variations.6

Let us state the basic connection between shuffl ing cards and real 

points in the Mandelbrot set more carefully. Defi ne a sequence of 

polynomials P
1
, P

2
, P

3
, . . . , iteratively as P

1
(x) = x, P

2
(x) = x 2 + x, P

3
(x) 

= P
2
(x)2 + x = (x 2 + x)2 + x = x 4 + 2x 3 + x 2 + x, . . . , Pn(x) = Pn –1 

(x)2 + x. 

Thus, the top degree of Pn is 2
n. Dennis Sullivan proved that the real 

zeroes of Pn are “simple.” Each real zero can be used as the additive 

constant in the “squaring and adding” iteration. 

Theorem. Defi ne P
1
(x) = x and Pk + 1

 = Pk
2  + x for k < n. The real 

zeroes c of Pn that lead to periodic sequences of period n are in 

one- to- one correspondence with Gilbreath permutations that are 

n- cycles. The correspondence goes as follows: From c, form the 

iteration 0, c, c 2 + c, c 4 + 2c 3 + c 2 + c, . . . . Label the smallest of those 

values 1, the next smallest 2, . . . , and the largest n. Read these 

in right- to- left order as a cyclic permutation. Transform this to 

two- rowed notation. The resulting bottom row is a Gilbreath per-

mutation (characterized at the beginning of this chapter). Each 

cyclic Gilbreath permutation occurs exactly once through this 

correspondence.

Note that not every Gilbreath permutation gives rise to an n- cycle. 

For example, removing the top card and inserting it into the middle 

of the deck is a Gilbreath permutation that is not an n- cycle. The num-

ber of n- cycles among Gilbreath permutations has been determined 

by Rogers and Weiss.7 They show that this number is exactly 
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78 Chapter 5

( ) .d 2
| ,

/

n
d n dodd

n d
2

1 n/

Here, the sum is over the odd divisors d of n, and μ(d ) is the so- called 

Möbius function of elementary number theory. That is, μ(d ) is 0 if d 

is divisible by a perfect square, and μ(d ) = (−1)k if d is the product of 

k distinct prime factors. Thus, for n = 2, 3, 4, 5, 6, the formula gives 

4

1 (22) = 1, 1

6 (23 − 2) = 1, 1

8 (24) = 2, 10

1 (25 − 2) = 3, and 1

1

2 (26 − 22) = 5 cyclic Gil-

breath permutations. For example, the three values of c for n = 5 give:

.

1.9854 1.9564 1.8424 1.40900

1.8607 1.6017 0.7047 1.3640

1.6254 1.0165 0.5920 1.2749

0

1 4

0

1 5 4

0

1 5 2

2 5 3

3 2

4 3

–

– –

– – –

These lead, respectively, to the two- line arrays:

1 2 3 4 5

2 3 4 5 1

1 2 3 4 5

3 4 2 5 1

1 2 3 4 5

4 3 5 2 1

where the second rows are Gilbreath permutations.

Recall that there are exactly 2n – 1 Gilbreath shuffl es. The formula 

above shows that there are approximately 2

n

n 1–

 Gilbreath n- cycles. Jason 

Fulman gives a formula for the number of unimodal permutations 

with a given cycle structure.8

To conclude, let us try to explain in what sense the Mandelbrot 

set is universal. For fi xed c, the square and add operation changes x 

to x 2 + c. As c varies, we have a family of different iteration schemes. 

Curt McMullen showed that any family of functions of the plane to 

itself has all the complexity of the Mandelbrot set complete with its 

holes, fractal dimensions, and infi nite subtlety. Of course, this also 

means it contains all the Gilbreath permutations described above. A 

more careful version of McMullen’s theorem strains the confi nes of 

this page.9
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from the gilbreath principle to the mandelbrot set    79

We know of two applications of Gilbreath’s principles outside of 

magic. The mathematician N. G. de Bruijn (whom we met in chapters 

2, 3, and 4) published “A Riffl e Shuffl e Card Trick and Its Relation 

to Quasicrystal Theory” in 1987.10 The quasicrystals referred to are 

Penrose tiles. These are two shapes of tiles that can be used to tile 

the plane but only in a nonperiodic way (see fi gures 8 and 9). They 

have a fascinating story, which is detailed in Marjorie Senechal’s book 

Quasicrystals and Geometry, or the more accessible Miles of Tiles, written 

by the mathematician Charles Radin. Most accessible of all is Martin 

Gardner’s treatment in Penrose Tiles to Trapdoor Ciphers.11

A Bit of Magic

De Bruijn shows that the Gilbreath Principle leads to understanding 

useful facts about the properties of Penrose tilings. Along the way, de 

Bruijn worked the following extension of Gilbreath’s First Principle. 

