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a b s t r a c t

The vascular structure of the retina consists of two kinds of vessels: arteries and veins. Together these
vessels form the vascular graph. In this paper, we present an approach to separate arteries and veins
based on a pre-segmentation and a few hand-labelled vessel segments. We use a rule-based method
to propagate the vessel labels through the vascular graph. The anatomical characteristics of the vessels
on the retina are modelled as a dual constraint graph. We embed this task as double-layered constrained
search problem steered by a heuristical AC-3 algorithm to overcome the NP-hard computational com-
plexity. Results are presented on vascular graphs generated from manual as well as on automatical
segmentation.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

In the last years retinal image analysis becomes a popular re-
search field. Mainly, this trend is advanced by three reasons: (1)
retinal images can be produced and distributed with low time
and financial costs, (2) the objects on a retina are strong indicators
for the presence of some frequently occurred pathologies, and (3)
an interesting class of image analysis tasks (vessel segmentation,
detection of pathological objects, quantification, etc.) arise in deal-
ing with the retina. Therefore, methods for analysing retinal
images have a high relevance in the sense of commercial, medical,
and computer scientific aspects. An open problem is the classifica-
tion of vessels as arteries or veins.

In Figs. 9–13 typical retinal images are depicted. The anatomical
structure of the retina is dominated by the vasculature. At the opti-
cal disc, which is visible as bright roundish area with a relatively
definite diameter of 3.5 mm, the artery ‘centralis retinae’ intrudes
into the eye-ball. At the point of origin this main artery has a cal-
ibre of 0.1 mm and branches on the retina at first into a main arch
and afterwards into several segments. While branching, the vessels
become thinner until they are invisible as capillaries. At the cen-
tral, darkest area on the retina without any visible vessels the mac-
ular is placed, which is the point with the highest density of light
receptors. The vein structure is also tree-like, that means without
anastomosis (i.e. reconnections).

The retinal vessels are important landmark structures and have
themselves a high diagnostic impact. Therefore, there exist various

methods to segment or track the vessels on the retina [1–6]. Another
application of vessel segmentation algorithms is a pre-processing
prior to the segmentation of pathological objects-like drusen, micro-
aneurisms, hard exudates or cotton-wool spoons [7–10]. But some
pathologies affect the vessels directly. An increased tortuousity of
the arteries is a high indicator of a raised blood pressure. Another
measure is the AV-Ratio, which is the ratio of artery to vein calibres
(see Wang et al. [11]). Since arteries and veins are differently af-
fected, it is of strong medical interest to have computer-aided meth-
ods to classify retinal vessels as arteries or veins [12].

In this work, we present a semi-automatic method to propagate a
user-classification through the vascular graph. In this process, we la-
bel each vessel segment as artery or vein, respectively. This process
can be applied after any proper vessel segmentation algorithm. The
focus of this work is not to present a new segmentation but we rather
assume that the vascular structure is already segmented suitably.
More precisely, we assume a segmentation of a retinal image in form
of a binary image, where 1 represents a vessel pixel (object) and 0
any other (background).

The automatic classification of single vessels is still an open task
in the retinal image processing. Veins and arteries visually differ in
shape, colour and texture. The problem is that such dissimilarities
affect only the main vessels and strongly vary dependent on pa-
tients, and locations on the retina. Within one retina image there
is a high variation in colour, which is caused by inhomogeneous
light reflecting due to the spherical surface. Furthermore, the retina
of different patients may have varying colours.

Simo and de Ves [13] proposed a Bayesian classifier for pixels to
distinguish between arteries, veins, the fovea and the retinal back-
ground using image information.
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Chrástek et al. [14] use the local contrast of the red-channel to
distinguish between arteries and veins of the main vasculature
(near the optical disc). Additionally, they use anatomical features
of the vasculature, which we will describe in the next section in de-
tail, to propagate the knowledge during their vessel tracking meth-
od. Due to the restriction to a relative small area, their extracted
vascularture is rather incomplete and oversegmented. In contrast
to them we work on a vessel segmentation which is stronger con-
nected and does not consist of so many connected components like
the segmentation which is produced by Chrástek et al. [14]. Thus,
we are able to benefit from the anatomical features to a larger ex-
tent. Another method is published by Pál et al. [15], who use a neu-
ral network with the vessels’ cross-profile as input layer to classify
arteries and veins. Furthermore, Grisan and Ruggeri [16] have pre-
sented a nearest neighbour classificator based on the local colour
and contrast of the vessels.

An early approach on vessel classification is published by Aki-
ta and Kuga [17]. They use a structure-based relaxation scheme
to propagate the artery/vein labelling. Therefore, a network of
conditional probabilities is modelled on the vascular graph.
These probabilities influence each other and are updated in an
iterative way until a stable state is achieved. Thereby, the struc-
ture of the vascular graph is kept fixed. Our approach is different
from the one of Akita and Kuga [17] in that we make hard deci-
sions. That means, we do not model a probability for the vessel
segments to be an artery or vein. In contrast we assign a unique
label to a vessel, but rating the plausibility of the extracted net-
work. In case of a conflict the structure of the vascular graph is
changed in a suitable way to correct segmentation errors (to
some degree) and find a consistent interpretation of the whole
vascular graph. Note that [17] is the only structure-based meth-
od for separation of veins and arteries in retinal images which
we are aware of.

Methodically, our work is similar to the method published by
Martínez-Pérez et al. [18] in the way how the vascular sub-trees
are extracted. While Martínez-Pérez et al. basically are interested
in computing geometrical and topological properties of single ves-
sel segments and sub-trees, we focus in this work on the vascular
structure itself. Possibly, our method could be used as an extension
for the method of Martínez-Pérez to reduce the number of
interactions.

