
Bayesian Hyperparameter Optimization for Ensemble Learning

Julien-Charles Lévesque∗, Christian Gagné
Laboratoire de vision et systèmes numériques

Dép. de génie électrique et de génie informatique
Université Laval, Québec, Canada

Robert Sabourin
Laboratoire d’imagerie, de vision et d’IA

Dép. de génie de la production automatisée
École de technologie supérieure, Montréal, Canada

Abstract

In this paper, we bridge the gap between hyper-
parameter optimization and ensemble learning
by performing Bayesian optimization of an en-
semble with regards to its hyperparameters. Our
method consists in building a fixed-size ensem-
ble, optimizing the configuration of one classi-
fier of the ensemble at each iteration of the hy-
perparameter optimization algorithm, taking into
consideration the interaction with the other mod-
els when evaluating potential performances. We
also consider the case where the ensemble is to
be reconstructed at the end of the hyperparame-
ter optimization phase, through a greedy selec-
tion over the pool of models generated during
the optimization. We study the performance of
our proposed method on three different hyperpa-
rameter spaces, showing that our approach is bet-
ter than both the best single model and a greedy
ensemble construction over the models produced
by a standard Bayesian optimization.

1 INTRODUCTION

For a long time, the tuning of hyperparameters for learning
algorithms was solved by simple exhaustive methods such
as grid search guided by cross-validation error. Grid search
does work in practice, but it suffers from serious drawbacks
such as a search space complexity that grows exponentially
with the number of hyperparameters tuned. Recently, other
strategies such as sequential model-based parameter op-
timization (Hutter et al., 2011), random search (Bergstra
and Bengio, 2012), and Bayesian optimization (Snoek et
al., 2012) have been shown to be better alternatives to grid
search for non-trivial search spaces.

While hyperparameter optimization focuses on the perfor-
mance of a single model, it is generally accepted that en-

∗julien-charles.levesque.1@ulaval.ca

sembles can perform better than single classifiers, one of
many striking examples being the winning entry of the
Netflix challenge (Bell and Koren, 2007). More recent
machine learning competitions such as Kaggle competi-
tions are also often won by ensemble methods (Sun and
Pfahringer, 2011). Given these previous results, it is logical
to combine Bayesian hyperparameter optimization tech-
niques with ensemble methods to further push general-
ization accuracy. Feurer et al. (2015a) performed post-
hoc ensemble generation by reusing the product of a com-
pleted hyperparameter optimization, winning phase 1 of the
ChaLearn AutoML challenge (Guyon et al., 2015). Lastly,
Snoek et al. (2015) also constructed post-hoc ensembles of
neural networks for image captioning.

These two lines of previous work make for a compelling
argument to directly apply Bayesian optimization of hy-
perparameters for ensemble learning. Rather than trying to
model the whole space of ensembles, which is likely hard
and inefficient to optimize, we pose a performance model
of the ensemble at hand when adding a new classifier with
some given hyperparameters. This is achieved by reusing
models previously assessed during the optimization, eval-
uating performance change induced by adding them one at
a time to the ensemble. This allows us to compute obser-
vations of the true ensemble loss with regards to the hy-
perparameter values. These observations are used to condi-
tion a Bayesian optimization prior, creating mean and vari-
ance estimates over the hyperparameter space which will
be used to optimize the configuration of a new classifier to
add to the ensemble. Finally, we consider different possi-
bilities to maintain and build the ensemble as the optimiza-
tion progresses, and settle on a round-robin optimization of
the classifiers in the ensemble. This ensemble optimization
procedure comes at a very small additional cost compared
with a regular Bayesian optimization of hyperparameter yet
yields better generalization accuracy for the same number
of trained models.

We evaluate our proposed approach on a benchmark of
medium datasets for two different hyperparameter spaces,
one consisting solely of SVM algorithms with different ker-

nel types, and one larger space with various families of
learning algorithms. In both search spaces, our approach is
shown to outperform regular Bayesian optimization as well
as post-hoc ensemble generation from pools of classifiers
obtained by classical Bayesian optimization of hyperpa-
rameters. We also evaluate our approach on a search space
of convolutional neural networks trained on the CIFAR-10
dataset. The proposed approach is also able to provide bet-
ter performance in this case.

The paper is structured as follows: Section 2 presents
the problem of Bayesian hyperparameter optimization and
highlights some related work. Section 3 presents the main
contributions of this paper, which can be summarized as
a methodology for Bayesian optimization of ensembles
through hyperparameter tuning. Finally, Section 4 presents
the experiments and an analysis of the results.

2 HYPERPARAMETER OPTIMIZATION

The behavior of a learning algorithm A is often tunable
with regards to a set of external parameters, called hyper-
parameters γ = {γ1, γ2, . . . } ∈ Γ, which are not learned
during training. The hyperparameter selection problem is
one stage of a bi-level optimization problem, where the first
objective is the tuning of the model’s parameters θ and the
second objective is the performance with regards to the hy-
perparameters γ.

The procedure requires two datasets, one for training and
one for hyperparameter optimization (also called valida-
tion), namely XT and XV , each assumed to be sampled
i.i.d. from an underlying distribution D. The objec-
tive function to minimize for hyperparameter optimization
takes the form of the empirical generalization error on XV :

f(γ) = L(hγ |XV) + ε (1)

L(hγ |XV) =
1

|XV |

|XV |∑
i=1

l0−1(hγ(xi), yi), (2)

where ε is some noise on the observation of the generaliza-
tion error, l0−1 is the zero-one loss function, and the model
hγ is obtained by running the training algorithm with hy-
perparameters γ, hγ = A(XT , γ). Other loss functions
could be applied, but unless otherwise specified, the loss
function will be the zero-one loss.

