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Abstract

We propose a simple algorithm to train stochas-
tic neural networks to draw samples from given
target distributions for probabilistic inference.
Our method is based on iteratively adjusting the
neural network parameters so that the output
changes along a Stein variational gradient di-
rection (Liu & Wang, 2016) that maximally de-
creases the KL divergence with the target distri-
bution. Our method works for any target dis-
tribution specified by their unnormalized density
function, and can train any black-box architec-
tures that are differentiable in terms of the pa-
rameters we want to adapt. We demonstrate our
method with a number of applications, including
variational autoencoder (VAE) with expressive
encoders to model complex latent space struc-
tures, and hyper-parameter learning of MCMC
samplers that allows Bayesian inference to adap-
tively improve itself when seeing more data.

1 INTRODUCTION

Modern machine learning increasingly relies on highly
complex probabilistic models to reason about uncertainty.
A key computational challenge is to develop efficient in-
ference techniques to approximate, or draw samples from
complex distributions. Currently, most inference meth-
ods, including MCMC and variational inference, are hand-
designed by researchers or domain experts. This makes it
difficult to fully optimize the choice of different methods
and their parameters, and exploit the structures in the prob-
lems of interest in an automatic way. The hand-designed
algorithm can also be inefficient when there is a need to
perform fast inference repeatedly on a large number of dif-
ferent distributions with similar structures. This happens,
for example, when we need to reason about a number of
observed datasets in settings like online learning or per-
sonalized prediction, or need fast inference as inner loops

for other algorithms such as learning latent variable mod-
els (such as variational autoencoder (Kingma & Welling,
2013)) or unnormalized distributions. Therefore, it is
highly desirable to develop intelligent probabilistic infer-
ence systems that can adaptively improve their own perfor-
mance to fully optimize the computational efficiency, and
generalize to new tasks with similar structures. Develop-
ing such systems requires solving the following learning-
to-sample problem:

Problem 1. Given a distribution with density p(z) on set
Z and a simulator z = f(ξ; η), such as a neural network,
which takes a parameter η and a random seed ξ drawn from
q0 and outputs a value z in Z , we want to find an optimal
parameter η so that the density of the random output z =
f(ξ; η) with ξ ∼ q0 closely matches the target p.

Here, we assume that we do not know the analytical form of
the simulator f(·) (which we call inference network), and
we can only query it through the output value f(ξ; η) and
derivative ∂ηf(ξ; η) for given η and ξ. We also assume
that the random seed distribution q0 is unknown and we
can only access it through the draws of the random input ξ;
that is, q0 can be arbitrarily complex, and can be discrete,
continuous or hybrid.

Because of the above assumption, we cannot directly cal-
culate the density qη(z) of the output variable z = f(ξ; η);
this makes it difficult to solve Problem 1 using the typical
variational inference (VI) methods. Recall that VI finds an
optimal parameter η to approximate the target p with qη , by
minimizing the KL divergence:

KL(qη || p) = Eqη [log(qη/p)]. (1)

However equation (1) requires calculating the density qη(z)
or its derivative, which is intractable by our assumption
(and is called implicit models in Mohamed & Lakshmi-
narayanan (2016)). This holds true even when Monte
Carlo gradient estimates (Hoffman et al., 2013) and the
reparametrization trick (Kingma & Welling, 2013) are ap-
plied.

This requirement of calculating qη(z) makes it difficult for
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Figure 1: Wild variational inference allows us to train general
stochastic neural inference networks to learn to draw (approxi-
mate) samples from the target distributions, without restriction on
the computational tractability of the density function of the neural
inference networks.

practitioners to use variational inference in an automatic
way, especially in domains where it is critical to use ex-
pressive inference networks to achieve good approximation
quality. Methods that do not require to explicitly calculate
qη(z), referred to as wild variational inference, or varia-
tional programming (Ranganath et al., 2016), can signifi-
cantly simplify the design and expand the applications of
VI methods, allowing practioners to focus more on choos-
ing proposals that work best with their specific tasks.

A similar problem also appears in importance sampling
(IS), where it requires calculating the IS proposal density
q(z) in order to calculate the importance weight w(z) =
p(z)/q(z). However, there exist methods that use no ex-
plicit information of the proposal q(z), and, seemingly
counter-intuitively, give better asymptotic variance or con-
verge rate than the typical IS that uses the proposal infor-
mation (e.g., Liu & Lee, 2016; Briol et al., 2015; Henmi
et al., 2007; Delyon & Portier, 2014). Discussions on this
phenomenon date back to O’Hagan (1987), who argued
that “Monte Carlo (that uses the proposal information) is
fundamentally unsound”, and developed Bayesian Monte
Carlo (O’Hagan, 1991) as an instance that uses no informa-
tion of proposal q(z), yet gives better convergence rate than
the typical Monte Carlo O(n−1/2) convergence rate (Briol
et al., 2015). Despite the substantial difference between IS
and VI, these results intuitively suggest the possibility of
developing efficient variational inference without using the
information of density function q(z) explicitly.

