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Abstract

We present a data-driven benchmark system
to evaluate the performance of new MCMC
samplers. Taking inspiration from the COCO
benchmark in optimization, we view this
benchmark as having critical importance to
machine learning and statistics given the rate
at which new samplers are proposed. The
common hand-crafted examples to test new
samplers are unsatisfactory; we take a meta-
learning-like approach to generate realistic
benchmark examples from a large corpus of
data sets and models. Surrogates of posteriors
found in real problems are created using highly
flexible density models including modern neu-
ral network models. We provide new insights
into the real effective sample size of various
samplers per unit time and the estimation effi-
ciency of the samplers per sample. Addition-
ally, we provide a meta-analysis to assess the
predictive utility of various MCMC diagnos-
tics and perform a nonparametric regression to
combine them.

1 INTRODUCTION

Markov chain Monte Carlo (MCMC) methods have seen
a huge increase in use over the last few decades. The
goal in MCMC methods is to take samples from a
complex probability distribution p? given access only
to its unnormalized density p̃. The primary use case
for MCMC methods is sampling from Bayesian poste-
riors for the purpose of Monte Carlo integration, which
includes building posterior predictive distributions and
posterior summaries. These posteriors are generally in-
tractable to normalize and sample from in modern mod-
els, including models as simple as logistic regression.

Approaches such as rejection sampling provide exact in-
dependent samples, and importance sampling provides
exact independent (but weighted) samples. These ap-
proaches are generally computationally inefficient (re-
jection sampling) or are statistically unsound (impor-
tance sampling) except in very low dimensional prob-
lems [MacKay, 2003, Ch. 29]. MCMC methods pro-
duce a Markov chain that marginally samples from the
target distribution p? exactly and have a low per sample
computation cost. The downside is that they provide a
sequence of correlated samples, albeit marginally from
the target distribution. Therefore, any estimates derived
from an MCMC chain of length N will have far less
accuracy than N iid samples. Despite there being nu-
merous MCMC diagnostics, there is no practical way to
guarantee the accuracy of derived estimates in practice.

Each machine learning conference contains a publica-
tion proposing a new variation on MCMC methods. The
community lacks a method to determine if these new
methods actually sample from posteriors found in real
problems with improved accuracy over existing sam-
plers. New methods are benchmarked via either 1) hand-
crafted toy problems (where a ground-truth is known) or
2) test set performance on real problems. The issue with
hand-crafted examples is obvious: Performance on these
problems may have little relation to performance on real
problems and it is at odds with accepted practice in mod-
ern machine learning.

Benchmarking via test set performance on real problems
is laudable. However, it confounds the specification of
the model and priors with the performance of the sam-
pler. In a misspecified model it is possible that a sampler
stuck in an unrepresentative part of the posterior could
actually have higher test set performance [Sharp and Rat-
tray, 2010]. Conversely, a better sampler may improve
test set performance by having good local mixing; how-
ever, it is still nowhere near exact iid samples. There is
no way to quantify the distance to exact iid samples from
test set performance alone.



Whether current samplers are providing samples from
anything close to the true posterior on difficult problems
is of critical importance for determining future research
directions. Are samplers with higher test set performance
actually sampling from real posteriors more faithfully?
Can we sample with any fidelity from complex high di-
mensional distributions? Is that merely a “fool’s errand”?
The answers to these questions will determine if it is a
worthwhile endeavor to continue to hone MCMC meth-
ods for application in successful modern models such as
deep neural networks.

Practitioners in Bayesian statistics have long faced the
dilemma of whether they can trust the output of their
sampler, in particular, because statisticians are not tra-
ditionally concerned only with test set error rates. As a
result, there is decades of work in developing MCMC di-
agnostics that aim to alert a practitioner to a poorly mix-
ing chain [Cowles and Carlin, 1996]. That is, if a chain
has a long autocorrelation time, the entire chain may be
of equivalent accuracy to just a few iid samples. The di-
agnostics, by construction, have a low type I error: If a
chain closely resembles iid samples, they will not alert
that it is mixing poorly. However, there are no guaran-
tees on type II error: If a chain is mixing poorly, the
diagnostic might not alert. Indeed, there are many ways
to construct examples where an MCMC procedure unde-
tectably fails: distant modes, Neal’s funnel [Thompson,
2011], extreme ill-conditioning, etc. However, are these
realistic stress tests for MCMC methods or merely patho-
logical cases? We do not know.

