
The Total Belief Theorem

Chunlai Zhou1,2, Fabio Cuzzolin3

1DEKE(MOE), Computer Science Dept., Renmin University, Beijing, CHINA
2State Key Lab of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, CHINA

3Artificial Intelligence and Vision, Department of Computing and Communication Technologies,
Oxford Brookes University, Oxford, UK

czhou@ruc.edu.cn, fabio.cuzzolin@brookes.ac.uk

Abstract

In this paper, motivated by the treatment of
conditional constraints in the data association
problem, we state and prove the generalisation
of the law of total probability to belief func-
tions, as finite random sets. Our results apply
to the case in which Dempster’s conditioning
is employed. We show that the solution to the
resulting total belief problem is in general not
unique, whereas it is unique when the a-priori
belief function is Bayesian. Examples and case
studies underpin the theoretical contributions.
Finally, our results are compared to previous
related work on the generalisation of Jeffrey’s
rule by Spies and Smets.

1 INTRODUCTION

A number of researchers have been working on the
generalisation to belief functions (BFs) of a fundamen-
tal result of probability theory: the law of total prob-
ability. The latter is sometimes called ‘Jeffrey’s rule’
[14, 15, 26, 13], for it is mathematically equivalent to
a rule for updating a probability distribution based on a
new distribution with values on a smaller set of events.
Both laws concern the way non-conditional, joint mod-
els can be soundly built from conditional information and
unconditional information.

A motivating example comes from data association
[27, 22, 3]. There, a number of targets moving in the
space are tracked by one or more cameras, appearing in
an image sequence as unlabeled feature points [4]. When
the targets belong to an object for which a topological
model is known, an evidential solution can be proposed
by expressing the prior, logical information carried by
the body model in term of belief functions on a suitable
frame of discernment (see [5], Chapter 7). In particular,

a rigid motion constraint from each link in the topologi-
cal model can be derived and expressed in a conditional
way – in order to test the rigidity of the motion of two
observed feature points at time k, we need to know the
correct association between targets and features at time
k − 1. To construct an overall BF describing the associ-
ation, such conditional pieces of information need to be
combined. This requires us to equip the theory of belief
functions with a law of total probability.
Another problem in which a total belief problem arises is
example-based pose estimation [11], as soon as a regres-
sion framework based on belief functions is applied.

The generalisation of Jeffrey’s rule to belief functions
has been mainly studied by Spies [30] and Smets [28].
Ruspini [23] also reported results on deduction assuming
approximate knowledge about the truth of conditional
propositions. Spies [30] proved the existence of a solu-
tion to the generalisation of Jeffrey’s rule to belief func-
tions within his original conditioning framework. Smets
also proposed generalisations of Jeffrey’s rule based on
both geometric and Dempster’s conditioning [28].

1.1 CONTRIBUTIONS AND OUTLINE

In this paper we first provide a formal statement of the
problem. Namely, we seek to combine conditional belief
functions defined over disjoint subsets of a frame of dis-
cernment, while simultaneously constraining the result-
ing total belief function to be compatible with a second
BF defined on the coarsening of the original frame.
We then adapt Smets’ original proof of his well-known
generalized Bayesian Theorem to construct a total be-
lief function and show that it satisfies the prescribed
marginalization and conditioning properties. The prob-
lem is shown to be equivalent to building a square linear
system with positive solution, whose columns are asso-
ciated with the focal elements (non-zero mass events) of
the candidate total BF.

We first recall the necessary definitions from belief the-



ory (Section 2). We then briefly review the belief-
theoretical solution to the motivating data association
problem (Section 3). In Section 4 we provide the formal
statement of the total belief theorem and give a construc-
tive proof for it. We show how to translate a total belief
problem to a group of linear equations and analyze its
possible solutions. Finally, Section 5 runs a critical com-
parison between our result and previous relevant work by
Spies and Smets on the generalisation of Jeffrey’s rule to
belief functions. Section 6 concludes the paper.

2 BELIEF FUNCTIONS

2.1 BELIEF MEASURES

A mass function [2] over a frame of discernment Θ is
a set function [8, 7] m : 2Θ → [0, 1] defined on the
collection 2Θ of all subsets of Θ such that: m(∅) =
0,
∑
A⊂Θm(A) = 1. The quantity m(A) is called the

basic probability number or ‘mass’ [17, 16] assigned to
A, and measures the belief committed exactly to A ∈
2Θ. The elements of the power set 2Θ associated with
non-zero values of m are called the focal elements of
m. The belief function associated with a mass function
m : 2Θ → [0, 1] is the set function b : 2Θ → [0, 1]
defined as: b(A) =

∑
B⊆Am(B). The domain Θ on

which a belief function is defined is usually interpreted
as the set of possible answers to a given problem, exactly
one of which is the correct one. For each subset (‘event’)
A ⊆ Θ the quantity b(A) takes on the meaning of ‘de-
gree of belief’ that the truth lies in A, and represents the
total belief committed to a set of possible outcomesA by
the available evidence m. Given a belief function b, we
can obtain its corresponding mass functionm as follows:
m(A) =

∑
B⊆A(−1)|A\B|b(B) for all A ⊆ Θ. The be-

lief function b is called Bayesian if m(A) = 0 for all
non-singletons A. It is called categorical if it has only
one focal set. And it is called vacuous if Θ is the only
focal element. A vacuous belief represents a state of to-
tal ignorance. The corresponding plausibility function
pl : 2Ω → [0, 1] is defined by pl(A) =

∑
E∩A 6=∅m(E)

for all A ⊆ Θ. For m, b and pl, if we know any one of
them, then we can determine the other two.

