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Abstract

We propose a fast stochastic Riemannian gra-
dient eigensolver for a real and symmetric ma-
trix, and prove its local, eigengap-dependent
and linear convergence. The fast convergence
is brought by deploying the variance reduc-
tion technique which was originally developed
for the Euclidean strongly convex problems.
In this paper, this technique is generalized to
Riemannian manifolds for solving the geodesi-
cally non-convex problem of finding a group
of top eigenvectors of such a matrix. We first
propose the general variance reduction form of
the stochastic Riemannian gradient, giving rise
to the stochastic variance reduced Riemannian
gradient method (SVRRG). It turns out that the
operation of vector transport is necessary in
addition to using Riemannian gradients and re-
traction operations. We then specialize it to the
problem in question resulting in our SVRRG-
EIGS algorithm. We are among the first to
propose and analyze the generalization of the
stochastic variance reduced gradient (SVRG)
to Riemannian manifolds. As an extension of
the linearly convergent VR-PCA, it is signifi-
cant and nontrivial for the proposed algorithm
to theoretically achieve a further speedup and
empirically make a difference, due to our re-
spect to the inherent geometry of the problem.

1 INTRODUCTION

The problem of finding a group of top eigenvectors of
a symmetric matrix A € R™*" is among the core and
long-standing topics in numerical computing (Wilkin-
son, 1988), and plays fundamental roles in various sci-
entific and engineering computing problems, such as
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numerical computation (Golub and Van Loan, 1996;
Press et al., 2007), structural analysis (Torbjorn Ringertz,
1997), kernel approximation (Drineas and Mahoney,
2005) and spectral clustering (Ng et al., 2002; Xu and
Ke, 2016b) in machine learning. Varieties of solvers for
this problem have been proposed such as the determin-
istic power iteration (Golub and Van Loan, 1996) and
(block) Lanczos algorithm (Parlett, 1998), randomized
SVD (Halko et al., 2011), Oja’s stochastic PCA (Oja and
Karhunen, 1985), online learning of eigenvectors (Gar-
ber et al., 2015), stochastic PCA with variance reduction
(Shamir, 2015, 2016), and so on. Studies from the op-
timization perspective are popular as well, including the
trace penalty minimization (Wen et al., 2013) and no-
tably the unconstrained maximization in the Riemannian
setting (Edelman et al., 1999; Absil et al., 2008; Wen
and Yin, 2013). The Riemannian formulation yields a
geodesically non-convex problem:

F(X) £ (1/2)tr(XTAX), )

max
XeSt(n,k)

where St(n, k) = {X € R"** : XTX = I} constitutes
a Riemannian manifold that is called the Stiefel mani-
fold. Inspired by the success of the recently proposed
stochastic variance reduced gradient (SVRG) method, in
this paper, we generalize this technique from the Eu-
clidean space to Riemannian manifolds. First, the gen-
eral form of the stochastic variance reduced Riemannian
gradient (SVRRG) method is proposed in the stochastic
Riemannian gradient optimization framework. It then is
specialized to Problem (1) and gives rise to our SVRRG-
EIGS algorithm. In addition to the use of Riemannian
gradients and retraction operations, we need to introduce
one new ingredient, i.e., parallel/vector transport, in or-
der to legitimize SVRG in the Riemannian setting. Built
upon the analysis of VR-PCA (Shamir, 2015, 2016), we
prove the local, eigengap-dependent and linear conver-
gence of the proposed SVRRG-EIGS. In addition, it is
shown that SVRRG-EIGS achieves a further speedup
both theoretically and empirically on top of the fast VR-



PCA, due to our respect to the Riemannian geometry of
the problem. This speedup is significant and nontrivial,
because VR-PCA already converges at a rate of a best
possible order with first-order methods, i.e., O(log 1).
The main contributions of the paper are summarized as
follows:

e We generalize SVRG to Riemannian manifolds
to obtain the general SVRRG method and the
SVRRG-EIGS algorithm special for Problem (1).

e We establish the local, eigengap-dependent and lin-
ear convergence of the proposed SVRRG-EIGS al-
gorithm for the underlying geodesically non-convex
problem. We are among the first to propose and
analyze the generalization of SVRG to Riemannian
manifolds.

e We show that SVRRG-EIGS improves over VR-
PCA in both theory and practice.