Graph-based approaches are relatively rare in the field of retinal
image analysis. Beside Akita’s and Kuga [17], there exists a Bayes-
ian approach of Thönnes et al. [19]. They propose an EM-algorithm
to iteratively explore a vasculature graph by a random walker tech-
nique. Thereby, a random decision corresponds to a graph manip-
ulating operation: join/divide trees, deleting/adding trees,
deleting/adding branches, and move nodes to another location.
Aguilar et al. [20] present a graph matching algorithm for retinal
image registration and mosaicing. Furthermore, the extracted
graphs are used to compute a spectral vascular characterisation
of vessel network on a retina.

The remainder of this paper is organised as follows. In Section 2,
we specify and formalise the problem of separating the vascular
graph under anatomical aspects. Subsequently, our algorithm is
presented (Section 3) and exemplary results are shown (Section
4). We conclude this work by discussing the performance of the re-
sults and giving an outlook on our future work (Section 5).

2. Formal problem specification

In this section, we firstly describe the anatomical features of the
vascular structure on the retina. After this we use these criteria to
formalise the problem of labelling the vessels as arteries or veins
based on the extracted structure.

There are two different kinds of vessels on the retina. The arter-
ies transport oxygenated blood from the heart and the veins dis-
charge the blood back to the heart. We utilise two important
anatomical characteristics of these structures:

(1) The visible vascular structure is physically cycle-free
(although its projection onto the 2D image plane becomes
a vascular graph with cycles). One artery enters at the optic
nerve head into the interior of the retina and branches with-
out any reconnection (i.e. without anastomosis). The same is
true for veins.

(2) At vessel crossings, where one vessel courses over another,
only different vessel types are involved. More precisely, an
artery could never cross another artery and the same apply
accordingly for veins.

Furthermore, the vessels can be distinguished by shape, colour
and texture features. Arteries are significantly thinner, have a light-
er red appearance and show a clearer visible central light-reflex as
veins. In this work, we concentrate our efforts on separating arter-
ies and veins only by the structure of the network on basis of the
above-mentioned anatomical characteristics. In recent years there
are some works on classifying arteries and veins on the visual fea-
tures [13–16]. The problem arising in such methods is that these
features are only present clearly for the major vessels and some-
times after the first branching on the retina. The objective in this
work is to investigate the potential of using additional structural
features.

2.1. Graph-based representation

We compute a graph representation of the vasculature in a
straightforward way as follows. The precondition of the proposed
approach is the segmented vascular structure (Fig. 1(b)). Thereby,
a binary image of the same size as the input image of a retina rep-
resents the segmentation. Exactly all pixels, which are classified as
vessels, are stated with one.

Firstly, we apply a sequential skeletonisation procedure that
produces an 8-connected skeleton (see Fig. 1(c)). Maintaining the

Fig. 1. (a) Inverted original; (b) segmentation; (c) skeleton; (d) vascular graph.
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connectivity we delete the segments’ boundary iteratively until
only one pixel thick curves remain. Once the skeleton is calculated
the transformation into a graph G is straightforward. Because of the
vessels’ anatomical structure the vertices of G can only have degree
1, 3 or 4. In contrast to Martínez-Pérez et al. [18] we do not distin-
guish between the type of vertices on the image analysis level but
on anatomical aspects of the vascular structure.

Let us assume that we can represent the vessels as curvilinear
segments si, which could branch and cross. We construct a planar
graph G ¼ ðE;VÞ, where each edge ei 2 E ð1 6 i 6 mÞ corresponds to
a vessel segment si in a one-to-one relation. The nodes vjð1 6 j 6 nÞ
of the graph represent the branches or crossings of vessel segments
and are of degree three (branches) or four (crossings). Additionally,
there are nodes of degree one, where a vessel segment ends. If two
vessels cross each other, both are splitted in two vessel segments
represented by two edges. Thereby, the opposite segments form
one vessel segment pair of the same type in each case.

2.2. SAT-problem description

The problem we are faced with is to find a consistent labelling
LðsiÞ :¼ Li of all vessel segments si in arteries Li ¼ a or veins
Li ¼ v. One can define a rule for a consistent labelling at each ver-
tex vj depending on its degree: In the case that vj is a branch, we
have three vessel segments with corresponding graph edges e1; e2

and e3 of same type connecting at a node v (see Fig. 2(left)). Clearly,
all vessel segments should be labelled in the same manner:

L1 ¼ a() L2 ¼ a() L3 ¼ a ð1Þ
^ L1 ¼ v() L2 ¼ v() L3 ¼ v ð2Þ

From the second anatomical characteristic, we know that if vj rep-
resents a crossing, then one of the involved vessels is an artery
and the other is a vein. Physically, these vessels do not cross, but
one is taking course above the other. Since vessels are relatively
straight, we can assume that a diagonally opposed vessel segment
pair represents the same physical vessel and hence the segments
belong to the same vessel type. This situation is depicted in the
Fig. 2(right). Here e4; e5; e6 and e7 denote the graph edges linked
at a node v. Since the two pairs ðe4; e6Þ and ðe5; e6Þ belong to the
same vessel, we can formulate the following two rules (with a more
general indexing):

L4 ¼ a() L5 ¼ a() L6 ¼ v() L7 ¼ v ð3Þ
^ L4 ¼ v() L5 ¼ v() L6 ¼ a() L7 ¼ a ð4Þ

In this way, the extracted vascular graph G leads to a finite set S of
rules.

Note that Li can be considered as boolean variable, since we can
identify the label a with true and v with false. In a natural way

we get a satisfiability problem in m variables L1; . . . ; Lm. Obviously,
the rules (1) and (2) as well as rules (3) and (4) are redundant so
that we keep only the rules (1) and (3) in our rule set S.

2.3. Constrained search problem

The SAT-problem is a special case of constraint satisfaction
problems and can thus be solved by standard algorithms-like AC-
3 (see e.g. [21]) to overcome the NP-hard computation trap. The
variables L ¼ fL1; . . . ; Lmg are constrained by a set C of binary rela-
tions, which are easily extracted from the rule set S.

