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Abstract

We reconsider a nonparametric density model
based on Gaussian processes. By augmenting
the model with latent Pólya–Gamma random
variables and a latent marked Poisson process
we obtain a new likelihood which is conjugate
to the model’s Gaussian process prior. The
augmented posterior allows for efficient infer-
ence by Gibbs sampling and an approximate
variational mean field approach. For the latter
we utilise sparse GP approximations to tackle
the infinite dimensionality of the problem. The
performance of both algorithms and compar-
isons with other density estimators are demon-
strated on artificial and real datasets with up to
several thousand data points.

1 INTRODUCTION

Gaussian processes (GP) provide highly flexible non-
parametric prior distributions over functions [1]. They
have been successfully applied to various statistical prob-
lems such as e.g. regression [2], classification [3],
point processes [4] or the modelling of dynamical sys-
tems [5, 6]. Hence, it would seem natural to apply Gaus-
sian processes also to density estimation which is one of
the most basic statistical problems. GP density estima-
tion, however, is a nontrivial task: Typical realisations
of a GP do not respect non–negativity and normalisa-
tion of a probability density. Hence, functions drawn
from a GP prior have to be passed through a nonlinear
squashing function and the results have to be normalised
subsequently to model a density. These operations make
the corresponding posterior distributions non–Gaussian.
Moreover, likelihoods depend on all the infinitely many
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GP function values in the domain rather than on the finite
number of function values at observed data points. Since
analytical inference is impossible, [7] introduced an in-
teresting Markov chain Monte–Carlo sampler which al-
lows for (asymptotically) exact inference for a Gaussian
process density model, where the GP is passed through
a sigmoid link function.1 The approach is able to deal
with the infinite dimensionality of the model, because
the sampling of the GP variables is reduced to a finite
dimensional problem by a point process representation.
However, since the likelihood of the GP variables is not
conjugate to the prior, the method has to resort to a time–
consuming Metropolis–Hastings approach. In this paper
we will use recent results on representing the sigmoidal
squashing function as an infinite mixture of Gaussians in-
volving Pólya–Gamma random variables [9] to augment
the model in such a way that the model becomes tractable
by a simpler Gibbs sampler. The new model structure al-
lows also for a much faster variational Bayesian approx-
imation.

The paper is organised as follows: Sec. 2 introduces
the GP density model, followed by an augmentation
scheme that makes its likelihood conjugate to the GP
prior. With this model representation we derive two effi-
cient Bayesian inference algorithms in Sec. 3, namely an
exact Gibbs sampler and an approximate, fast variational
Bayes algorithm. The performance of both algorithms is
demonstrated in Sec. 4 on artificial and real data. Finally,
Sec. 5 discusses potential extensions of the model.

2 GAUSSIAN PROCESS DENSITY
MODEL

The generative model proposed by [7] constructs densi-
ties over some d-dimensional data space X to be of the

1See [8] for an alternative model allowing, however, only
for approximate inference schemes.



form

ρ(x|g) =
σ(g(x))π(x)∫

X σ(g(x))π(x)dx
. (1)

π(x) defines a (bounded) base probability measure
over X , which is usually taken from a fixed para-
metric family. The denominator ensures normalisation∫
X ρ(x|g)dx = 1. The choice of π(x) is important as

will be discussed Sec. 5. A prior distribution over densi-
ties is introduced by assuming a Gaussian process prior
[1] over the function g(x) : X → R. The GP is defined
by a mean function µ(x) (in this paper, we consider only
constant mean functions µ(x) = µ0) and covariance ker-
nel k(x,x′). Finally, σ(z) = 1

1+e−z is the sigmoid func-
tion, which guarantees that the density is non–negative
and bounded.

In Bayesian inference, the posterior distribution of g
given observed data D = {xn}Nn=1 with x ∈ X is com-
puted from the GP prior p(g) and the likelihood as

p(g|D) ∝ p(D|g)p(g).