2.2 CONDITIONING

In Bayesian reasoning, where all evidence comes in the
form of a proposition A being true, conditioning (as we
know) is performed via Bayes’ rule. In belief theory,
however, the onus is on combining the belief function
representing our current knowledge state with a new one
encoding the new evidence. After an initial proposal by
Dempster, several other aggregation operators have been
proposed, based on different assumptions on the nature

and properties of the sources of evidence to combine.

Definition 1. The orthogonal sum or Dempster’s com-
bination b1 ⊕ b2 : 2Θ → [0, 1] of two belief functions
b1 : 2Θ → [0, 1], b2 : 2Θ → [0, 1] defined on the same
frame of discernment Θ is the unique BF on Θ whose
focal elements are all the possible intersections of focal
elements of b1 and b2, and whose mass is given by:

(m1 ⊕m2)(A) =

∑
i,j:Ai∩Bj=Am1(Ai)m2(Bj)

1−
∑
i,j:Ai∩Bj=∅m1(Ai)m2(Bj)

,

where mi denotes the mass function related to bi.

Belief functions can also be conditioned, rather than
combined, whenever they need to be updated based on
similar hard evidence. However, just as in the case of
combination rules, a variety of conditioning operators
can be defined for belief functions [9, 12, 10, 6, 33],
many of them generalisations of Bayes’ rule itself. In
particular, Dempster’s rule of combination naturally in-
duces a conditioning operator, as follows. Given a con-
ditioning event A ⊆ Θ, the ‘logical’ (or ‘categori-
cal’, in Smets’ terminology) belief function bA such that
m(A) = 1 is combined via Dempster’s rule with the
a-priori belief function b. The resulting belief function
b ⊕ bA is the conditional belief function given A a la
Dempster, denoted by b(A|B).

Suppose that Θ′ ⊇ Θ and m is a mass function over
Θ. The mass function m can be identified with a mass
function−→mΘ′ over the larger frame Θ′: for anyE′ ⊆ Θ′,
−→mΘ′(E

′) = m(E) ifE′ = E∪(Θ′\Θ) and−→mΘ′(E
′) =

0 otherwise. Such −→mΘ′ is called the conditional embed-
ding (or ballooning extension) of m into Θ′. When the
context is clear, we can drop the subscript Θ′.

2.3 OUTER REDUCTIONS

Suppose that Θ is a finer frame than Ω. This means
that the elements ω1, · · · , ω|Ω| of Ω correspond to a par-
tition Π1, · · · ,Π|Ω| of Θ: a subset {ωi1 , · · ·ωik} of Ω
has the same meaning as the subset Πi1 ∪ · · · ∪ Πik

of Θ. This identification can represented by a mapping
ρ : 2Ω → 2Θ such that ρ({ωi}) = Πi(1 ≤ i ≤ |Ω|) and
ρ({ωi1 , · · ·ωik}) = ∪kj=1ρ(ωij ) = ∪kj=1Πij . The par-
tition Π1, · · · ,Π|Ω| of Θ as a basis defines a subalgebra
Aρ of 2Θ as a Boolean algebra with set operations, which
is isomorphic to the set algebra A = 2Ω.

In the theory of evidence, two frames are called compat-
ible if and only if they concern propositions which can
be both expressed in terms of propositions of a common,
finer frame [25]. In particular, two compatible frames
must admit a common refinement, i.e., a frame which
is a refinement of both. Each collection of compatible



frames has many common refinements. In particular, if
Θ1, ...,Θn are elements of a family of compatible frames
F , then there exists a unique frame Θ ∈ F such that:

1. ∃ a refining ρi : 2Θi → 2Ω for all i = 1, ..., n;

2. ∀θ ∈ Θ ∃θi ∈ Θi ∀i = 1, ..., n such that:

{θ} = ρ1({θ1}) ∩ ... ∩ ρn({θn}).

This unique frame is called the minimal refinement Θ1⊗
· · ·⊗Θn of the collection Θ1, ...,Θn, and is the simplest
space in which we can compare propositions pertaining
to different compatible frames.

If Θ1 and Θ2 are two compatible frames, then two be-
lief functions b1 : 2Θ1 → [0, 1], b2 : 2Θ2 → [0, 1]
can potentially be expression of the same body of ev-
idence. Two belief functions b1 and b2 defined over
two compatible frames Θ1 and Θ2 are said to be consis-
tent if b1(A1) = b2(A2) whenever ρ1(A1) = ρ2(A2),
A1 ⊆ Θ1, A2 ⊆ Θ2, where ρi is the refining be-
tween Θi and the minimal refinement Θ1 ⊗ Θ2 of Θ1

and Θ2. When the two belief functions are defined on
frames connected by a refining ρ : 2Θ1 → 2Θ2 (i.e.,
Θ2 is a refinement of Θ1), b1 and b2 are consistent iff:
b1(A) = b2(ρ(A)),∀A ⊆ Θ1.

Definition 2. The outer reduction associated with a re-
fining ρ : 2Ω → 2Θ is the mapping ρ : 2Θ → 2Ω defined
as, for any E ∈ 2Θ,

ρ(E) : = {ω ∈ Ω : ρ({ω}) ∩ E 6= ∅}.

