
MVA '90 IAPR Workshop on Machine Vision Applications Nov. 28-30,1990, Tokyo

SINGLE-CHIP HIGH-SPEED COMPUTATION OF OPTICAL FLOW

Per-Erik Danielsson*, Par Emanuelsson*, Keping Chen**, Per Ingelhag"

and Christer Svensson* *
'Department of Electrical Engineering and **LSI Design Center

Linkoping University

S-581 83 Linkoping, Sweden

ABSTRACT In the second part of the article we demonstrate how
the VIP-chip is able to perform the computation at

This Paper consists of two Parts. In the first Part near-video rate (11-15 frames/second). ~h~ m - c h i p
we describe how to compute optical flow from second is by a control unit and a limited set of
derivatives. In the second part we describe the VIP external memories.
chip and how this chip can compute a 512x512 optical
flow field at nearly full video rate.

OPTICAL FLOW FROM SECOND DERIVATIVES

The basic equation for optical flow is given by (1).
INTRODUCTION

fx.u + f , . v + f , = 0 (1)
Optical flow is a means for the analysis of image

sequences. In particular it should be helpful in
segmenting rigidly moving objects from a non-moving
background or from a background the movement of
which could be predicted. The latter case is very often
at hand when the image sequence comes from a
moving camera in a 3D-world. The potential
applications of optical flow and various segmentation
algorithms based thereof are to be found in target
tracking, automatic inspection, computer vision for
autonomous robots and vehicles and related areas.

These applications have been slow in coming
because of computation complexity and high cost. In
this paper we will address this problem in two ways.
Firstly, we advocate the use of second derivatives to
solve the optical flow equation explicitly. Secondly, we
will present a new chip, called WP (VIdeo Processor),
which comprises 512 bit-serial processors and seems
rather ideal for the task.

In the first part of the article we demonstrate that
one can obtain a useful optical flow field from the
second derivatives using the following computations.

- 25 to 50 operations of type addition or
subtraction, the number depending on noise
levels which require more or less smoothing
in the operators.

- 6 multiplications

- 2 divisions

Like some other authors [I], [2] we make the
smoothness assumption that the derivatives of the flow
components (u, v) are zero. Then, the derivative in
x and y of (1) gives us two equations from which we
explicitly can obtain both u and v.

This method of obtaining the optical flow requires
that we compute (estimate) the five second derivatives

throughout the 3D space (x, y, t).

The so called aperture problem for computation of
optical flow manifests itself in the denominator

G = &-f~, which is nothing but the Gaussian

curvature for the f(x, y) surface. When the local
variation in f(x, y) is one-dimensional only, the
Gaussian curvature is zero and in this case we cannot
estimate the optical flow. The two equations (2) and
(3) will then deliver a result of type 010 which is
undefined but a quite reasonable response under the
given circumstances. In fact, the quantity [GI can be
used as a certainty factor in a post-processing
procedure to resolve ambiguities and enforce global
coherence as will be shown below.

We intend to implement the computation of (2) and
(3) in a manner described by Figure 1. The second
derivatives are effectively computed from first
derivative estimators in two steps using a 3 x 3 ~ 3 kernel
of the type shown in Figure 2.

The net result is that the second derivatives are
computed from a 5 x 5 ~ 5 neighborhood which make
them remarkably noise insensitive. The suggested set
of kernels can be seen as generalized Sobel filters and
are perfectly decomposable which makes it possible
to compute all derivatives using only 17 additions and
8 subtractions between nearest neighbors [3].

t

t

I lnpur sequence f,(x. Y. 1) f,l
f (x . Y, t)

Figure 1

Figure 2

To enforce local coherence (smoothness) we propose
the following. Let us introduce the notation for the
numerators and denominators of the (u, v)-vector in
(4).

A smoothed result (U, V) from a neighborhood 3
of the (u, v) image using IGl as a weighting factor can
then be computed as

where the sums are computed over the given
neighborhood and the subscript i indicates a pixel
position, within the neighborhood. As seen from (5)
we manage to simplify this computation into averaging
the two numerators and the common denominator G..