We propose a new data-driven approach to create a
benchmark that estimates how well various MCMC pro-
cedures work on real problems. Arguably, algorithms in
machine learning and statistics rely on the “workhorses”
of either optimization or sampling methods. The world
of (non-convex) optimization has already tackled this
challenge with the COCO benchmark [Hansen et al.,
2016], which contains a test battery of difficult optimiza-
tion problems. Various approaches are tested to validate
if they can optimize the objective function to a target
level within a fixed number of function evaluations. Our
approach is an analogous system for sampling methods.
However, we further improve upon this using flexible (in-
cluding neural net based) benchmark examples that have
been trained to match posteriors found in practice.

In our approach we use a large “data set of data sets”
and a diverse “model zoo” to create a representative set
of examples. Long MCMC chains are drawn (using
NUTS [Hoffman and Gelman, 2014]) from each of these
posteriors. Flexible unsupervised models that serve as
a ground-truth in the benchmarking phase are fit to the
chains to construct the benchmark examples.

More concretely, each combination of real data set (e.g.,
MNIST) and real model (e.g., logistic regression) results
in a Markov chain from NUTS. We then fit an unsuper-
vised model (e.g., mixture of Gaussians) to this chain to
serve as a benchmark example distribution. Once trained,
these benchmark example distributions are functionally
equivalent to hand-crafted examples such as the toy pos-
terior distributions usually used to benchmark samplers
(or such as those in COCO). However, these examples
are not hand-crafted but rather are much more represen-
tative of real problems. Because it is possible to draw
exact (iid) samples from the benchmark example distri-
butions, we now have a ground-truth set of samples to
validate the accuracy of the sampling methods.

We derive a variety of metrics that summarize the perfor-
mance of a sampler for comparing its output to ground-
truth iid samples. The ground-truth samples also allow
us to assess how well the MCMC diagnostics actually
predict estimation performance. In particular, we look
at the effective sample size (ESS) because it provides a
concrete statement on sample quality [Kass et al., 1998].

The outline of this paper is as follows: In Section 2 we
provide some background on MCMC and its diagnos-
tics/performance measures. In Sections 3 and 4 we ex-
plain the methodology of the benchmark and its pipeline
of five sequential phases. Finally, in Section 5, we
present results illustrating the advantages of various sam-
plers and the utility of various MCMC diagnostics.

Contributions We summarize the contributions of this
work as follows: 1) We provide a new and novel bench-
mark to describe how well various samplers work on re-
alistic problems. This involves design of fair and sen-
sible metrics to score samplers across problems. This
work creates a software system that will serve as a prac-
tical tool in algorithm development analogous to ML-
comp/CodaLab or COCO. 2) We shed light on how
well the common MCMC diagnostics predict the real
estimation performance of MCMC methods. We fur-
ther create a data-driven meta-diagnostic by combining
MCMC diagnostics to predict real sampler performance.
The code for the system is available at github.com/
bradyneal/sampling-benchmark.

Related work The closest existing system is Sampler-
Compare of Thompson [2011], which tests samplers on
a handful of hand-crafted stress-test cases such as Neal’s
funnel. However, SamplerCompare is more an R pack-
age to aid evaluation than a complete benchmark. A re-
cent piece of work from systems biology [Ballnus et al.,
2017] compares various samplers for dynamical systems
(i.e., filtering) on a set of hand-crafted ODE systems in-
spired by biological models.



Figure 1: Flowchart illustrating the six phases in our methodology. Phases 0–2 are for creating benchmark examples and are not
re-run when new samplers are tested. Phase 2 includes mixture models and modern neural net methods.

2 BACKGROUND

The notion of a black box is highly relevant to conceptual
understanding of this work. Fundamentally, an MCMC
sampler is a system that inputs a black box that computes
an unnormalized density p̃ ∝ p? (and possibly its gradi-
ent ∇ log p̃) and a previous sample xt−1 ∈ RD in the
Markov chain; and outputs another sample xt ∈ RD.
Once the Markov chain has converged, these samples
are theoretically guaranteed to marginally come from the
density p?, albeit with temporal correlation. If the previ-
ous sample was drawn exactly, xt−1 ∼ p?, then xt ∼ p?
exactly as well. This is a result of detailed balance.