Since the variables are assigned to the edges E of the vascular
graph G (see Section 2.1) and the constraints connect always two
variables we get a dual graph G0 ¼ ðL; CÞ, with the nodes repre-
sented by the variables L and the edges represented the binary
constraints C. Fig. 2 depicts the local construction of the dual
graph G0 on a crossing vertex (left) and a branching vertex
(right). The primary graph nodes (vessel branches or crossings)
are visualised by the dots and the primary edges (vessel seg-
ments) as solid lines. The diamonds represents the dual graph
nodes (vessel labels) and the dashed curves define the dual
graph edges (constraints).

Initially, the domain of each variable L is domðLÞ ¼ fa;vg. In
each connected component of the dual graph G0 one vessel label
has to be specified as artery or vein by restricting the variable
domain explicitly. Otherwise, there would exist two contrary
solution. The specification could be done arbitrarily, but at the
end a user should anyhow decide which of the contrary solu-
tions is the correct interpretation. Therefore, a user interaction
is absolutely necessary and could be also done in advance. On
basis of an initial specification (user defined as well as arbi-
trary) of few vessels as artery or vein, the domains of the cor-
responding variables are reduced to a single value.

These constraints can be propagated through the dual graph by
preserving the arc consistency. For this task we use an extension of
the AC-3 algorithm which is steered by a priority queue instead of
a queue (see Section 3.2).

The basic idea in our application is that due to failures in the ex-
tracted vascular graph, some extracted relations (equality or
inequality) of the variables are wrong. One possible approach to
overcoming this problem is to model the probabilities of a con-
straint c to be an equality Pðc � ðL ¼ L0ÞÞ or an inequality
Pðc � ðL–L0ÞÞ, similarly as done by Akita and Kuga [17]. In contrast
to that idea, the solution which is presented in this work based
upon hard decisions to get a consistent labelling of the whole vas-
cular graph. In contradictory situations, when a variable domain
becomes empty, we are searching in the graph G for the reason
of the contradiction and fix it by manipulating G at an adequate po-
sition (see Section 3.4).
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Fig. 2. Construction of the dual graph for a branching (on the left hand) and a crossing (on the right hand).
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After solving the SAT-problem each edge of the graph G is la-
belled by either a or v. Then, the subset of all edges labelled by a

and v corresponds to arteries and veins, respectively. Note that
some vessels labels could be still ambiguous. This situation could
occur either if a conflict could not be resolved suitably or in the
case that a subgraph includes no initially labelled vessel. In the lat-
ter case such a subgraph is completely unlabelled and the user
should introduce a new vessel label in that subgraph.

2.4. Unsatisfiable vessel labelling

During the segmentation process and the segment identifica-
tion (e.g. a skeleton algorithm) an erroneous graph representation
of the vascular structure may be computed. Typical mistakes are

(1) splitting of one crossing into two branches;
(2) missing vessel segment on a side of a crossing;
(3) falsely detected, i.e. non-existing, vessel segments.

The result of these mistakes is usually a globally unsolvable
SAT-problem. For this reason we have to manipulate the graph G

at few selected vertices so that the SAT-problem (Section 2.2) be-
comes solvable. The selection itself is controlled by the algorithm
described in Section 3. We allow the following operations:

op1 Combining two adjacent branch vertices to one crossing (top
row Fig. 3).

op2 Defining an edge as end segment, which is only connected to
one branch or crossing (see middle and bottom Fig. 3).

op3 Deleting an edge.

Instead of manipulating the graph directly we introduce an aux-
iliary labelling of vessel segments. To distinguish between the two
different types of labelling, we denote the following as edge label-
ling and the discrimination between veins and arteries (Section
2.2) as vessel labelling. Possible labels for graph edges are:

c connection between two branches, which should establish a
crossing;

e artificial end segment, where only one of two vertices is
relevant;

f falsely detected segment;
n normal segment.

These labellings of edges in the primary graph G change the
interpretation of the graph structure of the edge. Implicitly, a dif-

ferent interpretation affect the constraints at the incident nodes.
When we change G and therewith the interpretation of the vascu-
lar structure, we also have to correct the dual graph, which repre-
sents the anatomical characteristics of the retinal vasculature. In
the following, we describe in brief the implication of changing
the labelling of an edge e 2 E from n to c, e or f.

The corresponding graph manipulation operation for introduc-
ing a c-label is op1. This labelling is only allowed, when e connects
two branches and no adjacent edge is labelled with c. In this situ-
ation, the dual node in G0, which corresponds to e is deleted and the
four adjacent dual nodes (see Fig. 3, top row) are connected with
inequality arcs.

An end segment labelling e (equivalent to op2) is only al-
lowed if at most one of the vertices has degree three and the
other has degree three or four (see Fig. 3, middle and bottom
row). The manipulation of the dual graph depends on the degree
of this second vertex. In the case of degree 4, the vessel corre-
sponding to e is supposed not to be physically connected to
the other vessel at the branch. Therefore, the rules which are
introduced by this branch are causeless and the equality arcs
in the dual graph are deleted. In the case that the incident ver-
tices of e are both of degree 3 (bottom row of Fig. 3) one cannot
decide the physically connectivity of the vessel segment from
the structural perspective. We resolve this decision during our
AC-3* algorithm. In the moment, when the domain of the vessel
labelling of such an e-labelled edge is reduced, all unused arcs in
the dual graph are cancelled.

Noisy segments (label f) are simply thrown away by removing
the corresponding node and all incident edges in the dual graph.

2.5. Optimisation task

In Section 3, we will introduce plausibility weights for the ver-
tices and edges of G. Based upon these ratings we are interested in
that solution, which results in a maximum average plausibility. In
other words, we search a labelling of graph edges (Section 2.4) so
that the resulting SAT-problem (Section 2.2) is solvable and the
average plausibility is maximised.