The above procedure has been implemented and
tested on a number of sequences. The result (U, V)
is a vector field which one preferably should present
as a color-coded image. In short of this we can only
state here that the result seems fully comparable, if
not superior, to more computation demanding iterative
solutions.

THE VIP CHIP

The VIP (VIdeo rate Processor [4]) has a floor-plan
according to Figure 3. A memory array of 512x256
static bit-cells is surrounded on two edges by two 256
linear arrays of processors. Each processor accesses
one column of 256 bits of the on-chip 512x256
memory. The 512 processors are identical and each
one consists of four major parts, each part forming
two 256-element arrays as shown in Figure 3.
Functionally, the chip is a 512-processor system
organized as a linear array. The two shift registers
serve as the necessary means of communication
side-wise. The VIP is an SIMD-machine. Hence, there
is a common controlladdress bit-vector which is
generated in an off-chip control unit.

32 bit lines tdfrom off-chip memory

1
32 8-10-1 Multiplexers

256 Bit-serial ALU:s

256 8-bit Shiftregisters

256 8-bit Serial-pamllel Multipliers

512 x256 bit static RAM

256 8-bit Serial-parallel Multipliers

256 8-bit Shiftregisters

L ~ I I I I l l I I I l l I I I I I I I I I I I I I i l '
32 840-1 Multipexors

32 bit-lines tdfrom off-chip memory

Figure 3

One of the 8-bit shiftregisters are used for
inputloutput of video formatted data. With 20 MHz
clock rate the bandwidth is 20 Mbytets. Notice that

both shiftregisters can transfer data in both directions.
For intermediate data the chip communicates over 64
bit-lines to off-chip memory modules. In what follows
we assume that these memories are fast static RAM'S
with a cycle time of 50 ns. Hence, the memory
band-width is 160 Mbytels.

As was seen above we need four intermediate image
frames which amount to at least 4 ~ 8 ~ 5 1 2 ~ 5 1 2 = 8 M b i t
(more i f we don't truncate some results). To be on the
safe side we assign 16Mbit=eight 8x256k SRAM's. The
on-chip memory of just 256 kbit will then buffer lines
rather than full images. The major cycle of the
processing is to produce one or several new lines of
intermediate and final results. 512 such major cycles
produce one image. If the algorithm, a s in our case
requires four intermediate images and produces two
output images (U, V) we have to d o the following in
each major cycle. See Figure 4.

Image buffers (off-chip memory) v
Line buffers (on-chip memory)

Line buffers (shiftregisters) I *
Ip-~ Processors I

Figure 4

Load one line from 11, 12, 13, I4
Store one line to 11, 12, 13, I4
Shift in one line from input image I.
Shift out two lines to output images (U, V)

Assume as a worst case that we assign 16 bitlpixel
to all images 11, 12, 13, 14. Then, the total data
transport in one major cycle is 2 x 4 ~ 5 1 2 ~ 1 6 bit=8 kbyte
and in one image cycle 4 Mbyte. Thus, the available
bandwidth of 160 Mbytels maximizes the frame rate
to 40 framesls.

The "video" input and output images are assumed
to consist of one bytelpixel. Therefore they contain
256 kbyte each. One line of input data can possibly
be shifted in at the same time as one of the output
data lines but we don't count on this. Thus, the total
amount of data per frame to be shifted in or out is

0.75 Mbyte, which limits the frame rate to 20 Mbytels
I 0.75 Mbyte = 27 frameslsec.

The architecture of the 512 processing elements is
shown in Figure 5. All components are arranged
vertically around a single bit bus. The micro
instruction has six fields, each one controlling the six
following units in Figure 5.

Shiftre 1 +

RAM + L

Figure 5

Off-chip memory interface
ArithmeticLogical Unit
Shiftregister 1 110 connected
Shiftregister 2
Serial-parallel multiplier
On-chip RAM

The ALU is a bit-serial device which has been used
also for the PASIC chip. It has a general purpose
capability which has been demonstrated for various
algorithms [5], [6]. In the present application we
intend to use it mainly for addition, subtraction and
division operations. Hence, we will only use the SUM
output and carry feedback of ALU-functions.
However, the ability to load the three input registers
A, B, C with inverted inputs and the various logical
function outputs makes it possible to generate
practically all three-input Boolean functions [6].

