A Proof of Proposition 1

Proposition 2. For any won  as in (1), and any € > 0,
there are positive constants w; = w;(€) > 0, and nor-
malized modular functions m; = m;(e), 1 € {1,...,7},
such that, if we define q(S) = >.._, w;exp(m;(S)),
forall S € Q, then dry (7,q) < e

Proof. Let r = |Q, and let (S;);_, be an enumeration
of all sets in . Forany ¢ € {1,...,r},andany v € V,

we define
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Then, forall i € {1,...,r}, we have
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Note that both terms vanish if we let all 5; — co. There-
fore, for any 6 > 0, there are 3;; = 3;;(0), for all
j € {1, R ,7”}, such that di(ﬁily R ,ﬁir) <.
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{1,...,7}, we get
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The result follows by choosing § = ¢/2" 1. O

B Ising Model on the Complete Graph

B.1 Bounds on Gibbs mixing

Theorem B1 (Theorem 15.3 in (Levin et al., 2008b)). If
B > 1, then the Gibbs sampler on ISINGg has a bot-
tleneck ratio ®, = O (676(5)”), where ¢(f3) is a non-
decreasing function of (.

Corollary 1 (cf. Theorem 15.3 in (Levin et al., 2008b)).
Forn > 3, the Gibbs sampler on ISING has spectral gap
7S¢ = O (e"), where ¢ > 0 is a constant.

Corollary 2 (cf. Theorem 2 in (Ding et al., 2009)).
For all n > 3, the restriction chains PZ, i = 0,1, of
the Gibbs sampler on ISING have spectral gap & =

®<21n(7;)—1>.

B.2 Bounds on M? mixing

M? sampler. The proposal distribution can be written
as follows,

1 (ep(du(n = DIS]) _ expldu(n ~1IS])
o(s) = (2T =U (@O Z D)
“)

where Z; = (1+exp(—dn(n—1)))", and Zo =
(1 + exp(d,(n —1)))".

Lemma B1 (Fact 6 in (Anari et al., 2016)). The spectral
gap of any reversible two-state chain P with stationary
distribution 7 that satisfies P(0,1) = c¢w(1) is c.

Lemma 1. For all n > 10, the projection chain PM of
the M? sampler on 1SING has spectral gap 3™ = Q(1).

Proof. We define 7, = ZSEQ,ISIZk m(S), and g =
2 seq,s)=k 4(5)-

Bounding 7;,. By definition, we can write 3, = T /Z,
where g = 1, and for k& > 0 we have

g = (Z) exp (—QII;(”) k(n — k))

It follows that

In(7y) < —kIn <1;:) + (2“k2 — k) In(n). (5)

It is easy to verify that for allm > 10 and 3 < k <
|n/2], itholds that (2k —n) In(n) < 0.5n1n(k/e). Sub-
stituting this into (5), we get
. k
In(7;) < —0.5k1In »
= 7 < exp(—0.5kIn(k/e)).



Noting that, for all k, 7, < 1, and using the fact that
Mp—k = T, We get

7= 4
k=0
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where c¢; is a constant.

Bounding ¢;. First, it is easy to see that, for all n > 1,
Z1 < 3.
k. = Z q(5)
SeQ,|S|=k
1 exp(—d,(n —1)|S))
> - by (4
=Y Z (by (4))
SeQ,|S|=k
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Bounding the spectral gap. For the projection chain
PM_ we have

PMO,1) = —— 3 #(8)PM(S, R)
7(0) i,
REQj

> 2mqn  (7(0) = 1/2 by symmetry of )

= 2myqo (by symmetry of q)
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where ¢ = (2/3)c¢;.

Finally, it follows from Lemma B1 that the spectral gap
of PMis c.

O

B.3 Bounds on combined sampler mixing

Lemma B2. For all n > 10, the projection chain P©
of the combined chain on 1SING has spectral gap ¥° =
Q(1).

Proof. By definition, P¢(S, R) > aPM(S, R), there-
fore a simple comparison argument (e.g., Lemma 13.22
in (Levin et al., 2008b)) combined with the result of
Lemma 1 gives us ¥¢ > oM = Q(1). O

Lemma B3. Foralln > 3, each of the restriction chains
PiC of the combined chain on ISING has spectral gap

RN <21n(n) - 1>_

¢ 2n

Proof. By definition, PC(S,R) > aPf(S, R), there-
fore, using a comparison argument like above to-

gether with Lemma 2 gives us ’ylc > Oz’in =
o ( 2111(”“) O
2n

Theorem B2 (Theorem 1 in (Jerrum et al., 2004)). Given
a reversible Markov chain P, if the spectral gap of its
projection chain P is bounded below by ¥, and the
spectral gaps of its restriction chains P; are uniformly
bounded below by ~ui, then the spectral gap of P is

bounded below by

¥ = min i 7’7%"[" ,
3 3Pmax + ’7

P(S, R).

where ppgy = max max
M €01} SE;
ReO\Q;

Theorem 2. For all n > 10, the combined chain P€ on
ISING has spectral gap

g (2111(;2 - 1) .

Proof. The result follows directly by combining the
spectral gap bounds of Lemmas B2 and B3 in Theorem
B2, and noting that Py« < 1. O
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