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Abstract

A graph-based multi-class classification prob-
lem is typically converted into a collection of
binary classification tasks via the one-vs.-all
strategy, and then tackled by applying proper
binary classification algorithms. Unlike the one-
vs.-all strategy, we suggest a unified frame-
work which operates directly on the multi-class
problem without reducing it to a collection of
binary tasks. Moreover, this framework makes
active learning practically feasible for multi-
class problems, while the one-vs.-all strategy
cannot. Specifically, we employ a novel ran-
domized query technique to prioritize the in-
formative instances. This query technique based
on the hybrid criterion of “margin” and “un-
certainty” can achieve a comparable mistake
bound with its fully supervised counterpart. To
take full advantage of correctly predicted labels
discarded in traditional conservative algorithms,
we propose an aggressive selective sampling
algorithm that can update the model even if no
error occurs. Thanks to the aggressive updating
strategy, the aggressive algorithm attains a lower
mistake bound than its conservative competitors
in expectation. Encouraging experimental results
on real-world graph databases show that the
proposed technique by querying an extremely
small ratio of labels is able to accomplish better
classification accuracy.

I. INTRODUCTION
Graphs, as a family of ubiquitous structures to model
different types of networks, such as social networks (e.g.,
Facebook, Twitter), biological networks [19], [20], and
citation networks [21], have been widely applied in diverse
applications. Particularly, one important task is to classify
graph vertices into multiple classes, e.g., authors in a
citation network can be classified into different domain-

s/classes, such as computer science, biology, physics,
mathematics, economics, etc. To build a classifier, the
desired classification model can be learnt from a set of
vertex-label pairs in both offline [7] and online settings
[16]. Offline algorithms can access the labels of all the
stored vertices in a pool, which increases the storage
requirement. Online learning, on the other hand, obtains
the instances in a sequential order. It allows to access
the label of the current vertex; after updating the model,
the current input will be discarded [18]. Therefore, online
learning is scalable to deal with massive datasets.

Although online classification on graphs has been well
studied, it still remains as a challenging research subject,
which is primarily due to three reasons. First, most online
techniques focus on binary classification problems. Some
approaches [14], [22] address multi-class problems by
using output coding [12]. Such a setting may be inef-
fective and ill-defined since it generalizes multiple binary
classifiers and each classifier is maintained and updated
independently of the others 1. Second, online learning
assumes that the labels of all vertices are provided already.
It is impractical as labeling every sample is expensive and
time-consuming in many real-world applications. Third,
in social networks, data usually arrives in a sequential
order and the network scale can be very large, which
brings a critical challenge to develop efficient and scalable
algorithms for graph classification.

To address the aforementioned challenges, we present a
unified framework to cope with multi-class online clas-
sification on graphs. Specifically, we adapt the graph
Laplacian Regularized Least Squares (LapRLS) model to
the multi-class setting, in which updating one class model
has a global impact on the other classes. However, such
an approach assumes that all labels are available, which
obviously limits its usage to many domains. To minimize
the labeling cost, we propose a new query technique based
on both the “margin” [9] and “uncertainty” criteria, to only
query the labels of the most informative instances. We

1Refer to the comparison between the binary and multi-class
settings in the supplementary material.



theoretically analyze an online algorithm running on the
selected labels by our query technique, which achieves
a comparable mistake bound with the one that queries
all labels. In addition, to take full advantage of correctly
predicted labels that are discarded in conservative algo-
rithms, we introduce an aggressive version of selective
sampling. It hybrids the conservative update with the
aggressive sampling scheme, which updates the model
even if no error occurs. The theoretical results show that
our aggressive selective sampling algorithm can achieve
better performance than its conservative competitors. Ex-
tensive experiments carried out on several real-world
graph datasets further validate the empirical performance
of the proposed algorithms.

The rest of this paper is organized as follows. Section 2
presents the problem setting of graph classification. The
proposed multi-class online learning and selective sam-
pling algorithms are described in Section 3 and Section 4,
respectively. Section 5 discusses the experimental results.
Section 6 concludes our work.

II. GRAPH CLASSIFICATION
In this section, we first present the notations. Then we
introduce a graph Laplacian regularization that can derive
a linear model for multi-class classification.

A. Notation
In this paper, we will use lower case letters as scalars
(e.g. x), lower case bold letters as vectors (e.g. f ), upper
case letters as elements of a matrix (e.g. Sij) and bold-
face upper letters as matrices (e.g. S). With an appropriate
size, an identity matrix is defined as I and a vector of all
zeros as 0. The transpose of a vector m is denoted as
m⊤, the inverse of a matrix A as A−1, and the pseudo
inverse of A as A†. A diagonal matrix is denoted as
diag(σ1, . . . , σn) with diagonal elements σi, i ∈ [1, n]. In
addition, Euclidean norms are denoted as ∥·∥2, Frobenius
norm as ∥·∥F and the trace of square matrix as tr(·). When
function f(W ) is differentiable, we denote its gradient by
∇f(W ).

We consider the problem of classification in probabilistic
setting: n i.i.d. pais are generated by a probability distri-
bution on X×Y , where yi in a pair of (xi, yi) is the class
of instance xi. We define |Y| = 2 as binary-class setting,
and |Y| > 2 as a multi-class problem.