Note that, for any E ⊆ Θ, ρ(ρ(E)) is the smallest el-
ement of Aρ that contains E. So ρ(ρ(E)) is called the
upper approximations of E in Aρ, respectively. Given
a belief function b over Θ with the refining mapping
ρ : 2Ω → 2Θ, its marginal b �Ω over Ω is defined as
follows: (b �Ω)({ωi1 , · · · , ωik}) = b(Πi1 ∪ · · · ∪ Πik).
The corresponding mass function is:

(m �Ω)({ωi1 , · · · , ωik}) =
∑
E⊆Θ,

ρ(E)={ωi1 ,··· ,ωik}

m(E).

(1)

A mass function m over Ω can be extended to a mass
function m↑Θ over the finer frame Θ: m↑Θ(E) =
m({ωi1 , · · · , ωik}) if E is a union of some partition
classes Πi1 , · · · ,Πik , m↑Θ(E) = 0 otherwise. Such
m↑Θ is called the vacuous extension of m. When the
context is clear, we will omit the subscript Θ. Trivially,
vacuous extension is the inverse of marginalization.

3 DATA ASSOCIATION WITH BFS

In data association we are given a sequence of images
{I(k), k}, each containing a number of feature points
{ti(k)} at time k which are projections of real world
targets {T1, ..., TM}. We seek the correspondences
ti(k) ←→ tj(k + 1) between feature points in consecu-
tive images which are projections of the same target.

3.1 CONDITIONAL CONSTRAINTS

If we assume that targets represent fixed positions on an
articulated body connected by a rigid link, we can ad-
dress the association task in critical situations in which
several targets coalesce (model-based data association)
via a set of logical constraints on the admissible posi-
tions of the targets. We can identify, among others [5]:
(i) a ‘prediction’ constraint which encodes the likelihood
of a measurement in the current image being associated
with a measurement of the past image (e.g. produced by
a Kalman filter [27] in joint probabilistic data associa-
tion [4]); (ii) a rigid motion constraint, acting on pairs of
targets Tj1 , Tj2 connected by a rigid link in the model:

‖ti(k)− tj(k)‖ ∼= ‖ti′(k − 1)− tj′(k − 1)‖,

assuming that ti(k), ti′(k − 1) are both projections of
Tj1 , and tj(k), tj′(k − 1) are images of Tj2 .
All such constraints can be expressed as belief func-
tions over a suitable frame of discernment. However,
whereas prediction information inherently concerns as-
sociations between feature points belonging to consecu-
tive images, the rigid motion constraint depends on the
target-to-measurement associations (e.g. ti′(k − 1) ∼
Tj1 , tj′(k − 1) ∼ Tj2 ) estimated at the previous step.

3.2 A FAMILY OF ASSOCIATIONS FRAMES

We thus need to introduce a past target-to-feature as-
sociations frame: Θk−1

M
.
=
{
ti(k − 1) ↔ Tj , i =

1, ..., n(k − 1), j = 1, ...,M
}

, a feature-to-feature as-
sociations frame: Θk−1

k
.
=
{
ti(k − 1) ↔ tj(k),∀i =

1, ..., n(k − 1) ∀j = 1, ..., n(k)
}

, and a current target-
to-feature associations frame: Θk

M
.
=
{
ti(k)↔ Tj ,∀i =

1, ..., n(k) ∀j = 1, ...,M
}

. These form a family of
compatible frames, as they are all connected by refin-
ing maps (see Figure 1). Prediction belief functions (i),
for instance, will live on Θk−1

k . The belief estimate of the
associations at time k−1 will live on Θk−1

M . The BFs en-
coding the various constraints can thus be combined on
their minimal refinement Θk−1

M ⊗ Θk−1
k . Marginalizing

the resulting BF back onto the current target-to-feature
association frame Θk

M yields the current best estimate.
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Figure 1: The family of past and present association
frames. All the constraints of the model-based associ-
ation problem are combined over the common refine-
ment Θ and then marginalized onto the current associ-
ation frame Θk

M to yield a belief estimate of the current
feature-to-model association.

3.3 TOTAL BELIEF FOR DATA ASSOCIATION

The rigid motion constraint, however, generates an entire
set of (conditional) belief functions bi : 2ρ

k−1
M ({ωi}) →

[0, 1], each defined over an element ρk−1
M ({ωi}) of the

disjoint partition of Θ = Θk−1
M ⊗Θk−1

k induced there by
its coarsening Θk−1

M (the past target-to-feature frame, see
Figure 1 again), where ωi ∈ Θk−1

M is the i-th possible as-
sociation at time k−1. Merging all pieces of evidence on
Θ thus requires combining these conditional belief func-
tions into a single ‘total’ BF, which is eventually pooled
with those generated by the remaining evidence.

4 THE TOTAL BELIEF THEOREM

4.1 TOTAL PROBABILITY

Suppose P is defined on a σ-algebra A, and that a new
probability measure P ′ on a sub-algebra B of A. We seek
an updated probability P ′′ which:

• meets the probability values specified by P ′ for
events in the sub-algebra B;

• is such that ∀ B ∈ B, X,Y ⊂ B, X,Y ∈ A

P ′′(X)

P ′′(Y )
=

{
P (X)
P (Y ) if P (Y ) > 0

0 if P (Y ) = 0.

It can be proven that there is a unique solution to the
above problem, given by Jeffrey’s rule, also called the
law of total probability:

P ′′(A) =
∑
B∈B

P (A|B)P ′(B). (2)

The initial probability measure ‘stands corrected’ by the
second one on a number of events (but not all). The law
of total probability thus generalises standard condition-
ing, as the special case in which P ′(B) = 1 for some B
and the sub-algebra B reduced to a single event B.