By analogy, optimization algorithms take an objective
function f ∈ RD → R (and possibly its gradient ∇f )
as a black box and produce points xt ∈ RD that succes-
sively minimize f as much as possible. Just as COCO
provides its benchmark objective functions f as a black
box to the optimizers and keeps hidden the true optimum,
our benchmark provides the unnormalized density p̃ as a
black box to the samplers. Our benchmark keeps hidden
the parameterization of p̃ needed to efficiently take iid
samples from p?.

2.1 TRADITIONAL MCMC DIAGNOSTICS

Given that we have a ground-truth to evaluate the per-
formance of the various samplers, we can also bench-
mark the diagnostics by seeing how predictive they are
of actual performance. In particular, we consider three
diagnostics in this paper: ESS, Gelman-Rubin (GR),
and Geweke. ESS aims to estimate how many iid sam-
ples have the same estimation performance as the cor-
related samples found in the MCMC chain. Gelman-
Rubin [Gelman and Rubin, 1992] and Geweke [Geweke,
1992] more closely follow a test statistic paradigm than
an estimation one. Gelman-Rubin compares the variance
within a single chain to variance between chains (inde-
pendent restarts). This quantity should be close to one

for well-mixing chains and can be very large for poorly
performing chains. The Geweke diagnostic uses a single
chain and compares the variance between chunks.

The ESS diagnostic is basically a rescaling of the ex-
pected square error (i.e., MSE) on estimating the mean
in a single dimension (marginal) of x. ESS is based on
the notion that for the marginal xd:

Ep? [(µ̂d − µd)2] = Varp? [µ̂d − µd] + Ep? [µ̂d − µd]2

= Varp? [xd]/N , d ∈ 1:D , (1)
µ̂ := 1

N

∑N
i=1 xi , µ := Ep? [x] , (2)

which utilizes that µ̂d is an unbiased estimate of µd. We
are careful to distinguish expectations and variances with
respect to p?, where x is iid, from q, where the samples
are correlated and drawn from an MCMC method. Nat-
urally, by re-arranging (1), the effective sample size for
non-iid samples is:

ESS :=
Varq[xd]

Eq[(µ̂d − µd)2]
∈ R+ . (3)

Unlike (1), this can be estimated without ground-truth
samples from p?. However, the difficult denominator
term is typically estimated using the empirical linear
auto-correlation of the Markov chain. This linearity as-
sumption is obviously a potential source of error in the
ESS. The fixation in estimating the accuracy of the mean
µ̂ is also a weakness. In Section 4.6, we look at the
real effective sample size by comparing estimates with
the ground-truth samples. It also allows us to look at
measures other than simply the fidelity in matching the
means (µ̂−µ), such as variance or shape of the marginals.

3 METHODOLOGY

Our benchmark system follows a six phase approach,
which we explain at a high level in this section. In Sec-
tion 4, we provide low-level specifics. A graphical sum-
mary of this section is provided in Figure 1.



Figure 2: Graphical depiction of Figure 1 on a particular example. We begin with a real posterior from a real problem on the left,
which is sampled via a Markov Chain to get samples in phase 1. These are fit to get a similar surrogate posterior in phase 2. MCMC
samplers are run on this phase 2 density, but exact samples can also be taken for comparison. Note that the exact posterior, and the
real data that produced it, are not used for comparing the exact samples and the MCMC samples in phase 4. The phase 2 models
are used where toy examples are often used; although it is not the original posterior, it is a far-reaching improvement.

In phase 0, we create a “corpus” of data sets that we refer
to as a “data set of data sets.” This is meant to create a
realistic sample of problems that a practitioner may en-
counter “in the wild.” Such an approach was also taken
in the AutoML competition [Guyon et al., 2015] and the
automated statistician project [Lloyd et al., 2014]. Our
approach can be thought of as a form of meta-learning.

In phase 1, we use a model zoo to simulate a variety of
(Bayesian) models that a practitioner might attempt to
apply to a real problem. There are models for regres-
sion and classification. Each model/data set pair results
in a posterior over a parameter space, which varies in di-
mensionality depending on the problem. Except in very
simple cases (e.g., linear regression), we are not able to
obtain samples from these posteriors exactly. We use
NUTS, the default sampler in probabilistic programming
languages (PyMC3 [Salvatier et al., 2016] and Stan [Car-
penter et al., 2016]), because it is generally considered to
be a good off-the-shelf sampler—especially when paired
with the intelligent initialization and automatic tuning
found in these systems. Therefore, by running multiple
long chains of NUTS (3–5 chains for 30 minutes each)
on the posteriors, we obtain a sufficient approximation
and representation for phase 2.