Main Idea In this work, we study a simple algorithm for
Problem 1, motivated by a recent Stein variational gradi-
ent descent (SVGD) algorithm. Briefly speaking, SVGD
is a nonparametric functional gradient descent algorithm
which solves minq KL(q || p) without parametric assump-
tion on q, and approximates the functional gradient, called
the Stein variational gradient, using a set of samples (or
particles) {zi}ni=1 which iteratively evolves. See Section 2
for more introduction on SVGD. We can then view Prob-
lem 1 as a constrained optimization problem,

min
q

KL(q || p), s.t. q = qη for some η, (2)

which motivates us to develop a project gradient like algo-
rithm that iteratively calculates the Stein variational gradi-

ent, and projects it to the finite dimensional η-space to up-
date parameter η. At the convergence, the samples drawn
from qη reach the equilibrium state of SVGD, and hence
form a good approximation of p. We can view this method
as “amortizing” or distilling the SVGD dynamics using
parametric family qη or its inference network f(ξ; η) and
call it amortized SVGD. See Section 3 for the detailed de-
scription of amortized SVGD.

Our algorithm provides a simple approach for the wild in-
ference problem in Problem 1, enabling wide application
in approximate learning and inference. We explore two ex-
amples in this paper. In Section 4.1, we apply amortized
SVGD to learn complex encoder functions in variational
autoencoder (VAE), allowing it to model complex latent
variable space. In Section 4.2 we use amortized SVGD to
learn hyper-parameters of MCMC samplers, which allows
us to adaptively improve the efficiency of Bayesian compu-
tation when performing a large number of similar tasks.

Related Work There has been a number of very recent
work that studies advanced variational inference methods
that do not require explicitly calculating qη(z) (Problem 1).
This includes adversarial variational Bayesian (Mescheder
et al., 2017) which approximates the KL divergence with a
density ratio estimator, operator variational inference (Ran-
ganath et al., 2016) which replaces the KL divergence with
an alternative operator variational objective that is equiva-
lent to Stein discrepancy (see Appendix A for more discus-
sion), and amortized MCMC (Li et al., 2017) which pro-
poses to amortize arbitrary MCMC dynamics to make it
applicable to discrete models and gradient-free settings.

The key advantage of our method is its simplicity. both
Mescheder et al. (2017) and Ranganath et al. (2016) require
training some type of auxiliary networks, while our main
algorithm (Algorithm 1 with update (10)) is very simple,
and is essentially a generalization of the typical gradient
descent rule that replaces the typical gradient with the stein
variational gradient.

It is also possible to adopt the auxiliary variational in-
ference methods (e.g., Agakov & Barber, 2004; Salimans
et al., 2015) to solve Problem 1 by treating ξ as a hidden
variable. however, in order to frame a tractable joint dis-
tribution p(z, ξ), one would need to add additional noise
on z, e.g., assume z = f(ξ; η) + N (0, σ2) with a careful
choice of noise variance σ, and also need to introduce an
additional auxiliary network to approximate q(ξ | z), which
makes the algorithm more complex than ours.

The idea of amortized inference (Gershman & Goodman,
2014) has been recently applied in various domains of
probabilistic reasoning, including both amortized varia-
tional inference (e.g., Kingma & Welling, 2013; Rezende &
Mohamed, 2015) and date-driven designs of Monte Carlo
based methods (e.g., Paige & Wood, 2016), to name only



a few. Snelson & Ghahramani (2005); Balan et al. (2015)
also explored the idea of amortizing or distil MCMC sam-
plers to obtain compact fast posterior representation. Most
of these methods uses typical variational inference methods
and hence need to use simple qη to ensure tractability.

There is a large literature on traditional adaptive MCMC
methods (e.g., Andrieu & Thoms, 2008; Roberts & Rosen-
thal, 2009) which can be used to adaptively adjust the
proposal distribution of MCMC by exploiting the spe-
cial theoretical properties of MCMC (e.g., by minimiz-
ing the autocorrelation). Our method is simpler, more
generic, and works efficiently in practice thanks to the use
of gradient-based back-propagation. Finally, connections
between stochastic gradient descent and variational infer-
ence have been discussed and exploited in Mandt et al.
(2016); Maclaurin et al. (2015).

2 STEIN VARIATIONAL GRADIENT
DESCENT

Stein variational gradient descent (SVGD) (Liu & Wang,
2016) is a nonparametric variational inference algorithm
that iteratively transports a set of particles {zi}ni=1 to ap-
proximate the target distribution p by performing a type of
functional gradient descent on the KL divergence. We give
a quick overview of the SVGD in this section.