In order to solve this problem, Bayesian optimization
consists in posing a probabilistic regression model of
the generalization error of trained models with respect
to their hyperparameters γ, and exploiting this model to
select new hyperparameters to explore. At each itera-
tion, a model of f(γ) is conditioned on the set of pre-
viously observed hyperparameter values and associated
losses {γi, L(hγi |XV)}ti=1. Selection of the next hyper-
parameters to evaluate is performed by maximizing an ac-

quisition function a(γ|f(γ)), a criterion balancing explo-
ration and exploitation given mean and variance estimates
obtained from the model of f(γ). Among the model fam-
ilies for f(γ), two interesting choices are Gaussian Pro-
cesses (Rasmussen and Williams, 2006; Snoek et al., 2012)
and Random Forests (Hutter et al., 2011), both providing
information about the mean and variance of the fitted dis-
tribution over the whole search space.

A typical hyperparameter optimization is executed itera-
tively, subsequently generating a model of f(γ) from ob-
servations, selecting hyperparameter tuples γ to evaluate,
training a classifier hγ with the given training data, evalu-
ating it on the validation data, and looping until the maxi-
mum number of iterations or time budget is spent.

Recent advances in hyperparameter optimization have pri-
marily focused on making optimization faster, more accu-
rate and applicable to a wider set of applications. In order
to speed up convergence, Feurer et al. (2015b) have shown
that hyperparameter optimization can be warm started with
meta features about datasets. Touching on both speed
and optimality, the design of better acquisition functions
has seen a lot of interest, and predictive entropy search
was shown to be less greedy than expected improvement
in locating the optima of objective functions (Hernández-
Lobato et al., 2014). New applications have also emerged,
one notable example being the optimization of hyper-
parameters for anytime algorithms with freeze-and-thaw
Bayesian optimization (Swersky et al., 2014).

2.1 HYPERPARAMETER OPTIMIZATION AND
ENSEMBLES

The idea of generating ensembles with hyperparameter op-
timization has already received some attention. Bergstra
and Cox (2013) applied hyperparameter optimization in a
multi-stage approach akin to boosting in order to gener-
ate better representations of images. Lacoste et al. (2014b)
proposed the Sequential Model-based Ensemble Optimiza-
tion (SMBEO) method to optimize ensembles based on
bootstrapping the validation datasets to simulate multiple
independent hyperparameter optimization processes and
combined the results with the agnostic Bayesian combina-
tion method.

The process of hyperparameter optimization generates
many trained models, and is usually concluded by select-
ing a model according to the hold-out (or cross-validation)
generalization error γ∗ = arg minγ L(hγ |XV). This single
model selection at the end of the optimization is the equiva-
lent of a point estimate, and it can result in overfitting. One
strategy to limit this overfitting in the selection of a final
model is to select multiple models instead of one, reducing
the risk of overfitting and thus increasing the generalization
performance.

A simple strategy to build an ensemble from a hyperparam-
eter optimization is to keep the trained models as they are
generated for evaluation instead of discarding them (Feurer
et al., 2015a). This effectively generates a pool of classi-
fiers to combine at the end of the optimization, a process
which is called post-hoc ensemble generation. Forward
greedy selection has been shown to perform well in the con-
text of pruning a pool of classifiers (Caruana et al., 2004).
At each iteration, given a pool of trained classifiers H to
select from, a new classifier is added to the ensemble, se-
lected according to the minimum ensemble generalization
error. At the first iteration, the classifier added is simply
the single best classifier. At step t, given the ensemble
E = {he1 , he2 , . . . , het−1

}, the next classifier is chosen
to minimize the empirical error on the validation dataset
when added to E:

ht = arg min
h∈H

L(E ∪ {h}|XV) (3)

L(E ∪ {h}|XV) =

|XV |∑
i=0

l0−1

(
g(xi, E ∪ {h}), yi

)
, (4)

where g(xi, E) is a function combining the predictions
of the classifiers in E on sample xi. In this case, the
combination rule is majority voting, as it is less prone to
overfitting (Caruana et al., 2004; Feurer et al., 2015a).
Other possible combination rules include weighted voting,
stacking (Kuncheva, 2004) and agnostic Bayesian combi-
nation (Lacoste et al., 2014a), to name only a few. Such
an approach can be shown to perform better than the single
best classifier produced by the hyperparameter optimiza-
tion, due in part to a reduction of the classifiers’ variance
through combination.

3 ENSEMBLE OPTIMIZATION

In this work, we aim at directly optimizing an ensemble of
classifiers through Bayesian hyperparameter optimization.
The strategies discussed in the previous section mostly
aimed at reusing the product of a completed hyperparame-
ter optimization after the fact. The goal is to make an online
selection of hyperparameters that could be more interesting
for an ensemble, but which do not necessarily maximize
the objective function of Equation 1 on their own. Directly
posing a model on the space of all possible ensembles of
a given size f(E) = f(γ1, . . . , γm) would result in a very
hard and inefficient optimization problem, effectively du-
plicating the training of many models.