The likelihood is given by

p(D|g) =

∏N
n=1 σ(g(xn))π(xn)(∫
X σ(g(x))π(x)dx

)N . (2)

Practical inference for this problem, however, is non-
trivial, because (i) the posterior is non–Gaussian and (ii)
the likelihood involves an integral of g over the whole
space. Thus, in contrast to simpler problems such as GP
regression or classification, it is impossible to reduce in-
ference to finite dimensional integrals. To circumvent the
problem that the likelihood is not conjugate to the GP
prior, [7] proposed a Metropolis-Hastings MCMC algo-
rithm for this model. We will show in the next sections
that one can augment the model with auxiliary latent ran-
dom variables in such a way that the resulting likelihood
is of a conjugate form allowing for a more efficient Gibbs
sampler with explicit conditional probabilities.

2.1 LIKELIHOOD AUGMENTATION

To obtain a likelihood which is conjugate to the GP p(g)
we require that it assumes a Gaussian form in g.

Representing the denominator As a starting point,
we follow [10] and use the representation

1

zN
=

∫∞
0
λN−1e−λzdλ

Γ(N)
,

where Γ(·) is the gamma function. Identifying
z =

∫
X σ(g(x))π(x)dx in Eq. (2) we can rewrite the

likelihood as p(D|g) =
∫∞

0
p(D, λ|g)dλ where

p(D, λ|g) ∝ exp

(
−
∫
X
λσ(g(x))π(x)dx

)
× p(λ)

N∏
n=1

λσ(g(xn))π(xn),

(3)

with the improper prior p(λ) = λ−1 over the auxiliary
latent variable λ. To transform the likelihood further into
a form which is Gaussian in g, we utilise a representation
of the sigmoid function as a scale mixture of Gaussians.

Pólya–Gamma representation of sigmoid function
As discovered by [9], the inverse hyperbolic cosine can
be represented as an infinite mixture of scaled Gaussians

cosh−b(z/2) =

∫ ∞
0

e−
z2

2 ωpPG(ω|b, 0)dω,

where pPG(ω|b, 0) is the Pólya–Gamma density of ran-
dom variable ω ∈ R+. Moments of those densities can
be easily computed [9]. Later, we will also use the tilted
Pólya-Gamma densities defined as

pPG(ω|b, c) ∝ exp

(
−c

2

2
ω

)
pPG(ω|b, 0). (4)

These definitions allows for a Gaussian representation of
the sigmoid function as

σ(z) =
ez/2

2 cosh(z/2)
=

∫ ∞
0

ef(ω,z)pPG(ω|1, 0)dω (5)

with f(ω, z) = z
2 −

z2

2 ω − ln 2. This result will be used
to transform the products over observations σ(g(xn)) in
the likelihood (3) into a Gaussian form.

We will next deal with the first term in the likelihood
(3) which contains the integral over x. For this part of
the model we will derive a point process representation
which can be understood as a generalisation of the ap-
proach of [7].

Marked–Poisson representation Utilising the sig-
moid property σ(z) = 1−σ(−z) and the Pólya-Gamma
representation (5) the integral in the exponent of Eq. (3)
can be written as a double integral

−
∫
X
λσ(g(x))π(x)dx =∫

X
(σ(−g(x))− 1)λπ(x)dx =∫
X

∫
R+

(
ef(ω,−g(x)) − 1

)
λπ(x)pPG(ω|1, 0)dωdx



Next we will use a result for the characteristic function
of a Poisson process. Following [11, chap. 3] one has

Eφ

[∏
z∈Π

h(z)

]
= exp

(∫
Z

(h(z)− 1)φ(z)dz

)
. (6)

h(·) is a function on a space Z and the expecta-
tion is over a Poisson process Π with rate func-
tion φ(z). Π = {zm}Mm=1 denotes a random
set of points on the space Z . To apply this re-
sult to our problem, we identify Z = X × R+,
z = (x, ω) and φλ(x, ω) = λπ(x)pPG(ω|1, 0) and fi-
nally h(z) = ef(ω,−g(x)) to rewrite the exponential in
Eq. (3) as

e−
∫
X λσ(g(x))π(x)dx = Eφλ

 ∏
(ω,x)∈Π

ef(ω,−g(x))

 . (7)

By substituting Eq. (5) and (7) into Eq.(3) we obtain the
final augmented form of the likelihood of Eq. (2) which
is one of the main results of our paper.

p(D, λ,Π,ωN |g) ∝
N∏
n=1

φλ(xn, ωn)ef(ωn,g(xn))