4.2 CONSTRAINTS

The law of total probability involves, given a subalgebra
of events B: (i) a prior probability P (B) on the events of
B, and (ii) a family of conditional probabilities P (A|B)
for every event in B. In particular, B can be the subalge-
bra associated with the power set of a disjoint partition
of the original sample space.

Abstracting from the data association problem, we can
then state the conditions an overall, total belief function b
must obey, given a set of conditional belief functions bi :
2Πi → [0, 1] over the elements Πi of the partition Π =
{Π1, ...,Π|Ω|} of a frame Θ induced by a coarsening Ω.

1. A-priori constraint: the marginal on the coarsen-
ing Ω of the frame Θ of the candidate total belief
function b must coincide with a given a-priori b.f.
b0 : 2Ω → [0, 1].

As we showed above, in the data association problem
the a-priori constraint is represented by the BF encod-
ing the estimate of the past feature-to-model association
M ↔ m(k − 1), defined over Θk−1

k (Figure 1). It en-
sures that the belief total function is compatible with the
last available estimate.

2. Conditional constraint: the belief function b(·|Πi)
obtained by (Dempster’s) conditioning the total be-
lief function b with respect to each element Πi of
the partition Π must coincide with the correspond-
ing given conditional belief function bi:

b(·|Πi) = b⊕ bΠi = bi ∀i = 1, ..., N,

where mΠi : 2Θ → [0, 1] is such that:

mΠi(A) =

{
1 A = Πi

0 A ⊆ Θ, A 6= Πi.
(3)



4.3 FORMULATION AND PROOF

The generalization of the total probability theorem to the
theory of belief functions – the total belief theorem – thus
reads as follows (Figure 2).

Theorem 1. Suppose Θ and Ω are two frames of dis-
cernment, and ρ : 2Ω → 2Θ a given refining between
them. Let b0 be a belief function defined over Ω =
{ω1, ..., ω|Ω|}. Suppose there exists a collection of belief
functions bi : 2Πi → [0, 1], where Π = {Π1, ...,Π|Ω|},
Πi = ρ({ωi}), is the partition of Θ induced by its
coarsening Ω. Then, there exists a total belief function
b : 2Θ → [0, 1] such that:

• (P1) b ⊕ bΠi = bi ∀i = 1, ..., |Ω|, where bΠi is the
categorical belief function with mass mΠi (3);

• (P2) b0 is the marginal of b on Ω, b0 = b �Ω.
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Figure 2: Pictorial representation of the total belief theo-
rem hypotheses.

The theorem’s proof makes use of the two lemmas that
follow. We adapt Smets’ original proof of the generalized
Bayesian Theorem [29] to the refinement framework pre-
sented here, which is more general than his multivariate
setting in which only Cartesian products of frames are
considered. As usual, we denote by m0 and mi the mass
functions of b0 and bi, respectively. Their sets of focal
elements are denoted by EΩ and Ei, respectively. For the
collection of belief functions bi : 2Πi → [0, 1], let

−→
bi be

the conditional embedding of bi into Θ and
−→
b denote the

Dempster combination of all
−→
bi , i.e.,

−→
b =

−→
b1⊕· · ·⊕

−→
b|Ω|,

with mass function −→m.

Lemma 1. The belief function
−→
b over Θ satisfies the

following two properties: (1) each focal element −→e of−→
b is the union of exactly one focal element ei of each of

the conditional belief function bi; (2) the marginal
−→
b �Ω

on Ω is the vacuous belief function over Ω.

Proof. Each focal element −→ei of
−→
bi is of the form

(
⋃
j 6=i Πj) ∪ ei where ei is some focal element of bi.

In other words, −→ei = (Θ \ Πi) ∪ ei. Since
−→
b is the

Dempster combination of
−→
bi s, it is easy to see that each

focal element −→e of
−→
b is the union of exactly one focal

element ei from each conditional belief function bi. In
other words, −→e =

⋃|Ω|
i=1 ei where ei ∈ Ei, and condition

(1) is proven.

Let
−→
E denote the set of all focal elements of

−→
b , namely:

−→
E = {−→e ⊆ Θ : −→e =

⋃|Ω|
i=1 ei where ei is a focal

element of bi}.

Note that ei’s coming from different conditional belief
functions bi’s are disjoint. For each−→e ∈

−→
E , ρ̄(−→e ) = Ω.

It follows from Eq. (1) that−→m �Ω (Ω) = 1 and hence the
marginal of

−→
b on Ω is the vacuous belief function there.

Let b↑Θ0 be the vacuous extension of b0 from Ω to Θ.
We define the desired total belief function b to be the
Dempster combination of b↑Θ0 and

−→
b , namely:

b := b↑Θ0 ⊕
−→
b . (4)

Lemma 2. The belief function b defined in (4) over Θ
satisfies the following two properties:

1. b⊕ bΠi = bi for all i = 1, · · · , |Ω| where bΠi is the
categorical belief function with the mass function:
mΠi(A) = 1 if A = Πi, and is 0, otherwise.;

2. b0 is the marginal of b on Ω,i.e., b0 = b �Ω,

i.e., is a valid total belief function.