In order to palliate this, we propose a more focused ap-
proach. We define the objective function to be the perfor-
mance of a given ensemble E when it is augmented with
a new classifier trained with hyperparameters γ, or hγ . In
other words, the objective function is the empirical error
provided by adding a model hγ to the ensemble E:

f(γ|E) = L(E ∪A(γ,XT)|XV), (5)

−4 −2 0 2 4
log10 γ

0.25

0.30

0.35

0.40

er
r

f(γ)

f(γ|E)

E
L(hγ)

L(E ∪ {hγ})

Figure 1: Example of an ensemble optimization. The red
marks represent trained models and their standalone gener-
alization error, and black circles represent two models se-
lected for the current ensemble E. Blue marks represent
the performance of an ensemble when we add the trained
model with corresponding hyperparameters γ.

again using the empirical loss on a hold-out validation set
XV . Contrarily to the post-hoc ensemble generation, a
probabilistic model is fit on the performance that a model
trained with given hyperparameters would provide to the
ensemble. In order to do this, two things are required: 1)
an already established ensemble, and 2) a pool of trained
classifiers available to compute observations of Equation 5
to condition our model on. Given the history of trained
models so far H = {h1, . . . , ht} and an ensemble de-
fined by a selection of classifiers within the history E =
{he1 , . . . , hem}, the observations used to model f(γ) are
obtained by reusing the trained classifiers in H , keeping E
constant. Consequently, the objective function models the
true ensemble error. Given a zero-one loss function and an
empty ensemble E = ∅, Equation 5 falls back to a clas-
sical hyperparameter optimization problem, and the objec-
tive function will be minimized by the best hyperparame-
ters for a single model γ∗.

The power of the suggested framework is illustrated with
an example shown in Figure 1. This figure presents one
iteration of ensemble optimization given 20 trained SVMs
in a one-dimensional hyperparameter space, where the sin-
gle hyperparameter is the width of the RBF kernel (σ ∈
[10−5, 105]). The dataset used is the Pima Indian Diabetes
dataset available from UCI (Frank and Asuncion, 2010),
with separate training and validation splits. The current
ensemble E consists of two models selected by forward
greedy selection shown by black circles. Ensemble eval-
uation and member selection strategies will be discussed
further; for now let us assume a fixed ensemble. The red
Xs represent the generalization error of single models and
the red curve represents a Gaussian Process prior condi-
tioned on those observations, in other words, a model of

f(γ). The blue crosses represent the generalization error
of the ensemble E when the corresponding classifiers are
added to it, and the blue curve is again a Gaussian Process
prior conditioned on the ensemble observations, or, more
generally speaking, a model of f(γ|E). For both Gaussian
Processes, the variance estimates are represented by shaded
areas. The next step would be to apply an acquisition func-
tion with the ensemble mean and variance estimates to se-
lect the next hyperparameters to evaluate.

Figure 1 shows that the objective function of an ensem-
ble and a single classifier can be different. It can also be
observed in this case that the generalization error of the
ensemble is lower than that of a single model, hence the
interest in optimizing ensembles directly.

3.1 ALTERNATE FORMULATIONS

In order to be able to generalize over the space of hyperpa-
rameters, it is crucial to have an ensemble which does not
contain all the classifiers inH , because if it did there would
be no information added in the computation of Equation 5.
A different problem formulation could be derived which
compares classifiers with the whole pool of trained mod-
els, which would take the form f(γ|H) = q(hγ |H,XV),
where q(·) is a metric of performance for a classifier with
regards to the pool. For example, a diversity inducing met-
ric such as pairwise disagreement (Kuncheva, 2004) could
be used, but this would lead to degenerate pools of classi-
fiers, as diversity is easily increased by trivial and degener-
ate classifiers (voting all for one class or the other).

Multi-objective optimization approaches have been consid-
ered for the maximization of both diversity and accuracy, a
problem typically solved with genetic algorithms (Tsymbal
et al., 2005). However, this problem formulation does not
guarantee a better performing ensemble – only a more di-
verse pool of classifiers – with the hope that it will lead to
better generalization performance. Directly optimizing di-
versity in classifier ensembles is questionable, and the ev-
idence thus far is mixed (Didaci et al., 2013; Kuncheva,
2003).

Lastly, an inverse problem could be posed, measuring the
difference in the generalization error by removing classi-
fiers from the history one by one, and optimizing this dif-
ference. One problem with such a model is that it would
be vulnerable to redundancy – very good hyperparameters
present in multiple copies in the history would be falsely
marked as having no impact on the generalization error.

For the reasons stated above, the best solution appears to
be the use of a fixed ensemble which is maintained and up-
dated as the optimization progresses. Thus it is possible to
build an accurate Bayesian model of how well an ensemble
would perform if we added a model trained with hyperpa-
rameters γ. This means that we need to store the trained

Algorithm 1 Ensemble Optimization Procedure
Input: XT ,XV , B,m,A,Γ, L
Output: H , history of models; E, the final ensemble

1: H,G,E ← ∅
2: for i ∈ 1, . . . , B do
3: j ← i mod m
4: E ← E \ {hj}
5: Li ← {L(E ∪ h|XV)}h∈H
6: f(γ|E)← BO(G,Li) // Fit model
7: γi ← arg maxγ∈Γ a(γ|f(γ|E)) // Next hypers
8: hi ← A(XT , γi) // Train model
9: G← G ∪ {γi}

10: H ← H ∪ {hi}
11: hj ← arg minh∈H L(E ∪ {h}) // New model at j
12: E ← E ∪ {hj} // Update ensemble
13: end for

classifiers in a database (or store their predictions on the
validation and testing splits) to permit ensemble construc-
tion and evaluation in the subsequent iterations.