2 RELATED WORK

We briefly review those recently proposed and closely
related work on the stochastic (Riemannian) eigensolvers
and refer readers to cited papers and references theirin
for more relevant work.

There has been a large body of work emerging recently
on stochastic eigensolvers. Balsubramani et al. (2013)
proved the local, eigengap-dependent and sub-linear con-
vergence of Oja’s stochastic PCA (Oja and Karhunen,
1985) for the case £k = 1. Shamir proposed VR-PCA
based on Oja’s algorithm, and proved its local, eigengap-
dependent and linear convergence for £k = 1 (i.e., vec-
tor version) in (Shamir, 2015) and its nontrivial exten-
sion to £ > 1 (i.e., block version) in (Shamir, 2016).
The analysis of our proposed algorithm SVRRG-EIGS is
built upon and meanwhile significantly extends/improves
over that of VR-PCA for the block version, as is shown
largely in the supplementary material. Garber et al.
(2016) proved the global and eigengap-dependent linear
convergence of PCA and the global, eigengap-free and
sub-linear convergence of PCA, both for the case k = 1,
by giving a robust analysis of the shift-and-invert precon-
ditioning method to reduce the target problem to a se-
quence of linear systems and then leveraging the SVRG
for the system solver. Jain et al. (2016) provides an
eigengap-dependent, linear-time and single-pass stream-
ing algorithm for the case k = 1. Ge et al. (2016) proved
the global, eigengap-dependent and linear convergence
of generalized eigenvalue problem for the case £ = 1.
Allen-Zhu and Li (2016) proposed a fast SVD decompo-
sition with the global, eigengap-free and sub-linear con-
vergence for the case £ > 1 via recursive calls to the

vector version of SVD, i.e., K = 1. As we can see, most
of these studies focus on the vector case k = 1, while
we work on the block case £ > 1 in this paper. Note
that some work on PCA rely on the special data repre-
sentation A = BB where B € R™*"™ consists of m
n-dimensional vector samples, and manipulate B instead
of A in analysis. Their results might be inapplicable to
the case where we are given only A without B.

Our work falls into the category of the stochastic
Riemannian optimization. From this point of view,
Bonnabel (2013) proposed the general form of the Rie-
mannian stochastic gradient descent (SGD) method and
proved its global and almost sure convergence to Rie-
mannian stationary points. The results naturally apply
to the Riemannian SGD solver for Problem (1). How-
ever, as we know, any k eigenvectors of A constitutes a
Riemannian stationary point of the problem. Thus, theo-
retically, they are not necessarily the top k eigenvectors.
Xu et al. (2016) proved the local, eigengap-dependent
and sub-linear convergence to a globally optimal solu-
tion. Recently the variance reduction technique has been
generalized to Riemannian manifolds by three groups of
researchers in parallel. Zhang et al. (2016) proposed the
general Riemannian SVRG for compact manifolds and
proved the global, eigengap-free and sub-linear conver-
gence to Riemannian stationary points for geodesically
nonconvex problems including Problem (1). However,
their results only apply to the case k£ = 1 for our prob-
lem, because the gradient dominance property was only
proven to hold for this case. For k£ > 1, it is unclear thus
far. Moreover, their method is computationally costly,
because it is built upon the geodesic based operations
and thus needs the computation of matrix exponential on
Stiefel manifolds. And the parallel transport they used
has no closed forms for Stiefel manifolds when £ > 1.
In contrast, we use a closed-form vector transport. Kasai
et al. (2016) proposed the Riemannian SVRG for Grass-
mann manifolds and proved its local, eigengap-free and
linear convergence. However, they require the Rieman-
nian Hessian at the locally optimal solution to be positive
definite, which does not hold for Problem (1). And their
method incurs the computational issue similarly. For ex-
ample, in each inner iteration, their method needs to do
SVD twice in order to complete three operations, i.e.,
logarithmic map, parallel transport and exponential map.
In contrast, we use their cheap counterparts (i.e., first-
order approximation) without SVD and do not need the
logarithmic map operation. A preliminary version of this
paper is also among the first to propose the Riemannian
SVRG (Xu and Ke, 2016a).



