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Phenological sensitivity to climate across taxa and trophic levels  1 

 2 

Among-species differences in phenological responses to climate change can 3 

desynchronise ecological interactions, threatening ecosystem function. To assess these 4 

threats, we must quantify the relative impact of climate change on species at different 5 

trophic levels. Here, we apply a novel Climate Sensitivity Profile approach to 10,003 6 

terrestrial and aquatic phenological data sets, spatially-matched to temperature and 7 

precipitation data, quantifying variation in climate sensitivity. The direction, magnitude 8 

and timing of climate sensitivity varied markedly among organisms within taxonomic 9 

and trophic groups. Despite this, we detected systematic variation in the direction and 10 

magnitude of phenological climate sensitivity. Secondary consumers showed 11 

consistently lower climate sensitivity than other groups. Based upon mid-century 12 

climate change projections, we estimate that the timing of phenological events could 13 

change more for primary consumers than for other trophic levels (6.2 versus 2.5 - 2.9 14 

days earlier on average), with substantial taxonomic variation (1.1 - 14.8 days earlier on 15 

average).  16 

 17 

Numerous long-term ecological changes have been attributed to climate change1. Shifts in the 18 

seasonal timing of recurring biological events such as reproduction and migration (i.e. 19 

phenological changes) are especially well documented2,3. Long-term ecosystem studies4–7 and 20 

global meta-analyses2,3,8 have demonstrated that many spring and summer phenological 21 

events now occur earlier in the year. Substantial among-species variation in responses has 22 

fuelled concerns that key seasonal species interactions may desynchronise over time, with 23 

potentially severe consequences for wild populations and, hence, for ecosystem functioning9.    24 
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 25 

Identifying systematic taxonomic and trait-based differences in phenological climate 26 

sensitivity (i.e. change in seasonal timing per unit change in climatic conditions) would have 27 

significant socio-ecological implications. This would afford some predictability to future 28 

ecological outcomes and would identify species that represent effective sentinels of climate 29 

impact, facilitating the development of indicators and estimates of vulnerability for 30 

conservation and national adaptation programmes10–12. Unfortunately, such generalisations 31 

are currently elusive.     32 

 33 

Analytical approach and data sets 34 

Among-species differences in phenological change may arise from two aspects of climate 35 

sensitivity. Firstly, variation may reflect differences in physiological and behavioural 36 

responses, microclimate use, and the importance of non-climate related cues, such as 37 

photoperiod13 or resource availability14. Therefore, even when species have the same seasonal 38 

period (window) for which they are most sensitive to climate change, they show different 39 

phenological responses to a given climatic change. Secondly, co-occurring species may vary 40 

in their seasonal periods of climate sensitivity, each typified by different levels of directional 41 

climate change15–17.  We conceptualise these two aspects of phenological responses as 42 

species- (or population-) specific Climate Sensitivity Profiles (CSPs, Fig. 1). The CSP 43 

approach differs fundamentally from attempts to identify single “critical” seasonal periods 44 

within which climatic change most strongly affects seasonal events17, by quantifying the full 45 

range of phenological responses to seasonal climatic change. We ask “How sensitive are 46 

phenological events to temperature and precipitation change at different times of year?”. By 47 

applying this approach to a large, taxonomically-diverse national-scale data set, we discern 48 
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coherent patterns within a multitude of idiosyncratic biological climate-responses. We assess 49 

whether systematic differences in climate sensitivity underpin differences in phenological 50 

change among taxonomic and trophic groups in the UK8.  51 

 52 

We elected against using published climate responses that may be biased in favour of species 53 

showing an effect. Instead, we analysed 10,003 long-term (≥20 year) phenological time series 54 

for 812 marine, freshwater and terrestrial taxa over the period 1960-2012. Our data set 55 

aggregates many of the UK’s foremost long-term biological monitoring schemes 56 

(Supplementary Table 1), including phenological information on amphibians (spawning), 57 

birds (egg laying, migration), planktonic crustaceans (population peaks), fish (spawning, 58 

migration), insects (flight periods), mammals (birth dates), phytoplankton (population peaks) 59 

and plants (flowering, fruiting, leafing). These taxa represent three broad trophic levels: 60 

primary producers (phytoplankton, plants), primary consumers (granivorous birds, 61 

herbivorous insects, mammals, planktonic crustaceans) and secondary consumers (predatory 62 

amphibians, birds, fish, insects, mammals, planktonic crustaceans). We spatially-matched all 63 

10,003 phenological time series with local temperature and precipitation data from a 5×5km 64 

resolution gridded data set, before statistically modelling the relationship between seasonal 65 

timing and climatic variables. Between 1960 and 2012 mean UK air temperatures increased 66 

in all months, and mean precipitation increased in most months (Fig. 2a).  67 

 68 

Spatial variability in climatic change (Fig. 2b,c), necessitates local matching of phenological 69 

and climatic datasets rather than the use of regionally-averaged climate data (e.g. Central 70 

England Temperatures) or large-scale climatic indicators (e.g. North Atlantic Oscillation). 71 

We did not make the restrictive assumption that biological events would be related to annual 72 
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mean climatic conditions, or to conditions within periods based upon calendar months. Our 73 

CSP approach identified seasonal periods within which climatic change has its most positive 74 

and negative correlations with phenology (hereafter referred to as upper and lower limits of 75 

climate sensitivity, respectively). We could identify, for each phenological series, up to two 76 

seasonal periods within which climatic variation had a significant correlation with seasonal 77 

timing. The method was flexible enough to 1) allow situations in which climatic variation 78 

within only a single period had a significant correlation, and 2) identify seasonal windows 79 

ranging from a few days to a whole year in length. Our analysis captured the idiosyncrasies 80 

of phenological responses, allowed their categorisation into generic types of climate 81 

response, and is consistent with current biological understanding of climate-phenology 82 

relationships15,16.  83 

 84 

Climate response-types in the UK 85 

CSPs fall into three categories. The qualitative type of climate-phenology correlation 86 