3.2 ENSEMBLE UPDATE

The problem defined above is straightforward as long as the
ensemble is given beforehand. In this section we will tackle
the problem of building and updating the ensemble as the
optimization progresses. To make things simpler, an en-
semble size m will be fixed beforehand – this number can
be fine-tuned at the end of the optimization. Each iteration
of the optimization procedure will contain two steps: first
the evaluation as described in Section 3, maintaining a fixed
ensemble, and then an ensemble update step. Since mem-
bers of the ensemble should be changed as the optimization
moves forward and better models are found, a round-robin
strategy will be used for the ensemble construction. The
ensemble E will in fact consist of m fixed positions, and at
every iteration i, the classifier at position j = (i mod m)
will be removed from the ensemble before finding hyper-
parameters which minimize Equation 5 – effectively opti-
mizing the classifier at this position for the given iteration.
At the end of an iteration the ensemble is updated again
greedily, selecting the new best classifier (it could be the
same classifier or a better one). The whole procedure is
described in Algorithm 1 and in Figure 2.

In addition, it is expected that some classifiers will special-
ize given the fixed state of a large part of the ensemble for
each iteration. For instance, when replacing an individually
strong classifier, another strong classifier will most likely
be required. Figure 3 shows an example of optimization on
a one-dimensional hyperparameter space run for 50 itera-
tions, where an ensemble of five classifiers was optimized.
The ensemble is represented by the five diamonds and its
generalization error is shown by the dotted and dashed line
at the bottom of the figure. Then, each of the five members

Ei = Ensemble, without hj History H

h1

Run Bayesian Optimization
on f(ᶕ | Ei , H)

... hj hmh2
...

Train model with ᶕi

Update hj with best in H
given Ei

Update
 history

i < B Output E, H

i = i + 1
j = i mod m

FalseTrue

Figure 2: Schema of the Ensemble Optimization proce-
dure.

i is independently removed and a Gaussian Process model
is fit on the performance of an ensemble given the remain-
ing models in the pool – this corresponds to the five colored
lines of Figure 3. We can see from this figure that the hyper-
parameters which minimize the ensemble error are differ-
ent for each slot in the ensemble, illustrating our concept.

3.3 COMPUTATIONAL COMPLEXITY

The computational overhead of the proposed method
comes mainly from the evaluation of the empirical error of
ensembles. It is very small with regards to the cost of run-
ning most learning algorithms (which is usually quadratic
or worse in the number of samples), and also with the cost
of conditioning the probabilistic model on the observations
(which is cubic in the number of iterations). The computa-
tion of the empirical error of ensembles takes place in step
5 in Algorithm 1. Given an ensemble of sizem, a validation
dataset of size n, and a history of trained classifiers of size
t, the complexity of this step is O(t(mn+ n)) = O(tmn)
since it requires one pass over all models in the history, and
for each of those the combination of the classifiers through
majority voting (mn) and the computation of the empirical
error n.

3.4 LOSS FUNCTION

The objective function defined in Equation 5 contains a loss
function, which up until now referred to the empirical loss
of the ensemble, or the zero-one loss. However, the zero-
one loss contains a strong discontinuity and can result in
optimization procedures failing due to the majority voting
combination. For instance, if all classifiers of the ensemble

−4 −2 0 2 4
log10 γ

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

er
ro

r

f(γ)

f(γ,E \ {hi})
l0−1(E)

Figure 3: Example of objective function f(γ|E \ {hi})
given a pool of 50 trained classifiers on a 1-D hyperpa-
rameter optimization problem. Each color represents the
performance of an ensemble when removing its member hi
represented by a diamond of the same color in the plot.

are wrong on some instances, replacing one of those poor
classifiers with a better one will not make the ensemble cor-
rectly classify those instances, resulting in the same perfor-
mance with regards to the objective function, even though
this classifier would be a good choice for the ensemble.

The performance of ensembles will be considered with re-
gards to their classification margin, which will let us derive
a more suitable loss function (Schapire and Freund, 2012).
Given an ensemble of classifiers E outputting label predic-
tions on a binary problem Y ∈ {−1, 1}, the normalized
margin for a sample {x, y} is defined as follows:

M(E, x, y) =
1

|E|
∑
h∈E

yh(x). (6)

The normalized margin M ∈ [−1, 1] takes the value 1
when all classifiers of the ensemble correctly classify the
sample x, −1 when all the classifiers are wrong, and some-
where in between otherwise. In the case of multi-class
problems, predictions of classifiers can be brought back to
a binary domain by attributing 1 for a correct classification
and −1 for a misclassification. The margin becomes:

Mmc(E, x, y) =
1

|E|
∑
h∈E

[1− 2l0−1 (h(x), y)]. (7)

We will now derive some loss functions from the margin.
The margin itself could be the objective, since it is desirable
that the margin of the ensemble be high. It must be rescaled
to really become a loss function, giving a margin-based loss
function:

lM (E, x, y) =
1−M(E, x, y)

2
. (8)

−4 −2 0 2 4

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36
em

pi
ri

ca
le

rr
or

0.88

0.90

0.92

0.94

0.96

0.98

sq
ua

re
d

m
ar

gi
n

lo
ss

f(γ|E, l0−1)

f(γ|E, lM2)

Figure 4: Examples of ensemble loss functions for a 1-D
hyperparameter optimization. Blue curve legend is on the
left, red curve legend is on the right.

This loss function should not be used to optimize an ensem-
ble because it is directly maximized only by the accuracy
of individual classifiers. In other words, given a validation
dataset XV and a set of classifiers H to evaluate, the classi-
fier minimizing Equation 8 is always the classifier with the
lowest empirical error on its own, without regards to the
ensemble performance. Therefore, the loss function must
not give the same weight to all classifiers without regards
to ensemble performance, while also being smooth. A loss
function which achieves this is the margin-based loss func-
tion taken to the power of two:

lM2(E, x, y) =
(1−M(E, x, y))2

4
. (9)

This places a higher emphasis on samples misclassified by
the ensemble, and decreases the importance of samples as
the margin grows closer to 1. Since it meets the required
properties, the squared margin loss function will be used as
the ensemble loss function in this work.