× pφλ(Π|λ)p(λ)
∏

(ω,x)∈Π

ef(ω,−g(x)),

(8)

with pφ(Π|λ) being the density over a Poisson process
Π = {(xm, ωm)}Mm=1 in the augmented space X × R+

with intensity φλ(x, ω). 2 This new process can be iden-
tified as a marked Poisson process [11, chap. 5], where
the events {xm}Mm=1 in the original data space X fol-
low a Poisson process with rate λπ(x). Then, on each
event xm an independent mark ωm ∼ pPG(ωm|b, 0) is
drawn at random from the Pólya–Gamma density. Fi-
nally, ωN = {ωn}Nn=1 is the set of latent Pólya–Gamma
variables which result from the sigmoid augmentation at
the observations xn.

Augmented posterior over GP density With Eq. (8)
we obtain the joint posterior over the GP g, the rate scal-
ing λ, the marked Poisson process Π, and the Pólya–
Gamma variables at the observations ωN as

p(ωN ,Π, λ, g|D) ∝ p(D,ωN ,Π, λ|g)p(g). (9)

In the following, this new representation will be used to
derive two inference algorithms.

2Densities such as pφλ(Π|λ) could be understood as the
Radon–Nykodym derivative [12] of the corresponding proba-
bility measure with respect to some fixed dominating measure.
However, we will not need an explicit form here.

3 INFERENCE

We will first derive an efficient Gibbs sampler which
(asymptotically) solves the inference problem exactly,
and then a variational mean-field algorithm, which only
finds an approximate solution, but in a much faster time.

3.1 GIBBS SAMPLER

Gibbs sampling [13] generates samples from the poste-
rior by creating a Markov chain, where at each time, a
block of variables is drawn from the conditional posterior
given all the other variables. Hence, to perform Gibbs
sampling, we have to derive these conditional distribu-
tions for each set of variables from Eq. (9). Most of the
following results are easily obtained by direct inspection.
The only non–trivial case is the conditional distribution
over the latent point process Π.

Pólya-Gamma variables at observations The condi-
tional posterior over the set of Pólya–Gamma variables
ωN depends only on the function g at the observations
{g(xn)}Nn=1 and turns out to be

p(ωN |g) =

N∏
n=1

pPG(ωn|1, g(xn)), (10)

where we have used the definition of a tilted Pólya-
Gamma density in Eq. (4). This density can be efficiently
sampled by methods developed by [9]3.

Rate scaling The rate scaling λ has a conditional
Gamma density given by

Gamma(λ|α, 1) =
(λ)α−1e−λ

Γ(α)
. (11)

with α = |Π| + N = M + N . Hence, the posterior is
dependent on the number of observations and the number
on events of the marked Poisson process Π.

Posterior Gaussian process Due to the form of the
augmented likelihood the conditional posterior for the
GP gN+M at the observations {xn}Nn=1 and the latent
events {xm}Mm=1 is a multivariate Gaussian density

p(gN+M |Π,ωN ) = N (µN+M ,ΣN+M ), (12)

with covariance matrix ΣN+M = [D + K−1
N+M ]−1.

The diagonal matrix D has its first N entries given by
ωN followed by M entries being {ωm}Mm=1. The mean

is µN+M = ΣN+M

[
u+K−1

N+Mµ
(N+M)
0

]
, where the

3The sampler implemented by [14] is used for this work.



first N entries of N + M dimensional vector u are 1/2
and the rest are −1/2. KN+M is the prior covariance
kernel matrix of the GP evaluated at the observed points
xn and the latent events xm, and µ(N+M)

0 is an N +M
dimensional vector with all entries being µ0.

The predictive conditional posterior for the GP for any
set of points inX is simply given via the conditional prior
p(g|gN+M ), which has a well known form and can be
found in [1].

Sampling the latent marked point process We easily
find that the conditional posterior of the marked point
process is given by

p(Π|g,λ)=

∏
ω,x∈Π ef(ω,−g(x))pφλ

(Π|λ)

exp(
∫
X×R+(ef(ω,−g(x))−1)φλ(x,ω)dωdx)

, (13)

where the form of the normalising denominator is ob-
tained using Eq. (6). By computing the characteristic
function of this conditional point process (see App. A)
we can show that it is again a marked Poisson process
with intensity

Λ(x, ω) = λπ(x)σ(−g(x))pPG(ω|1, g(x)). (14)

To sample from this process we first draw Poisson
events xm in the original data space X using the rate∫
R+ Λ(x, ω)dω = λπ(x)σ(−g(x)) [11, chap. 5]. Sub-

sequently for each event xm a mark ωm is generated
from the conditional density ωm ∼ pPG(ω|1, g(xm)).

