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Appendix

In Appendix A, we give a brief overview of semi-
parametric statistical inference, which provides context
for some of our subsequent results. Appendix B con-
tains deferred proofs of our results. In Appendix C, we
review the statistical modeling assumptions we made in
our data analysis, provide figures which use decision tree
classifiers to visualize policies we learned, and describe
additional experimental results on policies that optimize
effects not mediated by only adherence.

A: Statistical Inference In Semi-Parametric Models

Let Z1, . . . , Zn, be iid samples from a general class
of probability densities p(Z; θ) parameterized by θT =

(βT , ηT ), where β ∈ Rq denotes the set of target param-
eters, and η denotes a possibly infinite dimensional set
of nuisance parameters. This type of model is termed
semi-parametric, since it has both a parametric and a
non-parametric component. The goal of statistical infer-
ence in semi-parametric models is to find “the best” esti-
mator of β in the model, denoted by β̂. Regular asymp-
totically linear (RAL) estimators are considered in this
setting, which are estimators of the form

√
n(β̂ − β) = 1√

n

n∑
i=1

φ(Zi) + op(1),

where φ ∈ Rq with mean zero and finite variance, op(1)

denotes a term that approaches to zero in probability, and
φ(Zi) is the influence function (IF) of the ith observation
for the parameter vector β. RAL estimators are consis-
tent and asymptotically normal (CAN), with the variance
of the estimator given by its IF:

√
n(β̂ − β) D−→ N (0, φφT ).

Thus, there is a bijective correspondence between RAL
estimators and IFs. In fact, IFs provide a geometric

view of the behavior of RAL estimators. Consider a
Hilbert space H of all mean-zero q−dimensional func-
tions, equipped with an inner product, and define the
inner product of two arbitrary elements of the Hilbert
space, h1 and h2, to be equal to E[hT1 h2]. Define a
parametric submodel to be a subset of densities in the
semi-parametric model parameterized by θTγ = (βT , γT ),
where γT ∈ Rr, such that the subset contains the density
p(Z; θ0) in the semi-parametric model evaluated at the true pa-
rameter values θ0. The nuisance tangent space Λ in the semi-
parametric model is defined to be the mean square closure of el-
ements of the nuisance tangent spaces Λγ = {Bq×rSη(Z; θ)}
of every parametric submodel. The space Λ is important be-
cause it is known all influence functions lie in the orthogonal
complement Λ⊥ of Λ with respect to H. For this reason, re-
covering Λ⊥ is often the first step for constructing RAL esti-
mators in semi-parametric models. Out of all IFs in Λ⊥ there
exists a unique one which lies in the tangent space, and which
yields the most efficient RAL estimator by recovering the semi-
parametric efficiency bound, see [5] for details.

B: Proofs

Here we give proofs of all claims in the main body of the paper.

Theorem 1 Fix a causal model given by a complete DAG on
variablesW0, A1,M1,W1, . . . , AK ,MK ,WK , listed in topo-
logical order, with a hidden common cause U of W0, . . . ,WK .
Let α be all directed edges out of A1, . . . , AK , and fα which
sets all edges (AiMj)→ to ai, and all other edges in α to a
policy fAi(Hi). In this model, p(WK(fα)) is identified as

∑
HK,MK

p(W0)
K∏
i=1

p(Mi|ā′i,W i−1,Mi−1)p(Wi|Mi−1,W i−1, fAi (Hi))

(1)

Proof: The causal model we describe is simply
Pearl’s functional model corresponding to the K stage ver-
sion of the DAG in Fig. 2 (a). It is well known
that in this model, given standard positivity assumptions,
p(W0, . . . ,WK ,M1, . . . ,Mk|do(a1, . . . , aK)) is identified
by the g-formula (2):

p(W0)
K∏
i=1

p(Mi|ā′i,W i−1,Mi−1)p(Wi|Mi−1,W i−1, āi).



Since the recanting district criterion [3] does not hold, we have
that p({W0, . . . ,WK ,M1, . . . ,Mk}(a′α)) is identified by

p(W0)
K∏
i=1

p(Mi|ā′i,W i−1,Mi−1)p(Wi|Mi−1,W i−1, āi).

where α is all outgoing edges from A, and a′ sets all edges of
the form (AiMj) to a′i, and all edges of the form (AiWj) to
ai.