Figure 4 shows an example of the two loss functions dis-
cussed in this section, the zero-one loss and the squared
margin loss, applied on the same ensemble. Both losses
have different scales, with the empirical error scale on the
left and the squared margin scale on the right of the fig-
ure. We can see that these two loss functions lead to differ-
ent optimal hyperparameters given the same ensemble. In
other words, the hyperparameters minimizing the objective
function according to the models of f(γ|E) are different
with the two loss functions.

Considering that a loss function other than the empirical er-
ror will be used during the optimization, it will probably be
beneficial to rebuild an ensemble from scratch using the fi-
nal pool of classifiers trained once the optimization is over.
Hence, a post-hoc ensemble generation will be performed
after the hyperparameter optimization.

Table 1: Benchmarking datasets and abbreviations
Dataset Instances Features Classes

Adult (adlt) 48,842 14 2
Bank (bnk) 4,521 16 2
Car (car) 1,728 6 4
Chess-krvk (ches) 28,506 6 18
Letter (ltr) 20,000 16 26
Magic (mgic) 19,020 10 2
Musk-2 (msk) 6,598 166 2
Page-blocks (p-blk) 5,473 10 5
Pima (pim) 768 8 2
Semeion (sem) 1,593 256 10
Spambase (spam) 4,601 57 2
Stat-german-credit (s-gc) 1,000 24 2
Stat-image (s-im) 2,310 18 7
Stat-shuttle (s-sh) 58,000 9 7
Steel-plates (s-pl) 1,941 27 7
Titanic (tita) 2,201 3 2
Thyroid (thy) 7,200 21 6
Wine-quality-red (wine) 1,599 11 6

4 EXPERIMENTS

We showcase the performance of our ensemble optimiza-
tion approach on three different problems. The first two
problems consist of different algorithms and hyperparam-
eter spaces evaluated on the same benchmark of medium
datasets available from the UCI repository, presented in Ta-
ble 1. For every repetition, a different hold-out testing par-
tition was sampled with 33% of the total dataset size (un-
less the dataset had a pre-specified testing split, in which
case it was used for all repetitions). The remaining in-
stances of the dataset were used to complete a 5-fold cross-
validation procedure. Final models are retrained on all the
data available for training and validation.

In every case, the prior on the objective function is a
Gaussian Process (GP) with Matérn-52 kernel using auto-
matic relevance determination1. The noise, amplitude, and
length-scale parameters are obtained through slice sam-
pling (Snoek et al., 2012). The slice sampling of GP hy-
perparameters for ensemble optimization must be reinitial-
ized at every iteration given that different ensembles E can
change the properties of the optimized function drastically.
The acquisition function is the Expected Improvement over
the best solution found so far. The compared methods and
their abbreviated names are the following:

• Classical Bayesian optimization (BO-best). It returns a
single model selected with argmin on validation perfor-
mance (Snoek et al., 2012).

• Post-hoc ensemble constructed from the pool of classi-
fiers with Bayesian optimization (BO-post). The post-
hoc ensemble is initiated by picking the three best clas-
sifiers from the pool before proceeding with forward

1Code from
http://github.com/JasperSnoek/spearmint.

greedy selection – this form of warm starting is recom-
mended in (Caruana et al., 2004) to reduce overfitting.

• The proposed ensemble optimization method using the
squared margin loss function (EO).

• Post-hoc ensemble constructed from the pool of classi-
fiers generated by ensemble optimization (EO-post). The
same post-hoc procedure as with BO-post is executed.

The hyperparameter spaces can contain continuous, dis-
crete, and categorical parameters (e.g., base classifier or
kernel choice). In the case of categorical and discrete pa-
rameters, they are represented using a continuous parame-
ter which is later discretized. This does not deal with the
fact that hyperparameter spaces of different classifiers are
disjoint and should not be modeled jointly, but since all the
compared methods are using this same technique, the com-
parison is fair.

4.1 SVM SEARCH SPACE

The models used in this benchmark are SVM models, and
the parameterization includes the choice of the kernel along
with the various hyperparameters needed per kernel. The
hyperparameter space Γ optimized can be described as fol-
lows:

• One hyperparameter for the kernel choice: linear, RBF,
polynomial, or sigmoid;

• Configurable error costC ∈ [10−5, 105] (for all kernels);
• RBF and sigmoid kernels both have a kernel width pa-

rameter γRBF ∈ [10−5, 105];
• Polynomial kernel has a degree parameter d ∈ [1, 10];
• Sigmoid and polynomial kernels both have an intercept

parameter, c ∈ [10−2, 102].

All compared approaches optimized the same search space.
Each method is given a budget of B = 200 iterations, or
200 hyperparameter tuples tested, to optimize hyperparam-
eters with a 5-fold cross-validation procedure. The ensem-
ble selection stage exploits this cross-validation procedure,
considering the next classifier which reduces the most the
generalization error over all the cross-validation folds. Se-
lected hyperparameters are retrained on the whole training
and validation data, and combined directly on the testing
split to generate the generalization error values presented
in this section. The ensemble optimization method is run
with an ensemble size m = 12. This ensemble size was
selected empirically and may not be optimal. Future work
could investigate strategies to dynamically size the ensem-
ble as the optimization progresses, with no fixed limit.

The generalization error on the test split for the selected
methods is presented in Table 2, averaged over 10 repe-
titions. The last column shows the ranks of each method
averaged over all datasets, where the best rank is 1 and the
worst rank is 4.