To sample the events {xm}Mm=1, we use the well known
approach of thinning [4]. We note, that the rate is up-
per bounded by the base measure λπ(x). Hence, we first
generate points x̃m from a Poisson process with inten-
sity λπ(x). This is easily achieved by noting that the
required number Mmax of such events is Poisson dis-
tributed with mean parameter

∫
X λπ(x)dx = λ. The

position of the events can then be obtained by sampling
{x̃m}Mmax

m=1 independent points from the base density
x̃m ∼ π(x). These events are thinned by keeping each
point x̃m with probability σ(−g(x̃m)). The kept events
constitute the final set {xm}Mm=1.

Sampling hyperparameters In this work we will con-
sider specific functional forms for the kernel k(x,x′)
and the base measure π(x) which are parametrised by
hyperparameters θk and θπ . These will be sampled by
a Metropolis-Hastings method [15]. The GP prior mean
µ0 can be directly sampled from the conditional poste-
rior given gM+N . In this work, the hyperparameters are
sampled every v = 10 step. Different choices of v might
yield faster convergence of the Markov Chain. Pseudo
code for the Gibbs sampler is provided in Alg. 1.

Algorithm 1: Gibbs sampler for GP density model.

Init: {xm}Mm=1, gN+M , λ, and θk, θπ , µ0

1 for Length of Markov chain do
2 Sample PG variables at {xm}: ωN ∼ Eq. (10)
3 Sample latent Poisson process: Π ∼ Eq. (13)
4 Sample rate scaling: λ ∼ Eq. (11)
5 Sample GP: gN+M ∼ Eq. (12)
6 Sample hyperparameters: Every vth sample with

Metropolis–Hastings
7 end

3.2 VARIATIONAL BAYES

While expected to be more efficient than a Metropolis-
Hastings sampler based on the unaugmented likeli-
hood [7], the Gibbs sampler is practically still limited.
The main computational bottleneck comes from the sam-
pling of the conditional Gaussian over function values of
g. The computation of the covariances requires the in-
version of matrices of dimensions N + M , with a com-
plexity O((N + M)3). Hence the algorithm does not
only become infeasible, when we have many observa-
tions, i.e when N is large, but also if the sampler re-
quires many thinned events, i.e. if M is large. This can
happen in particular for bad choices of the base measure
π(x). In the following, we introduce a variational Bayes
algorithm [16], which solves the inference problem ap-
proximately, but with a complexity which scales linearly
in the data size and is independent of structure.

Structured mean–field approach The idea of vari-
ational inference [16] is to approximate an intractable
posterior p(Z|D) by a simpler distribution q(Z) from a
tractable family. q(Z) is optimised by minimising the
Kullback-Leibler divergence between q(Z) and p(Z|D)
which is equivalent to maximising the so called varia-
tional lower bound (sometimes also called ELBO for ev-
idence lower bound) given by

L(q(Z)) = EQ
[
ln
p(Z,D)

q(Z)

]
≤ ln p(D), (15)

where Q denotes the probability measure with density
q(Z). A common approach for variational inference is
a structured mean–field method, where dependencies be-
tween sets of variables are neglected. For the problem at
hand we assume that

q(ωN ,Π, g, λ) = q1(ωN ,Π)q2(g, λ). (16)

A standard result for the variational mean–field approach
shows that the optimal independent factors, which max-



imise the lower bound in Eq. (15) are given by

ln q1(ωN ,Π) = EQ2
[ln p(D,ωN ,Π, λ, g)] + const.,

(17)
ln q2(g, λ) = EQ1

[ln p(D,ωN ,Π, λ, g)] + const. (18)

By inspecting Eq. (9), (17), and (18) it turns out that the
densities of all four sets of variables factorise as

q1(ωN ,Π) = q1(ωN )q1(Π),

q2(g, λ) = q2(g)q2(λ).

