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Abstract

We propose an inter-modal learning system which acquires
concepts about objects from auditory and visual informa-
tion. The system extracts features from the input of spoken
words and images, and analyzes the statistical correlation
between both modalities. We use kernel-based multi-variate
analysis methods and information theoretic criteria. In our
experiments, the system acquired semantically meaningful
concepts about shapes and colors, and also exhibited con-
cept generalization and specialization spontaneously. Our
results show that the system is capable of flexible and adap-
tive concept acquisition.

1 Introduction

Because of the rapid increase of multimedia data, the
“multi-modal” framework has turned into a growing re-
search field and a few works have emerged on multi-modal
(audio-visual) information processing [4, 1, 5, 11, 3].

One of the main applications for audio-visual informa-
tion processing is image retrieval from video contents [7,
12]. For that purpose, systems must understand and index
contents. Then systems are required to abstract or concep-
tualize essential meanings (as symbols) from various audi-
tory and visual signals. Preferably, this conceptualization
process should be performed by the systems themselves in
an unsupervised learning manner since it is impossible to
define and describe all the concepts manually for real-world
databases.

Clearly, this issue is similar to the “concept / language
acquisition problem” faced by real-world intelligence, be-
cause human infants heavily rely on multi-modal informa-
tion (e.g. visual stimuli of a toy car, auditory input of the
toy’s name and tactile feelings of the toy in the hands) in
their concept acquisition periods. Infants have to solve the
problem of how to combine multi-modal information and
how to generate “concepts”.

One solution is to employ the statistical correlation of
multi-modal input, such as frequent co-occurrence of vi-
sual and auditory stimuli or the mutuality of multi-modal
information sources.

In this paper, we propose an autonomous learning sys-
tem, which acquires “concepts” based on the statistical cor-
relation of audio-visual information. To deal with multi-
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modal data, we employ an inter-modal learning method us-
ing multi-variate data analysis and information theory.

2 Approach

Let us describe what we intend to make our system perform:

Imagine that you are shown the images of black objects
(e.g. cars, balls, pens) and you hear the word “black” every
time you see an image. Based on the frequent co-occurrence
of images and spoken words, it is natural to assume that the
spoken word “black” is correlated with the color of images
(black). So you can hypothesize that the concept BLACK
is represented with black color in visual modality and the
spoken word “black” in auditory modality.

Fig. 1 is the sketch of acquired concept BLACK. And we
show the overall procedure in our system in Fig. 2.

2.1 Definition and representation of concepts

The input data consists of a set of still image of an object
and associated spoken word (e.g. name or color of the ob-
ject), subsequently called an “incident”. By using input in-
cidents, the system then estimates the correspondence be-
tween auditory and visual features in terms of the statistical
correlation, and finally outputs the acquired concepts. In
this paper, we define a “concept” as what is indicated by
the inter-modal correspondence.

In our system, each concept is represented with three
elements: “essential spaces”, “degree of confidence” and
“main incidents”.

“Essential spaces” are provided for each modality and
represent intrinsic features of the concept. In the exam-
ple of Fig. 1, a visual essential space reflects the blackness
of images and an auditory essential space regards the word
“black” as the typical auditory input.

“Degree of confidence” in each essential space is used to
calculate the likelihood that an incident belongs to a partic-
ular concept. In the case of Fig. 1, blackness of the image
and the spoken word’s similarity to “black” are calculated.

“Main incidents” are the prototype incidents of the con-
cept. We consider that main incidents represent the content
of the concept. If the incident is evaluated with high confi-
dence in both essential spaces, the system adds this incident
to a list of main incidents. In Fig. 1, an incident which com-
bines the spoken word “black” with an image of a black car
is supposed to become a main incident. But an incident of
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Figure 1: Sketch of a concept

an black ball image and “ball” will be rejected because of
the improper auditory input.

2.2 Visual and Auditory features

As visual features, we extract Higher-order Local Auto-
Correlation (HLAC) features [9] from YUV images. HLAC
features have several preferable characteristics such as
segmentation-free or translation-invariant. HLAC features
are defined as:
J;f(r)f(r+r1)---f(r+rM)dr (D
where r denotes a reference pixel in an image S, f(r) is a
pixel value at r, and r; are displacements from r. M is an
order of HLAC. We can obtain number of HLAC features
by altering the local displacement patterns {r; , 7>, ..., ru}.
Images are fed to the system with various resolutions down-
sized into % X %, % X %. We extract HLAC features (35
dimensions) from the original and downsized images.