Every fAi(Hi) simply chooses ai based onHi, which is a sub-
set of outcome variables in our distribution. Since the iden-
tifiability statement above holds regardless of how a1, . . . , ai
are chosen, this implies p({W0, . . . ,WK ,M1, . . . ,Mk}(fα)),
where fα is given in the Theorem statement is identified as

∑
HK,MK

p(W0)
K∏
i=1

p(Mi|ā′i,W i−1,Mi−1)p(Wi|Mi−1,W i−1, fAi (Hi))

(2)

which implies our result by a simple marginalization. �

Before proving Theorem 5, we show the following claim.

Theorem 1 Within the model corresponding to Fig. 1 (a), the
unique efficient influence function U(β) of β = E[Y (A =
f(W ),M(a′))] is given by

C̃

π̃(W )

f(M |W,A = a′)

f(M |W, f(W ))

{
Y − E[Y |f(W ),M,W ]

}
+

I(A = a′)

πa′ (W )

{
E[Y |f(W ),M,W ]−

∑
M

E[Y |f(W ),M,W ]

p(M |W,A = a
′
)
}

+
∑
M

E[Y |f(W ),M,W ]p(M |W,A = a
′
)− β.

Proof: This proof follows as an extension of similar results on
the influence function of the mediation functional, found in [4].

The model in Fig. 1 (a) imposes no restrictions on the observed
data, and so is non-parametric saturated. As a result, the in-
fluence function U(β) for any β is a unique solution to the
following integral equation

∂

∂t
β(Ft)

∣∣∣∣
t=0

= E[S(W,A,M, Y )φ(β)],

where Ft is the distribution function corresponding to a one di-
mensional regular parametric submodel of the non-parametric
model on W,A,M, Y , indexed by a single parameter t, and S
is the score. ∂β(Ft)/∂t is equal to

∂

∂t

∑
w,m

E[Y | a = fA(w),m,w]p(m | a′, w)p(w) =

∑
w,m,y

y
∂

∂t
(p(y | a = fA(w),m,w)p(m | a′, w)p(w)) =

∑
w,m,y

yS(y | a = fA(w),m,w)p(y | a = fA(w),m,w)×

p(m | a′, w)p(w)

+
∑
w,m

E[Y | a = fA(w),m,w]S(m | a′, w)p(m | a′, w)p(w)

+
∑
w,m

E[Y | a = fA(w),m,w]p(m | a′, w)S(w)p(w),

where S(.) represent appropriate conditional and marginal
scores. By linearity of derivatives, we can solve this equation,
term by term. We have, for the first term:

∑
w,m,y

yS(y | a = fA(w),m,w)p(y | a = fA(w),m,w)×

p(m | a′, w)p(w)

=
∑

w,m,y,a′′

I(a′′ = fA(w))p(m | a′, w)

p(a′′ = fA(w) | w)p(m | a′′, w)

yS(y | a′′,m,w)p(y | a′′,m,w)p(m | a′′, w)×

p(a
′′

= fA(w) | w)p(w)

=
∑

w,m,y,a′′

I(a′′ = fA(w))p(m | a′, w)

p(a′′ | w)p(m | a′′, w)

{y − E[Y | a′′,m,w]}S(y, a
′′
,m,w)p(y, a

′′
,m,w)

= E
[ I(A = fA(W ))p(M | a′,W )

p(A = fA(W ) | W )p(M | A,W )
×

{Y − E[Y | A,M,W ]}S(Y,A,M,W )
]
.

So the first term contribution to U(β) is
I(A=fA(W ))p(M|a′,W )
p(A=fA(W )|W )p(M|a,W )

{Y − E[Y | a,M,W ]}.