Before starting, separate the cards so you have all clubs together, hearts 

together, spades together, and diamonds together. Form one twenty-

six- card pile with spades and diamonds alternating (SDSD . . . ). Then 

form another twenty-six- card pile with hearts and clubs alternating 

(HCHC . . . ). If the two piles are riffl e shuffl ed together, we know 

from before that each consecutive pair will consist of one red and one 

black. However, if the two piles are put together and the deck of fi fty-

two is cut freely, this need not work out. De Bruijn’s “extension” allows 

a free cut. He proves that either each consecutive pair contains one red 

and one black throughout, or each consecutive pair contains one ma-

jor suit (i.e., a heart or spade) and one minor suit (i.e., a club or dia-

mond). With suitable arrangement, major/minor may be replaced by 

odd/even or high/low, which might be more suited to a magic trick.

De Bruijn’s extension goes beyond the original Gilbreath. In light 

of our theorem, how can this be? De Bruijn adds an extra restriction 

(the packet cut off is not of a freely chosen size), but he gets his free-

dom at the end—a free cut. We have tried to marry de Bruijn’s exten-

sion with our ultimate principle. The mix makes a nice example of 

how progress occurs.

The second application outside card magic comes in the world 

of designing sorting algorithms for computers. Huge memory fi les 

are often stored on external discs. Several discs can be read at once. 

Figure 8. The two Penrose tiles

Kite Dart

Figure 9. Tiling with Penrose tiles

Diaconis_FINALS.indb   79Diaconis_FINALS.indb   79 9/14/11   11:28 AM9/14/11   11:28 AM

© Copyright, Princeton University Press. No part of this book may be 
distributed, posted, or reproduced in any form by digital or mechanical 
means without prior written permission of the publisher. 



80 Chapter 5

Stanford computer scientist Donald Knuth used the Gilbreath Prin-

ciple to give an “improved superblock striping” technique that allows 

two or more fi les, distributed on discs, to be merged without possible 

confl ict (in other words, the need to read two blocks from the same 

disc at the same time). This is explained in Knuth’s monumental book 

series The Art of Computer Programming. A videotape of Knuth’s talk on 

this super block striping technique is available from the Stanford Uni-

versity Computer Science Department. 

Some Proofs. We continue by providing the promised proofs for 

some of the theorems above. Why are there 2N − 1 Gilbreath shuffl es 

of N cards? Let us select some arbitrary subset S = {s
1
, s

2
, . . . , sj } of {2, 

3, . . . , N }. Now form the Gilbreath permutation by placing j in position 

1, then j − 1 in position s
1
, j − 2 in position s

2
, etc., and placing the num-

bers greater than j in increasing order in the positions not in S. It is clear 

that all Gilbreath permutations can be uniquely built this way. Since the 

number of ways of choosing S is just 2N − 1, then we have the desired result.

Here is a proof that the four properties (1), (2), (3), and (4) listed 

in our Ultimate Gilbreath theorem are all equivalent. The arguments 

are elementary but not so easy to discover. They make nice examples 

of how card tricks can lead to mathematics.

Proof. After a Gilbreath shuffl e, the top j cards form an interval 

{a, a + 1, . . . a + j − 1} or {a, a − 1, . . . , a − (j − 1)} for some value 

of a. As such, they consist of distinct values modulo j. Thus, (1) 

implies (2). If π satisfi es (2) for each j then π satisfi es (3). To 

see this, consider π satisfying (2). Clearly, the entries in the fi rst 

block are distinct. But the top 2j are also distinct modulo 2j and 

consist of exactly two of each value modulo j. Since the top j are 

one of each value modulo j, it must be that π( j + 1), π( j + 2), . . . , 

π(2j ) are distinct modulo j. This in turn implies that π(2j + 1), 

π(2j + 2), . . . , π(3j ) are distinct, and so on. Clearly, (3) implies 

(2), so (2) and (3) are equivalent.

To see that (2) implies (1), observe that (2) implies that the 

top j cards form an interval of values. Suppose the top card (π(1)) 

is k. The next card must then be k + 1 or k − 1, since if it is k ± d 

for some d > 1, then the top d cards would not be distinct modulo 

d. Suppose the top j + 1 cards were a, a + 1, . . . , a + j. If the next 
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from the gilbreath principle to the mandelbrot set    81

was not a − 1 or a + j + 1, but a + j + d  for some d > 1, then, again, 

modulo d, things would repeat. 