B. Graph Laplacian Regularization
G = (V,E) is defined as a graph with an vertex set
V = {v1, . . . , vn}, an edge set E = {(vi, vj)|vi, vj ∈ V }
and an adjacency matrix S ∈ Rn×n, where the element
Sij ∈ R+

0 is measured by the affinity of edge (vi, vj).
We assume graph G is connected and undirected in this
work. Given D is the diagonal matrix with Dii =

∑
j Sij ,

graph Laplacian is defined as L = D − S with its
eigenvector V = [v1, . . . ,vn](vi ∈ Rn) and eigenvalue
Λ = diag(λ1, . . . , λn) where 0 = λ1 ≤ . . . ≤ λn.
Intuitively, the objective function incurs a heavy penalty,
if neighboring vertices vi and vj are mapped far apart.
The graph regularization [17] assumes a label smoothness
over the graph,
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n∑
i,j=1

Sij∥fi − fj∥2 = tr
(
F⊤ (D − S)F

)
= tr

(
F⊤LF

)
,

where F = [f1, . . . , fn]
⊤ and fi ∈ RK is the prediction

scores of node i on K classes.

In the setting of graph classification, the real-valued
function satisfies: 1) the values of function F for labeled
vertices should be close to the given labels for that
vertices; 2) vertices should satisfy label smoothness on
the whole graph, that is, the points nearby in graph
should have similar labels. In the multi-class scenario, the
generalized LapRLS solves the following function,

min
F
∥F − Y ∥2F + γtr

(
F⊤LF

)
, (1)

where Y = [y1, . . . ,yn]
⊤ ∈ Rn×K , yi ∈ RK is the

true label of node i on K classes, and γ > 0 is a
regularized parameter for graph Laplacian. To solve the
problem (1) with a linear model, we consider its dual form.
Using the definition of graph kernel [17], the function
F can be defined, F = L†Φ, where L† is the pseudo
inverse of L and Φ ∈ Rn×K is a parameter matrix.
Assuming that L† = M⊤M =

∑
i

1
λi
viv

⊤
i , where M =

[ 1√
λ1
v1, . . . ,

1√
λn

vn]
⊤ ∈ Rn×n and W = MΦ ∈ Rn×K ,

the kernel function F can be reformatted in a linear model
form,

F = M⊤W, (2)
where fi = W⊤mi is essentially a linear regression
model. In the multi-class setting, our linear model and
its prediction margin are defined as follows.
Definition 1. We define a multi-class linear model that
consists of label score of an input mi over the K classes,

fi = [Pmi

W (1), . . . , Pmi

W (K)]
⊤
. (3)

Given the node-label pair (mi, yi), we define the predic-
tion margin of fi,

Pmi

W (yi)−max
j ̸=yi

Pmi

W (j) = fi · yi, (4)

where yi ∈ RK is a label vector of node i with an
entry of +1 for true class yi, −1 for the class j =
argmaxj ̸=yi

Pmi

W (j) and 0 otherwise.

Substituting Eq. (2) into Eq. (1), we obtain,

min
W
∥M⊤W − Y ∥2F + γtr

(
W⊤W

)
.

In this way, we derive a formulation, similar to ridge-
regression, with an additional regularization to shrink the
prediction. It helps us to derive a multi-class online model
with a new data representation for graph vertex.



C. Low-rank Approximation
Given M = [ 1√

λ1
v1, . . . ,

1√
λn

vn]
⊤, the matrix W is

updated with the time complexity O(n2), that is compu-
tationally expensive in large graph datasets. To make our
algorithm scalable to big graphs, we propose a low-rank
approximation M̂ as follows,

M̂ = [
1√
λ1

v1, . . . ,
1√
λd

vd]
⊤ ∈ Rd×n, Ŵ = M̂Φ ∈ Rd×K ,

where d ≪ n and the time complexity of our algorithm
becomes O(d2)≪ O(n2). We analyze the impact of such
low-rank approximation on the function F̂ = M̂⊤Ŵ . We
have F̂ = L̂†Φ, where L̂† = M̂⊤M̂ =

∑d
i=1

1
λi
viv

⊤
i .

Given that 1
λ1
≥ . . . ≥ 1

λn
, L̂† holds the d largest

eigenvalues of L†. In this case, L̂† is the best rank-d
approximation of L† [13], and thus F̂ is the best rank-d
approximation of F . Equipped with M̂ and Ŵ a low-rank
objective function for multi-class online classification can
be rewritten as follows,

argmin
Ŵ

T∑
t=1

∥Ŵ⊤m̂t − yt∥22 + γtr(Ŵ⊤Ŵ ).

III. ONLINE LEARNING
Now we are ready to derive a multi-class online model
on graph. We first present the problem setting of online
learning. Then we derive the online classifier and its
mistake bound.