Proof. Let −→m and mi be the mass functions correspond-
ing to

−→
b and bi, respectively. For each −→e =

⋃|Ω|
i=1 ei ∈−→

E where ei ∈ Ei, −→m(−→e ) = Π
|Ω|
i=1mi(ei). Let E↑ΘΩ de-

note the set of focal elements b↑Θ0 . Since b↑Θ0 is the vac-
uous extension of b0, E↑ΘΩ = {ρ(eΩ) : eΩ ∈ EΩ}. Each
element of E↑ΘΩ is actually the union of some equivalence
classes Πi of the partition Π. Since each focal element
of b↑Θ0 intersects with all focal elements −→e ∈

−→
E ,∑

eΩ∈EΩ,−→e ∈
−→
E ,ρ(eΩ)∩−→e 6=∅

m↑Θ0 (ρ(eΩ))−→m(−→e ) = 1. (5)

Thus, the normalization factor in the Dempster combi-
nation b↑Θ0 ⊕

−→
b is equal to 1.

Now, let E denote the set of focal elements of the belief
function b = b↑Θ0 ⊕

−→
b . By Dempster’s sum (1) each



element e of E is the union of focal elements of some
conditional belief functions bi, i.e., e = ej1 ∪ ej2 ∪ · · · ∪
ejK for some K such that {j1, · · · , jK} ⊆ {1, · · · , |Ω|}
and ejl is a focal element of bjl(1 ≤ l ≤ K). Let m
denote the mass function for b.

For each such e ∈ E , e = ρ(eΩ) ∩ −→e for some eΩ ∈ EΩ
and −→e ∈

−→
E , so that eΩ = ρ̄(e). Thus we have

(m↑Θ0 ⊕−→m)(e) =
∑

eΩ∈EΩ,
−→e ∈
−→
E ,

ρ(eΩ)∩−→e =e

m↑Θ0 (ρ(eΩ))−→m(−→e )

=
∑

eΩ∈EΩ,−→e ∈
−→
E ,ρ(eΩ)∩−→e =e

m0(eΩ)−→m(−→e )

= m0(ρ̄(e))
∑

−→e ∈
−→
E ,ρ(ρ̄(e))∩−→e =e

−→m(−→e )

= m0(ρ̄(e))mj1(ej1) · · ·mjK (ejK )
∏

j 6∈{j1,··· ,jK}

∑
e∈Ej

mj(e)

= m0(ρ̄(e))mj1(ej1) · · ·mjK (ejK ), (6)

as −→m(−→e ) =
∏n
i=1mi(ei) whenever −→e = ∪ni=1ei.

Without loss of generality, we consider the condi-
tional mass function m(e1|Π1) where e1 is a focal el-
ement of b1 and Π1 is the first partition class associ-
ated with the partition Π, and show that m(e1|Π1) =
m1(e1). In order to obtain m(e1|Π1), which is equal to∑

e∈E,e∩Π1=e1
m(e)

pl(Π1) , in the following we separately com-
pute

∑
e∈E,e∩Π1=e1

m(e) and pl(Π1). For any e ∈ E , if
e ∩Π1 6= ∅, ρ̄(e) is a subset of Ω including ω1.

pl(Π1) =
∑

e∈E,e∩Π1 6=∅

m(e)

=
∑

C⊆{Π2,··· ,Π|Ω|}

 ∑
ρ(ρ̄(e))=Π1∪(

⋃
E∈C E)

m(e)


=

∑
C⊆{Π2,··· ,Π|Ω|}

m↑Θ0

(
Π1 ∪

⋃
E∈C

E

)
 ∑
e1∈E1

m1(e1)
∏

Πl∈C

∑
el∈El

ml(el)


=

∑
C⊆{Π2,··· ,Π|Ω|}

m↑Θ0

(
Π1 ∪

⋃
E∈C

E

)

=
∑

eΩ∈EΩ,ω1∈eΩ

m0(eΩ) = pl0({ω1}). (7)

Similarly,

∑
e∈E,e∩Π1=e1

m(e) =
∑

C⊆{Π2,··· ,Π|Ω|}

∑
ρ(ρ̄(e))=

⋃
E∈C E

m(e1 ∪ e)

= m1(e1)
∑

C⊆{Π2,··· ,Π|Ω|}

m↑Θ0

(
Π1 ∪

⋃
E∈C

E
) ∏

Πl∈C

∑
el∈El

ml(el)

= m1(e1)
∑

C⊆{Π2,··· ,Π|Ω|}

m↑Θ0

(
Π1 ∪

⋃
E∈C

E
)

= m1(e1)
∑

eΩ∈EΩ,ω1∈eΩ

m0(eΩ) = m1(e1)pl0({ω1}). (8)

From Eqs. (7) and (8) it follows that m(e1|Π1) =∑
e∈E,e∩Π1=e1

m(e)

pl(Π1) = m1(e1). This proves property
1. Proving 2. is much easier. For any eΩ :=
{ωj1 , · · · , ωjK} ∈ EΩ,

m �Ω (eΩ) =
∑

ρ(e)=eΩ

m(e)

= m↑Θ0 (ρ(eΩ))

K∏
l=1

∑
e∈Ejl

mjl(e) = m↑Θ0 (ρ(eΩ)) =

(9)
= m0(eΩ). It follows that b �Ω= b0, hence the thesis.

The proof of the main Theorem 1 immediately follows
from Lemmas 1 and 2.

Example 1. Suppose that the considered coarsen-
ing Ω := {ω1, ω2, ω3} induces a partion Π of Θ:
{Π1,Π2,Π3}. Also suppose that the considered condi-
tional belief function b1 defined on Π1 has two focal el-
ements e1

1 and e2
1; the conditional belief function b2 de-

fined on Π2 has a single focal element e1
2; b3 defined on

Π3 has two focal elements e1
3 and e2

3 (See Figure 3).