(positive or negative) may remain consistent, irrespective of when in the year climatic change 87 

occurs. In this case only the magnitude of the phenological response differs with the time of 88 

year at which climatic variables change. The climate-phenology correlation may be 89 

consistently negative (CSP type I, Fig. 1, red curve) or positive (CSP type III, Fig. 1, blue 90 

curve). Alternatively, opposing correlations between seasonal climatic change and the timing 91 

of biological events may exist i.e. the direction and magnitude of the phenological response 92 

varies (CSP type II, Fig. 1, orange curve). We determined CSPs for responses to temperature 93 

(CSPtemp) and precipitation (CSPprecip). 94 

 95 
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Focusing on temperature, CSP type II was most common (Extended Data Table 1, 69.7 % of 96 

phenological series): seasonal events were advanced by (i.e. negatively correlated with) 97 

warming during one period of the year, and delayed by (i.e. positively correlated with) 98 

warming in another period. After multiple testing correction, 44.8% of the observed 99 

phenological advances (but only 1.0% of delays) with warming were statistically significant 100 

(P<0.05). CSP type I was the next most common response-type: warming in different 101 

seasonal windows was consistently correlated with earlier seasonal events (i.e. negative 102 

correlations, 24.7% of series). In this case the lower and upper limits of CSPs represent the 103 

“strongest” and “weakest” phenological advances with warming, respectively, and 58.1% of 104 

the “strongest” responses were statistically significant (P<0.05, correcting for multiple 105 

testing).  106 

 107 

Phenological events most commonly demonstrated opposing (Fig. 1, CSP type II, 53.0% of 108 

series) or consistently positive (Fig. 1, CSP type III, 28.0% of phenological series) 109 

correlations with increasing seasonal precipitation. Though delayed phenological events may 110 

commonly be associated with higher precipitation (81.0% of events show this type of 111 

response), few of these associations were significant (Extended Data Table 1).   112 

 113 

Climate sensitivity at the UK-scale 114 

We matched each phenological series with four climate variables: mean temperature during 115 

the seasonal windows at the upper and lower limits of CSPtemp, and similarly-averaged 116 

precipitation data for the seasonal windows at the upper and lower limits of CSPprecip. We 117 

then combined all 10,003 phenological series and their matched climate data, and modelled 118 
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the relationships between seasonal timing and climate variables using linear mixed effects 119 

(LME) models. Initially we fitted a “global” model to quantify upper and lower limits of 120 

temperature and precipitation sensitivity, averaged across all phenological events. Marine 121 

plankton data were excluded at this stage, due to a lack of precipitation data.  122 

 123 

Most phenological events occurred earlier with seasonal warming (average rate -2.6 days °C-124 

1, Fig. 3a, Extended Data Table 2). Variation in the strength of this correlation was similar 125 

among sites and species (random-effects variances in site and species level seasonal timing – 126 

temperature slopes were 2.1 and 1.9, respectively). Some phenological events occurred later 127 

with seasonal warming (Fig. 3a) though, in other cases, the upper limit of CSPtemp was in fact 128 

a “weak” advance with warming. The upper limit of temperature sensitivity was more 129 

variable among species than sites (random effects variances in species and site level seasonal 130 

timing – temperature slopes were 2.3 and 0.4, respectively). Averaged across species and 131 

populations, temperature responses were most consistent with CSP type II.  132 

 133 

Most phenological events showed opposing responses to increasing seasonal precipitation 134 

(Fig. 1, CSP type II). The tendency for delays with rising precipitation was greatest: the 135 

average upper limit of CSPprecip exceeded the lower limit (1.4 days mm-1 and -0.4 days mm-1, 136 

respectively, Fig. 3b, Extended Data Table 2). The upper limit of CSPprecip was more variable 137 

among species than sites (species and site level random-effects variances in the seasonal 138 

timing – precipitation slopes were 1.9 and 1.2, respectively). The fitted climate-phenology 139 

model was better supported by the data than a year-only model with the same random effects 140 

structure (delta-AIC 293,516). This indicates the presence of real associations between 141 

climate and seasonality, rather than purely spurious correlations due to shared temporal 142 
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trends. Average sensitivity to temperature was very similar in the model that included marine 143 

plankton data, but excluded precipitation effects (Supplementary Discussion, Extended Data 144 

Fig. 1).  145 

 146 

Taxonomic and trophic group sensitivity 147 

We tested the hypothesis that the limits of seasonal climate sensitivity differ coherently 148 

among taxonomic groups by including a fixed-effect interaction between taxonomic group 149 

and each climatic variable (Fig. 4, Extended Data Table 2). The lower limit of CSPtemp was 150 

negative for all groups (“earliness” with warming), the strongest responses being found for 151 

plants, freshwater phytoplankton, insects and amphibians (4.3, 4.1, 3.7 and 3.4 days earlier 152 