A. Problem Setting
The purpose of online learning is to minimize
the cumulative loss over the sequential nodes. Let
(m1,y1), . . . , (mT ,yT ) (T ≤ n) be a sequence of
vertices, where mt ∈ Rn is one column of matrix M and
yt ∈ RK is its label vector, an online version of LapRLS
in multi-class setting is derived,

GT (W ) =
T∑

t=1

∥W⊤mt − yt∥22 + γtr
(
W⊤W

)
. (5)

At round t, online algorithm receives an input vertex
mt, and predicts its label with the maximal score among
the K classes, ŷt = argmin

i∈[K]

Pmt

Wt
(i). After prediction,

its actual label yt is revealed, and the algorithm uses it
to update model and then proceeds to the next round.
At each iteration, the performance of the online model
is evaluated by a squared loss, ℓt(W ) = ℓ(yt, ŷt) =
∥yt −W⊤mt∥22 with cumulative loss over T iterations,
LT (W ) =

∑T
t=1 ℓt(W ). Similar, for any U ∈ Rn×K , let

ℓt(U) = ∥U⊤mt − yt∥22 be the instantaneous loss and
LT (U) =

∑T
t=1 ℓt(U) be the cumulative loss. The goal

of online learning is to achieve low regret compared with
the best linear function,

RT =

T∑
t=1

gt(W )− inf
U

T∑
t=1

gt(U),

where GT (W ) =
∑T

t=1 gt(W ) and gt(W ) = ℓt(W ) +
γtr

(
W⊤W

)
is regularized instantaneous loss on round t.

B. Online Learning on Graph
To minimize the regret, we have to minimize the cumu-
lative loss GT (W ) in the following lemma. We start with
the notations,

AT = γI +
T∑

t=1

mtm
⊤
t , BT =

T∑
t=1

mty
⊤
t . (6)

Lemma 1. For all T ≥ 1, GT (W ) = LT (W ) +
γtr(W⊤W ) is minimal at an unique point WT for all
T ≥ 1, given by

WT = A−1
T BT , G(WT ) =

T∑
t=1

∥yt∥2 − tr
(
B⊤

T A−1
T BT

)
.

We leave the proof in supplementary file. In Lemma 1,
we obtain an optimal linear solution WT . Inspired by [2],
we exploit current input to predict its label with ft =
B⊤

t−1A
−1
t mt where At = At−1 +mtm

⊤
t . However, it is

not efficient to perform update in each iteration. To make
it scalable on big graphs, we adopt a conservative strategy
[4] to update model whenever an error occurs (yt ̸= ŷt).
Note that our algorithm is different from [4], since the
solution is a matrix for multi-class classification. We call
our algorithm CMOG, a Conservative Multi-class Online
learning on Graph, and summarize it in algorithm 1.

Although the CMOG is simple, it is the first work of
online learning for solving graph-based multi-class prob-
lem. Below gives theoretical analysis of the CMOG and
we begin with a lemma that facilitates the proof. With
this lemma, we could then derive the mistake bound for
the CMOG. For convenience, we introduce an additional
notation:

rt = m⊤
t A

−1
t−1mt. (7)

Then the following notation can be derived using Wood-
bury formula [3],

m⊤
t A

−1
t mt

(6)
= m⊤

t

(
At−1 +mtm

⊤
t

)−1
mt

= m⊤
t (A

−1
t−1 −

A−1
t−1mtm

⊤
t A

−1
t−1

1 +m⊤
t A

−1
t−1mt

)mt =
rt

1 + rt
.

Lemma 2. For all t ≥ 1, Gt(U) is the online LapRLS
with any U ∈ Rn×K . Let (m1,y1), . . . , (mT ,yT ) be a
sequence of input vertices, where mt ∈ Rn and yt ∈ RK ,
an online algorithm predicts with ft = B⊤

t−1A
−1
t mt. Then

the following equality holds,

inf
U

Gt(U)− inf
U

Gt−1(U) = ∥yt − ft∥22 −
2rt

1 + rt
+ rt∥ft∥22

We leave the proof in supplementary file. Based on
the above lemma, we prove the following theorem that
bounds the expected mistakes of CMOG. We denote



M = {t|yt ̸= ŷt} as the set of mistake trials with
|M| = M . For any model U ∈ Rn×K , let UT be the
set of its update trial, and AUT = γI +

∑
t∈UT

mtm
⊤
t .

Its hinge loss on round t is defined,

L(y⊤
t U

⊤mt) = [1− (Pmt

U (yt)−max
j ̸=yt

Pmt

U (j))]+.

Theorem 1. Let (m1,y1), . . . , (mT ,yT ) be a sequence
of inputs, where mt ∈ Rn and yt ∈ RK . Then for any
model U ∈ Rn×K and h > 0, the expected mistakes of
CMOG (Alg. 1) on these sequential nodes is bounded by,

E[M ] ≤E[
∑
t

L(y⊤
t U

⊤mt)] +
h

2
tr(U⊤E[AUT

]U)

+
1

h
E[
∑
t

rt
1 + rt

].

Remark 2.
∑

t L(y⊤
t U

⊤mt) is the cumulative hinge loss
made by U . Besides, for each class prototype ui(i ∈
[K]), u⊤

i AUT
ui lines between minj λj and maxj λj

where λj is an eigenvalue of the matrix AUT
. Thus,

tr(U⊤E[AUT
]U) ≤ Kmaxj λj . Finally,

∑
t

rt
1+rt

≤
log det(AT )

det(A0)
≤ n log(R2T + 1) given ∥m∥2 ≤ R.