In phase 2, we run various density estimation mod-
els to generate benchmark example distributions on the
Markov chains from phase 1. We run a separate training
procedure on each model/data set pair. These benchmark
example distributions serve as surrogates for the real pos-
teriors found in phase 1. Note that the goal is not to repli-
cate the posteriors from phase 1 exactly, but to generate
example distributions that are qualitatively similar to the
real posteriors in phase 1.

This gives us example distributions that are more realistic
than the usual hand-crafted toy problems. Nonetheless,
we train multiple models and take the one with the high-
est held-out likelihood on the last 20% of the Markov
chain found in phase 1. We use held-out likelihood be-
cause it is the most widely accepted generic method of
verifying model fidelity. Model checking diagnostics are
also run to verify the similarity between the benchmark
example distributions (surrogates) and their correspond-
ing Markov chains from the real posteriors (originals).

When selecting models for benchmark example distri-
butions in phase 2, we have the following requirements:
1) The models are flexible enough to closely fit the pos-
teriors found in phase 1, 2) They can serve as a black
box, providing an unnormalized density p̃ (and its gradi-
ent) when queried at an arbitrary point x, and 3) We can
efficiently sample (ground-truth) from them given their
parameters (which are hidden from the samplers).

In phase 3, we benchmark a collection of samplers. If
someone invents and provides a new sampling algorithm,
it is added in phase 3. Phases 0–2 remain fixed as new
samplers are submitted to be benchmarked. Each sam-
pler to be benchmarked is run on each of the benchmark
example distributions for multiple chains. Each chain is
allowed to run for a fixed period of time. The samples
from the Markov chains are saved as the phase 3 output.

In phase 4, we take a large number (e.g., ∼105) of exact
iid samples from the benchmark example distributions
as a ground-truth. The square loss between point esti-
mates (e.g., µ̂d or σ̂2

d) taken from the Markov chains from
phase 3 and the point estimates from the exact chains are
aggregated. We also compute and store the MCMC di-
agnostics for each chain.



In phase 5, we aggregate the performance results by
looking at the real effective sample size as derived from
the square errors in point estimation. We also define
transformations of the real effective sample size, which
we will refer to as efficiency, normalized effective sam-
ple size, and effective sample size deviation. In addi-
tion, we perform a meta-analysis using Gaussian process
(GP) [Rasmussen and Williams, 2006] regression to pre-
dict the real effective sample size given the MCMC di-
agnostics. This will be useful to practitioners aiming to
quantify their confidence in an MCMC-based estimate
using the diagnostics available.

We present an example posterior following this pipeline
in Figure 2. Note that after the explicit model is fit in
phase 2, the data that produced the original posterior is
completely irrelevant for the rest of the process. Only
the surrogate model is used for benchmarking.

4 ADDITIONAL DETAILS

In this section we present additional details for the con-
struction of each phase.

4.1 PHASE 0: COLLECT DATA SETS

Phase 0 involved downloading 2,200 data sets from
openml.org to form our data set of data sets. We con-
sidered other sources, such as the classic UCI repository,
mldata.org, and Kaggle, but settled on OpenML be-
cause it had the most standardized format and meta-data.
Such systems are necessary for automated processing.

The data sets were diverse in that they varied in dimen-
sion from 1 to 61,359, sample size from 5 to 7,619,400,
and the number of output classes (for classification) from
binary to 100.

After downloading, we subjected each data set to some
preprocessing to simulate the diverse set of practices a
practitioner might follow. Each data set was randomly
preprocessed in one of three ways: standardization, ro-
bust standardization (using medians and interquartile
ranges), or whitening. Categorical variables were rep-
resented with one-hot encodings.

4.2 PHASE 1: SAMPLE THE MODEL ZOO

For the model zoo, we used all of the standard mod-
els (regression and classification) typically used with
PyMC3. This includes generalized linear models
(GLMs) such as logistic regression, but also atypical
GLMs such as robust linear regression (linear regres-
sion with Student’s-t noise). In addition to models that
are linear in the feature space, we included models that

are linear in a second order transformation of the feature
space. We included Gaussian processes with unknown
hyper-parameters (e.g., MCMC sampling was done on
the unknown hyper-parameters). Bayesian neural net-
works were also included.