°C-1, respectively). Upper limits of CSPtemp indicated that freshwater phytoplankton and 153 

mammals experienced the greatest phenological delays with seasonal warming (2.9 and 2.0 154 

days later °C-1, respectively) but that plants showed little evidence of such delays. The 155 

strongest phenological delays with rising seasonal precipitation were found for freshwater 156 

phytoplankton and insects (2.5 and 2.2 days later mm-1, respectively), while freshwater 157 

phytoplankton also exhibited the strongest phenological advances with rising precipitation 158 

during other seasonal windows (1.1 days earlier mm-1). Average temperature and 159 

precipitation responses were consistent with a CSP type II in most cases. There was 160 

considerable within-group variability in sensitivity.  161 

 162 

We examined trophic-level differences in climate sensitivity by including this in interaction 163 

with each climate variable in the global model. The lower limit of CSPtemp showed greater 164 

systematic variation among trophic levels than the upper limit (Fig. 3c,e). The tendency 165 
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towards “earliness” with seasonal warming was strongest at lower trophic levels (-4.1, -3.7 166 

and -1.9 days °C-1 for primary producers, primary consumers and secondary consumers, 167 

respectively, Extended Data Table 2), consistent with observations of more rapid 168 

phenological changes at lower trophic levels, in the UK8. Conversely, the lower limit of 169 

CSPprecip varied less among trophic levels than the upper limit (Fig. 3d,f). The tendency for 170 

later seasonal events with higher seasonal precipitation was greater for primary producers and 171 

primary consumers (1.8 and 2.2 days mm-1 on average, respectively) than for secondary 172 

consumers (1.0 days mm-1). Variations in climate sensitivity were described more 173 

parsimoniously by taxonomic groups than by trophic levels (AICs of taxonomic and trophic-174 

level models 3237611 and 3238061, respectively). 175 

 176 

Results were little-affected when analysing only pre- and post-1980 data, to minimise among-177 

group variation in time series length, and after Monte Carlo re-sampling to assess the 178 

potential effects of taxonomic bias (Supplementary Discussion, Extended Data Figs. 2-4). 179 

The same qualitative trophic-level differences in climate sensitivity were apparent when 180 

including marine plankton data in a temperature-only LME model (Supplementary 181 

Discussion, Extended Data Fig. 1). In contrast to trophic-level differences in the magnitude of 182 

sensitivity, there was little evidence of similar variation in the seasonal timing of climate 183 

sensitivity (Supplementary Discussion, Extended Data Figs. 5-7).  184 

 185 

Estimating future change 186 

Overall, “net”, phenological responses to climatic change combine potentially-opposing 187 

responses to conditions in different seasonal periods. We estimated “net” responses by the 188 
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2050s by applying our fitted models to UKCP09 probabilistic projections (bias-corrected 189 

relative to a 1961-90 baseline) of temperature and precipitation change under low, medium 190 

and high emissions scenarios. Rather than predicting the absolute timing of future 191 

phenological events, we contrasted possible changes in seasonal timing among organism 192 

groups based upon established climate scenarios and contemporary patterns of climate 193 

sensitivity. Estimated average phenological changes for primary producers and secondary 194 

consumers were less than those for primary consumers (Fig. 5a). This occurred because, 195 

averaged across species, the opposing climate responses of primary producers and secondary 196 

consumers are more similar in magnitude than are those for primary consumers (Fig. 3), 197 

effectively “cancelling each other out”. Our models suggest greater average advances for 198 

crustacea, fish and insects than for other groups, such as freshwater phytoplankton, birds and 199 

mammals (Fig. 5b). However, response-variation is high for crustacea (Fig. 5b). 200 

 201 

Discussion 202 

In the UK, phenological climate sensitivity varies greatly, suggesting effects of locally-203 

varying non-climatic drivers such as population structure18, resource availability19 and 204 

adaptation20. This is relevant to the use of phenological change as a tangible climate change 205 

indicator1,21. Mediators of phenological climate sensitivity are only known locally for some 206 

of the groups in our data set e.g. nutrient availability (freshwater phytoplankton)22. However, 207 

for others, the climate sensitivity of different biological traits is known to be mediated by 208 

alternative drivers23,24. High climate-response variability necessitates wide site and species 209 

coverage in long-term monitoring schemes aiming to develop robust aggregate indicators of 210 

change21. Since climatic conditions are more spatially-variable across broader geographic 211 

domains, site-level replication of phenological monitoring is particularly important when 212 
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interpreting phenology at continental to global scales. In the UK, average responses for fish 213 

and insects appear to provide climate-indicator potential. These groups show consistently 214 

strong phenological advances with seasonal warming, and only weak opposing responses, 215 

resulting in relatively large (net) changes in seasonal timing. Interpretation of phenological 216 

changes for other groups is more complex. For example, freshwater phytoplankton show 217 

strong evidence of opposing phenological responses to climatic variation at different times of 218 

year and these are near-equivalent in magnitude, such that estimated net changes are 219 

negligible. This highlights that long-term observations represent the net effect of potentially-220 

opposing biological responses25. To fully capitalise on the indicator potential of phenological 221 

change, we must advance mechanistic understanding of responses to potentially opposing 222 

climate and non-climate drivers.  223 

 224 

Despite this variability, we identified coherent patterns in climate sensitivity among the 225 

idiosyncratic responses of many wild plant and animal populations. For the first time we 226 

show that, on average, trophic levels differ in the magnitude of seasonal climate sensitivity, 227 

but not the time-of-year within which climatic change has its most pronounced effects. This 228 

may be a key mechanism underpinning observations of trophic level differences in 229 

phenological change in the UK8. Lower trophic levels demonstrated more pronounced 230 

variation in their sensitivity to changing temperature and precipitation at different times of 231 

year, and stronger phenological responses to climatic change during defined (taxon- and 232 

population-specific) seasonal periods.  233 

 234 

In response to climatic changes projected for the 2050s, relative changes in seasonal timing 235 