Proof. The CMOG is a conservative algorithm that up-
dates model whenever an error occurs. If there is no
update, Ut = Ut−1 yields infU Gt(U) = infU Gt−1(U).
According to lemma 2, we have,

inf
U

Gt(U)− inf
U

Gt−1(U)

=I{yt ̸= ŷt}(∥yt − ft∥22 −
2rt

1 + rt
+ rt∥ft∥22)

holds for all trial t. Summing over t = 1, . . . , T , we obtain
via expanding the squares and some manipulations,∑

t∈M
(∥yt∥22 − 2yt · ft + ∥ft∥22 −

2rt
1 + rt

+ rt∥ft∥22)

= inf
U

GT (U)− inf
U

G0(U)

≤
∑
t∈M

(∥yt∥22 − 2yt · U⊤mt) + tr(U⊤(γI +
∑
t∈UT

mtm
⊤
t )U)

holding for any U ∈ Rn×K . We ignore rt∥ft∥22 as it does
not affect upper bound. Given that ŷ = argmax

j ̸=yt

Pmt

WT
(j),

1−yt · U⊤mt ≤ [1− (Pmt

U (yt)− Pmt

U (ŷ))]+

≤ [1− (Pmt

U (yt)−max
j ̸=yi

Pmt

U (j))]+ = L(y⊤
t U

⊤mt).

Since U is a random variable, we use hU (h > 0) to
replace U . We add

∑
t 2h on both sides of inequality and

simplify inequality with At and L(·),∑
t∈M

(∥ft∥22 − 2yt · ft −
2rt

1 + rt
+ 2h)

≤2h
∑
t∈M
L(y⊤

t U
⊤mt) + h2tr(U⊤AUTU).

(8)

Algorithm 1 CMOG: Conservative Multi-class Online
model on Graph

1: Input: Adjacency matrix S, and regularization param-
eter γ.

2: Output: WT

3: Compute L = D− S and M from L;
4: Initialize: A0 = γI , B0 = 0 , W0 = 0;
5: for t = 1, . . . , T do
6: Receive mt ∈ Rn;
7: Compute A−1

t = (At−1 +mtm
⊤
t )

−1;
8: Predict ft = B⊤

t−1A
−1
t mt;

9: ŷt = argmaxj=1,..,K ft(j);
10: Query the actual label yt;
11: if ŷt ̸= yt then
12: Update At = At−1 +mtm

⊤
t ;

13: Update Bt = Bt−1 +mty
⊤
t ;

14: else
15: At = At−1, Bt = Bt−1;
16: end if
17: end for
18: WT = A−1

T BT ;

When an error occurs (i.e., yt ̸= ŷt), we have that
Pmt

Wt
(yt) ≤ Pmt

Wt
(ŷt) yields −yt · ft = Pmt

Wt
(ŷt) −

Pmt

Wt
(yt) ≥ 0. With the expectation of the inequality, we

bound given by ∥ft∥2 > 0,∑
t∈M

E[∥ft∥22 − 2yt · ft −
2rt

1 + rt
+ 2h]

≥2hE[M ]− E[
∑
t

2rt
1 + rt

].

(9)

Taking the expectation of Eq. (8) to upper bound the left-
side of Eq. (9), we complete the proof.

IV. SELECTIVE SAMPLING
In this section, we first introduce the setting of selective
sampling. Next, we propose a novel randomized query
approach to select labels and then introduce an aggressive
algorithm that can use correctly predicted labels to opti-
mize the model. We theoretically analyze mistake bound
and query ratio of the proposed techniques. Finally, a low
rank approximation is introduced in our framework.

A. Problem Setting

Unlike online algorithm that queries all labels, selective
sampling has to decide whether to query label or not
for each vertex mt. If a label yt is queried of, the
algorithm can update learner with yt; otherwise, no action
is performed and the learner proceeds next one. Query
and update decisions in trial t are denoted as binary
variables Qt and Zt, respectively. When Qt = 1 iif label
yt is queried of; Qt = 0, no action performed. Update



decision Zt is under similar setting. Generally, selective
sampling is a semi-supervised online learning algorithm.
Thus, its optimal solution can be derived in a form of
online learning with query/update decision in each trial,
i.e., Wt = A−1

t Bt, where At and Bt can turn to be a
recursive form,

At = At−1 +QtZtmtm
⊤
t , Bt = Bt−1 +QtZtmty

⊤
t .

Since A−1
t is computationally expensive, we derive a non-

inverted recursive form with time complexity O(n2) using
Woodbury formula as in (8).

B. Label Query
The CMOG assumes that all labels are provided, which
is not efficient in many real-world applications. To save
the labeling cost, we propose a novel randomized query
approach in multi-class setting. We begin with additional
quantities of interest:

y∗t = argmax
i=1,...,K

Pmt

U∗ (i), y
′

t = argmax
i ̸=y∗

t

Pmt

U∗ (i);

ŷt = argmax
i=1,...,K

Pmt

Wt
(i), y

′′

t = argmax
i ̸=ŷt

Pmt

Wt
(i).

In words, y∗t and y
′

t are the optimal and second-best
classes with respect to U∗ (i.e., the best model in
hindsight), while ŷt and y

′′

t are the estimates of these
classes based on our online learner Wt.

Definition 2. Given an input mt(t ∈ [T ]) and the weight
Wt = A−1

t Bt−1 , an algorithm predicts its label with
ft = W⊤

t mt, and queries the true label with a probability
2h

2h+max(0,Θt)
(h > 0), where Θt is a confidence score

towards current prediction,

Θt = Θ(ft, rt) =
1

2
∆2

t + 2∆t −
Krt
1 + rt

, (10)

where ∆t = Pmt

Wt
(ŷt)− Pmt

Wt
(y

′′

t ).