As auditory features, we utilize Mel Frequency Cepstrum
Coeflicients (MFCC). MFCC is widely used in audio signal
processing as a standard auditory feature and reflecting hu-
man’s perceptual measurements. We used segmented spo-
ken words. From each frame we extract MFCC, AMFCC
(differential coefficients of MFCC) and power. MFCC and
AMEFCC are extracted up to 12th order.

2.3 Inter-modal correlation analysis methods

The main issue addressed in this paper is the analysis of the
correlation of features derived from multiple information
sources. One possibility is to use Canonical Correlation
Analysis (CCA). Or, we can measure “synchrony” of infor-
mation sources with mutual information. Based on these
premises, most of previous works are roughly classifiable
in two categories: One inspired by CCA [1, 11], and one
based on mutual information [5, 10, 3].

It is interesting to note that there have hardly been any
attempts at combining CCA and mutual information. The
fact that CCA gives an optimized projection for maximiz-
ing mutual information in appropriate conditions [2] also
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Figure 2: Overall procedure

encourages us to combine CCA and mutual information. In
this paper, we present a framework that uses both mutual
information and CCA, and adopt Kernel CCA (KCCA) [2]
to avoid the limitation of linearity in CCA.

Let us denote the set of auditory features as {a;‘}f\; , and
the set of visual features as {V;‘}Z ,- N is the number of input

incidents e; = (a V) ) Itis noted that a7 is not an vector, but
an array of MFCC vectors with a variable length (equals to
the number of frames). We convert them into correlated au-
ditory and visual features, subsequently denoted as {a,-}fi |
and {v;}¥ |

We define kernel gram matrices as follows:

K, = {ka(af’a;)} Ky = {k (V, ’vf)}

where k, and k, are the kernel functions (in this paper, we
use Gaussian kernels). Since auditory features a; and @ are
not vectors, we measure the distance of auditory features as
the difference of HMM'’s model likelihood. We solve the
following eigenvalue problems:

©))

(K3 +9al) " KaKy (K3 + 1) KyKaWy = WaA? (3)
(K + yvl) " KyKa (K +yal) KaKyWy = WoA? (4)

where W, and Wy are the coeflicient matrices for kernel
gram matrices and y4 and yy are regularization terms.

The next step is to calculate the mutual information. Mu-
tual information represents the amount of information about
one modality conveyed from the other modality. In auditory
and visual canonical space, we define spherical regions F4



and Fy, each is centered at a correlated feature a; and v;
and has a radius of r, and r,, respectively. We compute a
mutual information between F4 and Fy as follows:

0.1
I(Fa,Fy)= Y P(A =5V

st

_ Al PA=s5V=1
=0l s =P =g

&)
Binary variables s, 7 € {0, 1} indicate whether an incident is
contained in the region (1) or not (0).

The system seeks the optimum radii that give maximum
mutual information. If the mutual information is greater
than a threshold, our system generates a “hypothesis” of a
concept and bundles contained incidents. Temporarily, we
choose mutual incidents among F4 and Fy as the hypothe-

sis’s “main incidents” .

2.4 Calculating elements of a concept

Then, the system calculate the three elements, namely “es-
sential spaces”, “degree of confidence” and “main inci-
dents”.

“Essential spaces” represents intrinsic features of the
concept. We assume that main incidents (prototype) of
a hypothesis (concept) concentrate at one point, and the
other incidents are scattered far around them in the essential
spaces. Kernel Discriminant Analysis (KDA) [8, 6] is em-
ployed to obtain such spaces, with a modified discriminant
criterion shown in Eq. (6). This criterion means to maxi-
mize the total variance while minimizing the target class’s
variance:

(6)

“Degree of confidence” is provided for each essential
space in order to measure the likelihood that an incident’s
membership to a particular concept. We define this measure
in each essential space by Eq. (7).

lle — mllz)
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maximize tr(E}irge,ZA”)

P(e) =exp (— (7
where m is an average of main incidents’ essential features.
Let us denote a corresponding essential feature of an inci-
dent with e.