3 PRELIMINARIES

Suppose that \; represents the i-th largest eigenvalue
of A, ¥ = diag(A1,...,A;) and U is the collection
of corresponding top k eigenvectors in columns. Then
A =UXU"+U, X%, U], where X, is a diagonal ma-
trix with diagonal entries consisting of the other eigen-
values \;, k < ¢ < n and U is the orthogonal comple-
ment of U corresponding to the other eigenvectors. It is
easy to see that an arbitrary globally optimal solution of
Problem (1) is given by X* = UQ where Q € St(k, k)
is an orthogonal matrix, under the assumption that the
eigengap 7 = A\, — Ap+1 > 0.

3.1 RIEMANNIAN OPTIMIZATION

Given a Riemmanian manifold M, its tangent space at a
point X € M, denoted as Tx.M, is a Euclidean space
that is tangential to and locally linearizes M around this
point (Lee, 2012). One update step of the first-order Rie-
mannian optimization on M can be written as (Absil
et al., 2008):

Xi+1 = Rx, (w+1€x,), ()

where £x, € Tx,M is called a tangent vector of M at
X and used as the ¢-th search direction, a1 > 0 is the
learning rate (a.k.a. step size), and Rx, () represents the
retraction at X, that maps a tangent vector £ € Tx, M
to a point on M. Tangent vectors serving as search di-
rections are generally gradient-related. The gradient of
a function f(X) on M, denoted as Grad f(X), depends
on the Riemannian metric, which is a family of smoothly
varying inner products on tangent spaces, i.e., (£,7)x,
where £, € Tx M for any X € M. The Riemannian
gradient Grad f(X) € Tx.M is the unique tangent vec-
tor that satisfies

(Gradf(X),&)x = Df(X)[¢] ©)

for any £ € Tx M, where D f(X)[£] represents the di-
rectional derivative of f(X) in the tangent direction &.
Setting {x, = Gradf(X,) in (2) leads to the Rieman-
nian gradient (RG) ascent method:

Xt+1 = RXt (()ét+1Gfadf(Xt)), (4)

while setting é&x, = G(yi41,X¢) in (2) gives us the
stochastic Riemannian gradient (Bonnabel, 2013) (SRG)
ascent method:

Xi+1 = Rx, (041G (Yit+1, X4)), 5)

where ;41 is a random variable such that

Elf (1, X0)[Xe] = f(Xy), and G(yr1, Xy) €
Tx,M is the stochastic Riemannian gradient such

that E[G(yr+1, X¢)|X¢] = Gradf(X;). According
to (Bonnabel, 2013), the SRG method can converge
globally and almost surely to a stationary point under
mild conditions including ), oy = oo and ), af < o0
(the latter condition implies that oy — 0 as ¢t — 00).

3.2 RIEMANNIAN EIGENSOLVER

For Problem (1), note that St(n, k) is an embedded Rie-
mannian sub-manifold of the Euclidean space R™**.
With the metric inherited from the embedding space
Rk e, (£,m)x = tr(¢"n), and by (3), we can get
the Riemannian gradient' of f(X) in Problem (1), i.e.,

Gradf(X) = (I - XX ")AX € TxSt(n, k).

The orthogonal projection onto TxSt(n, k) under this
metric is given by

Px(Q) = (I - XX")¢ + Xskew(X () 6)

for any ¢ € R™"**, where skew(H) = (H — H")/2.
We use the polar decomposition based retraction (Absil
et al., 2008)

Rx(§) = (X+ &I +£T¢712 (7)

for any £ € TxSt(n,k). The deployment of (4) and
(5) to Problem (1) generates one Riemannian eigensolver
denoted as RG-EIGS and one stochastic Riemannian
eigensolver denoted as SRG-EIGS, respectively.

4 SVRRG

Recall that SVRG (Johnson and Zhang, 2013) is built
on the vanilla stochastic gradient and achieves the vari-
ance reduction through constructing control variates in
epoches (Wang et al., 2013). Control variates are of
stochastic zero-mean and serve to augment and correct
stochastic gradients towards the true gradients. Follow-
ing (Johnson and Zhang, 2013), SVRG reads

ge(&, w™Y ) = Vi, (D) —(Vepy, () -V P(w)),

where w is a version of the variable w estimated at the
snapshot point after every m SGD steps, and VP (w) =
LS L V() is the full gradient at .

Our goal here is to develop the Riemannian coun-
terpart of SVRG, termed as SVRRG and denoted as

"Due to the symmetry of A, Riemannian gradients under
the Euclidean metric and the canonical metric are the same
(Wen and Yin, 2013). However, since the orthogonal projec-
tor used in the sequel requires the metrics for the embedded
Riemannian sub-manifold and the embedding space to be the
same, we choose the Euclidean metric here.