Figure 3: The conditional belief functions considered
in our case study. The set-theoretical relations between
their focal elements are immaterial to the solution.

According to Lemma 1, Dempster’s combination
−→
b of



the conditional embeddings of the bi’s has 4 focal ele-
ments, which are listed as follows:

e1 = e1
1 ∪ e1

2 ∪ e1
3, e2 = e1

1 ∪ e1
2 ∪ e2

3

e3 = e2
1 ∪ e1

2 ∪ e1
3, e4 = e2

1 ∪ e1
2 ∪ e2

3

The four focal total elements can be represented as
“elastic bands” as in Figure 4.

Figure 4: Graphical representation of the four possible
focal elements of

−→
b in our case study.

Without loss of generality, we assume that a prior b0 on Ω
has each subset of Ω as a focal element, i.e., EΩ = 2Ω. It
follows that each focal element e of the total belief func-
tion b :=

−→
b ⊕ b↑Θ0 is the union of some focal elements

from different conditional belief functions bis. So the set
E of the focal elements of b is {e =

⋃
1≤i≤I ei : 1 ≤ I ≤

3, ei ∈ Ei} and is the union of the following three sets:

EI=1 : = E1 ∪ E2 ∪ E3
EI=2 : = {e ∪ e′ : (e, e′) ∈ Ei × Ej , 1 ≤ i, j ≤ 3, i 6= j}
EI=3 : = {e1 ∪ e2 ∪ e3 : ei ∈ Ei, 1 ≤ i ≤ 3}.

So the cardinality |E| = 5 + 8 + 4 = 17. According
to Eq. (6), it is very easy to compute the corresponding
total mass function m. For example, for the two focal
elements e1

1 ∪ e2
3 and e1

1 ∪ e1
2 ∪ e2

3 we have:

m(e1
1 ∪ e2

3) = m0({w1, w3})m1(e1
1)m3(e2

3)

m(e1
1 ∪ e1

2 ∪ e2
3) = m0(Ω)m1(e1

1)m2(e1
2)m3(e2

3).

Since we assume that a topological model is known (Sec-
tion 3), in this paper we take a closed-world approach
and hence adopt normalized mass functions. Under an
open-world assumption in which mass functions are not
necessarily normalized, Theorem 1 does not hold any
more. In the unnormalized case, however, a weaker form
of (P1) exists. Let m ∩©mΠi denote Smets’ conjunc-
tive combination of m and the categorical mass function
mΠi [29]. For any two focal elements e1 and e2 of mi,
(m ∩©mΠi

)(e1)

(m ∩©mΠi
)(e2) = mi(e1)

mi(e2) . Constraint (P2), instead, does
not seem to be easily generalizable to unnormalized mass
functions.

4.4 NUMBER OF SOLUTIONS

The total belief function b obtained in Theorem 1 is not
unique. Assume that b∗ is a total belief function satis-
fies the two properties in Theorem 1. Let m∗ and E∗
denote its mass function and the set of its focal ele-
ments, respectively. Without loss of generality, we still
assume that the prior b0 has every subset of Ω as its
focal element, i.e., EΩ = 2Ω. From the second prop-
erty that b∗ ⊕ bΠi = bi(1 ≤ i ≤ |Ω|), we derive that
each focal element of b∗ must be a union of focal el-
ements of some conditional belief functions bis. For,
if e∗ is a focal element of b∗ and e∗ = el ∪ e′ where
∅ 6= el ⊆ Πl and e′ ⊆ Θ \Πl for some 1 ≤ l ≤ |Ω|, then
ml(el) = (m∗ ⊕mΠl)(el) > 0 and hence el ∈ El. So
we must have that E∗ ⊆ E , where E is the set of focal el-
ements of the total belief function b obtained in Theorem
1: E = {

⋃
j∈J ej : J ⊆ {1, · · · , |Ω|}, ej ∈ Ej}.

In order to find b∗ (or m∗), we need to solve a group of
linear equations which correspond to the constraints dic-
tated in the two properties. We specify the mass m∗(e)
of each focal element e ∈ E of the total solution (4) as an
unknown variable. There are |E| variables in the group.

From Properties (P1) and (P2) we know that pl0(ωi) =
pl∗(Πi)(1 ≤ i ≤ |Ω|) where pl0 and pl∗ are the corre-
sponding plausibility functions of b0 and b∗, respectively.
In addition, Property (P1) implies the system of linear
constraints: ∑

e∩Πi=ei,e∈E
m∗(e) = mi(ei)pl0(ωi), ∀i∀ei ∈ Ei.

(10)

The total number of such equations is
∑|Ω|
j=1 |Ej |. Since,

for each 1 ≤ i ≤ |Ω|,
∑
e∈Ei mi(e) = 1, system (10)

include a group of
∑|Ω|
j=1 |Ej | − |Ω| independent linear

equations, which we denote as G1. From property (P2)
(the marginal of b∗ on Ω is b0) follow the constaints: ∑

e∈E,ρ(e)=C

m∗(e) = m0(C), ∀∅ 6= C ⊆ Ω. (11)

The total number of linear equations in (11) is
the number of all nonempty subsets of Ω. Since∑
C⊆Ωm0(C) = 1, there is a subset of |2Ω| − 2 inde-

pendent linear equations in (11), denoted by G2.