are likely to be greatest for primary consumers, particularly in the terrestrial environment. 236 
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The difference in magnitude between opposing climate responses is greatest for primary 237 

consumers, resulting in greater “net” change. Our approach makes the simplifying 238 

assumption that climatic change has the overriding influence upon seasonality. Nevertheless, 239 

this suggests that systematic differences in climate sensitivity could result in widespread 240 

phenological desynchronisation. However, factors that shape phenological climate-responses 241 

introduce uncertainty into projections of future phenological change. These results should 242 

catalyse research to improve predictive capacity in the face of multiple environmental and 243 

demographic drivers that not only mediate rates of change, but might also confer resilience to 244 

desynchronisation e.g. population density-dependence26, compensatory range shifts27, and the 245 

formation of novel inter-specific interactions28,29. These findings also underscore the 246 

importance of developing our capacity to manage ecosystems within a “safe operating space” 247 

with respect to the likely impacts of projected climate change30. 248 

 249 

Supplementary Information is linked to the online version of the paper at 250 

www.nature.com/nature. 251 
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 404 

METHODS  405 

Data sets 406 

We integrated data from many major UK biological monitoring schemes (Supplementary 407 

Table 1), resulting in 10,003 long-term (at least 20-years between 1960 and 2012) 408 

phenological series for 812 marine, freshwater and terrestrial taxa. The amassed data sets 409 

included records for plants, phytoplankton, zooplankton, insects, amphibians, fish, mammals 410 

and birds (379,081 individual phenological observations). For each study we used a single 411 

population-level phenological measure per year (Supplementary Table 1). Since the sampling 412 

resolution for the marine plankton data was monthly, prior to analysis we re-scaled these data 413 

into units of days. Trophic level, taxonomic Class and environmental affinity were assigned 414 

to each taxon, to permit analyses of correlations between these attributes and climate 415 

sensitivity.  416 

 417 

Daily air temperature and precipitation data were extracted from the Met Office National 418 

Climate Information Centre (NCIC) 5km-resolution gridded data set31 for the spatial 419 

locations of all biological monitoring sites across the UK land surface. If available, recorded 420 

water temperatures from the same site were used in place of air temperatures, for 421 

phenological time series representing obligate aquatic taxa (freshwater plankton and fish). 422 

Water temperatures were interpolated onto a daily time-step prior to analysis32. If these data 423 

were not available, daily water temperature data were estimated from air temperatures using a 424 
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fitted empirical site-specific relationship between air and water temperature. For the sea trout 425 

(Salmo trutta) data, an existing linear relationship33 was used, while for the Atlantic salmon 426 

(Salmo salar) data, a non-linear relationship34 was calculated for a nearby river, the Tarland 427 

Burn, and applied to air temperatures from the sampling site. For the marine plankton, mean 428 

monthly sea surface temperatures were extracted from the Met Office Hadley Centre Sea Ice 429 

and Sea Surface Temperature (HadISST) data set35 for each of the Standard Areas36 in which 430 

phenological data were available. Precipitation data were not available for marine Standard 431 

Areas.  432 

 433 

Statistics 434 

Our analysis was conducted in two distinct phases (Supplementary Notes). Firstly, the CSP 435 

for each phenological series was estimated using generalized linear models to quantify 436 

associations between the timing of seasonal events and mean temperature and precipitation 437 

(within defined seasonal time windows) at the same location. Secondly, the phenological time 438 

series were aggregated and a single linear mixed effects (LME) model was run, capturing 439 

upper and lower limits of climate sensitivity across many species. CSPs for precipitation were 440 

not estimated for marine plankton data (see above), and so the second-phase LME models 441 

were run twice: once to examine correlations with temperature and precipitation for all but 442 

the marine plankton phenological series (9,800 series), and once to examine only correlations 443 

with temperature for the whole data set (10,003 series).   444 

 445 

Phase 1: Estimating Climate Sensitivity Profiles (CSPs) for each time series 446 
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We used consistent methods to “screen” all phenological events with respect to their climate 447 

sensitivity, finding periods of the year in which temperature and precipitation have their most 448 

positive and negative correlations with seasonal timing (the upper and lower limits of climate 449 

sensitivity). This approach was flexible enough to detect when these limits represented 450 

opposing correlations between temperature or precipitation and seasonality, depending upon 451 

the seasonal timing of climatic change e.g. spring warming may advance budburst, but winter 452 

warming may delay it37 (Fig. 1, CSP type II). It could also detect when the direction of the 453 

correlation between climatic variables and seasonal timing was consistent irrespective of the 454 

seasonal timing of climatic change, with only the magnitude of the correlation varying 455 

between the limits of the CSP (Fig. 1, CSP types I and III).  456 

 457 

For each phenological time series, we calculated the day of year by which 95% of the 458 

recorded seasonal events had occurred (doy95). Inter-annual variations in seasonal timing 459 

were statistically modelled as a function of daily mean temperatures on doy95 each year. Then, 460 

a series of 365 statistical models was run that used instead daily mean temperatures on doy95-461 

1 to doy95-365 as predictors. Slope coefficients and R2 values for the temperature terms in 462 

these models were collated, capturing seasonal variations in the sign and magnitude of the 463 

phenology-temperature relationship (i.e. the CSP, Fig. 1). Generalized Linear Models 464 

(GLMs) were used.  465 

 466 

For two data sets (BTO Nest Record Scheme and PTES National Dormouse Monitoring 467 