For the second term, we have:

∑
w,m

E[Y | a = fA(w),m,w]S(m | a′, w)×

p(m | a′, w)p(w)

=
∑

w,m,a′′

I(a′′ = a′)

p(a′′ | w)
E[Y | a = fA(w),m,w]×

S(m | a′′, w)p(m, a
′′
, w)

=
∑

w,m,a′′

I(a′′ = a′)

p(a′′ | w)

{
E[Y | a = fA(w),m,w]

−
∑
m

E[Y | a = fA(w),m,w]p(m | a′′, w)
}
×

S(m, a
′′
, w)p(m, a

′′
, w)

=
∑

w,m,a′′,y

I(a′′ = a′)

p(a′′ | w)

{
E[Y | a = fA(w),m,w]

−
∑
m

E[Y | a = fA(w),m,w]p(m | a′′, w)
}
×

S(y,m, a
′′
, w)p(y,m, a

′′
, w)

= E
[
S(Y,M,A,W )

I(A = a′)

p(a′ | W )
×

{
E[Y |a = fA(W ),M,W ]− Eq [Y |a, a′,W ]

} ]
.

where Eq[Y | a = fA(W ), a′,W ] =
∑
m E[Y | a =

fA(W ),m,W ]p(m | a′,W ).

So the second term contribution to U(β) is

I(A = a′)

p(a′ | W )

{
E[Y | a = fA(W ),M,W ]

−Eq [Y | a = fA(W ), a
′
,W ]

}
.



For the third term, we have:

∑
w,m

E[Y | a,m,w]p(m | a′, w)S(w)p(w)

=
∑
w

{∑
m

E[Y | a,m,w]p(m | a′, w)

}
S(w)p(w)

=
∑
w

{∑
m

E[Y | a,m,w]p(m | a′, w)

−
∑
w,m

E[Y | a,m,w]p(m | a′, w)p(w)

S(w)p(w)

=
∑

w,a′′,m,y

{∑
m

E[Y | a,m,w]p(m | a′, w)

−
∑
w,m

E[Y | a,m,w]p(m | a′, w)p(w)

×
S(y,m, a

′′
, w)p(y,m, a

′′
, w)

= E
[∑
m

E[Y | a = fA(W ),m,W ]p(m | a′,W )− β
]

So the third term contribution to U(β) is Eq[Y | a =
fA(W ), a′,W ]− β.

This establishes our result. �

Theorem 2 Fix a causal model given by a complete DAG
on variables V ≡ {W0, A1,M1,W1, . . . , AK ,MK ,WK},
listed in topological order, with a hidden common cause U of
W0, . . . ,WK . Let α be all directed edges present in the DAG
out ofA1, . . . , AK and intoM1, . . .MK , and aα which sets all
edges (AiMj)→ to a′i. In this model, p(V(aα)) is identified as

p(V(aα)) ≡ p̃(W̃0, Ã1, M̃1, W̃1, . . . , W̃K , ÃK , M̃K) =

p(W0)

K∏
i=1

p(Wi|Mi, Ai, Hi)p(Ai|Hi)p(Mi|a′i, Hi \A)

Proof: This is a corollary of Theorem 1, where we define each
fAi(Hi) to be the observed conditional distribution p(Ai|Hi).
�

Theorem 3 Given that each Q̃i, i = 1, . . . ,K is specified
correctly, the optimal treatment at stage i is equal to

f∗Ai(Hi) = arg max
ai

Q̃i(Hi, ai; γi).

Proof: This follows by the standard backwards induction argu-
ment giving the relationship between Q-functions and optimal
policies, applied to p̃ and Q̃i, and the definition of expected re-
sponse corresponding to path-specific policies we have chosen.

The optimal policy set f∗A is defined as

arg max
{f∗
Ai
∈f∗

A
}
E[WK(fα)]

= arg max
{f∗
Ai
∈f∗

A
}

∫
WK

K∏
i=1

p(Wi|Ai = f
∗
Ai

(Hi), Hi,Mi)

p(W0)p(Mi|a′i, Hi)dV

= arg max
a1

∫
p(W1|a1, H1,M1)p(M1|a′1, H1)dM1,W1

. . .

arg max
aK−1

∫
p(WK−1|aK−1, HK−1,MK−1)

p(MK−1|a′K−1, HK−1)dMK−1,WK−1

arg max
aK

∫
WKp(WK |aK , HK ,MK)

p(MK |a′K , HK)dMK ,WK

It’s immediately clear that the last line above yields Q̃K , and
given that line i+ 1 yields Q̃i+1 assuming ai+1, . . . , aK were
chosen optimally, line i yields Q̃i. �

Theorem 4 Assume models in the set
{Q̃i(H̃i, Ãi; γi), p(Mi|Ai, Hi;φ)|∀i} are correctly specified.
Then the estimation equations

E
[
∂Q̃K

∂γK
{WK − Q̃K(AK , HK ; γK)}wK(HK ; φ̂K)

]
= 0, and

E
[
∂Q̃i

∂γi
{Vi+1(Hi+1)− Q̃i(Hi, Ai; γi)}wi(Hi; φ̂i)

]
= 0,

are consistent for γK and γi, where

wi(Hi; φ̂i) ≡
p(Mi|Ai = a′, Hi; φ̂i)

p(Mi|Ai, Hi; φ̂i)
∀i = 1, . . . K.