The groups of constraintsG1 andG2 are independent for,
although for each 1 ≤ i ≤ |Ω|

∑
wi∈C,C⊆Ωm0(C) =

pl0(wi),mi(ei)
∑
wi∈C,C⊆Ω

∑
e∈E,ρ(e)=C m

∗(e) is not
generally identical to

∑
e∩Πi=ei,e∈E m

∗(e). Therefore,
the union G := G1 ∪G2 completely specifies Properties
(P1) and (P2) in Theorem 1. Since |G1| =

∑|Ω|
j=1 |Ej | −



|Ω| and |G2| = |2Ω| − 2, the cardinality of the union
group G is |G| =

∑|Ω|
j=1 |Ej | − |Ω|+ |2Ω| − 2.

From Theorem 1, we know that the system of equa-
tions G is solvable and has at least a positive solution
(in which each variable has a positive value). This im-
plies that |E| ≥ |G|, i.e., the number of variables must
be no less than that of the indepedent linear equations
in G. If |E| > |G|, in particular, we can apply the
Fourier-Motzkin elimination method [24] to show that
G has another distinct positive solution b∗ (i.e., such that
m∗(e) ≥ 0(e ∈ E)).
Example 2. We employ Example 1 to illustrate the whole
process to find the total belief function b∗. We further as-
sume thatm0 andmi(1 ≤ i ≤ 3) take numerical values:

• m1(e1
1) = 1

2 = m1(e2
1);m2(e1

2) = 1;m3(e1
3) =

1
3 ,m3(e2

3) = 2
3 ;

• m0({ω1}) = m0({ω2}) = m0({ω3}) =
1
16 ; m0({ω1, ω2}) = 2

16 ,m0({ω2, ω3}) =
4
16 ,m0({ω1, ω3}) = 3

16 ;m0(Ω) = 1
4 .

If we follow the above prescribed process to translate the
two properties into a groupG of linear equations, we ob-
tain 17 unknown variables m∗(e)(e ∈ E) (|E| = 17) and
8 indepedent linear equations (|G| = 8). From Theorem
1, we can construct a positive solutionm defined accord-
ing to Eq. (6). For this example:

m({e1
1, e

1
2, e

1
3}) = m0(Ω)m1(e1

1)m2(e1
2)m3(e1

3) =
1

24
,

m({e2
1, e

1
2, e

2
3}) = m0(Ω)m1(e2

1)m2(e1
2)m3(e2

3) =
1

12
.

When solving the equation group G via the Fourier-
Motzkin elimination method, we choosem∗({e1

1, e
1
2, e

1
3})

and m∗({e2
1, e

1
2, e

2
3}) to be the last two variables to be

eliminated. Moreover, there is a sufficiently small pos-
tive number ε such that m∗({e1

1, e
1
2, e

1
3}) = 1

24 − ε > 0,
m∗({e2

1, e
1
2, e

2
3}) = 1

12 + ε, and all other varaibles also
take positive values. It is easy to see that such obtained
m∗ is different from m obtained in Theorem 1.

However, when the prior b0 is Bayesian, the total belief
function obtained according to Eq. (6) is the unique one
satisfying the two properties in Theorem 1.
Corollary 1. For the belief function b0 over Ω and con-
ditional belief functions bi over Πi in Theorem 1, if b0 is
Bayesian (a probability function) such that b0(ωi) > 0
for all 1 ≤ i ≤ |Ω|, then there is a unique total belief
function b : 2Θ → [0, 1] such that:

1. b ⊕ bΠi = bi for all i = 1, · · · , |Ω| where bΠi is
the categorical belief function with mΠi(A) = 1 if
A = Πi, and is 0, o.w.;

2. b0 is the marginal of b on Ω, i.e., b0 = b �Ω.

Moreover, the total mass function m of b is:

m(e) =

{
mi(e)b0(ωi) if e ∈ Ei for some i,

0 otherwise.

Proof. It is easy to check that the total mass function m
defined above satisfies the two properties. Now we need
to show that it is unique. Assume that b0 is Bayesian such
that b0(ωi) > 0 for all i and m is the mass function of a
total belief function b satisfying the two properties. Since
b0 = b �Ω, each focal element e of b is a subset of some
equivalence class Πk for some 1 ≤ k ≤ |Ω|. Together
with the first requirement that b ⊕ bΠi = bi, it implies
that pl(Πi) = b(Πi) = b0(ωi) for all 1 ≤ i ≤ |Ω| and
E =

⋃|Ω|
j=1 Ej . For any e ∈ E , e ∈ Ek for some 1 ≤ k ≤

|Ω|. It follows that (m ⊕ mΠk)(e) = m(e)
pl(Πk) = mk(e)

and hence m(e) = mk(e)pl(Πk) = mk(e)b0(ωk). If
e 6∈

⋃|Ω|
i=1 Ei, e 6∈ E and hence m(e) = 0. So we have

shown that the total mass function m is the unique one
satisfying the two properties.

Corollary 1 recalls a more general characterization of
uniqueness [1]: if Bel(A,B) = Bel(A|B) ⊕ Bel(B),
then it will be unique when Bel(A|B) is defined for
all primitive elements of B and Bel(B) is Bayesian, or
Bel(A|B) is defined for all subsets of B.

4.5 GENERALISATION

If the first requirement (P1) is modified to include con-
ditional constraints with respect to unions of equivalence
classes, the approach used to prove Theorem 1 does not
work.
For each nonempty subset {i1, · · · , iJ} ⊆ {1, · · · , |Ω|},
let b⋃J

j=1 Πij
and bi1···iJ denote the categorical belief

function with as only focal element
⋃J
j=1 Πij and a con-

ditional belief function on
⋃J
j=1 Πij , respectively.