This query is tuned by a confidence score Θt: a coin with
bias h

h+max(0,Θt)
is flipped; if the coin turns up heads,

then actual label yt is queried; otherwise Qt = 0 and no
query performed. The randomized query has been studied
in previous selective samplings under binary classification
setting [6], [10]. Unlike these methods, we present a new
confidence Θt based on the margin and uncertainty of the
multi-class classification problems.

Intuitively, a query method is effective if it can control
the probability of making a mistake whenever this label is
not queried of. In the following theorem, we prove that an
online algorithm on these selected labels {t|Qt = 1, Qt ∼

2h
2h+max(0,Θt)

} can achieve a comparable mistake bound
with one that queries all labels. Under randomized query,
the mistake trials can be partitioned into two disjoint sets,
S = {t| 2h

2h+max(0,Θt)
< 1} includes trials on which a

stochastic query is conduct, while D = {t| 2h
2h+max(0,Θt)

=

1} includes trials when a deterministic query is issued.
Theorem 3. For all t ≥ 1, the CMOG runs over
an arbitrary node-label sequence (m1,y1), . . . , (mT ,yT )
(mt ∈ Rn and yt ∈ RK) with a query probability
of 2h

2h+max(0,Θt)
(h > 0) on round t, then the following

inequality holds for any U ∈ Rn×K ,

E[M] ≤E[
∑
t

L(y⊤
t U

⊤mt)] +
h

2
tr(U⊤E[AUT

]U)

+
1

2h
E[

∑
t∈M∩D

Krt
1 + rt

].

The expectation of queried number is upper bounded by
E[|D|+

∑
t∈S

2h
2h+Θt

].

Note that labels are selected randomly. Thus, the expecta-
tion occurring in this theorem is w.r.t this randomization.

Proof. In the setting of selective sampling, a model is
updated whenever QtZt = 1. Given that K > 2 in multi-
class setting, we bound as in Eq. (8),∑

t

QtZt(∥ft∥22 − 2yt · ft −
Krt
1 + rt

+ 2h)

≤2h
∑
t

QtZtL(y⊤
t U

⊤mt) + h2tr(U⊤AUT
U).

(11)

If an error occurs (yt ̸= ŷt), Pmt

Wt
(yt) ≤ Pmt

Wt
(y

′′

t ). Thus,

−yt · ft
(4)
= Pmt

Wt
(ŷt)− Pmt

Wt
(yt) ≥ Pmt

Wt
(ŷt)− Pmt

Wt
(y

′′

t ).

Since ∥ft∥22 ≥ 1
2∆

2
t and Pmt

Wt
(ŷt) − Pmt

Wt
(y

′′

t ) = ∆t, we
bound, ∑

t

QtZt(∥ft∥22 − 2yt · ft −
Krt
1 + rt

+ 2h)

≥
∑
t

QtZt(
1

2
∆2

t + 2∆t −
Krt
1 + rt

+ 2h)

(10)
=

∑
t

QtZt(Θt + 2h).

When an error occurs at trial t ∈ M, the Θt can be
positive (M ∩ S) or negative (M ∩ D). In the former
case, E[Qt] =

2h
2h+Θt

is a random variable and we bound,

E[QtZt(Θt + 2h)] = E[Zt]E[Qt(Θt + 2h)] = 2hE[Zt];

In the later case, E[Qt] = 1. Given 1
2∆

2
t ≥ 0 and ∆t ≥ 0

, we have,

E[
∑
t

QtZt(
1

2
∆2

t + 2∆t −
Krt
1 + rt

+ 2h)]

≥2hE[Zt]− E[
∑

t∈M∩D

Krt
1 + rt

]

In summary,∑
t

QtZt(Θt + 2h)

≥2h(
∑

t∈M∩S
E[Zt] +

∑
t∈M∩D

E[Zt])− E[
∑

t∈M∩D

Krt
1 + rt

]



With
∑

t∈M Zt = |M| and upper bound (11), we com-
plete our proof.

Remark 4. The mistake bound of the CMOG on randomly
selected labels is comparable with the bound of CMOG
that learns all the labels. Similar to Theorem 1, the CMOG
run on selected labels is bounded by the cumulative hinge
loss suffered by U , log(T ) ( upper bound of

∑
t

rt
1+rt

)
and Kmaxj λj (upper bound of tr(U⊤AUT

U)). Note that
we use Krt

1+rt
to let data “uncertainty” regularized by the

class number. In addition, the CMOG run on selected
labels can achieve a comparable mistake bound with the
online algorithm OLLGC (i.e. Corollary 5, [14]) in binary
classification, since tr(U⊤AUT

U) ≤
∑

t∈M ∥U⊤mt∥22 ≤
αtr(U⊤U) = αtr(F⊤LF ), where α = |M|R2. Noted
that this bound is incomparable with that in [6] since the
Θt is different in two methods. In summary, the theoretical
results present that an online algorithm learning on these
selected labels could perform no worse than its fully-
supervised counterpart. Thus above results theoretically
demonstrate the efficacy of the proposed query method.