It is easy to see that addition and subtraction require
three cycles per bit. The two input bits can be fetched
over the bus from any of the three sources,
shiftregister 1, shiftregister 2 and RAM. The output
bit can be stored at any of these places or the
serial-parallel multiplier or the off-chip memory
interface. An 8-bit addition producing a 9-bit result
takes 25 clock cycles.

Suppose we can match and interleave the
110-operations transparent (or close to transparent)
to the processing and that we on the average use 12
bits per pixel. The 25-50 addlsub operations in the
optical flow computation would then require a
minimum of

When using larger convolution kernels for the
derivative estimation and larger smoothing kernels for
the post-processing this number increases to
approximately

The bit-serial multiplier is described in some detail
in Figure 6. One of the operands in the multiplication
(ao, a , , , a7) is fixed to eight bit. This bit vector
is loaded into eight latches in eight initial cycles. The
arbitrarily long operand bo, bl ,....., b,-l is then
serially. MSB first, furnished to the remaining input
in every second clock interval. In every other second
interval the output bit is gated to the bus and stored
in registers or RAM.

B U S

The cascaded full adders perform addition up to
the point when the sign bit bo arrives. This is known
to the microprogram which then changes the function
to subtraction via a special control signal. The
multiplication of a signed 8-bit number with a signed
n-bit number produces a signed 8+n-1 bit product and
takes

8 + n + 8 + n - 1 = 2n + 15 cycles

Multiplication of two eight bit numbers then takes
31 cycles. Multiplication with a longer operand than
8 bit requires two separate multiplications followed by
a separate addition process. Assuming truncation to
a 16 bit result, a 16x16 bit multiplication then takes

(8 + 16 + 8) + (8 + 16 + 16) + 3.16 = 120 cycles

The six multiplications in the optical flow formulas
using 16 bit precision then take at most

The last step in the optical flow computation is the
two divisions yielding the final result (U, V).Using the
present bit-serial ALU in VIP a division takes
approximately 8 n2 cycles producing an n bit quotient
from an n bit divisor. With n=8 this step then requires

By introducing a data controlled selector latch at
the A-register input a division can be made in 3 n2
cycles, which would reduce the cycle count for division
with more than 60 %.

Using the above numbers the total execution time
is

and

respectively.

Thus, provided with the 20 MHz clock rate the VIP
should be able to sustain the following frame rates.

Since the frame rates for maximum 110
communication is higher, the total procedure i s
processor bounded to these numbers.

Figure 6

CONCLUSIONS

Optical flow can be computed in a straight-forward
fashion using second derivatives. The VIP-chip (which
exists in a laboratory version) seems to be capable of
computing a 512x512 optical flow result 10-15 times
per second depending on noise and precision
requirements. The computation is processor bounded
but the 110 communication and the memory bandwidth
have been shown to be in good balance with available
processing power.

References

[I] Tretiak O., Pastor L., "Velocity estimation
from image sequences with second order
differential operators", Proc. "7th Int. Conf.
Pattern Recognition", pp 16-19, 1984.

[2] Uras S., Girosi F., Verri A., Torre V., "A
Computational Approach to Motion
Perception", "Biol. Cybern." No 60, pp
79-87, 1988.

[3] Danielsson P-E., "Generalized and
Separable Sobel operators", in "Machine
Vision. Acquiring and Interpreting the 3D
Scene", H. Freeman (ed.), Academic Press,
1990.

[4] Chen K. , Svensson C., "A 512-processor
array chip for videolimage processing", Proc.
of "From Pixels to Features 11," Bonas,
France, Aug. 27 - Sept. 1, 1990, pp
349-361.

(51 Chen K. , Danielsson P.E., Astrom A.,
"PASIC. A SensorlProcessor Array for
Computer Vision", Proc. of the IEEE
Conference on Application Specific Array
Processors, Princeton, N.J., 1990.

[6] Astrom A., "Design and Evaluation of a
Smart Image Sensor", Licentiate thesis,
Dept. of EE, Linkoping University, 1990.