Scheme, Supplementary Table 1) we modified the above analytical framework. In both of 468 

these schemes, the precise location of the biological observations changed among years (cf 469 

other schemes where monitoring sites are static over time). We extracted matching climatic 470 
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data for each specific location in each year, as for all other schemes, but then grouped the 471 

phenological and climatic data at county level (mean area = 3,440 km2). Then, for each taxon 472 

in each county we used the fixed-effect slope parameters and R2 values from a series of LME 473 

models, instead of GLMs, as a basis for estimating CSPs. In these models, we included fixed 474 

effects of temperature on doy95 to doy95-365 as before, and included a year random effect to 475 

account for replicate phenological records for each taxon in each county in each year. For the 476 

SAHFOS marine plankton data set, we modified our iterative approach to analyse seasonal 477 

timing-temperature relationships at monthly, instead of daily, time steps (the temporal 478 

resolution of the sea surface temperature data).      479 

 480 

As a final step in estimating the CSP for each series, temporal variation in the sign and 481 

magnitude of the seasonal timing-temperature correlation was itself modelled (Extended Data 482 

Fig. 8). This was done by fitting Generalized Additive Models (GAMs, Gamma error 483 

distribution) to the time series of slope coefficients and R2 values from the models described 484 

above. By smoothing these time series, the GAMs identified periods of the year in which 485 

slope coefficients were consistently negative (i.e. warming advances seasonal timing), or 486 

consistently positive (i.e. warming delays seasonal timing), and during which the climate-487 

phenology models generating the slope estimates had a their highest goodness-of-fit.  488 

 489 

Seasonal “windows” in which the upper and lower limits of temperature sensitivity occurred 490 

were identified as periods during which 1) the 95% confidence interval for the GAM fitted to 491 

the slope coefficients surpassed the limits of the 2.5 and 97.5 percentiles of the original slope 492 

coefficients and 2) the 95% confidence interval for the GAM fitted to the R2 values surpassed 493 

the 97.5 percentile of the original R2 values. This ensured that seasonal windows were 494 
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defined by periods combining the greatest climate effect size and relatively strong predictive 495 

power (determined by R2). Using this framework, we identified the lower limit of CSPtemp: 496 

the period of the year in which an advancing effect of increasing temperature upon seasonal 497 

timing was most likely. This was estimated by determining when the 95% confidence interval 498 

of the GAM intersected the lower percentile of the seasonal timing-temperature slope 499 

coefficients, by “tracking” the most negative coefficients (Extended Data Fig. 8). In addition, 500 

we identified the upper limit of CSPtemp by determining when the 95% confidence interval of 501 

the GAM intersected the upper percentile of the seasonal timing-temperature slope 502 

coefficients, by “tracking” the most positive (or least negative) coefficients. Excluding the 503 

marine plankton data, the whole modelling process was repeated with precipitation as a 504 

predictor instead of air temperature, culminating in the estimation of seasonal periods 505 

capturing the limits of phenological responses to changing precipitation.  506 

 507 

After this process, temperature and precipitation were each averaged within the two seasonal 508 

windows in which the limits of phenological sensitivity occurred. With the exception of the 509 

marine plankton data, the final seasonal timing-climate model for each series was then fitted 510 

using a GLM with Gamma error distribution including four predictors: inter-annual variations 511 

in 1) mean temperature during the period at the lower limit of CSPtemp, 2) mean temperature 512 

during the period at the upper limit of CSPtemp, 3) mean precipitation during the period at the 513 

lower limit of CSPprecip, 4) mean precipitation during the period at the upper limit of CSPprecip. 514 

For the marine plankton data, only the first two terms were fitted. For the BTO Nest Records 515 

and PTES National Dormouse Monitoring Scheme data sets we implemented these final 516 

models in a mixed effects framework with a random effect of year, as before. Therefore, 517 

although we modelled changes in statistical parameters (which are not estimated without 518 

error) to identify seasonal periods, this step was only used to find the original climatic data to 519 
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be used in subsequent modelling. Inferences were not, therefore, directly based upon 520 

statistical modelling of uncertain parameter estimates. We categorised the results of all 521 

10,003 CSPs according to three broad response-types (CSP types I–III, Fig. 1), and retained P 522 

values for each fitted model term to infer which of the modelled climatic effects were 523 

statistically significant. We examined the evidence for trophic-level differences in the mean 524 

seasonal timing of climate sensitivity by modelling the relationship between the start date, 525 

end date and duration of the seasonal windows capturing the upper and lower limits of 526 

phenological sensitivity to temperature and rainfall as a function of trophic level (fixed 527 

effect), with random effects of phenological metric, within species, within site. Analyses 528 

were conducted using the base, mgcv and lme4 packages in R38–40.  529 

 530 

Phase 2: “Global” models of phenological climate sensitivity 531 

We estimated the upper and lower limits of phenological climate sensitivity at a multi-species 532 

scale by “matching” each phenological series with data on mean temperature and 533 

precipitation, during the seasonal windows characterising the CSP for that series (Phase 1, 534 

above). We aggregated all 10,003 of these matched phenology-climate data sets. To quantify 535 

the average, multi-species, upper and lower limits of climate sensitivity we constructed a 536 

linear mixed effects (LME) model, in which phenology (day of year) was modelled as a 537 

function of mean temperature and precipitation within the seasonal windows of the amassed 538 

CSPs (fixed effects) with random effects of phenological metric, within species, within site. 539 

These random effects were necessary since our data could not be considered independent.  540 

The timing of events for the same species are more likely to be similar than for different 541 

species. Likewise for different sites and the phenological metric-types used to describe the 542 

events (e.g. first flight time or seasonal peak abundance). Random slopes and intercepts were 543 
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allowed to ensure that each phenological event, for a species at a site, was allowed a different 544 

rate of climate response.  545 

 546 

For some species, more than one phenological event was recorded in the same year, at the 547 

same site. For example, butterflies may have more than one flight period in the same year, 548 

and plankton populations may be characterised by more than one seasonal abundance peak. 549 