G (Y41, X, X) One naive extension of SVRG to Rie-
mannian manifolds by substituting Riemannian gradients
only can be written as

G(yt+17 Xta X)

= G(yr+1,Xt) — (G(ye+1,X) — Grad f (X)),
where G(y;41,X), Gradf(X) € TgM and
GYry1, Xy) € Tx, M. However, this is un-
sound theoretically, as the stochastic Rieman-

nian gradient G(y;41,X¢) and the control variate
G(yi41,X) — Gradf(X) reside in two different
tangent spaces and it hence renders their difference
G(yi41, X, X) not well-defined in a Riemannian space.
To rectify this issue, we need the operation that can
move tangent vectors from one point to another along
the geodesics in parallel, namely parallel transport. Our
control variate thus need be parallel transported from
X to X;. For computational efficiency, vector transport
as its first-order approximation is often used in practice
(Absil et al., 2008).

Vector transport of a tangent vector from point X to
point X;, denoted as Tx . is a mapping from the tan-
gent space Tx M to the tangent space Tx, M. When
M is an embedded Riemannian sub-manifold of a Eu-
clidean space, it can be simply defined as T _,x, ({x) =
Px,(&x). With vector transport, we now have a well-
defined SVRRG in Tk, M, i.e.,

G(ye+1, X, X)
=G(yr41,Xs) — Txx, (Gye41,X) —

The use of Riemannian gradients and vector transport
makes SVRRG significantly different from SVRG. We
then arrive at the SVRRG method:

Gradf(X)).

X1 = Rx, (041G (yer1, Xi, X)). ®)

Note that the SVRRG method is naturally subsumed into
the SRG method (5), and thus enjoys all its properties
including the almost sure convergence.

Algorithm 1 SVRRG

Require: A, XO, «, epoch length m
1: fors=1,2,--- do
2:  Compute Grad f(X,_;)
XO = Xs—l
fort=1,2,--- ,mdo
Pick y: € Y uniformly at random ~
Compute X; = Rx,_, (aG(yt, Xi—1,Xs-1))
end for
Xs = Xm
end for

D AN

5 SVRRG-EIGS

In this section, we deploy the SVRRG method to Prob-
lem (1), then giving rise to a new elgensolver termed as
SVRRG-EIGS. Assume that A = + Zl 1A yisa
random variable taking values in ) = {1,2,--- , L} and
A = Ayt .- In practice, AZ- can be obtained from a
partitioning of A. We then can write the stochastic gra-
dient and control variate as

G(yt+1,Xt) = (I - XtX:)AtHXu

G(yi41,X) — Gradf(X) = (I— XX ) (A1 — A)X,

respectively. Using the orthogonal projector (6), the
transported control variate can be written as

Txox, (G (W41, X) — Grad (X))
= (I- XtX:)(I - XXT)(AtH - A)X
+X skew (X, (I — XX T)(Ar1 — A)X)
= I-XX/)(Aw1 - A)X
—(I-X,X)XXT(Ay1 — AX
+ X skew (X, (I - XX T)(Ar — A)X).
SVRRG then reads
G(yer1, X, X)
= (I- thj)Ath
~Txx, (G(ye+1,X) — Gradf (X))
= (I-X:X/)AX;
HI =X X)) (A — A)(X, - X)
+(I-X,X)XXT (A1 — A)X
—X;skew(X,] (I - XXT)(A; — A)X)

(1>

Gradf(Xy) + Wy,

where W, € Tx,St(n, k) is a stochastic zero-mean term
conditioned on X;. As we see above, SVRRG has signif-
icantly extended SVRG used in VR-PCA. Although the
factor (X, —X) present in W, works well empirically, in
order for ease of theoretical analysis we follow (Shamir,
2016) to replace X with XQf, where Q; = PgPlT and
XTX P, AP, is the SVD of XTX With a bit abuse
of the notation for W, we have the final SVRRG for
Problem (1) written as,

G(yt+1aXt»X7 Qt)
= (I-X.X/)AX,

(I XX ) (A — A) (X — XQy)
+(I - X XXX (A — A)XQ,
—Xskew(X, (I - XX ) (A1 — A)XQy)

(1>

Gradf(X;) + W;.