Let p(z) be a positive density function on Rd which we
want to approximate with a set of particles {zi}ni=1. SVGD
starts with a set of initial particles {zi}ni=1, and updates the
particles iteratively by

zi ← zi + εφ(zi), ∀i = 1, . . . , n, (3)

where ε is a step size, and φ : Rd → Rd is a velocity field
which should be chosen to push the particle distribution
closer to the target distribution. Assume the current par-
ticles are drawn from a distribution q, and let q[εφ] be the
distribution of the updated particles z′ = z + εφ(z) when
z ∼ q. The optimal choice of φ can be framed as the fol-
lowing optimization problem:

φ∗ = arg max
φ∈F

{
− d

dε
KL(q[εφ] || p)

∣∣∣∣
ε=0

}
, (4)

that is, φ should yield a maximum decreasing rate on the
KL divergence between the particle distribution and the tar-
get distribution. Here, F is a function set that includes the
possible velocity fields and is chosen to be the unit ball of
a vector-valued reproducing kernel Hilbert space (RKHS)
H = H0 × · · · × H0, where H0 is a RKHS formed by
scalar-valued functions associated with a positive definite
kernel k(z, z′), that is, F = {φ ∈ H : ||φ||H ≤ 1}. This
choice of F allows us to consider velocity fields in infinite
dimensional function spaces while still obtaining a closed

form solution. Liu & Wang (2016) showed that the objec-
tive function in (4) equals a simple linear functional of φ:

− d

dε
KL(q[εφ] || p)

∣∣
ε=0

= Ex∼q[Tpφ(x)], (5)

with Tpφ(z) = ∇x log p(z)>φ(z) +∇>z φ(z), (6)

where Tp is a linear operator acting on a velocity field φ
and returns a scalar-valued function; Tp is called the Stein
operator in connection with Stein’s identity which shows
that the RHS of (5) equals zero if p = q:

Ep[Tpφ] = Ep[∇z log p>φ+∇z · φ] = 0. (7)

This is a result of integration by parts assuming the val-
ues of p(z)φ(z) vanish on the boundary of the integration
domain. Therefore, the optimization in (4) reduces to

D(q||p) def= max
φ∈H
{Ez∼q[Tpφ(z)] s.t. ||φ||H ≤ 1}, (8)

where D(q || p) is the kernelized Stein discrepancy defined
in (Liu et al., 2016; Chwialkowski et al., 2016), which
equals zero if and only if p = q under proper conditions
that ensure the function spaceH is rich enough.

Observe that (8) is “simple” in that it is a linear functional
optimization on a unit ball of a Hilbert space. Therefore, it
is not surprise to derive a closed form solution:

φ∗(·) ∝ Ez∼q[∇z log p(z)k(z, ·) +∇xk(z, ·)], (9)

where k(z, z′) is the positive definite kernel associated with
RKHSH0. See Liu et al. (2016) for the derivation. We call
φ∗ the Stein variational gradient direction since it provides
the optimal direction for pushing the particles towards the
target distribution p.

In the practical SVGD algorithm, we start with a set of ini-
tial particles, calculate its corresponding φ∗ by replacing
the expectation under q with the empirical average of par-
ticles, and use it to update the particles:

zi ← zi + εφ∗(zi), ∀i = 1, . . . , n, (10)

φ∗(zi) =
1

n

n∑
j=1

[∇zj log p(zj)k(zj , zi) +∇zjk(zj , zi)].

The two terms in φ∗(zi) play two different roles: the term
with the gradient ∇z log p(z) drives the particles toward
the high probability regions of p(z), while the term with
∇zk(z, zi) serves as a repulsive force to encourage differ-
ent particles to be different from each other as shown in Liu
& Wang (2016). Overall, this procedure provides diverse
points for approximating distribution p when it converges.

It is easy to see from (10) that φ∗(zi) reduces to the typical
gradient ∇z log p(zi) when there is only a single particle
(n = 1) and ∇zk(z, zi) = 0 when z = zi, in which case
SVGD reduces to the standard gradient ascent for maxi-
mizing log p(z) (i.e., maximum a posteriori (MAP)).



Algorithm 1 Amortized SVGD for Problem 1
Set batch size m, step-size scheme {εt} and kernel
k(z, z′). Initialize η0.
for iteration t do

Draw random {ξi}mi=1, calculate zi = f(ηt; ξi), and
the Stein variational gradient φ∗(zi) in (10).
Update parameter η using either (13), (14) or (15).

end for

Computing the Kernelized Stein Discrepancy By sub-
stituting the φ∗ in (9) into (8), one can show that (Liu et al.,
2016; Chwialkowski et al., 2016; Oates et al., 2017)

D(q || p)2 = Ez,z′∼ q[κp(z, z
′)], (11)

where κp(z, z′) is a positive definite kernel obtained by ap-
plying Stein operator on k(z, z′) twice, as a function of z
and z′, respectively. It has the following computationally
tractable form:

κp(z, z
′) =sp(z)

>k(z, z′)sp(z
′) + sp(z)

>∇z′k(z, z′)

+∇zk(z, z′)>sp(z
′) +∇>z (∇z′k(z, z′)),

where sp(z) = ∇z log p(z). The form of KSD in (11)
provides a computationally tractable way for estimating
the Stein discrepancy between a set of samples {zi} (e.g.,
drawn from an unknown q) and a distribution p specified
by its score function ∇z log p(z) (which is independent of
its normalization constant),

D̂2
u({zi} || p) =

1

n(n− 1)

∑
i 6=j

[κp(zi, zj)], (12)

where D̂2
u(q || p) provides an unbiased estimator (hence

called a U -statistic) for D2(q || p). As a side result of
this work, we will discuss the possibility of using KSD as
an objective function for wild variational inference in Ap-
pendix A.