As climate responses are unlikely to be the same for the first event of the year, and 550 

subsequent events, we introduced a voltinism factor in the analysis. This allowed us to 551 

distinguish between data representing the first/only events of each year (e.g. a spring 552 

plankton bloom or butterfly generation) and second events in each year (e.g. the subsequent 553 

summer plankton bloom or butterfly generation). This distinction captured all possibilities 554 

within our data set. 555 

 556 

For site i, species j, voltmetric k (where voltmetric is a unique combination of voltinism class 557 

and the metric-type used to identify the event) the corresponding day of year (DOY) of a 558 

particular seasonal event is modelled as: 559 

 560 

 561 ݆݇݅ߝ + 4ܷ݆ܲ݅݇ߚ + ݆݇݅ܮ3ܲߚ + 2ܷ݆ܶ݅݇ߚ + ݆݇݅ܮ1ܶߚ + 0ߙ = ݆ܻܱ݇݅ܦ

where (2ߪ,0)ܰ ~݆݇݅ߝ and the model includes temperature at the upper limit of each CSP (TU), 562 

temperature at the lower limit of each CSP (TL), precipitation at the upper limit of each CSP 563 

(PU) and precipitation at the lower limit of each CSP (PL). Due to the non-independence 564 

within the data, we allow the intercepts and coefficients corresponding to all four covariates 565 
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to vary by site, species and voltmetric. Preserving the natural nesting of a metric for a species 566 

at a particular site, this gives:  567 

 568 

 569 ݆݇,݅;0ߤ + ݇,݆݅;0ߤ + ݆݇݅;0ߤ + 0ߛ = 0ߙ

 570  ݆݇,݅;1ߤ + ݇,݆݅;1ߤ + ݆݇݅ ;1ߤ + 1ߛ = 1ߚ

 571  ݆݇,݅;2ߤ + ݇,݆݅;2ߤ + ݆݇݅ ;2ߤ + 2ߛ = 2ߚ

 572 ݆݇,݅;3ߤ + ݇,݆݅;3ߤ + ݆݇݅ ;3ߤ + 3ߛ = 3ߚ

 573  ݆݇,݅;4ߤ + ݇,݆݅;4ߤ + ݆݇݅ ;4ߤ + 4ߛ = 4ߚ

 574 

where each of the ߤ terms is a random effect following: 575 (2ߜ,0)ܰ ~ ߤ 

 576 

This nesting of random effects is most conservative in terms of inference at the global level 577 

and is as flexible as possible, allowing each time series to have its own set of model 578 

parameters. This permits a high degree of biological realism since each distinct phenological 579 

event, for a given species, at a given site, is permitted to have a different slope for the effects 580 

of temperature and precipitation i.e. a different climate sensitivity. 581 

 582 

In this model framework we are specifically testing the null hypotheses that each of the 583 

climate variables show no relation with seasonal timing of biological events. Because of this, 584 

and the fact that each parameter is estimated directly, without distributional form assumed a 585 

priori or as the target distribution, we follow a frequentist approach to analysis. However, 586 
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because the exact degrees of freedom cannot be evaluated when using restricted maximum 587 

likelihood, hence no exact P-value, we present full summaries of all the parameters estimated 588 

at species level (as given by: ݅ߤ + ݇,݆݅ߤ + ߛ,݆݇, above). Approximate P-values could be 589 

presented based on taking conservative estimates of the degrees of freedom though, given the 590 

volume of data available, this will typically lead to the detection of many statistically-591 

significant results that may not be biologically significant. Examining the full range of 592 

estimated coefficients across the random effects levels ensures that we present the full range 593 

of variation around global parameters and can make more informed inference. In this way we 594 

encourage the reader to interpret our results by using biological insight, not by depending 595 

upon P-values alone. 596 

 597 

To examine high-level differences in climate sensitivity among trophic levels and taxonomic 598 

groups we re-fitted the LME model with these attributes as fixed-effect factors, interacting 599 

with the fixed-effect climate variables. The fixed-effect slopes from the resulting models 600 

allowed us to compare differences in phenological climate sensitivity among these broad 601 

organism groups, averaged across all taxa within each group. Supplementary Table 2 shows 602 

the number of phenological series, sites and distinct taxa that contributed data to each of these 603 

groups. All models were run twice: once to examine correlations with both temperature and 604 

precipitation excluding marine plankton data (9,800 time series), and once to examine only 605 

temperature-phenology correlations for the whole data set (10,003 time series).  606 

 607 

Potential biases 608 
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Data availability differed among taxonomic groups. To assess the extent to which mean 609 

responses were biased by data inequality we conducted Monte Carlo re-sampling, iteratively 610 

selecting 5, 20, 50 and 100 phenological series from each taxonomic group and re-fitting 611 

climate-phenology models with these sampled data sets. For taxonomic groups with less data 612 

than the larger sample sizes, we retained all available data (Supplementary Discussion). This 613 

allowed us to compare taxonomic group and trophic level responses based upon sampled and 614 

all data, to fully investigate potential bias.  615 

 616 

Another potential bias in our analysis is that phenological time series length is variable, 617 

affecting the length of time over which climate-phenology correlations are assessed. In order 618 

to assess the extent to which differences in mean trophic level and taxonomic group 619 

responses are biased by variable time series length, we also re-fitted our models but based 620 

only on pre- and post-1980 data. All models were run in the lme4 package in R38,40.  621 