Finally, this “interval” property of π implies it can be decom-

posed into two chains k + 1, k + 2, . . . , n and k, k − 1, . . . , 1. For 

this, proceed sequentially. If the top card is k, the next must be 

k + 1 or k − 1. Each value that increases the top of the interval is 

put in one chain, and each value that decreases the bottom is put 

in the second chain. Since, for such intervals, increasing values 

occur further down in π, the two chains formed do the job. This 

fi nishes the proof (whew!).

Further Remarks

1. The decomposition into two chains is not unique. If we deal off k 

cards and, in the shuffl e, k + 1 is left above k, it is impossible to distin-

guish this from k + 1 being dealt off.

2. Instead of dealing, we can cut off and turn a packet of k face-up, 

then shuffl e the two packets together.

3. As a last mathematical detail: At the start of this chapter we gave 

a heuristic calculation of the chance that a well-shuffl ed deck of 2N 

cards has one red and one black card in each consecutive pair. Naïve 

heuristics suggest that when N is large, the pair choices are roughly 

independent and each one has the 2

1  chance of coming up red/black 

in some order. This would result in a probability of 
2

1
N  of happening. 

However, the events we are considering are not independent. In par-

ticular, if we start with a shuffl ed deck of N red and N black cards, the 

chance that, after the fi rst card is selected, the next card selected has 

a different color from the fi rst card is slightly greater than 2

1 . After all, 

there are only N − 1 cards with the fi rst card’s color left in the deck, 

while there are still N cards with the opposite color. This imbalance 

happens for each of the pairs selected, and becomes greater as the 

number of cards gets smaller. For example, for a four- card deck (i.e., 

N = 2), the chance that the fi rst two cards form a red/black pair is .3

2  

The result of multiplying all these “imbalances” together is that the 

probability that our well-shuffl ed deck will have the desired property is 

exactly 2

2

N
N

N

a k
, which is approximately equal to 

2

N
N
r , using the Stirling ap-

proximation again. For N = 26, this is 1.353 . . . × 10−7, which amounts 

to less than one chance in seven million. 
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82 Chapter 5

Some History

Gilbreath’s First Principle originally appeared as the trick Magnetic 

Colors in the magic magazine the Linking Ring  in July 1958. The Link-
ing Ring is the offi cial publication of one of the two largest American 

magic organizations, the International Brotherhood of Magicians, or 

IBM. (The other is the Society of American Magicians, or SAM.) The 

Linking Ring has been published monthly since 1923. A typical issue 

contains advertisements from magic dealers, historical articles, edito-

rials denouncing magical exposés, and a large section of tricks con-

tributed by IBM members. You cannot fi nd it in libraries. As with most 

magical information, it is for magicians only.

Back in 1958, young Norman Gilbreath introduced himself in the 

magazine as follows: “I have been interested in magic for 10 years. I am 

a math major at the University of California in Los Angeles (UCLA). 

Being a supporter of the art of magic, I have created over 150 good 

tricks and many others not so good. Here are a couple I hope you 

can use.” He then provided a brief description of what is now called 

Gilbreath’s First Principle, in which he dealt the deck into two piles, 

following the shuffl e, and revealed that the cards in each pair have 

opposite colors.

Gilbreath’s trick was picked up and varied almost immediately. In 

the January 1959 issue of the Linking Ring, card experts Charles Hud-

son and Edward Marlo wrote, “It is not often one runs across a new 

principle in card magic. . . . Norman Gilbreath’s ‘Magnetic Colors’ has 

proven the most popular card effect to appear in the parade for a long 

time.” Gilbreath weighed in eight years later by introducing his second 

principle in the June 1966 issue of the Linking Ring. By this time, Gil-

breath was a professional mathematician working for the Rand Corpo-

ration. He held this job for his entire career. The second principle was 

featured in this special issue of the magazine devoted to Gilbreath’s 

magic. It included new uses for the fi rst principle and many noncard 

tricks. Gilbreath published later variations that involved mixing red 

decks with blue decks and face-up cards with face-down cards (with 

some effort, you can fi nd these in the magic magazine Genii ).13

The nonmagical public heard about the Gilbreath Principle in Mar-

tin Gardner’s Scientifi c American column in August 1960. He expanded 

this into a chapter in his third book, New Mathematical Diversions from 
“Scientifi c American.” New presentations and applications have regularly 
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appeared in magic journals. A booklet titled “Gilbreath’s Principles,” 

written by mathematics teacher and magician Reinhard Muller, ap-

peared in 1979. Chapter 6 of Justin Branch’s Cards in Confi dence, vol. 1, 

is fi lled with many variations.14 While our Ultimate Gilbreath Princi-

ple shows there can be no really new principle, the variations make for 

good magic.
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