3 AMORTIZED SVGD: TOWARDS AN
AUTOMATIC NEURAL SAMPLER

SVGD and other particle-based methods become inefficient
when we need to apply them repeatedly on a large num-
ber of different, but similar target distributions for multiple
tasks, because they can not leverage the similarity between
the different distributions and may require a large memory
to restore a large number of particles. This problem can
be addressed by training a neural network f(ξ; η) to out-
put particles that would have been produced by SVGD; this
amounts to “amortizing” or compressing the nonparamet-
ric SVGD into a parametric network, yielding a solution
for wild variational inference in Problem 1 of Section 1.

One straightforward way to achieve this is to run SVGD un-
til convergence and train f(ξ; η) to fit the resulting SVGD

particles (e.g., by using generative adversarial networks
(GAN) (Goodfellow et al., 2014)). This, however, requires
running many epochs of fully converged SVGD and can
be slow in practice. We instead propose an incremental ap-
proach in which η is iteratively adjusted so that the network
outputs z = f(ξ; η) improves by moving along the Stein
variational gradient direction in (10), in order to move to-
wards the target distribution.

Specifically, denote by ηt the parameter estimated at the
t-th iteration of our method; each iteration of our method
draws a batch of random inputs {ξi}mi=1 and calculate their
corresponding output zi = f(ξi; η

t) based on ηt, where
m is a mini-batch size (e.g., m = 100). The Stein vari-
ational gradient φ∗(zi) in (10) would then ensure that
z′i = zi + εφ∗(zi) forms a better approximation of the tar-
get distribution p. Therefore, we should adjust η to make it
output {z′i} instead of {zi}, that is, we want to update η by

ηt+1 ← arg min
η

m∑
i=1

||f(ξi; η)− z′i||22, (13)

where z′i = zi + εφ∗(zi). This process is repeated until
convergence, in which case the outputs of network f can
no longer be improved by SVGD and hence should form a
good approximation of the target p. See Algorithm 1.

If we assume ε is very small, then (13) can be approxi-
mated by a least square optimization. To see this, note that
f(ξi; η) ≈ f(ξi; η

t) + ∂ηf(ξi; η
t)(η − ηt) by Taylor

expansion. Since zi = f(ξi; η
t), we have

||f(ξi; η)− z′i||22 ≈ ||∂ηf(ξi; η
t)(η − ηt)− εφ∗(zi)||22.

As a result, (13) reduces to a least square optimization:

ηt+1 ← ηt − ε∆ηt,

∆ηt = arg min
δ

m∑
i=1

||∂ηf(ξi; η
t)δ − φ∗(zi)||22.

(14)

It may be still slow to solve a least square problem at each
iteration. We can derive a more computationally efficient
approximation by performing only one step of gradient de-
scent of (13) starting at ηt (or equivalently (14) starting at
δ = 0), which gives

ηt+1 ← ηt + ε

m∑
i=1

∂ηf(ξi; η
t)φ∗(zi). (15)

Although update (15) is derived as an approximation of
(13) or (14), it is computationally faster and it works effec-
tively in practice; this is because when ε is small, one step
of gradient update can be sufficiently close to the optimum.

Update (15) has a simple and intuitive interpretation: it can
be thought as a “chain rule” that back-propagates the Stein
variational gradient to the network parameter η. This can



be justified by considering the special case when we use
only a single particle (n = 1) in which case φ∗(zi) in
(10) reduces to the typical gradient ∇z log p(zi), and up-
date (15) reduces to the typical gradient ascent for maxi-
mizing Eξ[log p(f(ξ; η))], in which case f(ξ; η) is trained
to maximize log p(z) (that is, learning to optimize), instead
of learning to draw samples from p for which it is crucial
to use the Stein variational gradient φ∗(zi) to diversify the
outputs to capture the uncertainties in p.

Update (15) also has a close connection with the typi-
cal variational inference with the reparameterization trick
(Kingma & Welling, 2013). Let qη(z) be the density func-
tion of z = f(ξ; η), ξ ∼ q0. Using the reparameterization
trick, the gradient of KL(qη || p) w.r.t. η equals

∇ηKL(qη || p) = −Eξ∼q0 [∂ηf(η; ξ)∇z log(p(z)/qη(z))].

With {ξi} i.i.d. drawn from q0 and zi = f(ξi; η), ∀i, we
can obtain a standard stochastic gradient descent for mini-
mizing the KL divergence:

ηt+1 ← ηt +

m∑
i=1

∂ηf(ξi; η
t)φ̃
∗
(zi),

where φ̃
∗
(zi) = ∇z log p(zi)−∇z log qηt(zi).