Proof: We show this inductively on the decision stage. For
stage K, we have

E
[
∂Q̃K ; γK)

∂γK
{WK − Q̃K(AK , HK ; γK)}wK(HK ; φ̂K)

]

=

∫
∂Q̃K

∂γK
{WK − Q̃K(AK , HK ; γK)}

p(MK |AK = a
′
k, HK)p(HK)dMKdHK

= E
[
∂Q̃K

∂γK
{Ẽ[WK |AK , HK ]− Q̃K(AK , HK ; γK)}

]
,

where Ẽ is the expectation taken with respect to the apprio-
priate conditional distribution derived from p̃. Consistency for
γK then follows by standard results on regression estimators.
Given consistency of the stage i+ 1 regression, we have a con-
sistent estimator for Ṽi+1. This allows us to repeat the consis-
tency argument for Q̃i, as above. �

Theorem 5 The estimator in (17) is consistent and
asymptocally normal (CAN) if the models in the set
{π(W ;ψ), p(M |W,A;φ)} are correctly specified, and the es-
timator in (18) is CAN in the union model, where any two mod-
els in the set {π(W ;ψ),E[Y |A,M,W ; ζ], p(M |W,A;φ)}
are correctly specified.



Proof: This proof follows as an extension of consistency results
derived for the triply robust estimator of the counterfactual ex-
pectation β = E[Y (a,M(a′))] associated with the natural di-
rect effect in [4].

Assume the models in the set {π(W ;ψ), p(M |W,A;φ)} are
correctly specified. Let

g(W ;ψ, φ) ≡ p(M |A = a′,W ;φ)

p(M |A = f(W ),W ;φ)π̃(W ;ψ)

We have

E
[
Y C̃g(W ;ψ, φ)

]
= E

[
E
[
Y C̃g(W ;ψ, φ)

∣∣∣W]]
= E

[
E [Y |W ] C̃g(W ;ψ, φ)

]
.

This is equal to∫
Y p(Y |M,A,W )p(M |A,W )p(A|W )C̃g(A,W )dA, dM, dY

=

∫
Y p(Y |M,A,W )p(M |a′,W )p(A|W )

I(A = f(W ))

π̃(W )
dA, dM, dY

=

∫
Y p(Y |M,A = f(W ),W )p(M |a′,W )dM, dY.

This is precisely β of interest.

The estimator β̂triple has the form

E
[

C̃

π̃(W ;ψ)

f(M |W,A = a′; φ̂)

f(M |W, f(W ); φ̂)

{
Y − E[Y |f(W ),M,W ; ζ̂]

}
+

I(A = a′)

π′a(W ; ψ̂)

{
E[Y |f(W ),M,W ; ζ̂]−

∑
M

E[Y |f(W ),M,W ; ζ̂].

p(M |W,A = a
′
; ζ̂)
}

+
∑
M

E[Y |f(W ),M,W ; ζ̂]p(M |W,A = a
′
; φ̂)

]
,

Assume π̃ was specified incorrectly. The expectation in the
estimator consists of three terms, where the last term is equal
to true β if models for Y and M are correct. For the first term
we have, by iterated expectation,

E
[
C̃g(W ;φ, ψ)

{
Y − E[Y |f(W ),M,W ; ζ̂]

}]
=

E
[
C̃g(W ;φ, ψ)

{
E[Y |A,M,W ]− E[Y |f(W ),M,W ; ζ̂]

}]
=

E
[
C̃g(W ;φ, ψ)

{
E[Y |f(W ),M,W ]− E[Y |f(W ),M,W ; ζ̂]

}]
= 0,

if the Y model is correct. For the second term we have, by
iterated expectation,

E
[
I(A = a′)