 622 

Estimating future change 623 

To estimate potential future “net” effects of temperature and precipitation change, we 624 

compared predictions of seasonal timing under baseline conditions, and under established 625 

climate change scenarios. Firstly, estimates of seasonal timing (day of year) were obtained 626 

for the same baseline period used in the UKCP09 projections (long term average 1961-1990), 627 

using modelled correlations between phenology, temperature and precipitation (from Phase 628 

1). Having obtained these baseline estimates, we applied our models to projected changes in 629 

monthly temperature and precipitation for the 2050s (UK Climate Projections, UKCP09, 630 

http://ukclimateprojections.metoffice.gov.uk/). We used 10th, 50th and 90th percentile changes 631 
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under low, medium and high emissions scenarios (relative to the 1961-90 baseline). The 632 

spatial location of each phenological series was matched to climate projection data for the 25 633 

× 25km grid square in which it occurred, and temporally matched to climatic data from the 634 

months-of-year in which its respective climate sensitivity windows occurred. Relative 635 

changes in timing, in response to climatic change of the magnitude projected to occur by the 636 

2050s, were summarised by trophic levels and taxonomic groups.  637 

 638 
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FIGURE LEGENDS  664 

Figure 1 | Climate Sensitivity Profiles (CSPs). Climate sensitivity is the change in seasonal 665 

timing per unit change in temperature (days ᵒC-1) or precipitation (days mm-1). Irrespective of 666 

the date, increasing temperature/precipitation may always correlate with earlier (red curve, 667 

CSP type I) or later (blue curve, CSP type III), biological events, but sensitivity to climate 668 

variation (correlation magnitude) differs (cf w1 and w2, w5 and w6). In contrast, opposing 669 

climate-phenology correlations may occur, depending on the date at which climate changes 670 

(orange curve, w3 and w4, CSP type II).  Panels show hypothetical relationships for seasonal 671 

windows w1-w6.  672 

 673 

Figure 2 | Climatic change in the UK, 1960-2012. a) Long-term changes in air temperature 674 

and precipitation are the differences between 1960 and 2012 monthly means of these 675 

variables, derived from a regression fitted through each monthly time series. Error bars 676 

indicate the standard deviation of linearly-detrended climatological data, as an indication of 677 

inter-annual variation around each trend. b) and c) Examples of spatial variation in the extent 678 

of long-term climatic changes are shown for March air temperatures and February 679 

precipitation.   680 

 681 

Figure 3 | Upper and lower limits of phenological climate sensitivity. Sensitivity is the 682 

slope of the relationship between seasonal timing (day of year) and climatic variables. All-683 

taxa upper and lower limits in a) temperature (°C) and b) precipitation (mm day-1) sensitivity 684 

are summarised. Lower (c, d) and upper (e, f) limits of temperature (c, e) and precipitation (d, 685 

f) sensitivity are shown by trophic level. Inverted triangles indicate average sensitivity. 686 
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Curves are kernel density plots: estimates of the probability density distribution of species-687 

level climate sensitivity i.e. the relative likelihood of different levels of climate sensitivity 688 

within each species group (n = 370,725).  689 

 690 

Figure 4 | Upper and lower limits of phenological climate sensitivity for broad 691 

taxonomic groups. Lower (blue) and upper (red) limits of the sensitivity of phenological 692 

events to seasonal temperature (a) and precipitation (b) change are shown. Coloured circles 693 

indicate the median response, and bars show the 5th-to-95th percentile responses for each 694 

group. Sensitivity is quantified by summarising the species-level (random effects) responses 695 

from a mixed effects model including data for all taxa, and with taxonomic group as a fixed 696 

effect (n = 370,725). 697 

 698 

Figure 5 | Estimated phenological shifts by the 2050s. Modelled responses to projected 699 

temperature and precipitation change, assuming contemporary climate sensitivity, for trophic 700 

levels (a) and taxonomic groups (b). Projected median shifts in seasonal timing are shown. 701 

Change estimates are based on low, medium and high emissions climate scenarios. Bars 702 

represent median responses to 50th percentile climate change projections under each scenario, 703 

while extremes of whiskers represent median responses to 10th and 90th percentile projected 704 

climatic changes under each scenario. Standard deviations indicate variation in projected 705 

responses for each group under the 50th percentile of the medium emissions scenario. 706 

 707 

EXTENDED DATA FIGURE AND TABLE LEGENDS 708 

 709 
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 710 

Extended Data Figure 1 | Limits of phenological temperature sensitivity inclusive of 711 

marine plankton data. Upper and lower limits of phenological temperature sensitivity are 712 

quantified as the slope of the relationship between seasonal timing (day of year) and 713 

temperature (°C) variation within specific seasonal periods. Limits in temperature sensitivity 714 

are shown for all taxa (a) and by trophic level (lower limit b, upper limit c). Inverted triangles 715 

indicate average sensitivity for all species in each group and curves are probability density 716 

plots of species-level variation in sensitivity. 717 

 718 

Extended Data Figure 2 | Limits of phenological climate sensitivity for taxonomic 719 

groups (top) and trophic levels (bottom), after Monte-Carlo resampling. Lower (blue) 720 

and upper (red) limits of the sensitivity of phenological events to seasonal temperature (a) 721 

and precipitation (b) change. Coloured circles: responses based upon the full data set. Bars: 722 

2.5th-to-97.5th percentile responses for each group, based upon 100 draws from the full data 723 

set. Data were sampled so that 5, (dotted bar), 20 (solid bar), 50 (dashed bar) and 100 (dot-724 

dashed bar) phenological time series were drawn from each taxonomic group. 725 

 726 

Extended Data Figure 3 | Climate sensitivities, based on different time periods (top: all 727 

data, middle: pre-1980 data, bottom: post-1980 data). Sensitivity is the slope of the 728 

relationship between seasonal timing (day of year) and temperature (°C), or precipitation 729 