C. Aggressive Learning
The CMOG is conservative, i.e., it will only update the
model when an error occurs. To take advantage of the
correctly predicted instances, we propose an aggressive
version of selective sampling. We call our algorithm MSG,
the Multi-class Selective Sampling on Graph, present in
Algorithm 2. After observing a vertex mt at round t, the
MSG predicts its label with Wt = A−1

t Bt−1 and then
queries true label yt with a probability of 2h

2h+max(0,Θt)
.

It yields to stochastic query and deterministic query. When
stochastic query (i.e. 2h

2h+max(0,Θt)
< 1) is issued, it

is conservative to update model when an error occurs
(ŷt ̸= yt). While a deterministic query is issued (i.e.

2h
2h+max(0,Θt)

= 1), we adopt an aggressive learning
strategy, that is, we update even if no error occurs. Note
that our model is different from [8], [1], since we perform
a randomized query based on the predicted results of
multiple classes.

The theoretical results below show the superiority of the
aggressive algorithm compared to its conservative and
fully-supervised counterpart CMOG (i.e. Algorithm 1).
Besides the stochastic query trials S and deterministic
query trials D, we denote by V the set of trials for
which there is an aggressive update but not a mistake (i.e.,
yt = ŷt and Θt < 0) and let V = |V|.
Theorem 5. The algorithm MSG (Algorithm 2) runs on
an arbitrary sequential nodes, then given h > 0, the
following inequality holds for any U ∈ Rn×K ,

E[M ] ≤E[
∑
t

QtZtL(y⊤
t U

⊤mt)] +
h

2
tr(U⊤E[AUT ]U)

+
1

h
E[
∑
t∈D

Krt
1 + rt

]− E[V ].

Algorithm 2 MSG: Multiclass Selective Sampling on
Graph

1: Input: sequences of instance-label pair (mt,yt), t =
1, . . . , T , the parameters γ > 0 and h > 0.

2: Output: WT

3: Initialize: W0 = 0, A0 = γI and B0 = 0.
4: for t = 1, . . . , T do
5: Receive an input mt;
6: Compute A−1

t = (At−1 +mtm
⊤
t )

−1;
7: ft = B⊤

t−1A
−1
t mt;

8: Predict ŷt = argmaxj∈[K] P
mt

Wt
(j);

9: if Θt < 0 (Definition 2) then
10: Set Qt = Zt = 1 (i.e. deterministic query) and

Query actual label yt;
11: else
12: Draw a Bernoulli random variable Qt ∈ {0, 1} ∼

2h
2h+max(0,Θt)

;
13: if Qt = 1 then
14: Query actual label yt;
15: Set Zt = 1 if ŷt ̸= yt (Zt = 0, otherwise);
16: end if
17: end if
18: At = At−1 +QtZtmtm

⊤
t ,

19: Bt = Bt−1 +QtZtmty
⊤
t ;

20: end for
21: WT = A−1

T BT ;

In addition, the expected number of queries is upper
bounded by E[|D|+

∑
t∈S

2h
2h+Θt

].

Proof. The update trials in algorithm 2 could be catego-
rized into three groups,∑

t

Zt = |S ∩M|+ |D ∩M|+ |D ∩ V|.

In the first case where an error occurs in randomized query
with E[Qt] =

2h
2h+Θt

(i.e. S ∩M). Similar as Theorem 3,

E[QtZt(Θt + 2h)] = E[Zt]E[Qt(Θt + 2h)] = E[Zt];

If an error incurs in a deterministic query (i.e. t ∈ D∩M)
with E[Qt] = 1, we bound,

E[QtZt(
1

2
∆2

t + 2∆t −
Krt
1 + rt

+ 2h)] ≥ 2hE[Zt]−
Krt
1 + rt

;

Now we consider the third case where the updates were
performed with no mistake, i.e., Θt ≤ 0, and by definition,

Θt ≤ 0⇒ 0 ≤ ∆t ≤ 2

√
1 +

Krt
2(1 + rt)

− 2. (12)

If no mistake incurs (yt = ŷt), we have yt·ft = Pmt

Wt
(ŷt)−

maxj ̸=ŷt P
mt

Wt
(j) = Pmt

Wt
(ŷt)− Pmt

Wt
(y

′′

t ) = ∆t. Thus,

E[QtZt(
1

2
∆2

t − 2∆t −
Krt
1 + rt

+ 2h)]

=E[Zt(
1

2
∆2

t − 2∆t +
Krt
1 + rt

− 2Krt
1 + rt

+ 2h)]



Let C(∆t, rt) =
1
2∆

2
t −2∆t+

Krt
1+rt

. Whenever Krt
1+rt

≥ 2,
C(∆t, rt) ≥ 0(∀∆t ≥ 0). If Krt

1+rt
< 2, let C(∆t, rt)

be a quadratic equation with two non-negative roots and
a minima, 2 − 2

√
1− Krt

2(1+rt)
. We observe this smaller

root is higher than the upper bound in (12), that makes
C(∆t, rt) ≥ 0 in the trials D ∩ V . Thus, we bound,

E[QtZt(
1

2
∆2

t − 2∆t −
Krt
1 + rt

+ 2h)] ≥ 2hE[Zt]−
2Krt
1 + rt

.