We will optimise the factors by a straightforward itera-
tive algorithm, where each factor is updated given ex-
pectations over the others based on the previous step.
Hence, the lower bound in Eq. (15) is increased in each
step. Again we will see that the augmented likelihood in
Eq. (8) allows for analytic solutions of all required fac-
tors.

Pólya–Gamma variables at the observations Simi-
lar to the Gibbs sampler, the variational posterior of the
Pólya-Gamma variables at the observations is a product
of tilted Pólya–Gamma densities given by

q1(ωN ) =

N∏
n=1

pPG(ωn|1, cn), (19)

with cn =
√
EQ2 [g(xn)2]. The only difference is, that

the second argument of pPG depends on the expectation
of the square of g(xn).

Posterior marked Poisson process Similar to the cor-
responding result for the Gibbs sampler we can show4

that the optimal latent point process Π is a Poisson pro-
cess with rate given by

Λ1(x, ω) =λ1π(x)σ(−c(x))pPG(ω|1, c(x))

× e(c(x)−g1(x))/2
(20)

with λ1 = eEQ2
[lnλ], c(x) =

√
EQ2

[f(x)2], and
g1(x) = EQ2

[g(x)]. Note also the similarity to the
Gibbs sampler in Eq. (14).

Optimal posterior for rate scaling The posterior for
the rate scaling λ is a Gamma distribution given by

q2(λ) = Gamma(λ|α2, 1) =
λα2−1e−λ

Γ(α2)
, (21)

where α2 = N + EQ1

[∑
x′∈Π δ(x− x′)

]
, and

EQ1

[∑
x′∈Π δ(x− x′)

]
=
∫
X
∫
R+ Λ1(x, ω)dωdx, and

δ(·) is the Dirac delta function. The integral is solved by
importance sampling as will be explained (see Eq. (25)).

4The proof is similar to the one from App. A.

Approximation of GP via sparse GP The optimal
variational form for the posterior g is a GP given by

q2(g) ∝ eU(g)p(g),

where U(g) = EQ1 [ln p(D,ωN ,Π, λ|g)] results in the
Gaussian log–likelihood

U(g) = −1

2

∫
X
A(x)g(x)2dx+

∫
X
B(x)g(x)dx+const.

with

A(x) =

N∑
n=1

EQ1
[ωn] δ(x−xn)+

∫
R+

ωΛ1(x, ω)dω,

B(x) =
1

2

N∑
n=1

δ(x− xn)− 1

2

∫
R+

Λ1(x, ω)dω.

For general GP priors, this free form optimum is in-
tractable by the fact that the likelihood depends on g
at infinitely many points. Hence, we resort to an ad-
ditional approximation which makes the dimensionality
of the problem again finite. The well known framework
of sparse GPs [17, 18, 19] turns out to be useful in this
case. This has been introduced for likelihoods with large,
but finite dimensional likelihoods [19, 20] and later gen-
eralised to infinite dimensional problems [21, 22]. The
sparse approximation assumes a variational posterior of
the form

q2(g) = p(g|gs)q2(gs),

where gs is the GP evaluated at a finite set of inducing
points {xl}Ll=1 and p(g|gs) is the conditional prior. A
variational optimisation yields

q2(gs) ∝ eU
s(gs)p(gs), (22)

where the first term can be seen as a new ‘effective’ like-
lihood only depending on the inducing points. This new
(log) likelihood is given by

Us(gs) = EP [U(g)|gs] =

− 1

2

∫
X
A(x)g̃s(x)2dx+

∫
X
B(x)g̃s(x)dx+ const.,

with g̃s(x) = µ0 + ks(x)> K−1
s (gs − µ

(L)
0 ), ks(x)

being an L dimensional vector, where the lth entry is
k(x,xl) and Ks being the prior covariance matrix for
all inducing points. The expectation is computed with
respect to the GP prior conditioned on the sparse GP gs.
We identify Eq. (22) being a multivariate normal distri-
bution with covariance matrix

Σs2 =

[
K−1
s

∫
X
A(x)ks(x)>ks(x)dx K−1

s +K−1
s

]−1

,

(23)



Algorithm 2: Variational Bayes algorithm for GP den-
sity model
Init: Inducing points, q2(gs), q2(λ), and θk,θπ, µ0

1 while L not converged do
2 Update q1

3 PG distributions at observations: q∗1(ωN )
with Eq. (19)

4 Rate of latent process: Λ1(x, ω) with Eq. (20)
5 Update q2

6 Rate scaling: α2 with Eq. (21)
7 Sparse GP: Σs2, µ

s
2 with Eq. (23), (24)

8 Update θk,θπ, µ0 with gradient update
9 end

and mean

µs2 = Σs2

(
K−1
s

∫
X
ks(x)B̃(x)dx+K−1

s µ
(L)
0

)
,

(24)
with B̃(x) = B(x)−A(x)(µ0 − ks(x)>K−1

s µ
(L)
0 ).