(mm day-1). Limits of a) temperature and b) precipitation sensitivity are summarised for all 730 

taxa. Lower (c, d) and upper (e, f) limits of temperature (c, e) and precipitation (d, f) 731 

sensitivity are shown by trophic level. Inverted triangles: average sensitivity for all species (a, 732 
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b) or trophic levels (c-f). Curves: kernel density plots: probability density distributions of 733 

species-level climate sensitivity i.e. the relative likelihood of different climate sensitivities 734 

within each species group. 735 

 736 

Extended Data Figure 4 | Limits of phenological climate sensitivity for broad taxonomic 737 

groups (top: all data, bottom: post-1980 data only). Lower (blue) and upper (red) limits of 738 

the sensitivity of phenological events to seasonal temperature (a) and precipitation (b) change 739 

are shown. Coloured circles indicate the median response, and bars show the 5th-to-95th 740 

percentile responses for each group. Sensitivity is quantified by summarising the species-741 

level (random effects) responses from a mixed effects model including data for all taxa, and 742 

with taxonomic group as a fixed effect. 743 

 744 

Extended Data Figure 5 | Seasonal windows for Climate Sensitivity Profiles (CSPs). 745 

Estimated climatic sensitivity at the lower (a, c) and upper (b, d) limits of CSPs for 10,003 746 

phenological series. Grey lines are seasonal time periods (x axis) within which climatic 747 

variables have their most positive/negative correlations with the seasonal timing of each 748 

phenological event. The y-axis indicates the slope coefficient for each of these correlations; a 749 

measure of climate sensitivity (days change °C-1, or mm-1). Shown are the lower/upper limits 750 

of CSPtemp (a, b, respectively) and the lower/upper limits of CSPprecip (c, d, respectively). Inset 751 

histograms show seasonal time window length (days). 752 

 753 

Extended Data Figure 6 | Time lags between phenological events and seasonal windows 754 

of climate sensitivity. Frequency histograms showing the time lag (in days) between the 755 
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mean timing of each phenological event and the end of seasonal windows corresponding to 756 

the lower and upper limits of CSPtemp (a, b, respectively) and the lower and upper limits of 757 

CSPprecip (c, d, respectively). Peaks at lags of around 1 year are where windows were 758 

identified that ended at the mean seasonal timing of an event, but in the previous year, due to 759 

temporal autocorrelation in climate data. 760 

 761 

Extended Data Figure 7 | Seasonal windows for Climate Sensitivity Profiles (CSPs) by 762 

trophic level. Estimated climatic sensitivity at the lower and upper limits of CSPs for taxa at 763 

each of three trophic levels. Formatting is the same as in Extended Data Figure 5. Shown are 764 

the lower and upper limits of CSPtemp (a, b, respectively) and the lower and upper limits of 765 

CSPprecip (c, d, respectively). 766 

 767 

Extended Data Figure 8 | Example Climate Sensitivity Profile (CSP). Temperature 768 

sensitivity (CSPtemp) for alderfly (Sialis lutaria) emergence from Windermere, UK. Solid 769 

black line: sensitivity of first emergence to water temperature on different days of the year 770 

(days change ᵒC-1). Grey horizontal lines: 2.5 and 97.5 percentiles of these sensitivity values. 771 

Solid orange curve: GAM smoother fitted through the sensitivity values with associated 772 

confidence intervals (dashed orange curves). Horizontal bars indicate where GAM 773 

confidence intervals exceed the percentiles of the original sensitivity values, indicating 774 

seasonal windows at the limits of the climate sensitivity profile. 775 

 776 

Extended Data Table 1 | Modelled relationships between seasonal timing and climate 777 

variables for n=10,003 phenological time series. Climate Sensitivity Profiles (CSPs) fall 778 
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within three broad response-types; events always advance with increases in the climate 779 

variable irrespective of the seasonal timing of climate change (CSP Type I, Fig. 1 - red 780 

curve), events are always delayed by increases in the climate variable irrespective of the 781 

seasonal timing of climate change (CSP Type III, Fig. 1 - blue curve), and events may be 782 

advanced or delayed by increases in the climate variable, depending on the seasonal timing of 783 

climate change (CSP Type II, Fig. 1 - orange curve). Shown are the percentage of series that 784 

fall in each Type (% series), the percentage of effects that are statistically significant at 785 

P<0.05 after multiple testing correction (% effects significant). □ Based only on freshwater 786 

and terrestrial taxa, for which precipitation data were available. † NA indicates effect not 787 

evaluated, due to lack of precipitation data for marine taxa    788 

 789 

Extended Data Table 2 | Parameter estimates and test statistics from climate-phenology 790 

mixed-effects models. Presented are fixed-effect parameter estimates from each model; the 791 

intercept and slope for each climatic predictor. Following R convention, absolute parameter 792 

estimates are provided for an assigned “baseline” group within each model (b), and remaining 793 

estimates are given as differences from this baseline (Δb). Each estimate has an associated 794 

standard error and t statistic in parentheses (standard error, t). Climatic predictors include 795 

mean temperature and precipitation in seasonal windows at the upper and lower limit of the 796 

climate sensitivity profile for each phenological series. The number of observations, n, is 797 

370,725. □ Models were re-run including the marine plankton data, and excluding 798 

precipitation effects (see text). In these models the number of observations, n = 379,081 799 
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