To keep computation time reasonable, we limited the
sample size for expensive models (e.g., GPs), and placed
some limits on input dimensionality. Where dimension-
ality needed to be reduced we used PCA [Jolliffe, 1986],
as that is the most frequently used method in practice to
reduce dimensionality.

4.3 PHASE 2: FIT FLEXIBLE SURROGATES

There are three varieties of models that satisfy the three
requirements (flexibility, tractable density, and fast ex-
act sampling) for benchmark example densities: mixture
models, RNADE [Uria et al., 2013], and Real NVP [Dinh
et al., 2016]. In each example, we pick the model with
the best held-out likelihood on the last 20% of the chain.

For mixture models, we considered mixture of Gaussians
(MoG) with expectation-maximization (EM) [Dempster
et al., 1977] and variational MoG. Note that, for simplic-
ity, these models are not themselves fit using MCMC.
The Bayesian Occam’s razor effect [Jefferys and Berger,
1992] allowed us to simply fix the number of mixture
components to 25 in variational MoG. We used five-fold
cross-validation to select the number of components in
EM MoG. There is no consistent winner between these
models; the chosen model is example dependent.

We also tuned the RNADE learning rate and hyper-
parameters based on pilot runs. Surprisingly, the mixture
models often, but not always, outperformed RNADE on
the held-out likelihood. Real NVP based models strug-
gled to achieve competitive test set scores.

These models behave better numerically when trained on
standardized data. Care is taken to reverse this standard-
ization in phase 3, so the samplers are forced to attempt
to sample from the posterior in its original scale.

4.4 PHASE 3: RUN THE SAMPLERS

Phase 3 forms the real “meat” of the benchmark. This is
where candidate sampling algorithms are actually run on
the benchmark example densities. The list of sampling
algorithms is not intended to be exhaustive but rather
demonstrate the utility of the benchmark system.

Whether originally designed this way or not, nearly all
respected MCMC procedures proceed by proposing a
new point using a proposal distribution. The new point
is then accepted or rejected using a Metropolis-Hastings
step. Therefore, the difference between samplers is based



upon their proposal distributions. We provide a preview
of the proposals used in Section 5.

Until recently, the most widely used MCMC procedure
was random walk Metropolis, which uses a Gaussian
random walk proposal p(xt|xt−1) = N (xt|xt−1,Σ),
where Σ is typically diagonal. Modern packages such as
PyMC3 allow for automatic tuning of the proposal width
Σ, which is critical to achieve good performance. We
also consider Cauchy and Laplace distributed proposals.

We include Hamiltonian Monte Carlo (HMC) [Duane
et al., 1987] methods, which also utilize gradient infor-
mation to more efficiently “explore” the space. Recently,
the No-U-Turn-Sampler (NUTS) [Hoffman and Gelman,
2014] was introduced as an extension of HMC that au-
tomatically adapts some of its tuning parameters in or-
der to attempt high off-the-shelf performance. We in-
clude an alternate auxiliary variable method known as
slice sampling [Neal, 2003], which we apply in a coordi-
nate Gibbs-like fashion.

We also alternate different proposals to form compound
proposals. For instance, we consider mixing expensive
efficient proposals like NUTS with cheap inefficient pro-
posals like random walk Metropolis.

Finally, we consider an unconventional sampler known
as emcee [Foreman-Mackey et al., 2013], which is pop-
ular in fields such as astrophysics. However, it has not
gained much use in machine learning. It works by run-
ning multiple “walkers” to explore the space in parallel.
Emcee is very fast and can be parallelized, but its efficacy
in higher dimensions is somewhat controversial.

Initialization The accuracy of MCMC based estimates
are a function of two factors: the burn-in time and the
mixing time. Burn-in time, or time until convergence,
is how many steps k are required before p(xk) ≈ p?

if x0 ∼ p0, where p0 is some distribution to initialize
the chain. The mixing time, or memory length, is how
long it takes to get an independent sample once a chain
has converged: how many steps k are required before
MI(xk;x0) ≈ 0 if x0 ∼ p?. The burn-in time is crucially
dependent on the initialization while the mixing time is
purely a function of the proposal.