Initially, all vertices vj of G are assessed with a plausibility value
wðvjÞ, which should regard the reliability of the assessed rules of vj.
Furthermore, each edge ei of G is assigned with the plausibility
weight wðeiÞ ¼ 1 or 0 if the corresponding vessel segment is
hand-labelled or not. Based upon the order of applying constraints
the weights of the new-labelled segments are updated by a multi-
plicative propagation scheme (see Eq. (9) in Section 3.2). The opti-
misation task is then given by minimising
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wðGÞ ¼ 1
n
�
Xn

i¼1

wðeiÞ ð5Þ

This average plausibility depends on the number of hand-labelled
segments and on the order of solving conflicts. Note that in case
of an unsolved conflict, wide parts of the graph are left unprocessed
and hold the plausibility weight 0.

It is important to keep in mind that wðGÞ strongly depend on the
number and the placement of the hand-labelled vessels and should
not been consulted as a quality index of the resulting vessel label-
ling. We will discus the interpretation of wðGÞ and the influence of
the hand-labelled vessels in Section 5.

3. Graph separation

The problem we are faced with consists of two layers. The
basic layer is the structure of the vascular graph. On this layer
graph edges should been labelled with either c, e, f or n. This
edge labelling defines the constraint set C, which conditions
the second, high-level layer. The dual graph G0, which has been
described in Section 2.3, are used to represent the constraint
set C. With G0 we are enabled to solve the established con-
strained search problem with an extension of AC-3 by reducing
the binary variable domains, so that the arc-consistency is
fulfilled.

Our approach is to apply on this higher level a belief prop-
agation and solve conflicts by adjusting the basic layer. More
precisely, if contradictory informations are propagated to a
vessel segment (competing a/v-labelling), we do not propagate
the more likely information, but reorganise the structure. This
update results in a different, more realistic graph structure.

We use a two-stage approach for the labelling of the vessel seg-
ments. In the first stage (Section 3.1), we compute an initial label-
ling of graph edges. All edges are labelled by n, except for those
connecting two branches. In the latter case the edge is labelled
by either n or c (indicating a merge of the two branches to build
a crossing according to graph manipulation operation op2). The
decision rule for taking one of the two labels n/c is given later in
Section 3.1.

The second (higher-order) stage performs the labelling of the
vessel segments by a variant of AC-3 (Section 3.2). This algorithm
tries to label all vessel segments as arteries a or veins v. Cycles
in the dual graph G0 could cause conflict situations such that a con-
sistent a/v-labelling is impossible (Section 3.3). These conflicts are
resolved by a backtracking procedure (Section 3.4). The idea is to
modify the edge labelling at appropriate edges according to graph
manipulation operations op1–op3.

3.1. Initial edge labelling

To compute an initial edge labelling, we firstly decide which
edges should be labelled with c. All other edges are assumed to
be normal edges (label n). It is important to note that a c-label
manipulates the graph structure by merging two branch vertices,
with degree 3, to a crossing vertex, with degree 4 (see top row in
Fig. 3). Therewith, also the dual graph G0 is adjusted accordingly
as discussed in Section 2.4.

Let sc denotes a vessel segment (respectively, a graph edge) to
which we want to assign its initial labelling (c or n). Furthermore,
s1; . . . ; s4 are the other involved vessel segments (see Fig. 4). Two
properties help us decide if the two detected branch vertices of
sc actually belong to one vessel crossing:

P1 The distance d between two branches is relatively small.
P2 The two segments s1 and s3 are roughly collinear, similarly s2

and s4.

We are modelling P1 and P2 by the following two plausibility
functions (see Figs. 5 and 6):

P1 : ½0;1Þ ! ½0;1�; P1ðdÞ ¼ 0:95 �minfd=dmax;1g; ð6Þ
P2 : ½�p; p� ! ½0;1�; P2ðbÞ ¼ 0:50 � ð1� cosðbÞÞ ð7Þ

The constant factor dmax > 0 should depend on the resolution of the
retinal image. We compute the argument b of P2 as

b ¼maxfa1; . . . ; a4g ð8Þ

Here a1; . . . ; a4 are the inner angles between sc and s1; . . . ; s4 (see
Fig. 4). If both P1 as well as P2 are low, we could assume a crossing
instead of two branches. We define thresholds T1 and T2 and label
the segments with c if P1 < T1 and P2 < T2.

The thresholds T1 and T2 are determined by optimising this
classifier. We hypothesise ‘‘segment sc is a normal vessel” and min-
imise the beta error on a significance level a ¼ 0%. We have exam-
ined 11 vascular graphs with 763 ‘‘inner” edges (see Fig. 7). With
the conducted thresholds T1 ¼ 0:75 and T2 ¼ P2ðp=6Þ all 621 nor-
mal edges are correctly labelled with n. On the other hand only
25 of 142 crossing edges are falsely labelled with n. This corre-
sponds to a beta error of about 17.6% and a total error of about
3.3%.

3.2. Consistent labelling search

In the following an extension of the AC-3 algorithm [21] is pro-
posed, which is controlled by a priority queue Q � C. Note that this
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algorithm is applied on the dual graph. The vertices of this graph
corresponds to vessel segments, more precisely their a/v-labels.
The edges are the constraints, which are given as the binary rela-
tions (equality, inequality).

We presume that Q initially contains the constraints concerning
some hand-labelled vessel segments. Since the vascular structure
at the optic disc is very compact, which makes the differentiation
of the vessels even for human eyes hardly solvable, we define a cir-
cle around the optic disc where the algorithm does not proceed the
labelling.