(16)

This is similar to (15), but replaces the Stein gradient
φ∗(zi) defined in (10) with φ̃

∗
(zi). However, because

φ̃
∗
(zi) depends on the density qηt , which is assumed to

be intractable in Problem 1, (16) is not directly applicable
in our setting. Further insights can be obtained by noting
that

φ∗(zi) ≈ Ez∼qηt [∇z log p(z)k(z, zi) +∇zk(z, zi)]

= Ez∼qηt [(∇z log p(z)−∇z log qηt(z))k(z, zi)]

= Ez∼qηt [φ̃
∗
(z)k(z, zi)], (17)

where (17) is obtained by using Stein’s identity (7). There-
fore, φ∗(zi) can be treated as a smoothed version of φ̃

∗
(zi)

obtained by convolving it with kernel k(z, z′).

4 APPLICATIONS OF AMORTIZED
SVGD

With amortized SVGD, we can use expressive inference
networks to obtain better approximation and explore new
applications where traditional VI methods cannot be ap-
plied. In this section, we introduce two different appli-
cations of amortized SVGD. One is training variational
autoencoders (Kingma & Welling, 2013) with complex,
non-Gaussian encoders, and the other is training “smart”
MCMC samplers that adaptively improve their own hyper-
parameters from past experience.

4.1 Amortized SVGD For Variational Autoencoders

Variational autoencoders (VAEs) (Kingma & Welling,
2013) are latent variable models of form pθ(x) =∫
z
pθ(x|z)pθ(z)dz where x is an observed variable and z is

an un-observed latent variable. Assume the empirical dis-
tribution of the observed variable is p̂(x), VAE learns the
parameter θ using a variational EM algorithm which ap-
proximates the posterior distribution pθ(z|x) with a simple
encoder qη(z|x), and updates θ and η alternatively by

θ ← arg max
θ

Ep̂(x)qη(z|x)
[

log pθ(x, z)
]
, (18)

η ← arg min
η

Ep̂(x)
[
KL(qη(z | x) || pθ(z | x))

]
, (19)

which alternates between updating θ by maximizing the
joint likelihood (M-step (18)) and approximating the pos-
terior distribution pθ(z|x) given fixed θ with variational in-
ference (VI) (E-step (19)). In standard VAE, (18) is per-
formed using standard VI with the reparameterization trick
(16), which requires qη to be tractable. Therefore, qη(z | x)
is often defined as a Gaussian distribution with mean and
diagonal covariance parameterized by neural networks with
x as input. This Gaussian assumption potentially limits the
quality of the resulting generative models, and more ex-
pressive encoders can improve the performance as shown
in recent works (e.g, Kingma et al., 2016; Mescheder et al.,
2017; Kingma et al., 2016, to name a few).

By applying amortized SVGD to solve the posterior infer-
ence problem in (19), we obtain simple algorithms that
work with more complex inference networks. Specifi-
cally, we assume that z ∼ qη(z|x) is generated by z =
f(ξ, x; η), and optimize η using update (13)-(15). See Al-
gorithm 2. In our experiment, we take z = f(ξ, x; η) to be
a deep neural network with binary Bernoulli dropout noise
at the input layer of the network which is more effective
in approximating multi-modal posteriors than the simple
Gaussian encoders.

Further, we propose an entropy regularized VAE to improve
the standard VAE and get more diverse images by adding
an entropy regularization term on the encoder networks.
Here, we replace the η-update in (19) with

η ← arg min
η

Ep̂(x)[KL(qη(z | x) || pθ(z | x))
]
− αH(qη)

= arg min
η

Ep̂(x)
[
KL(qη(z | x) || pθ(z | x)

1
1+α )

]
, (20)

where H(qη) = −Ep̂(x)qη(z|x)[log qη(z|x)] is the (condi-
tional) entropy of qη(z|x), and α is a regularization co-
efficient. (20) can be solved by applying SVGD on the
tempered distribution pθ(z | x)

1
1+α , which can be done by



Algorithm 2 Amortized SVGD for training VAE
Set batch size m and kernel k(z, z′).
Initialize encoder parameter η and decoder parameter θ.
for iteration t do

Pick input x(i) from the training data.
Draw {ξk}mk=1 ∼ q0, calculate z(i)k = f(x(i), ξk; η),

and their Stein variational gradients φ∗(z(i)k ) in (10)
or (21) related to gradient∇z log pθ(z

(i)
k |x(i)).

Update η using either (13), (14) or (15).
Update θ with

θ ← θ + 1
m

∑m
k=1∇θ log pθ(x

(i), z
(i)
k ).

end for

zi ← zi + εφ∗(zi) with

φ∗(zi) =
1

n

n∑
j=1

[∇zj log pθ(zj |x)k(zj , zi) +

+ (1 + α)∇zjk(zj , zi)],

(21)

where the temperature parameter (1+α) becomes a weight
coefficient of the repulsive force; a high temperature (or
equivalent a large entropy regularization) yields a strong
repulsive force and push the particles to be further away
from each other.

4.2 Training Langevin Samplers

By viewing typical MCMC procedures as a simulator f(·),
we can apply amortized SVGD to adaptively improve hy-
perparameters in MCMC inference. This is useful when we
need to perform Bayesian inference on a large number of
different, but similar datasets or posteriors, where we can
adaptively improve the MCMC sampler for future tasks by
leveraging the information of the previous tasks. An exam-
ple of this, which we consider in this work, is adaptively
learning optimal step sizes for Langevin dynamics.