Table 3: Wilcoxon pairwise test p-values for the SVM
hyperparameter space. Bold entries highlight significant
differences (p ≤ 0.05) and parentheses are added when
method at row i is worse than the method at column j ac-
cording to ranks.

1 2 3 4

1 - BO-best – (0.33) (0.00) (0.00)
2 - BO-post 0.33 – (0.01) (0.00)
3 - EO 0.00 0.01 – 0.21
4 - EO-post 0.00 0.00 (0.21) –

A Wilcoxon signed-rank test is used to measure the statis-
tical significance of the results. The Wilcoxon signed-rank
test is a strong statistical test for comparing methods across
multiple datasets, which is an nonparametric version of the
Student’s t-test that does not assume normal distributions
and is less sensitive to outliers (Demšar, 2006). The input
for the Wilcoxon test is the generalization error of a method
i on each dataset d, averaged across the R repetitions:

ei = { 1

R

R∑
r=1

ei,d,r}d, (10)

where ei,d,r is the generalization error produced by method
i on dataset d at repetition r. The Wilcoxon test is then
computed for all pairs of methods (ei, ej). The results of
this procedure are shown in Table 3.

From Table 2 we can see that it is beneficial to build an en-
semble from the output of a classical hyperparameter op-
timization, as seen by the lower rank of BO-post with re-
gards to BO-best. However, the performance improvement
is not shown to be significant according to the Wilcoxon
test. Both the ensemble optimization methods seem to out-
perform classical Bayesian optimization strategies in terms
of rankings. The Wilcoxon test shows that EO and EO-post
both performed significantly better than BO-best and BO-
post. It should be noted that there is no significant differ-
ence between EO and EO-post, highlighting that there was
not a significant gain from the post-hoc ensemble construc-
tion. Caruana et al., 2004 presented some strategies to re-
duce overfitting in the forward greedy procedure – such as
bagging from the pool of models – which could be consid-
ered in order to achieve more with the same pool, although
this is left for future work.

Another test which can be used to assess the performance
of the evaluated methods is the Friedman test with post-
hoc tests on classifier ranks averaged across datasets. A
Friedman test with the four methods presented in this sec-
tion finds a significant difference between them with a p-
value of 5.5× 10−4. The Friedman test is then usually fol-
lowed by a post-hoc test to measure whether the difference
in ranks is above a critical difference level, such as the Ne-
menyi test (Demšar, 2006). Figure 5 shows the results of

Table 2: Generalization error on SVM hyperparameter space, averaged over 10 repetitions, 5-fold cross-validation. Last
column shows the rank of methods averaged over all datasets.

adlt bnk car ches ltr mgic msk p-blk pim sem spam s-gc s-im s-sh s-pl thy tita wine Ranks

BO-best 15.52 10.67 1.27 16.86 2.45 12.49 0.29 3.06 25.52 4.43 6.47 23.20 3.57 0.10 23.91 3.09 20.59 35.28 3.39
BO-post 15.38 10.71 1.56 16.72 2.50 12.21 0.28 3.01 25.65 4.37 6.47 23.45 2.94 0.08 22.58 3.17 20.59 35.09 2.81
EO 15.39 10.44 0.81 15.06 2.34 12.18 0.30 3.14 23.70 4.58 6.45 23.05 2.73 0.09 22.61 2.51 20.27 33.29 1.89
EO-post 15.27 10.60 0.95 15.08 2.36 12.21 0.28 2.97 24.03 4.40 6.36 23.40 2.55 0.09 22.63 2.69 20.57 33.70 1.92

1234

BO-best
BO-post EO-post

EO

CD

Figure 5: Methods by rank and significant differences ac-
cording to a post-hoc Nemenyi test with significance level
at p = 0.05 for the SVM hyperparameter space.

such a test, with methods linked by bold lines being found
not significantly different by the test for a significance level
of p = 0.05. The Nemenyi post-hoc test gives a more vi-
sual insight as to what is going on, but it is more sensitive
to the pool of tested methods – the outcome of the test can
change if new methods are inserted in the experiments. Ac-
cording to this test, EO and EO-post are both significantly
different from BO-best, meaning that ensemble optimiza-
tion is significantly better than the single best classifier re-
turned by Bayesian optimization.

4.2 SCIKIT-LEARN MODELS SEARCH SPACE

The same methods as in the previous section were re-
peated for a different search space consisting of multiple
base algorithms, all available from scikit-learn2. The
models and their hyperparameters are K nearest neighbors
with the number of neighbors n neighbors in [1, 30];
RBF SVM with the penalty C logarithmically in [10−5, 105]
and the width of the RBF kernel γRBF logarithmically in
[10−5, 105]; linear SVM with the penalty C logarithmi-
cally scaled in [10−5, 105]; decision tree with the maxi-
mal depth max depth in [1, 10], the minimum number
of examples in a node to split min samples split in
[2, 100], and the minimum number of training examples
in a leaf min samples leaf in [2, 100]; random forest
with the number of trees n estimators in [1, 30], the
maximal depth max depth in [1, 10], the minimum num-
ber of examples in a node to split min samples split
in [2, 100], and the minimum number of training examples
in a leaf min samples leaf in [2, 100]; AdaBoost with
the number of weak learners n estimators in [1, 30];
Gaussian Naive Bayes (GNB) and Linear Discriminant
Analysis (LDA) both without any hyperparameters; and

2Available at http://scikit-learn.org/.

Table 5: Wilcoxon pairwise tests p-values for the scikit-
learn hyperparameter space. Bold entries highlight signif-
icant differences (p ≤ 0.05) and parentheses are added
when method at row i is worse than the method at column
j according to ranks.