In each step the best constraint c ¼ ðL � L0Þ is taken out of Q,
where ‘�’ could be either ‘=’ or ‘–’. In Lemma 1 we will show that
each constraint in Q refers to at least one uniquely labelled vessel
(w.l.o.g. L ¼ a). Therefore, we can restrict the domain of the other
referred vessel label L0, so that the constraint is consistent. If the
domain of L0 becomes empty, the interpretation of the vascular net-
work is erroneous, and we have to find the reason for the conflict
(see Section 3.4). The algorithm stops either if Q becomes empty
or a conflict could not been dissolved. In the set R the reviewed
constraints are stored.

Algorithm 1. AC-3*

Require: Constraint set C, queue Q with constraints referring the
hand-labelled vessels

1: R ; // reviewed constraints
2: while Q is not empty do
3: c ¼ ðL � L0Þ  REMOVE-HEAD ðQÞ
4: // w.l.o.g. let the domain of L be reduced to one value a or

v, respectively
5: if CONSISTENT-LABELLING ðc; L; L0Þ then
6: R R [ c
7: for all c0 2 G0 incident to L0 do
8: if c0 R Q [R then
9: add c0 to Q

10: end if
11: end for
12: else
13: BACKTRACKING-SEARCH(c)
14: end if
15: end while

To arrange the order of processing, we need a heuristic HðcÞ
that decides ‘‘how good” a constraint c is to be treated in the
next processing step. For defining the heuristic H we weight
the vertices and edges of G with values w 2 ½0;1�. The higher a

weight is the more plausible is the interpretation of a vertex
or the label of a vessel, respectively. Initially, the weights are de-
fined as follows:

� wðvÞ ¼ P1ðdÞ for a crossing vertex v, where d is the distance to its
nearest neighbour;

� wðvÞ ¼ P1ðdÞ þ P2ðbÞ � P1ðdÞ � P2ðbÞ for a branch vertex v and its
nearest neighbour vertex (see Fig. 4);

� wðeÞ ¼ 1 if e is a hand-labelled vessel segment (edge).

All vertices of degree 1 and all other edges are initialised with
zeros and updated in the labelling process as follows. Let
c ¼ ðL � L0Þ denote the constraint which is processed (i.e. taken out
of Q). Here the domain of L is already reduced to an unique value.
Due to the definition of the dual graph, L and L0 correspond to vessel
segments e and e0 in the primary graph G, which join the common
vertex v. We update the weights for the edges e0, if still unlabelled, by

wðe0Þ  wðeÞ �wðvÞ ð¼ HðcÞÞ: ð9Þ

When the constraint c0 ¼ ðL0 � L00Þ is inserted into the queue Q, we
compute H as:

Hðc0Þ  wðe0Þ �wðv0Þ; ð10Þ

where e00 is the edge which belongs to L00 and v0 is the common ver-
tex of e0 and e00.

3.3. Localisation of the conflict reason

For simplify the further consideration, we extend the dual graph
with one virtual node L0 and restrict the domain to dom ðL0Þ ¼ fag.
Thereafter, we connect L0 to each hand-labelled node either with
an equality constraint ‘=’ in case of a hand-labelled artery or an
inequality constraint ‘–’ in case of a hand-labelled vein. With this
extension the initial labelling is embedded consistently in terms of
the CSP just by those constraints. The queue Q in Algorithm 1 can
be initialised with these newly introduced constraints referring L0.
It is important to note that the node L0 as well as all incident edges,
which are introduced by the hand-labelled vessels, must not be
changed during the conflict dissolving procedure.

Lemma 1. In the Algorithm 1 the following invariants are always
fulfilled for all constraints c ¼ ðL � L0Þ:
1. case ðc 2 RÞ : j dom ðLÞ j¼j dom ðL0Þ j¼ 1
2. case ðc 2 QÞ : j dom ðLÞ j¼ 1^ j dom ðL0Þ jP 1 ðw:l:o:g: j dom ðLÞ j6

j dom ðL0Þ jÞ
3. case ðc R Q [RÞ : j dom ðLÞ j¼j dom ðL0Þ j¼ 2
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See Appendix for a proof of this Lemma. Lemma 1 demonstrates
the operation mode of the AC-3* algorithm. The set R stores the
fulfilled constraints (domains of the referring variables are sin-
gle-valued), the queue Q holds the applicable constraints (at least
one variable with single-valued). The rest of the constraints are
irrelevant at the moment.

This situation is exemplary depicted in Fig. 8. Initially, there
is one hand-labelled artery (marked in Fig. 8 with the big a).
In each pass through the while-loop one constraint is applied
and the domain of one variable is assured to be single-valued.
In the example of Fig. 8 these constrains are numbered in
order of their application. Therewith, the reviewed region
(underlaid in grey) is growing and covering the applied con-
straints. For example the lighter grey region is supplemented
during the fifth pass. The queue Q can be concluded from
Fig. 8 as including those constrains (dashed arcs), which partly
lie in the reviewed region and partly in the unreviewed. There
are two important things to notice. Firstly, a variable domain
cannot be empty. In that case a backtracking search undoes
the last applications of constraints and the problem is fixed by
manipulating the graph structures. The second important fact
is, that when Q is empty, all reviewed constraints in R are ful-
filled by an unique labelling of the referring variables. The fol-
lowing Lemma 2 (see Appendix for a proof) specifies the
situation, which causes a conflict.

Lemma 2. Conflict at node L of the dual graph G0 could occur during
the AC-3* algorithm if and only if there is a cycle with nodes L00; . . . ; L0p
with L ¼ L00 ¼ L0p and edges (resp. constraints) ci ¼ ðL0i�1 � L0iÞ 2 R so
that the number of inequality constraints ‘–’ is an odd integer.

Such a conflict causing cycle is depicted in Fig. 8. The constrains
numbered with 2, 4, 5, and 6 establish a cycle with only one
inequality (constrain number 5) and causes a conflict in the sixth
loop pass.