To specify the general framework, we assume that we are
interested in drawing samples from a set of distributions

Q = {pϑ(z) : ϑ ∈ Θ},

indexed by parameter ϑ. We are interested in learning
a network f(ξ, pϑ; η) which maps the distribution pϑ to
stochastic posterior samples. Note that this is a general-
ization of Problem 1 which focuses on approximating an
individual distribution. In practice, pϑ could be the poste-
rior distributions of unknown parameters of interest condi-
tioning on different observed data, or models of different
individuals in hierarchical models.

In order to learn the network f(ξ, pϑ; η), we modify Al-
gorithm 1, to perform amortized SVGD on a randomly se-
lected pϑ from Q at each iteration. See Algorithm 3. In
this way, we expect that the trained network f(ξ, pϑ; η)

Algorithm 3 Amortized SVGD for Learning to Sample a
distribution family Q = {pϑ : ϑ ∈ Θ}

Goal: Learn parameter η to train z = f(ξ, pϑ; η) draw-
ing samples from pϑ.
Set batch size m, and kernel k(z, z′). Initialize η0.
for iteration t do

Randomly select pϑ from Q.
Draw random seed {ξ}mi=1 ∼ q0.
Calculate zi = f(ξi, pϑ; η), and the Stein variational
gradient φ∗(zi) in (10).
Update parameter η using either (13), (14) or (15).

end for

can perform well on similar pϑ drawn from the same distri-
bution, but never seen by the training algorithm.

A useful perspective is that typical MCMC methods can be
viewed as neural networks f(ξ, pϑ; η) handcrafted by re-
searchers, with nice theoretical properties. We can leverage
the structure of existing MCMC to design the architecture
of f(·), and use amortized SVGD to adaptively improve its
parameters across different tasks.

As an example, Langevin dynamics draws samples from pϑ
by starting with an initial sample z0 and performing itera-
tive random updates of form zt+1 ← ft(z

t) with

ft(z
t) = zt + ηt �∇z log pϑ(zt) +

√
2ηt � ξt, (22)

which performs gradient ascent with a Gaussian perturba-
tion. Here ηt denotes a vector-valued step size at the t-th
iteration and “�” denotes element-wise product, and ξt is
a standard Gaussian random vector of the same size as zt.

We can view T iterations of Langevin dynamics as a T -
layer neural network:

zT = f(ξ, pϑ; η) = fT−1 ◦ · · · ◦ f0(ξ, pϑ; η), (23)

in which the initial samples and the Gaussian noise form
the random seeds of the network, that is, ξ = {ξt}T−1t=0 ∪
{z0}, and the step sizes η = {ηt}T−1t=0 form the parame-
ters which we can estimate using Algorithm 3. In cases
when it is difficult to calculate ∇z log pϑ exactly, such as
the case of Bayesian inference with big datasets, we can
use stochastic gradient Langevin dynamics (Welling & Teh,
2011) to approximate ∇z log pϑ with subsampling, which
introduces another source of randomness. This, however,
does not influence the application of Algorithm 3, since our
method does not need to know the structure of the random
seed distribution.

In practice, a large value of T would result in a deep net-
work and cause a vanishing gradient problem. We address
this problem by partitioning the T layers into small blocks
of size 5 or 10, and evaluate the gradient of the parame-
ters in each block by back-propagating the Stein variational
gradient from the output of its own block.
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(truth)

(b) Power Decay
(15 steps)

(c) Power Decay
(1,000 steps)

(d) Amortized SVGD
(5 steps)

(e) Amortized SVGD
(15 steps)

Figure 2: Learning to sample from GMM. We train Langevin samplers using amortized SVGD on a set of randomly generated GMMs,
and evaluate the samplers on a new GMM shown in (a) generated randomly in the same way as the training GMMs, but unavailable in
the training time. (d)-(e): The Langevin sampler with step size trained by amortized SVGD obtains close approximation with T = 5 or
15 steps. (b)-(c): The typical power decay step size requires more Langevin iterations (and hence computation cost) to converge.
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Figure 3: Result on Gaussian-Bernoulli RBM. (a)-(c) show the mean square errors for estimating expectation Ep(h(x)) using Langevin
samplers with different numbers T of steps, with either power decay step sizes or adaptive step size trained by amortized SVD. We take
h(x) = xj , (xj)2 and cos(wxj + b) where xj denotes the j-th coordinate of vector x and w ∼ N (0, 1) and b ∼ Uniform(0, 2π) and
report the average MSE across all dimensions j = 1, . . . , d, over 20 random trials.

5 EXPERIMENTS

We apply amortized SVGD to the two different applica-
tions mentioned in section 4, and demonstrate that our
method can train expressive inference networks to draw
samples from intractable posterior distributions. For all our
experiments, we use the standard RBF kernel k(z, z′) =
exp(− 1

h ||z − z′||22), and take the bandwidth to be h =

med2/ log n, where med is the median of the pairwise dis-
tance between the current points {zi}ni=1. We use update
(15) in Algorithm 1, which solves Eq (13)-Eq (14) using a
single gradient step. We find that using more gradient steps
does not change the final results significantly, but may po-
tentially increase the convergence speed (see Appendix B).