In order to evaluate these two effects separately, we of-
fer two options for initialization: 1) initialize the chain
from an exact sample (because we can do that with the
benchmark density examples), or 2) initialize from an
ADVI [Kucukelbir et al., 2017] fit to the example density.
Additionally, most methods benefit from a prior guess at
the relative scale of the variables before tuning. We can
use the resulting scales from ADVI for this purpose as
well. This allows us to separate the effects of initializa-

tion and mixing. We use the PyMC3 defaults for these
tuning parameters as that is what a practitioner is most
likely to use in practice. However, alternate schemes can
certainly be used within the benchmark.

4.5 PHASE 4: LOG PERFORMANCE

Each sampler is run for a fixed time limit of 15 minutes
of CPU time. We log the performance of the chain along
a uniform grid of 100 points in time (i.e., every 9s) to
monitor real convergence over time. Fair evaluation re-
quires evaluating each sampler with a fixed time budget
rather than a fixed number of samples. We expect sam-
plers such as NUTS to be very efficient and high per-
forming on a per-sample basis. However, they require
significantly more computation (including gradients) per
sample than simpler methods. Therefore, their compari-
son is not as obvious a-priori. We also log the traditional
MCMC diagnostics of each chain.

4.6 PHASE 5: ANALYZE

To summarize the performance of a Markov chain in
comparison with ground-truth samples we need to define
some evaluation quantities. First, recall that we have K
Markov chains {x1:Nk

}Kk=1 for each example p? ∈ M
and sampler S ∈ S.

Each sampler is evaluated on each example separately
and can be scored relative to a variety of estimators
θ̂(x1:N ). Analogous to (3), we can score the samples
of a Markov chain by the closeness of its mean on a
dimension d to the ground-truth samples: θ = E[xd]
and θ̂(x1:N ) = 1

N

∑N
i=1[xi]d. We can also consider how

close the variance of the Markov chain samples match
the ground-truth samples: θ = Var[xd]. This flexibility
is a generalization of ESS. As in (3), we assume the esti-
mators θ̂ are unbiased, and just as with the sample mean
µ̂: Varp? [θ̂] ∝ N−1. Furthermore, we assume here that
each dimension of the samples x has been standardized
using the variance of the ground-truth samples, which
makes the estimation errors on each dimension d compa-
rable even when their units differ.

Real ESS In analogy to the ESS diagnostic we define
the real ESS (RESS) based on the estimation error rela-
tive to the ground-truth:

RESS :=
R

mean sq. error
=

RK∑K
k=1(θ̂k − θ)2

∈ R+ ,

R := Ep? [(θ̂ − θ)2] = NVarp? [θ̂] ∈ R+ , (4)

where K is the number of independent MCMC chains
and R is a constant to make RESS comparable across
different types of estimators θ̂. It also ensures that RESS



Figure 3: Performance summaries: The box plots demonstrate the distribution on NESS (left) and efficiency (center) conditional
on the sampler achieving an RESS of at least 12 to only show the mode where the samplers don’t completely fail. We also show a
calibration plot to assess if ESS is a good predictor of efficiency with the diagonal in dashed black. Cauchy and Laplace refer to
random walk Metropolis with these corresponding proposals.

tends towards N when the samples are iid. We do not
need the Var[x] term from (3) because the samples have
been standardized using the ground-truth samples’ scale.
If the estimator θ in (4) is the mean µd, then R = 1.
In this case, the RESS measures the exact same expecta-
tion (expected square loss) as ESS attempts to estimate.
Therefore, if the chain is sufficiently long for accurate
estimation of ESS, the two metrics should converge. For
variance σ2

d estimation, R = 2 in large N .

We also consider the Kolmogorov-Smirnov (KS) dis-
tance between the samples and the ground-truth samples
as a metric.1 This also results in a separate metric on
each marginal. To match the N−1 convergence assump-
tion of (4) we use

∑K
k=1 KSd(xk

1:N , p
?)2 as the denom-

inator in (4), where KSd signifies the KS distance on
the marginal xd. By numerically integrating (4) with the
Kolmogorov distribution, one finds that R = 0.822.

RESS is also general in that we can sensibly combine
the errors across dimensions by evaluating multivariate
estimators θ̂ ∈ RD:

RESS =
RKD∑K

k=1 ||θ̂k − θ||22
∈ R+ . (5)

This assumes that θ̂ is an unbiased estimator of θ. This,
like (4), tends towards N for iid samples.