To summarize,

E[
∑
t

QtZt(∆
2
t − 2ft · yt −

Krt
1 + rt

+ 2h)]

≥2h
∑
t∈M

E[Zt] + 2h
∑

t∈D∩V

E[Zt]−
∑
t∈D

E[
2Krt
1 + rt

].

Equipped with upper bound as Eq. (11), we complete the
proof.

Remark 6. The upper bound of the aggressive algorithm
MSG is expected to be lower than CMOG that learns on
all the labels (Theorem 1) and CMOG on the selected
labels (Theorem 3), due to the deduction of E[V] from
the bound. In summary, the theoretical analysis demon-
strate that the MSG, in expectation, can achieve a better
performance than its conservative and fully-supervised
counterparts, which can be regarded as a theoretical
support for the aggressive method.

Discussion: To further understand the aggressive algo-
rithm, we analyze under what condition an aggressive
query will be conducted. An aggressive query is issued
when Θt ≤ 0 (i.e.,Θt ≤ 0 ⇒ ∆t ≤ θ(K, rt) =

2
√
1 + Krt

2(1+rt)
− 2). If the margin ∆t is less than

θ(K, rt), a deterministic query is issued, while ∆t is
above θ(K, rt), a label is queried randomly with a prob-
ability less than 1. We observe that the upper bound
of θ(K, rt) increases with rt. When rt = 0, that is,
current instance is observed before, the label would be
queried deterministically in case its margin is 0 (∆t ≤
θ(K, rt = 0) = 0, i.e., an extreme case that the current
model is unable to predict its label). However, if rt = 1
(i.e., little knowledge to current input), the learner would
query aggressively whenever its margin does not exceed
θ(K, rt = 1) =

√
4 +K − 2, a threshold far from the

boundary.

V. EXPERIMENTAL RESULTS
In this section, we first introduce experimental dataset and
evaluation metrics. Then we present the empirical results
to validate the proposed algorithms. Our experiments are
designed to answer two questions: (i) if the proposed
randomized query is effective to reducing the amount
of labeled data significantly while maintain comparable
performance? (ii) if the aggressive strategy achieves a
better predictive performance at the cost of more queried
number?

A. Data Sets and Evaluation Metrics

Data Sets: Four real-world graph data sets are used in the
experiment to evaluate the approaches.
(a) Coauthor2 extracted from DBLP database is an undi-
rected co-author graph in which 1711 authors are denoted
as vertices while their co-authored relationship are treated
as the edges. The authors are classified in four classes in
terms of research topic: “data mining”, “machine learn-
ing”, “information retrieval” and “databases”. (b) Cora3 is
a citation network including 2485 scientific publications
and 5429 citation links. The publications as vertices
are related to seven domains: “Case based”, “Genetic
Algorithms”, “Rule Learning”, “Probabilistic Methods”,
“Neural Networks”, “Reinforcement Learning”, et al. (c)
IMDB4 is a movie organization that presses up-to-date
movie information. The IMDB links total 17046 movies
with their co-actor associations. The movies as vertices
in graph are categorized into four genres: “Action”, “Ro-
mance”, “Animation” and “Thriller”. (d) PubMed5 is
also a citation graph related to diabetes research. The
PubMed collects 44338 publication citations among 19717
scientific publications and labels the publications with one
of three types of diabetes.
The graph data is supposed to be undirected and con-
nected. If the edges are directed, we transform them into
undirected graphs via S← max(S,S⊤). If the graphs are
disconnected, the biggest connected subgraph is chosen
for study.

Evaluation Measures: We evaluate the performance of
baselines and our algorithms with two measurements:
i) cumulative error rate, reflecting the prediction accuracy
of online algorithm; ii) number of queried labels, reflect-
ing the label efficiency of query method. Note that a small
value of above measures indicates a better performance of
a method. In order to compare these algorithms fairly, we
randomly shuffle the ordering of samples for each dataset.
We repeat each experiment 20 times and calculate the
average results.

Baselines and Parameter Setting: We compare the
proposed algorithms with state-of-the-art baselines. The
algorithms we study and their parameter settings are
summarized as follows. (1) GPA: a first order nonpara-
metric online learning algorithm on graph [15]. Note
that the perceptron algorithm is not affected by the step-
size. (2) BBQ/BBQϵ: The two algorithms are the BBQ
query criterion [5] and its modification version [1]. The
intuition behind this rule is that at the rounds where
the label is not queried, it guaranteed that the regret
bound is at most ϵ. The parameter ϵ is tuned with grid
{10−5, . . . , 10} in our experiment. (3) DGS: This query

2https://snap.stanford.edu/data/com-DBLP.html
3http://www.cs.umd.edu/ sen/lbc-proj/data/
4http://www.imdb.com/
5http://www.cs.umd.edu/projects/linqs/projects/lbc/



TABLE I
COMPARISON OF THE MULTI-CLASS ALGORITHMS. GPA AND CMOG ARE ONLINE ALGORITHMS.