We can introduce a new requirement by generalising
Property (P1):

• (P1′) : b⊕ b⋃J
j=1 Πij

= bi1···iJ for every nonempty
subset {i1, · · · , iJ} ⊆ {1, · · · , |Ω|}.

Let
−→
b i1···iJ denote the conditional embeddings of bi1···iJ

and
−→
b new the Dempster combination of all these condi-

tional embeddings. Let bnew =
−→
b new ⊕ b↑Θ0 . In the

following example, we show that bnew satisfies neither
(P1′) nor (P2).



Example 3. We continue Example 2 with an additional
categorical conditional belief function b12 on Π1 ∪ Π2

with the only focal element enew where enew = e3
1 ∪ e2

2

for some e3
1 ⊆ Π1 and e2

2 ⊆ Π2 such that e3
1 ∩ e1

1 6=
∅, e3

1 ∩ e2
1 = ∅ and e2

2 ∩ e1
2 = ∅. It is easy to check that

bnew = (
−→
b ⊕
−→
b 12)⊕ b↑Θ0 satisfies neither P1′ nor P2.

5 RELATION TO GENERALISED
JEFFREY’S RULES

In spirit, our approach in this paper is similar to Spies’
Jeffrey’s rule for belief functions in [30]. His total belief
function is also the Dempster combination of the prior on
the subalgebra generated by the partion Π of Θ with con-
ditional belief functions on each equivalence class Πi.
Moreover, he showed that this total belief function satis-
fies the two properties in Theorem 1. However, his defi-
nition of conditional belief function is different from the
one used in this paper, derived from Dempster’s rule of
combination. His definition falls within the framework
of random sets, so that a conditional belief function there
is a second-order belief function whose focal elements
are conditional events which are sets of subsets of the
underlying frame of discernment. The biggest differ-
ence between Spies’ approach and ours is thus that his
framework depends on probabilities while ours doesn’t.
It would be interesting to explore the connection of our
total belief theorem to his Jeffrey’s rule for BFs.

Smets [28] also generalized Jeffrey’s rule within the
framework of models based on belief functions, with-
out relying on probabilities. Recall that ρ is a refining
mapping from 2Ω to 2Θ and Aρ is the Boolean algebra
generated by the set of equivalence classes Πi associated
with the refining mapping ρ. Contrary to our total belief
theorem which assumes conditional constraints only with
respect to the equivalence classes Πi (the atoms of Aρ),
Smets’ generalized Jeffrey’s rule considers constraints
with respect to unions of equivalence classes, i.e., arbi-
trary elements of Aρ. Given two belief functions b1 and
b2 over Θ, his general idea is to find a BF b3 there such
that:

• (Q1) its marginal on Ω is the same as that of b1, i.e.,
b3 �Ω= b1 �Ω;

• (Q2) its conditional constraints w.r.t. elements of
Aρ are the same as those of b2.

Let m be a mass function over Θ. Smets defines two
kinds of conditioning for conditional constraints: for any
E ∈ Aρ and e ⊆ E such that ρ(ρ̄(e)) = E,

• min(e|E) := m(e)∑
ρ(ρ̄(e′))=Em(e′) ;

• mout(e|E) := m(e|E)∑
ρ(ρ̄(e′))=Em(e′|E) .

The first one is the well-known geometric conditioning,
whereas the second one is called ‘outer conditioning’.
Both are distinct from Dempster’s rule of conditioning
used in this paper. From these two conditioning rules,
he obtaines two different forms of generalized Jeffrey’s
rule: for any e ⊆ Θ,

• min
3 (e) = min

1 (e|E)m2(E) where E = ρ(ρ̄(e));

• mout
3 (e) = mout

1 (e|E)m2(E).

Both min
3 and mout

3 satisfy (Q1). As for (Q2),
min

3 applies whereas mout
3 only partially does, since

(mout
3 )in(e|E) = mout

1 (e|E) [34].

Finally, in [18] Ma et al define a new Jeffrey’s rule where
the conditional constraints are indeed defined according
to Dempster’s rule of combination, and w.r.t. the whole
power set of the frame instead of a subalgebra as in
Smets’ framework. In their rule, however, the condi-
tional constraints are not preserved by their total belief
functions.

6 CONCLUSIONS

In this paper we stated and proved the generalisation
of the law of total probability to belief measures, for
the case in which Dempster’s conditioning is employed.
We showed that the solution is not unique, whereas it
is unique when the a-priori belief function is Bayesian.
A critical comparison with Spies’ and Smets’ results on
generalised Jeffrey’s rules was also conducted.

These results can be further extended in a number of
ways. For instance, distinct versions of the law of to-
tal belief may arise by replacing Dempster’s condition-
ing with other accepted forms of conditioning for belief
functions, such as credal [9], geometric [31], conjunctive
and disjunctive [28] conditioning. As belief functions are
a special type of coherent lower probabilities, which in
turn can be seen as a special class of lower previsions
(consult [32], Section 5.13), marginal extension [19] can
be applied to them to obtain a total lower prevision. The
relationship between marginal extension and the law of
total belief needs therefore to be understood.
Finally, fascinating relationships exist between the to-
tal belief problem and transversal matroids [20], on one
hand, and the theory of positive linear systems [21], on
the other, as hinted at in this paper, which will be inves-
tigated in the near future.
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