5.1 Training Langevin Samplers

In this section, we use amortized SVGD (Algorithm 3) to
learn the step size parameters in the Langevin sampler in
(23). We test a number of distribution families, including
Gaussian Mixture, Gaussian Bernoulli RBM, Bayesian lo-
gistic regression and Bayesian neural networks. In all the
cases, we train the sampler with a set of “training distribu-
tions” and evaluate the sampler on “test distributions” that
are not seen by the algorithm during training. We compare
our method to the typical Langevin sampler with power de-
cay step size, selected to be the best from ηt = 10a/(t+b)γ

where γ = 0.55, a ∈ {−6, ..., 2}, b ∈ {0, ..., 9}.

Gaussian Mixture We first train the Langevin sam-
plers to learn to sample from simple Gaussian mixtures.
We consider a family of Gaussian Mixtures qϑ(z) =
1
10

∑10
i=1N (z;ϑi, 0.1

2), where ϑ is the mean parameter.

We train the sampler by drawing random elements of ϑ
from Uniform(−1, 1) at each iteration of Algorithm 3, and
evaluate the quality of the samplers on new values of ϑ
drawn from the same distribution, but not seen during train-
ing. In Figure 2, we find that the sampler trained by amor-
tized SVGD obtains good approximation with T = 5 or
15 steps of Langevin updates (Figure 2(d)-(e)). In com-
parison, the typical Langevin sampler with the best power
decay step size performs much worse (Figure 2(b)).

Restricted Boltzmann Machine (RBM) We test our
method on Gaussian-Bernoulli RBM which is high dimen-
sional and multi-modal. Gaussian-Bernoulli RBM is a hid-
den variable model consisting of a continuous observable
variable z ∈ Rd and a binary hidden variable h ∈ {±1}`
with joint probability pϑ(z, h) ∝ exp(z>Bh+b>z+c>h−
1
2 ||z||

2
2), where the parameters include ϑ = {B, b, c}. We

obtain the marginal distribution of pϑ(z) by summing over
h: pϑ(z) ∝ exp

[
b>z − 1

2 ||z||
2
2 + σ(B>z + c)

]
, where

σ(h) =
∑`
i=1 log(exp(hi) + exp(−hi)). In our exper-
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Figure 4: By training the step size using amortized SVGD on dataset a9a, we obtain good performance “on” datasets a1a-a8a using
Langevin sampler with only T = 10 steps of Langevin updates.

iments, we take ` = 10 hidden variables and d = 100
observable variables, and randomly draw b and c from
N (0, I) andB uniformly from {±0.1} in the training time.
The evaluation is on a new set of parameters ϑ = {B, b, c}
drawn from the same distribution.

Figure 3 shows the result when we use the trained samplers
to estimate integral quantities of form Epϑ [h] with different
testing functions h. The plots show the MSE for estimat-
ing Epϑ [h] using

∑
i h(zi)/n with zi generated from the

trained sampler zi = f(ξi, pϑ; η). Here the sample size n
is the number of i.i.d. samples generated from the trained
sampler in the testing time. In the case of typical, non-
adaptive Langevin samplers, it is the number of Langevin
Markov chains that we run in parallel. In Figure 3 (a)-(c),
we generally find that amortized SVGD allows us to train
high quality Langevin samplers with a small number T of
Langevin update steps. We observe that we can always fur-
ther refine the result of our trained samplers using addi-
tional typical MCMC steps. For example, in Figure 3, we
find that when using 20 steps of typical Langevin dynam-
ics (with a power decay step size) to refine the output of
the T = 30 layer Langevin sampler trained by amortized
SVGD achieves results close to the exact Monte Carlo.

Bayesian Classification We test our method on Bayesian
Logistic Regression and Bayesian neural networks for bi-
nary classification on real world datasets. In this case, the
distribution of interest has a form of pϑ(z) = p(z|D),
where z is the network weights in logistic regression and
neural networks, and D is the dataset for binary classifica-
tion, which we view as the parameter ϑ, that is, different
dataset D yields different posterior p(z|D), and we are in-
terested in training the Langevin sampler on a set of avail-
able datasets, and hope it performs well on future datasets
that have similar structures. This setting can be useful, for
example, in the streaming setting where we use existing
datasets to adaptively improve the Langevin sampler. In
our experiment, we take nine similar datasets (a1a-a9) from
the libsvm repository1; we train our Langevin sampler on

1https://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets/

a9a, and evaluate the sampler on the remaining 8 datasets
(a1a-a8a). Our training and evaluation steps are as follows:

1. Estimate the step sizes {ηt}T−1t=0 of the Langevin sampler
using amortized SVGD based on dataset a9a.

2. Apply the Langevin sampler with the estimated step size
to the training subsets of aka, k = 1, . . . , 8, to obtain pos-
terior samples {zki } of the classification weights.

3. Calculate the test likelihood of {zki } on the testing sub-
sets of aka, k = 1, . . . , 8. Report the averaged testing like-
lihood averaged on the 8 datasets in Figure 4.