π′a(W ; ψ̂)

{
E[Y |f(W ),M,W ; ζ̂]−

∑
M

E[Y |f(W ),M,W ; ζ̂]

p(M |W,A = a
′
; ζ̂)
}]

=

E
[
E
[
I(A = a′)

π′a(W ; ψ̂)

{
E[Y |f(W ),M,W ; ζ̂]−

∑
M

E[Y |f(W ),M,W ; ζ̂]

p(M |W,A = a
′
; ζ̂)
}∣∣∣W,A = a

′
]]

=

E
[
I(A = a′)

π′a(W ; ψ̂)

{
E[E[Y |f(W ),M,W ; ζ̂]|A = a

′
,W ]

−
∑
M

E[Y |f(W ),M,W ; ζ̂]p(M |W,A = a
′
; ζ̂)
}]

= 0

if the models for Y and M are correct.

Assume the model for M was specified incorrectly. The first
term in the estimator is mean zero by above argument, since
the Y model is still correct.

The second and last terms decompose into

E
[
I(A = a′)

π′a(W ; ψ̂)

{
E[E[Y |f(W ),M,W ; ζ̂]|A = a

′
,W ]

]

− E
[
I(A = a′)

π′a(W ; ψ̂)

∑
M

E[Y |f(W ),M,W ; ζ̂]p(M |W,A = a
′
; ζ̂)
}]

+ E
[∑
M

E[Y |f(W ),M,W ; ζ̂]p(M |W,A = a
′
; φ̂)

]

=E
[
I(A = a′)

π′a(W ; ψ̂)

{
E[E[Y |f(W ),M,W ; ζ̂]|A = a

′
,W ]

]

+ E
[∑
M

E[Y |f(W ),M,W ; ζ̂]p(M |W,A = a
′
; ζ̂)

E
[(

1−
I(A = a′)

π′a(W ; ψ̂)

)∣∣∣∣∣W
]]

=

E
[
I(A = a′)

π′a(W ; ψ̂)
E[E[Y |f(W ),M,W ; ζ̂]|A = a

′
,W ]

]

+ E
[∑
M

E[Y |f(W ),M,W ; ζ̂]p(M |W,A = a
′
; ζ̂)

(
1−

π′a(W )

π′a(W ; ψ̂)

)]

=E
[
I(A = a′)

π′a(W ; ψ̂)
E[E[Y |f(W ),M,W ; ζ̂]|A = a

′
,W ]

]

=E
[
E[E[Y |f(W ),M,W ; ζ̂]|A = a

′
,W ]

]
if the models for Y and A are correct. The remainder is pre-
cisely β.

Assume the model for Y was specified incorrectly. The terms
in β̂triple then decompose into

E
[
C̃g(W ;ψ, φ)Y

]
+ E

[( I(A = a)

πa(W ;ψ)
− C̃g(W ;ψ, φ)

)
E[Y |f(W ),M,W ; ζ]

]

+ E
[∑
M

E[Y |f(W ),M,W ; ζ̂]p(M |W,A = a
′
; ζ̂)

E
[(

1−
1− C̃

1− π̃(W ;ψ)

)∣∣∣∣∣W
]]

The last term is mean zero if π̃ is specified correctly. The
second term is equal to

∫
E[Y |f(W ),M,W ; ζ]p(M |A = a

′
,W )p(W )−∫

E[Y |f(W ),M,W ; ζ]p(M |A = a
′
,W )p(W ) = 0

if the A and M models are specified correctly. The first term
is equal to β by the argument above.

Both estimators are special cases of the RAL estimator for β
based on the efficient influence function. As a result, standard
regularity assumptions [2], and properties of maximum likeli-
hood estimators imply both estimators are CAN. �



C: Experiments And Visualizations

C1. Models Used In Data Analysis

We used linear regression with interaction terms between
treatment A2 and history H2 to model the outcome W2:
E[W2|H2, A2,M2;α] = α1(H2, A2,M2) + α2A2H2, and
logistic regression with interaction terms to model all dichoto-
mous variables X with history H and immediate prior treat-
ment A: logit

{
p(X = 1 | H,A;β)

}
= β1H + β2AH for

X ∈ {M1,M2,W1}. We used the same form of linear re-
gression with interaction terms to model Q-functions by ex-
cluding the mediators: Q2(H2, A2; γ2) = γ2

1H2 + γ2
2A2H2

and Q1(H1, A1; γ1) = γ1
1H1 + γ1

2A1H1. The parameters in
all models were estimated by maximizing the likelihood.