1 2 3 4

1 - BO-best – (0.05) (0.00) (0.00)
2 - BO-post 0.05 – (0.00) (0.00)
3 - EO 0.00 0.00 – 0.03
4 - EO-post 0.00 0.00 (0.03) –

1234

BO-best
BO-post EO-post

EO

CD

Figure 6: Methods by rank and significant differences ac-
cording to a post-hoc Nemenyi test with significance level
at p = 0.05 for the scikit-learn hyperparameter space.

Quadratic Discriminant Analysis (QDA) with the regular-
ization reg param logarithmically in [10−3, 103].

The set of hyperparameter optimization strategies is the
same as in the previous section, and the maximum num-
ber of iterations B is set to 100. Tables 4 and 5 show the
same metrics and Wilcoxon pairwise tests as introduced in
Section 4.1.

Conclusions are similar for this hyperparameter space,
whereas the generation of a post-hoc ensemble is again
shown to be beneficial to the generalization accuracy for
both BO and EO. In this case the post-hoc ensemble for BO
is found significantly better than the single best classifier
according to the Wilcoxon test. The overall best method
is EO, which significantly outperforms all other methods,
including EO-post, as seen in Table 5. For some datasets,
the ensemble optimization procedure achieves a large drop
in the generalization error, see for example datasets letter
(ltr), musk-2 (msk) and semeion (sem) in Table 4.

A Friedman test on this suite of experiments is again run
and found significant with a p-value of 1.5× 10−5. Fig-
ure 6 shows the results of the Nemenyi post-hoc test, with

Table 4: Generalization error on the scikit-learn hyperparameter space, averaged over 10 repetitions, 5-fold cross-
validation. Last column shows the rank of methods averaged over all datasets.

adlt bnk car ches ltr mgic msk p-blk pim sem spam s-gc s-im s-sh s-pl thy tita wine Ranks

BO-best 14.70 11.04 4.77 25.73 4.72 12.06 2.13 3.41 23.25 8.82 5.80 23.15 3.72 0.12 26.91 1.19 22.74 35.96 3.36
BO-post 14.62 10.53 4.80 25.73 4.72 11.99 2.18 3.26 23.38 8.82 5.53 23.15 3.64 0.11 26.16 1.20 22.74 35.71 3.11
EO 14.35 10.30 0.81 19.39 2.81 12.38 0.28 2.80 24.09 4.37 5.02 22.75 2.84 0.08 22.69 1.21 20.66 35.19 1.67
EO-post 14.32 10.39 1.01 20.47 2.76 12.48 0.28 2.94 23.38 4.37 5.24 22.90 2.99 0.07 23.50 1.10 21.20 35.47 1.86

methods linked by bold lines being found not significantly
different by the test for a significance level of p = 0.05.
According to this test, EO-post and EO are significantly
different from both BO and BO-best, meaning that ensem-
ble optimization approaches significantly outperform both
Bayesian optimization baselines.

4.3 CONVOLUTIONAL NEURAL NETWORKS

Lastly, we evaluated the performance of our approach when
fine-tuning the parameters of a convolutional neural net-
work for the CIFAR-10 dataset. In order to have a repro-
ducible baseline, the cuda-convet implementation was
used with the reference model files given which achieves
18% generalization error on the testing dataset3. One batch
of the training data was set aside for validation (batches 1-4
used for training, 5 for validation, and 6 for testing). Per-
formance of the baseline configuration on the given training
batches was around 22.4% ± 0.9 for 250 epochs of train-
ing. The parameters optimized were the same as in (Snoek
et al., 2012), namely the learning rates and weight decays
for the convolution and softmax layers, and the parameters
of the local response normalization layer (size, power and
scale). The number of training epochs was kept fixed at
250.

We computed 10 repetitions of a standard Bayesian opti-
mization and our proposed ensemble optimization with en-
semble size m = 7, both with a budget of B = 100 hy-
perparameter tuples to evaluate. Figure 7 shows the perfor-
mance of ensembles generated from both pools of classi-
fiers with a post-hoc ensemble generation. In order to limit
overfitting, the first three models of each ensemble were
selected directly based on accuracy, as suggested in (Caru-
ana et al., 2004). In both cases, the ensemble size benefits
the generalization accuracy, although the classifiers gener-
ated by the ensemble optimization procedure do perform
slightly better. The difference in generalization error be-
tween BO-post and EO-post at the last iteration is found
significant by a Wilcoxon test with a p-value of 0.005. Fur-
ther work should investigate strategies to use the remaining
validation data once the models are chosen, to further im-
prove generalization accuracy.

3Code available at https://code.google.com/
archive/p/cuda-convnet/ and network configuration file
used is layers-18pct.cfg.

0 10 20 30 40 50

forward greedy iterations

0.14

0.16

0.18

0.20

0.22

0.24

er
ro

r
ra

te

BO-post-val
BO-post-test
EO-post-val
EO-post-test

Figure 7: Generalization errors of a post-hoc ensemble
with classical Bayesian optimization (BO-post) and a post-
hoc ensemble generated from our ensemble optimization
approach (EO-post) on the CIFAR-10 dataset with regards
to the number of classifiers in the final ensemble. Results
averaged over 10 repetitions.

5 CONCLUSION

In this work, we presented a methodology to achieve
Bayesian optimization of ensembles through hyperparam-
eter tuning. We tackle the various challenges posed by
ensemble optimization in this context, and the result is an
optimization strategy that is able to exploit trained models
and generate better ensembles of classifiers at the compu-
tational cost of a regular hyperparameter optimization.