Because each dataset is relatively large, we use the stochas-
tic gradient approximation as suggested by Welling & Teh
(2011) (with a minibatch size of 100) in Langevin samplers.
We find that the T = 10 Langevin samplers trained by
amortized SVGD on a9a is comparable with the T = 103

Langevin sampler with the best power decay step size.

5.2 Training VAE With Amortized SVGD

We compare the entropy regularized VAE trained with
amortized SVGD (denoted by ESteinVAE), which is Algo-
rithm 2 with update (21), with the standard VAE and en-
tropy regularized standard VAE (denoted by EVAE) on the
dynamically binarized MNIST dataset (Burda et al., 2015).
We tested the following settings:

1. A standard VAE (VAE-f) with a fully connected encoder
consisting of one hidden layer with 400 hidden units, and a
Gaussian output hidden variable with diagonal covariance.

2. A standard convolutional Gaussian VAE (VAE-CNN)
with a convolutional encoder consisting of 2 convolution
layers with 5×5 filters, stride 2 and [16, 32] features maps,
followed by a fully connected layer with 512 hidden units.

3. A convolutional Gaussian entropy regularized (EVAE-
CNN) with the same encoder and decoder structures as the
standard convolutional VAE (VAE-CNN).

4. Entropy regularized VAEs trained by our amortized
SVGD in Algorithm 2, with the same encoder architec-
ture as VAE-f and VAE-CNN, respectively, but removing

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/


Table 1: Negative log-likelihood on binarized mnist test dataset.

Model NLL/nats ESS
VAE-f 90.32 84.11

ESteinVAE-f 88.85 83.49
VAE-CNN 84.68 85.50

EVAE-CNN 84.43 84.91
ESteinVAE-CNN 84.31 86.57

Table 2: Quantitative imputation experiment based on 2,000 true
images and 500 reconstructed images per true image.

Model Accuracy Entropy
ESteinVAE-CNN 0.84 0.501

EVAE-CNN 0.82 0.382
VAE-CNN 0.83 0.340

the Gaussian noise on the top layer and adding a multi-
plicative Bernoulli noise with a dropout rate of 0.3 to the
each layer of the encoder. These two cases are denoted by
ESteinVAE-f, and ESteinVAE-CNN, respectively.

In all these cases, we use dim(z) = 32 latent variables and
the decoders have symmetric architectures as the encoders
in all models. Adam is used with a learning rate tuned on
the training images. For each training iteration, a batch of
128 images is used, and for each image we draw a batch of
m = 5 samples to apply amortized SVGD.

Marginal likelihood Table 1 reports the test log-
likelihood of all the methods estimated using Hamilto-
nian annealed importance sampling (HAIS) (Wu et al.,
2016) with 100 independent AIS chains and 10,000 inter-
mediate transitions, averaged on 5000 test images. We
find that ESteinVAE-f significantly outperforms VAE-f,
and ESteinVAE-CNN slightly outperforms VAE-CNN and
EVAE-CNN. Table 1 also reports the effective sample size
(ESS) of the HAIS estimates. The fact that the effective
sample sizes of all the methods are close suggests that ac-
curacy of the different NLL estimates are comparable.

Missing data imputation We demonstrate that EStein-
VAE is able to learn multi-modal latent representation with
the binary dropout noise. We consider missing data im-
putation with pixel missing in a square sub-regions of the
image (the second column of Figure 5). We use a sim-
ple method to reconstruct image by applying one step
of encode-decode operation starting from uniform noise
Uniform(0, 1). Specifically, let x = [xv, xm] where xv

and xm denotes the visible and missing parts, respectively.
Our imputation procedure consists of the following steps:

1. Draw xc from Uniform(0, 1);

2. Draw z ∼ qφ(z|xc, xv);

3. Draw x ∼ p(x|z).

ESteinVAE-CNN

EVAE-CNN

VAE-CNN
Figure 5: Imputation results from benchmark VAE-CNN, EVAE
and ESteinVAE-CNN. The first column shows the original image.
Col. 2 shows the missing image. The remaining columns show
imputations for 20 reconstructed samples.

Each column (starting from the third column) of Figure 5
shows an independent run of this procedure, where we can
see that ESteinVAE-CNN is able to generate diverse con-
struction when ambiguity exists, while the EVAE-CNN and
VAE-CNN tend to be trapped in a local mode. This sug-
gests that the diagonal variance of the latent variables in the
Gaussian encoder of VAE-CNN tends to be small, under-
estimating the posterior uncertain, while ESteinVAE can
capture the multi-modal posterior due to the dropout noise.

Table 2 is the quantitative result of the imputation experi-
ment, in which the “accuracy” column denotes the number
of original images whose digit is in its reconstructed im-
ages. and the “entropy” column denotes the entropy of the
probability of the reconstructed images belonging to dif-
ferent digit classes. We can see that EsteinVAE obtains
much more diverse images and slightly more accurate re-
constructed images.

6 CONCLUSION

We propose a new method to train neural samplers for given
distributions, together with various applications to learning
to draw samples using neural samplers. Future directions
include exploring more efficient neural architectures and
theoretical understanding of our method.
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