Integrals over x The sparse GP approximation and the
posterior over λ in Eq. (21) requires the computation of
integrals of the form

I
.
=

∫
X

∫
R+

y(x, ω)Λ1(x, ω)dωdx,

with specific functions y(x, ω). For these functions, the
inner integral over ω can be computed analytically, but
the outer one over the space X has to be treated numeri-
cally. We approximate it via importance sampling

I ≈ 1

R

R∑
r=1

∫
R+

y(xr, ωr)
Λ1(xr, ωr)

π(xr)
dωr, (25)

where every sample point xr is independently drawn
from the base measure π(x).

Updating hyperparameters Having an analytic so-
lution for every factor of the variational posterior in
Eq. (16) we further require the optimisation of hyper-
parameters. θk, θπ and µ0 are optimised by maximis-
ing the lower bound in Eq. (15) (see App. B for explicit
form) with a gradient ascent algorithm having an adap-
tive learning rate (Adam) [23]. Additional hyperparam-
eters are the locations of inducing points {xl}Ll=1. Half
of them are drawn randomly from the initial base mea-
sure, while half of them are positioned on regions with
a high density of observations found by a k–means al-
gorithm. Pseudo code for the complete variational algo-
rithm is provided in Alg. 2.

Python code for Alg. 1 and 2 is provided at [24].

4 RESULTS

To test our two inference algorithms, the Gibbs sampler
and the variational Bayes algorithm (VB), we will first
evaluate them on data drawn from the generative model.
Then we compare both on an artificial dataset and several
real datasets. We will only consider cases with X = Rd.
To evaluate the quality of inference we consider always
the logarithm of the expected test likelihood

`test(D̃)
.
= ln

E

∏
x∈D̃

ρ(x)

 ,

where D̃ is test data unknown to the inference algorithm
and the expectation is over the inferred posterior mea-
sure. In practice we sample this expectation from the
inferred posterior over g. Since this quantity involves
an integral, that is again approximated by Eq. (25), we
check that the standard deviation std(I) is less than 1%
of the value of the estimated value I .

Data from generative model. We generate datasets
according to Eq. (1), where g is drawn from the GP prior
with µ0 = 0. As covariance kernel we assume a squared
exponential throughout this work

k(x,x′) = θ
(0)
k

d∏
i=1

exp

(
− (xi − x′i)2

2(θ
(i)
k )2

)
.

The base measure π(x) is a standard normal density. We
use the algorithm described in [7] to generate exact sam-
ples. In this section, the hyperparameters θk,θπ and µ0

are fixed to the true values for inference. Unless stated
otherwise for the VB the number of inducing points is
fixed to 200 and the number of integration points for im-
portance sampling to 5 × 103. For the Gibbs sampler,
we sample a Markov chain of 5 × 103 samples after a
burn–in period of 2× 103 samples.

In Fig. 1 we see a 1 dimensional example dataset, where
both inference algorithms recover well the structure of
the underlying density. The inferred posterior means are
barely distinguishable. However, evaluating the inferred
densities on an unseen test set, we note that the Gibbs
sampler performs slightly better. Of course, this is ex-
pected since the sampler provides exact inference for the
generative model and should (on average) not be outper-
formed by the approximate VB as long as the sampled
Markov chain is long enough. In Fig. 1 (bottom left) we
see that only 13 iterations of the VB are required to meet
the convergence criterion. For Markov chain samplers to
be efficient, correlations between samples should decay
quickly. Fig. 1 (bottom middle) shows the autocorrela-
tion of `test, which was evaluated at each sample of the



Figure 1: 1D data from the generative model. Data
consist of 100 samples from the underlying density sam-
pled from the GP density model. Upper left: True den-
sity (black line), data (black vertical bars), mean poste-
rior density inferred by Gibbs sampler (red dashed line)
and VB algorithm (blue line). Upper right: Negative log
expected test likelihood of Gibbs and VB inferred poste-
rior. Lower left: Variational lower bound as function of
iterations of the VB algorithm. Lower middle: Autocor-
relation of test likelihood as function of Markov chain
samples obtained from Gibbs sampler. Lower right:
Runtime of the two algorithms (VB took 0.3 s).