In dead, a conflict causing cycle is present unless any hand-lab-
ellings and could be easily located by a pass-consistency check.
However, we want to sort all conflict causing cycles implicitly by
their order of processing during the heuristical steered AC-3*

algorithm.

3.4. Conflict dissolving

Algorithm 2. BACKTRACKING-SEARCH ðcÞ

Require: Constraint c as head of review stack R

1: S  ; // sub-graph to be reviewed again
2: while no conflict cycle C is found do
3: S  S [ HEAD ðRÞ
4: R REMOVE-HEAD ðRÞ
5: end while
6: COMPUTE ðE	Þ // see Eq. (11)
7: ~e ¼ arg mine2E	 fP1ðeÞ þ P2ðeÞ � P1ðeÞ � P2ðeÞg
8: if P1ð~eÞ < T 01 ^ P2ð~eÞ < T 02 then
9: LABELð~eÞ ¼ c

10: else
11: ~e ¼ arg mine2CfwðeÞg
12: LABEL ð~eÞ=e // or f if e-label is impossible
13: end if
14: eL  VESSEL-LABEL ð~eÞ
15: while 9 ðL � eLÞ 2 R do
16: S  S [ HEAD ðRÞ
17: R REMOVE-HEAD ðRÞ
18: end while
19: ADJUST-DOMAINSðSÞ
20: REBUILD-DUAL-GRAPH

During the labelling propagation described above we may
encounter a conflict situation, where a domain of variable L becomes
an empty set. This happens if a vessel is already labelled as artery or
vein and an application of a constraint yields the contrary label.

In such a situation the backtracking procedure is started to find
a conflict causing cycle (see Lemma 2). Note that the reviewed set
R can be easily implemented as heap so that the history of con-
straint application is present. In fact, there might be more than
one such cycle, but we consider the shortest one. In the primary
graph G one can identify a corresponding cycle, with edges e0i
(accordantly to L0i) with 0 6 i 6 p and a node set V	. To solve the
conflicts we modify the primary graph indirectly by using another
auxiliary labelling (Section 2.4).

In general there are two possibilities to resolve a conflict: (1)
changing the number of inequalities or (2) cutting the cycle. At first
we try to change the number of inequalities. If this is not possible,
we secondly try to delete one constraint and consequently cut the
cycle. This can be done by introducing an end-segment label e to
one edge e0i. Finally, the algorithm stops (with an unsolved conflict)
if actually the introduction of an end-segment is impossible.

Let us consider the first strategy: changing the number of
inequalities. Obviously, it is sufficient to add or remove one
inequality constrained on the conflict causing cycle. Since we do
not want to get in an infinity loop, we only allow to add inequali-
ties. This can be done by relabel the most adequate n-labelled edge
with c. The candidate edges E	 for such a relabelling operation are
defined as:

E	 :¼ fe ¼ ðv;wÞ 2 E j v 2 V	 ð11Þ
^ deg ðvÞ ¼ deg ðwÞ ¼ 3
^ 8~e incident to v or w ~e is n-labelledg

The most adequate edge is the edge in E	 which satisfies the con-
straints P1 < T 01 and P2 < T 02 and minimises the plausibility
P1 þ P2 � P1 � P2. Hereby, T 01 > T1 and T 02 > T2 are suitable thresh-
olds. The Algorithm 2 formally describes the backtracking search.

Again reviewing the example in Fig. 8, the edges which could be
relabelled with a c-label are marked as thick lines. The edge
with the hand-label would minimises the plausibility P1þ
P2 � P1 � P2. However, we protect the hand-labelled edge seg-
ments, because a user would hardly label the interior of a crossing.
All other edges end at a real or introduced (right, unlabelled sub-
graph) crossing node. Due to the anatomical characteristics of the
vascular network, such c-labelled edges could not be interpreted
suitably.

Comparing the two possible edges for a new c label, we
would guess, that the rightmost edge minimises the plausibility.
However, it should not be good enough to fulfill the threshold for
P2. In that case, an end segment would be introduced.
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and possible conflict solving (see text for details).
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4. Results

In this section some results of the proposed algorithm are
exemplary presented. Firstly, our concept is proved on manually
segmented retinal images of the STARE dataset [1] (see Section
4.1). Subsequently, we demonstrate the applicability on auto-
matically segmented retinal images (see Section 4.2). The user
has to label a few vessels as arteries or veins by hand in both
series.

The results are presented in two ways. Firstly, we overlay the
labelled vessels onto the original retinal image. Here only the
skeleton pixels are dyed either in red or in blue (e.g. Fig. 9, left
side). The other visualisation of the results is realised within
the segmentation of the retinal vessels. Again we use blue and
red to distinguish the two vessel types, but now the complete
vessel segment is dyed. Furthermore, we indicate the hand-la-
belled vessels with a darker colour and the unlabelled vessels in
white (e.g. Fig. 9, right side). Unsolved conflicts are specified by
yellow arrows.

The performance of the algorithm is concluded in Table 1 (man-
ually segmented) and Table 2 (automatically segmented). Beside
the identification number of the image, the number of initial c-la-
bels, newly introduced c-labels (conflict resolving), newly intro-
duced e-labels (conflict resolving), resolved and total conflicts
are given. In the rightmost column we plot the average weight
wðGÞ. As already mentioned, this number should not be used to
compare the quality of results for different initial labellings or dif-
ferent retinal images.