Because p? may be complex, yet cheap to take many
(e.g., 104) iid samples from, we use the ground-truth
samples from p? to estimate θ for use in (4). The error
in estimating θ is negligible compared to θ̂k − θ. Like-
wise, for the KS metric we use a two-sample KS distance
between the MCMC samples and ground-truth from p?.

1Recall that the KS distance between samples x1:N and a
CDF F is given by maxa |F̂ (a) − F (a)| where F̂ is the em-
pirical CDF on x.

Efficiency Likewise, it is useful for practitioners to get
a ballpark estimate of the efficiency of a sampler:

EFF :=
RESS
N

∈ R+ . (6)

If the number of samples per chain N differs across
chains, it is more appropriate to use the harmonic mean
of N than the mean; this ensures that EFF tends towards
unity when samples are drawn iid from p?. Although
EFF is useful, RESS is more appropriate for comparisons
between samplers. Thinning can increase EFF without
increasing estimation accuracy.

Normalization When looking at the distribution of
sampler performance across examples it is more appro-
priate to look at normalized ESS (NESS):

NESS :=
RESS

medianS∈S NS
∈ R+ , (7)

where the median is taken across different samplers on
the same example. The RESS, when evaluating with
a fixed time limit, varies widely across examples. The
computational cost of each sample varies greatly be-
tween benchmark examples.

ESS Deviation In order to evaluate the diagnostics in a
meta-analysis, we define the ESS deviation (ESSD) met-
ric, which gives a sense on whether the ESS is biased or
a generally poor predictor of estimation accuracy. The
ESSD is defined as:

ESSD := Φ−1
(
χ2
KCDF

(
ESS

RESS
K

))
∈ R , (8)

where Φ−1(·) is the inverse CDF of the standard normal.
ESSD has a standard normal distribution (under CLT as-
sumptions) if the estimates are derived ESS iid samples;



Table 1: Quantitative summary on sampler performance. We
show the NESS on various estimation tasks (e.g., µ vs σ2) av-
eraged over all examples on the left. The right shows the prob-
ability of success, i.e., how often RESS ≥ 12. The first three
rows are different proposals for random walk Metropolis. Mix
is a compound proposal of NUTS and Gauss. For both NESS
and prob. success, higher is better.

NESS prob. success

sampler KS µ σ2 KS µ σ2

Cauchy .004 .004 .003 .604 .582 .441
Laplace .007 .004 .006 .566 .547 .439
Gauss .007 .005 .007 .585 .565 .436

HMC .061 .151 .106 .580 .604 .531
NUTS .068 .375 .115 .875 .783 .711
emcee .016 .038 .025 .389 .489 .379
mix .067 .164 .113 .911 .825 .715
slice .044 .078 .070 .745 .703 .643

ESSD > 0 indicates the estimation is higher error than
expected from ESS. More precisely, if θ̂ is derived from
m iid samples then,

θ̂
d→ N (θ,

√
R/m) =⇒

√
m/R(θ̂ − θ) ∼ N (0, 1)

=⇒
K∑

k=1

m

R
(θ̂ − θ)2 =

m

RESS
K ∼ χ2

K , (9)

which implies that ESSD ∼ N (0, 1). Note that (8) is
merely a transformation to put the RESS-vs-ESS per-
formance ratio on a standardized scale, which does not
cause issues if the central limit theorem (CLT) assump-
tion in (9) does not hold exactly.

Meta-analysis In our meta-analysis, we perform a
Gaussian process regression to predict ESSD from
ESS ∈ R+, Gelman-Rubin GR ∈ [1,∞), and Geweke
G ∈ R. We also include the dimension D of the sam-
ple space x. Recall that if ESS is a perfect predictor of
MCMC performance, then ESSD will resemble white-
noise (i.e., iid standard normal). Given that the scales of
diagnostics vary widely, we use log ESS, log |GR − 1|,
and log |G| to put them all on a sensible scale.

To assess the regression, we test on a held-out 20% test
set of unseen examples (i.e., we do random split on a
per example basis) to see if we can predict the ESSD on
new unseen benchmark examples from the MCMC di-
agnostics. We compare performance of the regression
to linear regression and an iid normal to see if the fea-
tures provide any predictive gain. Furthermore, we as-
sess the predictive value of each feature by performing
the regression after removing each feature and studying
the performance delta.