Dim # points Gibbs VB
`test T [s] `test T [s]

1 50 -146.9 30.1 -149.2 1.13
2 100 -257.0 649.9 -260.2 2.03
2 200 -285.3 546.1 -289.6 1.41
6 400 -823.9 4667 -822.2 0.89

Table 1: Performance of Gibbs sampler and VB on dif-
ferent datasets sampled from generative model. `test was
evaluated on a unknown test set including 50 samples. In
addition, runtime T is reported in seconds.

Markov chain. After about 10 samples the correlations
reach a plateau close to 0, demonstrating excellent mix-
ing properties of the sampler. Comparing the run time
of both algorithms, VB (0.3 s) outperforms the sampler
∼ 1 min by more than 2 orders of magnitude.

To demonstrate the inference for more complicated prob-
lems, 2 dimensional data are generated with 200 samples
(Fig. 2). The posterior mean densities inferred by both
algorithms capture the structure well. As before, the log
expected test likelihood is larger for the Gibbs sampler
(`test = −296.2) compared to VB (`test = −306.0).
However, the Gibbs sampler took > 20 min while the
VB required only 1.8 s to obtain the result.

In Tab. 1 we show results for datasets with different size
and different dimensionality. The results confirm that the

True VBGibbs

Figure 2: 2D data from generative model. Right: 200
samples from the underlying two dimensional density.
Middle: Posterior mean of Gibbs sampler inferred den-
sity. Right: Posterior mean of VB inferred density.

Gibbs VB KDE GMM

Figure 3: Comparison to other density estimation
methods on artificial 2D data. Training data consist of
100 data points uniformly distributed on a circle (1.5 ra-
dius) and additional Gaussian noise (0.2 std.). From left
to right: The posterior mean inferred by Gibbs sampler
and VB algorithm, followed by density estimation using
KDE and GMM.

run time for the Gibbs sampler scales strongly with size
and dimensionality of a problem, while the VB algorithm
seems relatively unaffected in this regard. However, the
VB is in general outperformed by the sampler in terms of
expected test likelihood or in the same range. Note, that
the runtime of the Gibbs sampler does not solely depend
on the number of observed data points N (compare data
set 2 and 3 in Tab. 1). As discussed earlier this can hap-
pen, when the base measure π(x) is very different from
the target density ρ(x) resulting in many latent Poisson
events (i.e. M is large).

Circle data In the following, we compare the GP den-
sity model and its two inference algorithms with two al-
ternative density estimation methods. These are given by
a kernel density estimator (KDE) with a Gaussian kernel
and a Gaussian mixture model (GMM) [25]. The free pa-
rameters of these models (kernel bandwidth for KDE and
number of components for GMM) are optimised by 10-
fold cross–validation. Furthermore, GMM is initialised
10 times and the best result is reported. For the GP
density model a Gaussian density is assumed as base
measure π(x), and hyperparameters θπ, θk, and µ0 are
now optimised. Similar to [7] we consider 100 samples
uniformly drawn from a circle with additional Gaussian



Gibbs VB KDE GMM
`test -220.31 -230.53 -228.43 -237.34

Table 2: Log expected test likelihood for circle data.
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Figure 4: Performance on ‘Egyptian Skulls’
dataset [26]. 100 training points and 4 dimensions.
Bar height shows average negative log test likelihood
obtained by five random permutations of training and
test set and points mark single permutation results.

noise. The inferred densities (only the mean of the pos-
terior for Gibbs and VB) are shown in Fig. 3. Both GP
density methods recover well the structure of the data,
but the VB seems to overestimate the width of the Gaus-
sian noise compared to the Gibbs sampler. While the
KDE also recovers relatively well the data structure the
GMM fails in this case. This is also reflected on the log
expected test likelihoods (Tab. 2).