4.1. Manually segmented retinal images

The database of our first test series has been established by
Hoover et al. [1]. We use their ground-truth segmentation as input
for our graph computation procedure, ignore the vessels inside the
optical disc and start our AC-3* algorithm with a few hand-classi-
fied vessels. In the Figs. 9 and 10 results are depicted, where all
conflicts could be treated suitably. Fig. 9 shows the example
‘im0002’, where we start with two hand-labelled vessel segments
and end up with an average plausibility of 0.14 without unsolved
conflicts. Initially, there are 13 edges labelled with c and the con-
flict solver recognise 3 additional c-edges and 1 end segment (label
e). The example of Fig. 10 (‘im0081’ in STARE) starts with 4 hand-
labelled segments and 22 c-edges. The graph separation process
solves all conflicts by adding 1 end segment and 3 more c-edges.
The average plausibility of the result is 0.20. In Table 1 more results
on a fair selection of images of the STARE database are presented.
Beside the depicted examples ‘im0002’ and ‘im0081’ there are four
other images (namely ‘im0003’, ‘im0044’, ‘im0319’, and ‘im0324’)
with unsolved conflicts.

Fig. 11(a) (‘im0082’ in STARE) shows an example, which is more
difficult to proceed. If we label 4 vessel segments by hand
(Fig. 11(b)) the program stops with an average plausibility of
0.18. Thereby, only 6 of 10 conflicts are solved and two end seg-
ments are introduced. The problem arises mainly from the overlaid
crossing and branching in the upper right part of the retina (yellow
arrows in Fig. 11). If such a situation occurs the user can correct the
labelling by introducing more hand-labelled vessels at ambiguous

Table 1
Results on manually segmented images of STARE database [1]

Image ID Hand labels Initial c-labels New c-labels New e-labels Solved conflicts wðGÞ

‘im0002’ 2 13 3 1 4/4 0.14
‘im0003’ 4 7 1 0 1/1 0.24
‘im0044’ 5 9 3 1 4/4 0.23
‘im0077’ 5 7 8 1 9/10 0.14
‘im0081’ 4 22 3 1 4/4 0.20
‘im0082’ 4 17 4 2 6/10 0.18
‘im0082’ 6 17 4 3 7/9 0.21
‘im0162’ 7 25 10 8 18/20 0.15
‘im0163’ 8 16 7 7 14/17 0.20
‘im0240’ 4 15 3 3 6/7 0.22
‘im0319’ 3 5 1 1 2/2 0.36
‘im0324’ 2 5 0 1 1/1 0.22

Fig. 9. Vessel classification on manual segmentations ‘im0002’ in STARE [1]: overlaid on retinal image (left) and dyed segmentation (right).
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regions of the retina. But even if we label 6 vessels by hand
(Fig. 11(c)) only 7 of 9 conflicts are solved by adding 4 c-labels
and 3 e-labels. Note that the higher average plausibility in this case
is due to the larger set of hand-labelled vessels. Such situations
occur frequently (e.g. Table 1: ‘im0077’, ‘im0082’, ‘im0162’,
‘im0163’, and ‘im0240’) and require a user interaction. Thereby,
the conflict is presented to the user, who should introduce some
more manually labelled vessels near the unclear part of the vascu-
lar structure. The computation time to update the result is near
real-time, so that the medical expert can directly check the effect
of his interaction. Such an user involving procedure is not mischie-
vous, but exactly the kind of assistance which would be excepted
by medical experts.

Even in the case of an idealised segmentation, some conflicts
could not been resolved without further user interaction. Such sit-
uation could occur, when the two major vessels (one artery and
one vein) wriggle upon each other several times, so that the parti-
tioning of these vessels is ambiguous even in a perfect segmenta-
tion (see Fig. 11). Branchings of such twisted vessels are hardly
to assign one of them, without involving lower level informations
(colour, texture, geometrical features).

Another reason for conflicts is introduced by some smaller ves-
sels, which are partly not visible, due to their low contrast. This
could lead to misinterpretation, when the connectivity is lost.

4.2. Automatically segmented retinal images

We also conducted some tests on automatic segmentations. Our
observation with such segmentations is that in many cases the
connectivity if the vascular graph G is too weak. Our algorithm
needs a sufficiently connected structure to proceed the label prop-
agation. This behaviour is the main reason why the result of our a
approach on such a small constraint set is correct but not as reli-
able as for a larger constraint set. The Figs. 12 and 13 present
two results on an automatic segmented image of the DRIVE dataset
[6] using the publically available vessel segmentation algorithm of
Soares et al. [5].

The difficulty of the first example (Fig. 12, image 16 in DRIVE) is
due to the fact that some vessels are non-continuously segmented
(main vessels at the upper right region of the retina). Overall we
get an average plausibility of 0.08, based on 6 hand-labelled
vessels. All conflicts are solved by introducing 6 new c-label and

Table 2
Results on automatically segmented images of DRIVE database [6]

Image ID Hand labels Initial c-labels New c-labels New e-labels Solved conflicts wðGÞ

‘06_test’ 4 11 2 1 3/3 0.15
‘10_test’ 4 15 2 1 3/6 0.03
‘13_test’ 4 14 6 4 10/10 0.04
‘14_test’ 4 8 3 3 6/7 0.10
‘16_test’ 6 12 6 0 6/6 0.08
‘19_test’ 4 16 3 0 3/3 0.04

Fig. 10. Vessel classification on manual segmentations ‘im0081’ in STARE [1]: overlaid on retinal image (left) and dyed segmentation (right).

Fig. 11. Problems originated from nearby vessel segments (a) and (b) can be improved by introducing more hand-labelled vessels (c) in ‘im0082’.
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no e-labels. This fact is partly caused by the weak connectivity of
the vessel segmentation result, which eases the labelling task since
there are fewer constraints compared to a fully connected vascular
graph. However, it increases the risk of making erroneous deci-
sions. This effect is shown by the second example (Fig. 13, image
10 in DRIVE), where 3 of 6 conflicts are still unsolved, since the
connectivity of the vascular structure is not adequate enough to
correct falsely labelled edges. The average plausibility of this
example is with 0.03 the lowest of the examples presented in this
work. The remaining conflicts all affect the same area of the vascu-
lar graph (see Fig. 13). In this subgraphs just a few connections are
missed by the segmentation algorithm, to allow an introduction of
a c-label. On the other hand there exists some small noisy
branches due to holes in the binary segmentation image. The latter
kind of noise is the reason, why the average score is lower than in
the case of the manually segmented images. The noisy branches of-
ten have a low plausibility and results in a rapid decrease of the
vessels’ weights.