Thus the intermediate update in the tangent space is
SVRRG-EIGS : Xt + at+1Gradf(Xt) + O[t+1Wt.

For comparison, the counterparts for RG-EIGS and
SRG-EIGS are given similarly as follows

RG-EIGS :
SRG-EIGS :

X; + a1 Grad f(Xy),
Xy + app1Grad f(Xy)

+O(t+1(1 - XtXtT)(At_;'_l - A)Xt
We can see that intermediate steps in both SRG-EIGS
and SVRRG-EIGS amount to moving forward along the
Riemannian gradient direction that is perturbed by a
stochastic zero-mean noise term in the tangent space.
However, the stochastic zero-mean term with SRG-
EIGS, i.e., (I — X; X/ )(A11 — A)Xy, always carries
a constant variance. It thus needs a diminishing learning
rate o in order to reduce the variance and to ensure the
convergence. As a result, the convergence rate is com-
promised. On the contrary, SVRRG-EIGS keeps boost-
ing the variance reduction of the stochastic zero-mean
term W, during iterations. The variance of W, is dom-
inated by quantities ||X; — XQ. ||, [|(T - X, X, )XQq|
and || X, (I — XXT)||. Instead of learning rate, these
quantities repeatedly decay till vanishing, as X; and
XQ, become increasingly close to each other. Since
it ensures a decaying variance without learning rate in-
volved, SVRRG-EIGS is able to use a fixed learning rate
oy = « and thus to achieve a much faster convergence
rate.

The algorithmic steps of SVRRG-EIGS are given in Al-
gorithm 2.

5.1 THEORETICAL ANALYSIS

We now study theoretical properties of SVRRG-EIGS,
which is built upon the analysis of VR-PCA in (Shamir,
2016). The potential function is defined as ©;, £
O(X;,U) = k — ||[UTX,|/%. Tt is easy to see that
©; € [0, k] and ©; = 0 if and only if X; = UQ, where
Q < St(k, k). Note that the only assumptions we make
in the analysis are that the eigengap 7 > 0 and ©( < J,
where ¢ € (0, 1). In what follows, we use a fixed learn-
ing rate o In addition, let 8 = [|Al2, O, = O(X,, U)
and Y; = X; + aGrad f(X;). All the proofs of lemmas
herein for the analysis are provided in the supplementary
material.

First, we can write

X/, Ul
= ||th(aG(yt+17XtaXvQt))TUH%'
= tr((a1(Xe) + b1(W))(az(Xe) + 02(Wy)) 1),

Algorithm 2 SVRRG-EIGS
Require: A, Xo, o, m
I: fors=1,2,--- do

22 G l=(I-X,,.X] )AX,
3: XO - Xs 1
4. fort=1,2,--- ,mdo
5: Pick y; € {1,2,-- L} umformly at random
6: Gl =1-X,,X] )AX,
7: X[ X, 1 X' P AP]
8: ATl = (Gf_ll G H)PyP]
90 T(AYD]) = AJT] — Xeasym(A]T])
10: gt_l = (I - Xt_lxgll)AtXt_l
11 Gl =Gy -T (A7)
12: Y:=X; 1 +aGi
13 Xy =Y (YY)
14:  end for
15: X, =X,
16: end for
where?
a1(Xy) =Y,/ UUTY, +o*W,/UU'W,,
b1 (W) = 2asym(Y, UUTW,),
(X)) =Y, Y, + 2W/W,,
bo(Wy) = 2cx sym(Y;rWt).

Note that E[b(W)|X:] = Eb(Wy)|X:] = 0,
a1(Xy) = Y UUTY, and a2(X;) < Y, Y, + a?071
due to the following lemma.

Lemma 5.1. Let 3 = max; |A; — A|o. Then
IWilla < pn 2 48,
W% < vf 224570, + O51).

Note that v; is a constant conditioned on X;. Despite
a more complicated stochastic zero-mean term W;, we
manage to bound it by a quantity about ©; + ©,_1 which
will help the subsequent analysis.

Lemma 5.2. IfC1 0, Cy; = 0and Dy
then tr(C;D7!) > tr((Cl — Cy)Dy Y.