Algorithm Coauthor Cora
Error rate # Queried nodes Error rate # Queried nodes

GPA 0.5474±2.66e-4 1711 0.5849±2.03e-4 2485
BBQ 0.3013±3.55e-5 1371±168.7 0.1929±1.73e-5 1635.1±294.0
BBQϵ 0.3028±3.03e-5 1711 0.1936±1.95e-5 2485
DGS 0.3096±3.29e-5 1711 0.1941±2.35e-5 2485

CMOG 0.3096±3.29e-5 1711 0.1940±2.33e-5 2485
MSG 0.2956±6.63e-5 870.7±251.9 0.1926±2.34e-5 884.95±289.15

Algorithm IMDB PubMed
Error rate # Queried nodes Error rate # Queried nodes

GPA 0.6870±4.6e-5 17046 0.5795±2.9e-6 19717
BBQ 0.5468±1.69e-6 10033±467.2 0.2217±1.9e-6 10352±2536.4
BBQϵ 0.5068±9.9e-6 16983±801.3 0.2217±3.1e-6 8986.3±838.3
DGS 0.5066±9.1e-6 17046 0.2265±1.46e-6 19717

CMOG 0.5576±6.88e-5 17046 0.2265±1.5e-6 19717
MSG 0.5043±7.46e-5 3750.3±255.1 0.2158±1.07e-5 936.29±210.07

criterion is a nonparametric rule for binary classification
[11] and adapts into multi-class setting in [1]. It takes
both previous covariances and the observed labels into
account. The intuition behind this rule is that on rounds
where the label yt is not queried, it guaranteed that either
ŷt = y∗t , or the regret is small. (4) CMOG and MSG: two
second-order algorithm in multi-class setting. CMOG is a
conservative online algorithm while MSG is an aggressive
algorithm that queries label with a randomized method.
We set γ = 1 to avoid overfiiting and tune the parameter
h with grid {10−4, . . . , 1} on a held-out random shuffle.

B. Comparison Evaluation
The experimental results are present in Table I. We found
that MSG outperforms all baselines consistently across all
data sets. We also show the results in terms of learning
epoches in Figure 1. In all subfigures, the cumulative error
rate and queried number along the learning epochs are
both averaging over 20 times of shuffling order.

First of all, we observe that the improvement of the
CMOG over GPA are always significant on all data sets.
This is consistent with previous observations in online
learning: second-order algorithms are generally better than
first-order algorithm . The reason is due to the covariance
matrix At which has a spectral structure to correlate
with a best estimator for observed instances [4]. MSG
always enjoys smaller or comparable error rates than
BBQϵ and DGS with much fewer queried number. The
good performance generally is due to two reasons. First,
the proposed randomized query approach improves the
efficiency of the labeling. Second, thanks to the aggressive
learning, the MSG achieves a convergence stage quickly
with informative labels, thus the query rate is reduced
further when learner has sufficient knowledge of data. The
results in figure 1 indicate the MSG queries a small num-
ber of labels while maintains the quality of classification
model.

C. Evaluation on Varied Ratios of Queries

We study the impact of h with respect to query ratio of the
MSG. Basically, the smaller h is, the fewer the number of
queries is. Specifically, we set h to {10−4, 10−3, . . . , 1},
and run MSG for 20 times under each h. We calculate
the average ratio of queried nodes under different values
of h. The comparison results in Figure 2 show that MSG
achieves better or comparable performance consistently
under different ratios of queried labels. This validates the
label-efficiency of our proposed confidence score Θt that
can adaptively prioritize informative labels to optimize the
model. We also observe that the MSG outperforms BBQ
significantly over all query ratios. The reason is that MSG
considering “∆t” will query the vertices close to current
boundary, while these labels are omitted in BBQ. The
better results in figure 2 demonstrate that these “small-
margin” instances are useful to optimize the multi-class
classifier.

D. Evaluation on Low-rank Approximation

The low-rank vertex representation m ∈ Rd is used to
build a scalable online model in our experiments. To study
the impact of low-rank approximation on the proposed
algorithms, we tune the rank d in the grid {10, 100,
250, 500, 750, 1000}. We use Coauthor and Cora as
a case study since similar observations are obtained on
other data sets. The results in Figure 3 present that MSG
achieves a better or comparable performance than other
baselines consistently under different rank approximation.
Obviously with a higher rank, the performance becomes
better in terms of error rate. However, to achieve a better
prediction accuracy, algorithms need a high number of
queries and high-rank inputs, which demands a more
labeling and computational cost. It motivates us to select
a proper rank d to achieve a balance. Therefore, we chose
d = 100 in the rest of experiments, since in this setting
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Fig. 1. Cumulative error rate and Query number with respective to online learning rounds on four datasets.
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Fig. 2. A comparison among BBQ, BBQϵ and MSG with respect to different ratios of queried nodes.
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Fig. 3. A case study of low rank impact on performance.

the algorithms perform well while number of queries is
small.

VI. CONCLUSIONS
In this paper, we proposed a new framework for multi-
class online learning, leading to a scalable algorithm to
tackle multi-class classification on graphs. To save the
labeling cost, we presented a novel randomized query
technique to prioritize the labels. Besides, we introduced
an aggressive selective sampling algorithm to take full
advantage of these wasted labels in existing conservative
algorithms. The theoretical results demonstrated the effi-
cacy of the proposed algorithms in terms of the expected
mistake bound and query ratio.

The encouraging empirical results on several real-world
datasets also indicated that 1) the MSG is able to achieve

comparable or better predictive performance by querying a
significantly small amount of labeled data; and that 2) the
aggressive selective sampling scheme can further reduce
the query rate, achieving a convergence stage rapidly.
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