Table 2: Results of meta-analysis. We show the MSE and
log-loss of different models attempting to predict the ESSD
for mean estimation on a held-out 20% of unseen examples.
The log-loss has the advantage that it is parameterization in-
variant and provides the same results in ESSD or ESS space.
The GP- rows show the results of GP regression without the
feature named. GP shows the performance of the GP using all
features. We assess the statistical significance of the delta to
GP using a pairwise t-test in p.

method MSE p NLL (nats) p

GP 2.8588 – 0 –
GP-D 2.779(70) 0.0252 -0.0096(97) 0.0504
GP-ESS 3.16(23) 0.0097 0.045(31) 0.0034
GP-G 2.858(1) 0.0198 -0.0001(1) 0.0016
GP-GR 3.17(20) 0.0017 0.045(25) 0.0005
iid 3.30(28) 0.0016 0.067(36) 0.0003
linear 3.03(19) 0.0726 0.027(25) 0.0350

5 RESULTS

We first show an overall summary of final performance
using NESS at the end of 15 minutes per chain, with
K = 8 chains in Table 1. The box plots in Figure 3
provide a sense of the variation. We found the NESS of
the samplers to generally be bimodal: either the samples
achieve an efficiency above 1%, or they completely fail
with an RESS < 1. Therefore, in Figure 3 we show the
box plots after excluding the complete failures. Inspired
by the rule of N = 12 from MacKay [2003], we use an
RESS of 12 to threshold failure-vs-success.

Table 1 also provides an overall success probability for
each method. Emcee shows the most bimodal perfor-
mance: while sometimes achieving a high NESS com-
petitive with other advanced methods, it has the lowest
success probability. Emcee also has the lowest efficiency
of any methods except random walk Metropolis, but em-
cee makes up for its lack of efficiency with higher per
sample speed.

Other results from Figure 3 are unsurprising: NUTS and
HMC are the highest performers, despite their higher
per sample cost. Slice sampling also makes a “strong
showing” with its performance more competitive in the
lower dimensional examples. Random walk Metropo-
lis methods generally have an efficiency in the 0.1% to
1% range, while slice sampling and HMC based meth-
ods have efficiencies in the ballpark of 2% to 40%, with
NUTS showing the highest performance. Emcee seems
to vary widely. Note that although the compound pro-
posal (mix) does not substantially increase NESS (over
NUTS), when the methods succeed Figure 3, mix in-
creases the chance of success (Table 1).



Figure 4: Calibration plots of the ESS diagnostic against real ESS with θ̂ being the mean (left), variance (center), or KS (right).
We show the diagonal for a perfect match in dashed black. In dotted black we show the 95% region for what the observed real ESS
would be if the estimates θ̂ were derived from ESS iid samples. The RESS is below the lower error bar 55% of the time for mean
estimation, 68% for variance, and 83% for KS; these would be 2.5% if a chain with ESS = m were functionally equivalent to m
iid samples.

We show calibration plots of ESS in Figure 4 and effi-
ciency in Figure 3. The ESS diagnostic is clearly best
calibrated for mean estimation, which is not surprising
given it was derived for that purpose. However, the ESS
diagnostic clearly has an optimistic bias. These results
provide caution of ESS.

Finally, we present the results of the meta-analysis to
predict ESS deviation. We report the predictive value
provided by various features in Table 2 by showing how
much performance changes when they are removed. ESS
appears very predictive in Figure 4, but the relationship
has already largely been accounted for with ESSD (8). In
log-loss, the remaining predictive utility of ESS equals
that of Gelman-Rubin. Geweke and the dimension D
show no predictive utility. Predictive performance of
ESSD goes up when they are removed, which indicates
they are of little utility when assessing the validity of a
Markov chain. One expects sampling to be more diffi-
cult in higher dimensionsD, however this slower mixing
may already be evident from ESS and Gelman-Rubin.

6 CONCLUSIONS

We have presented a general system to benchmark the
real performance of MCMC samplers on realistic prob-
lems. The data-driven nature of the benchmark makes
it a highly novel development. This benchmark is in-
tended to become a general service that will become as
widespread as COCO or MLcomp. Careful attention has
been paid to fairly and sensibly derive metrics that com-
pare samplers. This benchmark will evolve with time
by including ever more models in phase 1 and more ad-
vanced example densities in phase 2. New and more so-
phisticated samplers can easily be added in phase 3.
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