= D1 =0,

By Lemma 5.2 and abusing notations for a;(X;), i =
1,2, we get
X/ Ul
>tr((a1(Xy) + 01 (W) (a2(Xe) + b2(Wi) ™),
where a;(X;) = Y, UUTY; and a2(X;) = Y] Y; +

2121 now. And note that a;(X;), i = 1,2, become
deterministic conditioned on X;.

*sym(H) = 2(H+H").



Lemma 5.3. Fori=1,2and anys € [0,1],

16:(Wo)llr < 2(1 + af)av,
llax (Xe)ll2 + (b1 (We)[l2 <

az2(Xy) + b2 (Wy) = (1 = 2(1 + af)ap) L.

By Lemma 5 in (Shamir, 2016) and Lemma 5.3 above,
we can get

E[|X /1 UlFIXe] > tr(an(Xe)ag ' (X)) — na’vf,

2 2
where (14 af)ap < 1 andn = 4(1(+1ig%1fiﬁ(¢)1;5)€) )

tr(X;UUT(I - X,X])AX) >
X UUTX (%)

Lemma 5.4.
(X, U[|% -

This lemma is the key to the improvement brought by our
algorithm over the VR-PCA as we will see shortly, and
is used in proving the following lemma.

Lemma 5.5. If o2(3% + 48kf3?) < 1, then

tr(a1(Xe)ay ' (Xe))
> 207 (]| X/ Ul|7 — |[UTX, X/ U|%)
+ IX] U2 — (1 + 2a8)(26%0; + kv?).

Note that the proof of Lemma 5.5 is different from
(Shamir, 2016). See the supplementary material for de-
tails.

If min{2(1 4+ af)au, a?(6% + 48k5%)} < 1, then by
Lemma 5.5 above and Lemma 7 in (Shamir, 2016) we
can arrive at

2
E[041|X:] <(1 — a5 TUt ||XTUHF ya))Oy

+pés—17

where 0; £ 0 in (X, U) represents the smallest singular
value of X, U, v = (1 + 2a8)(28% + 24k3?) + 24n5?
and p = 24(k(1 + 2ap) + n)a?B% It is worth not-
ing that the coefﬁcient for the dominating first-order term
about a above is Z707(| X,/ U||%, while the counterpart®

in (Shamir, 2016) is %°702(|X; U||%. We thus achieve

an improvement by about 625 T02|| X, U||% for each sin-

gle iteration, and it increases with iterations because both
o¢ and || X, U| r keep increasing. For a small « that is
often the case in our context, this improvement is indeed
negligible. However, that is only for one single iteration.
With a large number of iterations which is also often the
case in our context, the accumulation of such small im-
provements can no longer be negligible and will make a
visible difference as observed in our experiments.

3This is the most appropriate time for the comparison be-
cause Shamir (2016) uses implicit constants afterwards.

(1+af) (1 +a(B+2u)),

If | X/ U|%2 > k—6,ie, O, < d,theno? > 1 -6
otherwise we get the contradiction that || X, U||% < k —
1+0? <k—1+4+1-6=k— 4. Inthis case, we get

]E[@prl] :E[E[®t+1|xt”
<(1— (267 — 7a)E[O4] + pE[O,_1], (9)
where £ =1 — @-

In order for the recurrence of the above inequality, we
need that ©; < ¢ holds for a number of consecutive it-
erations with high probability, given that 0,1 <J. We
can make it by following the concentration of martingale
argument. In fact, based on the above inequality, we can
construct a super-martingale with bounded differences.
By the Azuma-Hoeffding inequality we then can get the
following lemma,

Lemma 5.6. For any i € (0, 1), ifa and m satisfy that
a < 267/, min{2(1 + aB)ap, (52 +48k3%)} < 1
and O, + kmp + 0\/2mlog 1/1) < 0, then ©; < §
holds for all t = 1,2,--- ,m with probability at least
4k(5+4ﬂ)a + kp.

1 — 17, where 0 = 1 (3rad)a

Note that given a fixed m, « that satisfies O, 1+ kmp+

0+/2mlog(1/t) < 0 depends on the epoch. Thus it is
denoted as as(m). Let kK = 1 — (267 — ya). Under the

conditions of Lemma 5.6, we now can call (9) recursively
and get

E[éerl]
=E[0,,] < KE[O,,_1] + pE[O]

m—1

<K"E[0o] +p ) x'E[O
=0

m—1

(749 30 K) (v + o E[B,]

< <exp{—ma(2ﬁr —a)} + 1f) E[6.].