For value search and G-estimation, we used log CD4 count at
the end of sixth month as the outcome of interest, denoted by
W1. We used the same form of models, as described above, for
W1, E[W1|H1, A1,M1;α], and all the mediators, and used
logistic regression with no interaction terms to model the treat-
ment assignment: logit

{
p(A1 = 1 | H1;β)

}
= β0 + β1H1.

We modeled the blip function in (19) as γ(A1, H1;ψ) =
ψ1A1 + ψ2A1H1.

C2: Decision Tree Visualization Of Learned Policies

We derived the optimal policies using G-formula, Q-learning,
G-estimation, and value search techniques. The value search
method considered a simple class of policies based on a thresh-
old, described in the main body of the paper. The optimal poli-
cies obtained from the first three methods were more compli-
cated functions of prior history. To aid in interpretability of
these policies, we approximated them by means of decision
tree multi-label classifiers which treated history as a set of fea-
tures, and treatment decision as the class label. The resulting
decision tree classifiers are shown in in Fig. 1, 2, and 3. In
these figures, the label “path policies” corresponds to policies
that optimize the direct chemical effect of the drug where drug
toxicity and adherence behave as if treatment was set to a refer-
ence level. In the following decision trees, the nodes vl and adh
stand for viral load (log scale) and adherence level, repectively.
m00 and m06 denote the measures at month zero (baseline) and
the end of the first six months, and node who denotes the stage
of disease (there is a total of 4 stages, with higher stages de-
noting progressively more severe disease). Since classifiers did
not achieve perfect accuracy, these decisions trees should be
viewed as easy to visualize approximations of the true learned
policies.

Note that in Fig. 1, adherence level is relevant to the overall pol-
icy but is omitted in the path specific one. As mentioned above,
the classification accuracies are not perfect and hence visual-
izations are not necessarily a good representation of the true
policy. That said, finding the path-specific policy not via Ms
corresponds to finding the overall policy in the world shown in
Fig. 2 (b) in the main body. It is true that in this world, ad-
herence at time one, M̃1, influences A2, and as a result it is in
principle possible for adherence at time one to be informative
in an interesting way for the decision at time two. However,
one large source of variability in patient adherence is precisely
due to the treatment we assign, and this source of variability is
removed by construction in the world shown in Fig. 2(b) in the
main body of the paper – the world where everyone adheres as
if on a reference treatment. A low variability variable is cer-

Table 1: Population log CD4 counts under different policies
(under treatment assignments in the observed data, the value is
5.64± 0.01 in the 2-stage and 5.54± 0.01 in the 1-stage prob-
lem). G-formula and Q-learning are used with 2-stage decision
points. Value search and G-estimation are used with 1-stage
decision point.

Path Policies
(not through adherence)

G-formula 6.78 (5.65, 6.92)

Q-learning 7.00 (4.82, 7.19)

Value search 5.56 (5.44, 5.60)

G-estimation 5.56 (5.55, 5.58)

tainly less likely to be relevant for decision making (consider
what would happen in the limit where everyone had perfect ad-
herence had they been on a reference treatment). Hence, we
are certainly not surprised to find that a path-specific (not via
adherence) policy did not include adherence as a relevant vari-
able.

C3. Additional Experiments

To tie the results of this paper to earlier work [1], we ran ad-
ditional experiments to find policies that optimize the chem-
ical effect of the drug where only adherence behaves as if
the treatments were set to a reference level. Expected out-
comes under optimal policies we learned, along with 95% con-
fidence intervals obtained by bootstrap, are shown in Table. 1.
The results are consistent with the ones provided in the main
body of the paper. For value search, under the same class of
policies, I{CD4m00 < α}, and the same modeling assump-
tions described above, the optimal path policy is chosen to be
I{CD4m00 < 550 cells/mm3}.
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Figure 1: Decision trees for optimal policies obtained via G-formula.

Figure 2: Decision trees for optimal policies obtained via Q-learning.

Figure 3: Decision trees for optimal policies obtained via G-estimation.