We showcase the performance of our approach on three dif-
ferent problem suites, and in all cases show a significant
difference in generalization accuracy between our approach
and post-hoc ensembles built on top of a classical hyperpa-
rameter optimization, according to Wilcoxon signed-rank
tests. This is a strong validation of our method, especially
considering that it involves little extra computation.

Acknowledgements

This research benefitted from the computing resources pro-
vided by Calcul Québec, Compute Canada and Nvidia. We
would also like to thank Annette Schwerdtfeger for proof-
reading this paper.

References

Bell, Robert M. and Yehuda Koren (Dec. 2007). “Lessons
from the Netflix prize challenge”. In: ACM SIGKDD Ex-
plorations Newsletter 9.2, pp. 75–79.

Bergstra, James and Yoshua Bengio (2012). “Random
Search for Hyper-Parameter Optimization”. In: Journal
of Machine Learning Research 13, pp. 281–305.

Bergstra, James and David D. Cox (2013). “Hyperparame-
ter Optimization and Boosting for Classifying Facial Ex-
pressions: How good can a “ Null ” Model be?” In: Pro-
ceedings of the ICML Workshop on Representation and
Learning.

Caruana, Rich, Alexandru Niculescu-Mizil, Geoff Crew,
and Alex Ksikes (2004). “Ensemble Selection from Li-
braries of Models”. In: Proceedings of the 21st Interna-
tional Conference on Machine Learning, p. 9.

Demšar, Janez (2006). “Statistical Comparisons of Classi-
fiers over Multiple Data Sets”. In: The Journal of Ma-
chine Learning Research 7, pp. 1–30.

Didaci, Luca, Giorgio Fumera, and Fabio Roli (2013). “Di-
versity in Classifier Ensembles : Fertile Concept or Dead
End ?” In: Multiple Classifier Systems, pp. 37–48.

Feurer, Matthias, Aaron Klein, Katharina Eggensperger,
Jost Tobias Springenberg, Manuel Blum, and Frank Hut-
ter (2015a). “Efficient and Robust Automated Machine
Learning”. In: Advances in Neural Information Process-
ing Systems.

Feurer, Matthias, Jost Tobias Springenberg, and Frank
Hutter (2015b). “Initializing Bayesian Hyperparameter
Optimization via Meta-Learning”. In: Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelli-
gence.

Frank, A. and A. Asuncion (2010). UCI Machine Learning
Repository. URL: https://archive.ics.uci.
edu/ml/datasets.html.

Guyon, Isabelle, Kristin Bennett, Gavin Cawley, Hugo Jair
Escalante, Sergio Escalera, Tin Kam Ho, Núria Macià,
Bisakha Ray, Mehreen Saeed, Alexander Statnikov, and
Evelyne Viegas (2015). “Design of the 2015 ChaLearn
AutoML Challenge”. In: 2015 International Joint Con-
ference on Neural Networks (IJCNN). ChaLearn.

Hernández-Lobato, José Miguel, Matthew W. Hoffman,
and Zoubin Ghahramani (2014). “Predictive Entropy
Search for Efficient Global Optimization of Black-box
Functions”. In: Advances in Neural Information Pro-
cessing Systems.

Hutter, Frank, Holger H. Hoos, and Kevin Leyton-Brown
(2011). “Sequential Model-Based Optimization for Gen-
eral Algorithm Configuration”. In: Learning and Intelli-
gent Optimization, pp. 507–523.

Kuncheva, Ludmila I. (2003). “That Elusive Diversity in
Classifier Ensembles”. In: Pattern Recognition and Im-
age Analysis, pp. 1126–1138.

Kuncheva, Ludmila I. (2004). Combining Pattern Classi-
fiers: Methods and Algorithms. Wiler-Interscience.

Lacoste, Alexandre, Hugo Larochelle, Mario Marchand,
and François Laviolette (2014a). “Agnostic Bayesian
Learning of Ensembles”. In: Proceedings of the 31st In-
ternational Conference on Machine Learning 32.

Lacoste, Alexandre, Hugo Larochelle, Mario Marchand,
and François Laviolette (2014b). “Sequential Model-
Based Ensemble Optimization”. In: Uncertainty in Ar-
tificial Intelligence.

Rasmussen, Carl Edward and Christopher K. I. Williams
(2006). Gaussian Processes for Machine Learning. MIT
Press.

Schapire, Robert E. and Yoav Freund (2012). Boosting:
Foundations and Algorithms. MIT Press.

Snoek, Jasper, Hugo Larochelle, and Ryan P. Adams
(2012). “Practical Bayesian Optimization of Machine
Learning Algorithms”. In: Advances in Neural Informa-
tion Processing Systems.

Snoek, Jasper, Oren Rippel, Kevin Swersky, Ryan Kiros,
Nadathur Satish, Narayanan Sundaram, Md. Mostofa Ali
Patwary, Prabhat, and Ryan P. Adams (2015). “Scalable
Bayesian Optimization Using Deep Neural Networks”.
In: Proceedings of the 32nd International Conference on
Machine Learning.

Sun, Quan and Bernhard Pfahringer (2011). “Bagging En-
semble Selection”. In: AI 2011: Advances in Artificial
Intelligence 7106, pp. 251–260.

Swersky, Kevin, Jasper Snoek, and Ryan P. Adams
(2014). “Freeze-Thaw Bayesian Optimization”. In:
arXiv preprint, pp. 1–12. arXiv: arXiv : 1406 .
3896v1.

Tsymbal, Alexey, Mykola Pechenizkiy, and Pádraig Cun-
ningham (2005). “Diversity in Search Strategies for En-
semble Feature Selection”. In: Information Fusion 6.1,
pp. 83–98.