For any w € (0, 5), when*
1 2ér
a < min ﬁ2+48kﬂ 1/2 , —, —, as(m
i ) B )
and additionally
exp{—ma(2¢T — ya)} < w, ﬁ <1- 2w,
namely a < 2(1=2w)er < %7 and m >

24(3k+n) f+(1—2w)y N
we have E[O,11] < (1 — w)E[O;]. Then,

— logw
a(26t—vya)’

Mf o?(8% + 48Kk3?) < 1, then aff < 1 and thus 2(1 +
af)ap < dap. If dap < 1then 2(1 4+ af)ap < 1.



E[Os] < (1 — w)5O, with probability at least 1 — ST
if we further have o < r<m£15 as(m), where the number
of epoches S for an e-accurate solution is set such that
(1-w)¥ < e ie, S = 0(:2; log 1), corresponding
to the number of iterations 7' = mS = O( 52172 log 1).
If we set 7 € (0,<) where ¢ € (0,1), then we get an

'S
e-accurate solution with probability at least 1 — ¢.

Therefore, we arrive at the following theorem.

Theorem 5.7. Given A € R™ " with AT = A, for
any v € (0,1), 6 € (0,1) and w € (0,3), if 7 > 0
and ©y < &, then with probability at least 1 — 1 the
SVRRG-EIGS algorithm is able to reach a globally
e-optimal solution by running T = 0(52 3 log ) itera-

tions in expectatlon provided that 0 < o < mm{(ﬁ2 +

2y —1 2(1— 2w)£'r .
48K 7H, 4, 24t )t (12w ID1<s<s ()}
and m > ﬁ, where S = O(11-log 1).

Note that if the constant factor with £ is considered,
SVRRG-EIGS and VR- PCA actually have the iteration
complexity 0(45272 log 1) and O( Tere 52 5 log 1), respec-
t1vely Thus, SVRRG-EIGS achieves the linear conver-
gence’ at an improved rate over VR-PCA.

Last, suppose that the single column sampling of A is
used. Then each epoch will have the complexity equal to
O(knnz(A) + nk?) from computing a full gradient plus
O(m(k%m) + nk?)) for the inner loop in the amor-
tised sense. Thus, the total complexity of Algorithm 2 is
O(k(nnz(A) + nk + (242 1 nk) L) log L) for an
e-optimal solution.

6 EXPERIMENTS

In this section, we empirically verify the linear conver-
gence rate of the SVRRG-EIGS algorithm and compare
its performance with that of RG-EIGS, SRG-EIGS and
VR-PCA. Among various implementations of the RG-
EIGS with different choices of a Riemannian metric and
a retraction in (2), we choose the one with the canon-
ical metric and the Cayley transformation based retrac-
tion (Wen and Yin, 2013), because it is frequently cited
and its code is publicly available®. This version of the
RG-EIGS uses a non-monotone line search with the well-
known Barzilai-Borwein step size, which significantly
reduces the iteration number and performs well in prac-
tice. We adapt the code of VR-PCA provided by the au-
thor to our case, because it was originally designed to

3Strictly speaking, the linear rate is achievable only if e =
2
o(17).

Soptman.blogs.rice.edu/

handle vectorial data’. All the three solvers, RG-EIGS,
SRG-EIGS and VR-PCA, are fed with the same random
initial value of X, where each entry is sampled from the
standard normal distribution A(0, 1) and then all entries
as a whole are orthogonalized. SRG-EIGS uses the de-
caying learning rate oy = 7, where ¢ will be tuned.
In order to generate an initial point XO with (:)0 <6
for both SVRRG-EIGS and VR-PCA, we use the SRG-
EIGS to produce a low-precision solution as ©y. But
note that other types of solvers are also applicable such
as deterministic solvers (Wen and Yin, 2013) and doubly
stochastic solvers (Xu et al., 2016).

Different solvers are tested on a real and symmetric ma-
trix, Schenk®, of size 10,728 x 10, 728 having 85, 000
nonzero entries. It is partitioned into column blocks of
block size 10,724 x 100 such that A = 157" A,

where L = ll%gg] and the i-th column block in each

A, is equal to that of LA and all others are zero blocks.
We set k£ = 3. Both VR-PCA and SVRRG-EIGS are able
to use a fixed learning rate o« = WAH%\/E’ where d will be

tuned and || A |; represents the matrix 1-norm. The best-
tuned values of d for VR-PCA and SVRRG-EIGS are
d = 21.50 and d = 4.06 in the following experiments,
respectively. The epoch length is set to m = %L, ie.,
each epoch takes 1.5 passes over A (including one pass
for computing the full gradient). Accordingly, the epoch
length of SRG-EIGS is set to m = %L. In addition, we
set Q; = 1.