In Table 2 some more examples on automatically segmented
images are given. All other retinal images in the DRIVE database
are segmented not completely enough to preserve a sufficient
structural representation of the vessel network. Remember that
the a/v-labelling is propagated on the basis of rules which are as-
signed to the nodes of the vascular graph G. If a node is not de-
tected or a vessel is divided into unconnected segments, there
are introduced more unconnected subgraphs. In each subgraph
the user has to label at least one vessel manually. Such situation
is not satisfactory. Currently, we are intending an extension of ves-
sel segmentation algorithms in such a way that the structural fea-
tures are preserved or reconstructed.

5. Discussion and conclusion

We have presented an automated graph separation algorithm to
distinguish between arteries and veins in retinal images. The re-
sults on the manually segmented images are promising and prove

Fig. 12. Vessel classification on automatic segmentation on ‘16_test’ in DRIVE without unsolved conflicts.

Fig. 13. Vessel classification on automatic segmentation on ‘10_test’ in DRIVE with unsolved conflicts (arrows).
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the applicability of our concept. A medical expert has to label a few
vessels as arteries or veins manually. This user interaction could be
avoided by an automatic detection of the optic disc and an auto-
matic classification of close-by dominant vessels.

The performance of our algorithm mainly depends on the qual-
ity of the vessel segmentation algorithm. Although we could cor-
rect isolated segmentation errors, cumulatively mistakes or non-
continuous vessels are still difficult to handle.

On the other side this malpractice offers a chance to locate seg-
mentation errors. If there is a region, where the extracted vessels
could not be arranged under anatomical aspects, this is an indica-
tion for a segmentation error. Beside the use of such higher level
information, we are working on an extended conflict solver, which
could delete edges/vessels.

Furthermore, we want to justify our algorithm by a comprehen-
sive quantitative study, in which our results are compared to a
ground truth labelling, which has to be established. The ground
truth, which is presented by Hoover et al. [1] only define true vessels,
but not their type (artery or vein). Moreover, we are interested in an
objective, quantitative measure of the achieved quality of a result.
The average weight is not useful to compare two resulting labellings
because it strongly depends on the number and position of the hand-
labelled vessels. With different initial hand-labellings a user can eas-
ily produce the same result, but with different average weights.

We have developed an adaptive user interface, which helps
physicians to process their analysis in a more efficient way.

We also want to enhance the method by a statistical foundation
of the weights. Also a Bayes classifier of the on basis of the two fea-
tures d (Euclidian distance of the segment end points) and b (max-
imum angle) should be established. At the moment we do not use
the anatomical feature, that the arteries and the veins are cycle free
on the retina. This can be modeled by forbidding cycles in the dual
graph, which do not include an inequality constraint (beside the
cycle, which takes course around one single branch).

Finally, this structural feature approach should be embedded in
a more general framework, where we also use shape, texture and
colour feature of the vessels to separate veins and arteries. Cur-
rently, we are working on a method, in which classifiers on differ-
ent information levels are combined. Hereby, a higher level
classifier could adjust lower level classifiers, by validating the clas-
sification results.

In conclusion one can say that the automatic separation of the
vascular graph into vein and artery components offers many
chances to interpret characteristics of the vessel structure on a
higher information level. It could be possible to correct errors on
lower levels by a suitable interaction scheme.
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Appendix

Proof of Lemma 1. Initially R ¼ ; and case 1 is trivially valid. The
queue Q contains all constraints referring L0 and the hand-labelled
variables. Since at the beginning L0 is the only node with a single-
valued domain the cases 2 and 3 are fulfilled, too.

Let us assume, the invariants are valid at the beginning of the
while-loop. After the removal of the head c ¼ ðL � L0Þ of Q the
domain of L0 is reduced so that the arc-consistency is given with

respect to the relation L � L0. Since L has a single-valued domain
(assumption) and ‘�’ is either ‘=’ or ‘–’, the domain of L0 is
restricted to an unique value or becomes empty. In the latter case
the backtracking search undoes the last constraint applications and
modify the graphs. In the former case the insertion of ðL � L0Þ into
R corresponds to case 1 in this lemma.

Finally, all constraints c0 R Q [R referring L0 are added to Q.
Since L0 has now a single-valued domain and the other must have a
non-restricted domain this conforms the cases 2 and 3. Concluding,
it is proved that the invariants are fulfilled at the end of the while-
loop and hence during the whole algorithm. h

Proof of Lemma 2. Beside the empty domain of L the domains of all
L0 2 L are non-empty (Lemma 1). Assumed there is no cycle in the
graph G0act ¼ ðR;LjRÞ which contains L, then each path containing L
is linear. Since L0 ¼ a was the only restricted variable at the begin-
ning of Algorithm 1, a consistent (regarding R) labelling of all other
ðL0 2 LjRÞ is possible. Obviously, the conflict is not reasonable and
hence could not has been produced by the AC-3* algorithm.

So there must be a cycle which causes the conflict. Let L00; . . . ; L0p
with L ¼ L00 ¼ L0p denote the cycle nodes and let ci ¼ ðL0i�1 � L0iÞ 2 R

represent the cycle edges. Due to Lemma 1, the domain of L0i is sin-
gle-valued (beside the empty domain of L0).

Note that an inequality results in a change of the label. The node
L is connected through a constrained path ci to itself. Since the pos-
sible domain of each L0i is binary, one can resolute the conclusion
L ¼ L if there is an even number of inequalities and L–L if there
is an odd number. Obviously, the conflicts is founded exactly by
the latter case. h
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