In our system, we adopt the ¢ that minimizes the Di-
vergence, statistical distance between the confidence func-
tions of two modalities of one hypothesis (concept). Diver-
gence is based on Kullback-Leibler Divergence in Informa-
tion theory, and is formulated as follows:

pa(e;)
pv (e)

D(paspv) = ), (pae) = py (€) log (8)
3

The probabilistic density functions p4 and py are substi-

tuted with the degree of confidence of the audio essential

space and of the visual essential space, respectively.

“Main incidents” are the prototype incidents of the con-
cept. If the incident is evaluated with high confidence in
both essential spaces, the system adds this incident to a list
of main incidents. The system tests each essential feature
with the degree of confidence to select main incidents.

The system updates every hypotheses when a new inci-
dent is input. “Update” means the re-construction of essen-
tial features, and re-evaluation of the degree of confidence,
and re-membering of main incidents.
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specialization

Figure 4: Examples of images

Finally, hypotheses are tested with mutual information to
be acquired as concepts when the input of incidents ends.

2.5 Flexible changes of acquired concepts

Our system utilizes the statistical correlation of input multi-
modal data. This correlation varies according to the history
of input, so we can expect the system to change the ele-
ments of concepts flexibly adapting to the input.

From the viewpoint of real-world machine intelligence,
this means the system is able to generalize or specialize
concepts (Fig. 3). Such adaptive and flexible treatment of
concepts is actually important in infants’ learning stage. We
consider generalization and specialization as expansion and
reduction of associations between the auditory and visual
modalities in main incidents.

3 Experiment and Result

We prepared the images of models of cars, balls, and pens.
Each has three color variations of red, blue and black. Thus
we obtained 9 kinds of objects. Directions and scales are
slightly changed through the capturing of images. Exam-
ples are shown in Fig. 4.

The spoken words are names or colors of these 9 ob-
jects. All words were spoken in Japanese. English trans-
lated words are shown in Table 1. In this setup, all images
could be linked to multiple spoken words and all spoken
words were associated with multiple images.

Input incidents were generated randomly from these au-
ditory and visual data, but paired data are selected not to
semantically contradict each other. We generated 100 inci-

Table 1: Used words, all recorded in Japanese

COLORS
NAMES

Red
Car

Blue
Ball

Black
Pen




eralization and specialization for a rich concept structure.
Future work will be aimed at considering the acquisition
of meta-level concepts, related to the hierarchy or the syn-
onymy of concepts.

We also have to consider the problem of several parame-
ters and thresholds, manually decided in the proposed work.
Some theoretic solutions for deciding those values are ex-
pected. And it is necessary to apply the system to a large
real-world dataset since the size of data used in the experi-
ments is limited.
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Figure 5: Example of concept generalization in vi-
sual space with the word “blue”

Table 2: Number of acquired concepts per trial

Times of Acquiring
Concepts

[ 18+1.2 I

generalization
auditory | visual

03 [ 04 ]

specialization
auditory | visual

00 [ 03 |

dents and input them to the system. The acquired concepts
are verified by examining main incidents of each concept.
We repeated this process for 10 times. We summarize the
results of 10 experiments in Table 2. The threshold of mu-
tual information for acquiring as a concept is set to 0.2.

Fig. 5 shows an example of concept generalization of
color. In each figure, main incidents distribute in a circled
area. The upper figure is the visual essential space at a birth
of this hypothesis. The images of blue car and blue pen
were associated with the word “blue”, and the images of
blue ball were not. The lower figure is the visual essential
space when this was acquired as a concept finally. Plots of
blue ball images (filled rectangles) distribute in main inci-
dents’ circled area. This means that the system generalized
this concept to represent the all blue objects.

Our system not only acquired concepts, but also achieved
concept generalization and specialization. It should be
noted that these flexible changes in concept formation
emerged spontaneously as the consequence of every calcu-
lations, and there are no intentional modules in our system.

4 Concluding Remarks

We proposed a system which acquires concepts of objects
and colors by inter-modal learning using the statistical cor-
relation of auditory and visual information.

As experimental results, the system acquired concepts
about objects and colors properly, and also showed “con-
cept generalization and specialization” which are seen in
infants’ cognitive developmental stages. This exhibits its
capabilities of adaptive and flexible treatments of concepts.

But we still have problems in how should we utilize gen-
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