The performance of algorithms is evaluated using four
quality measures: feasibility || X " X —I| r, relative error

. 2 tr(XT AX)
function £(X) £ 1— maxxese (o (X TAX

potential function @(X)/k =1 — w and the po-
tential function used in (Xu et al., 2016) that is defined
as 1 — cos? Zmax (U, X), where /. (U, X) represents
the maximal principal angle between U and X. The
ground truths in these measures, including both U and
MAXX St (n, k) tr(X T AX) that is set to Zle A;, are ob-
tained using Matlab’s EIGS function for benchmarking.
For each measure, lower values indicate higher quality.

L normalized

Given a solution X of low precision at E(X,) <
1075, one solver targets a solution of double preci-
sion, that is, £(X) < 107'2 or ©(X)/k < 10712 or
1 — c08? Zmax (U, X) < 10712, Each algorithm termi-
nates when the precision requirement is met or the max-
imum number of epoches (set as 20) is reached.

We report the convergence curves in terms of each mea-

"It handles data B € R™*™ consisting of m n-dimensional
sampTles in R™, instead of data A € R™*™ directly, where A =

8www .cise.ufl.edu/research/sparse/
matrices/
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Figure 1: Performance on Schenk. Note that the y-axis in each figure is in log scale.

sure, on which empirical convergence rates of the algo-
rithms can be observed. Figure 1 reports the performance
of different algorithms. In terms of the feasibility, all
solvers but RG-EIGS perform well, while RG-EIGS pro-
duces much poorer results. This is because the Cayley
transformation based retraction used therein relies heav-
ily on the Sherman-Morrison-Woodbury formula, which
suffers from the numerical instability. From Figure 1(b)
to Figure 1(d), we observe similar convergence trends for
each algorithm under the three different measures. All
the four algorithms improve their solutions with more it-
erations. There are several exceptions in RG-EIGS. This
is due to the non-monotone step size used in its imple-
mentation. We also observe that SRG-EIGS presents
an exponential convergence rate at an early stage thanks
to a relatively large learning rate. However, it subse-
quently steps into a long period of sub-exponential con-
vergence, which leads to small progress towards the op-
timal solution. In contrast, VR-PCA and SVRRG-EIGS
inherit the initial momentum from SRG-EIGS and keep

the exponential convergence rate throughout the entire
process. This enables it to approach the optimal solu-
tion at a fast speed. In particular, compared to VR-PCA,
SVRRG-EIGS takes less passes over data to reach the
required precision and is about one order of magnitude
more accurate after the same number of data passes at a
later stage. RG-EIGS has a different trend. It converges
sub-exponentially at the beginning and performs worst.
Though it converges fast subsquently, it still needs more
passes over data than SVRRG-EIGS and VR-PCA in or-
der to achieve the target precision.

More experimental results can be found in (Jiang et al.,
2017), where experiments conducted on synthetic datsets
also show the superior performance of our algorithm to
that of VR-PCA when a large k£ is chosen.



7 Conclusion

In this paper, we proposed a fast stochastic Riemannian
eigensolver by leveraging the recently proposed variance
reduction technique in the stochastic Riemannian gradi-
ent optimization scheme. In addition to Riemannian gra-
dients and retractions, the operation of vector transport
as a new ingredient needs to be introduced in order to
generalize SVRG properly to Riemannian manifolds. It
has been deployed for the eigenvalue problem to yield a
new eigensolver, i.e., the SVRRG-EIGS algorithm. And
built upon the analysis of VR-PCA, we proved its lo-
cal, eigengap-dependent and linear convergence at an im-
proved rate in theory and with empirical support. How-
ever, as the learning rate is hand-tuned currently, we find
it a difficult task in practice. In the future, we may con-
duct more empirical investigations towards automatically
adjusting learning rates. And it is also important to ad-
dress SVRRG-EIGS’ limitations for k£ > 1, such as non-
trivial initialization and eigen-gap dependence.
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