Real data sets The ‘Egyptian Skulls’ dataset [26] con-
tains 150 data points in 4 dimensions. 100 training points
are randomly selected and performance is evaluated on
the remaining ones. Before fitting data is whitened. Base
measure and fitting procedure for all algorithms are the
same as for the circular data. Furthermore, fitting is
done for 5 random permutations of training and test set.
The results in Fig. 4 show that both algorithms for the
GP density model outperform the two other ones on this
dataset.

Often practical problems may consist of many more data
points and dimensions. As discussed, the Gibbs sampler
is not practical for such kind of problems, while the VB
could handle larger amounts of data. Unfortunately, the
sparsity assumption and the integration via importance
sampling is expected to become poorer with increasing
number of dimensions. Noting, however, that the ‘effec-
tive’ dimensionality in our model is determined by the
base measure π(x), one can circumvent this problem by
an educated choice of π(x) if dataD lie in a submanifold
of the high dimensional space X .

We employ this strategy by first fitting a GMM to the
problem and then utilising the fit as base measure. In
Fig. 5 we consider 3 different datasets5 to test this pro-

5Only real valued dimensions are considered and for the
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Figure 5: Application on higher dimensional data
with many data points. The improvement on log ex-
pected test likelihood `test per test point compared to
GMM, when using same as base measure π(x) for the
VB inference. From top to bottom: ‘Forest Fire’
dataset [27, 28] (400 training points, 117 test points, 5
dim.), ‘Thyroid’ dataset [29] (3 × 103, 772, 6), ‘Wine’
dataset [27] (6 × 103, 498, 9). Bars mark improvement
on average of random permutations of training and test
set while points mark single runs.

cedure. As in Fig. 4, fitting is repeated 5 times for
random permutations if training and test set. For the
‘Thyroid’ dataset, one of the 5 fits is excluded, be-
cause the importance sampling yielded poor approxima-
tion std(I) > I × 10−2. The training sets contain 400 to
6000 data points with 5 to 9 dimensions. The results for
KDE are not reported, since it is always outperformed by
the GMM. Fig. 5 demonstrates combining the GMM and
VB algorithm results in an improvement of the log test
likelihood `test compared to using only GMM. Average
relative improvements of `test are 8.9 % for ‘Forest Fire’,
4.1 % for ‘Thyroid’, and 1.1 % for ‘Wine’ dataset.

5 DISCUSSION

We have shown how inference for a nonparametric, GP
based, density model can be made efficient. In the fol-
lowing we would like to discuss various possible exten-
sions but also limitations of our approach.

Choice of base measure As we have shown for ap-
plications to real data, the choice of the base measure
is quite important, especially for the sampler and for
high dimensional problems. While many datasets might
favour a normal distribution as base measure, problems
with outliers might favour fat tailed densities. In general,
any density which can be evaluated on the data space
X and which allows for efficient sampling, is a valid
choice as base measure π(x) in our inference approach
for the GP density model. Any powerful density estima-

‘forest fire’ dataset dimensions are excluded, where data have
more than half 0 entries.



tor which fulfils this condition could provide a base mea-
sure which could then potentially be improved by the GP
model. It would e.g. be interesting to apply this idea to
neural networks [30, 31] based estimators. Other gen-
eralisations of our model could consider alternative data
spaces X . One might e.g. think of specific discrete and
structured sets X for which appropriate Gaussian pro-
cesses could be defined by suitable Mercer kernels.

Big data & high dimensionality Our proposed Gibbs
sampler suffers from cubic scaling in the number of data
points and is found to be already impractical for prob-
lems with hundreds of observations. This could poten-
tially be tackled by using sparse (approximate) GP meth-
ods for the sampler (see [32] for a potential approach).
On the other hand, the proposed VB algorithm scales
only linearly with the training set size and can be ap-
plied to problems with several thousands of observations.
The integration of stochastic variational inference into
our method could potentially increase this limit [33].

Potential limitations of the GP density model are given
by high dimensional problems. If approached naively,
the combination of the sparse GP approximation and the
numerical integration using importance sampling is ex-
pected to yield bad approximations in such cases.6 If the
data is concentrated on a low dimensional submanifold
of the high–dimensional space, one could still try to com-
bine our method with other density estimators providing
a base measure π(x) that is adapted to this submanifold,
to allow for tractable GP inference.
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