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Global offensive k-alliances in digraphs

Doost Ali Mojdeh, Babak Samadi∗ and Ismael G. Yero

Abstract. In this paper, we initiate the study of global offensive k-alliances
in digraphs. Given a digraph D = (V (D), A(D)), a global offensive k-
alliance in a digraph D is a subset S ⊆ V (D) such that every vertex outside
of S has at least one in-neighbor from S and also at least k more in-
neighbors from S than from outside of S, by assuming k is an integer lying
between two minus the maximum in-degree of D and the maximum in-
degree of D. The global offensive k-alliance number γo

k(D) is the minimum
cardinality among all global offensive k-alliances in D. In this article we
begin the study of the global offensive k-alliance number of digraphs. We
prove that finding the global offensive k-alliance number of digraphs D
is an NP-hard problem for any value k ∈ {2 − ∆−(D), . . . ,∆−(D)} and
that it remains NP-complete even when restricted to bipartite digraphs
when we consider the non-negative values of k given in the interval above.
Lower bounds on γo

k(D) with characterizations of all digraphs attaining the
bounds are given in this work. We also bound this parameter for bipartite
digraphs from above. For the particular case k = 1, an immediate result
from the definition shows that γ(D) ≤ γo

1(D) for all digraphs D, in which
γ(D) stands for the domination number of D. We show that these two
digraph parameters are the same for some infinite families of digraphs like
rooted trees and contrafunctional digraphs. Moreover, we show that the
difference between γo

1(D) and γ(D) can be arbitrarily large for directed
trees and connected functional digraphs.

1 Introduction and preliminaries

Throughout this paper, we consider D = (V (D), A(D)) as a finite digraph
with vertex set V (D) and arc set A(D) with neither loops nor multiple
arcs (although pairs of opposite arcs are allowed). Also, G = (V (G), E(G))
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stands for a simple finite graph with vertex set V (G) and edge set E(G). We
use [1] and [17] as references for some very basic terminology and notation
in digraphs and graphs, respectively, which are not explicitly defined here.

For any two vertices u, v ∈ V (D), we write (u, v) as the arc with direction
from u to v, and say u is adjacent to v, or v is adjacent from u. Given
a subset S of vertices of D and a vertex v ∈ V (D), the in-neighborhood
of v from S (out-neighborhood of v to S) is N−

S (v) = {u ∈ S | (u, v) ∈
A(D)} (N+

S (v) = {u ∈ S | (v, u) ∈ A(D)}). The in-degree of v from S
is deg−S (v) = |N−

S (v)| and the out-degree of v to S is deg+S (v) = |N+
S (v)|.

Moreover, N−
S [v] = N−

S (v) ∪ {v} (N+
S [v] = N+

S (v) ∪ {v}) is the closed in-
neighborhood (closed out-neighborhood) of v from (to) S. In particular, if
S = V (D), then we simply say (closed) (in or out)-neighborhood and (in
or out)-degree of v, and write N−

D (v), N+
D (v), N−

D [v], N+
D [v], deg−D(v) and

deg+D(v) instead of N−
V (D)(v), N+

V (D)(v), N−
V (D)[v], N+

V (D)[v], deg−V (D)(v)

and deg+V (D)(v), respectively (we moreover remove the subscripts D, V (D)

if there is no ambiguity with respect to the digraph D). Given two sets A
and B of vertices of D, by (A,B)D we mean the sets of arcs of D going
from A to B. For a graph G, ∆ = ∆(G) and δ = δ(G) represent the
maximum and minimum degrees of G. In addition, (∆+ = ∆+(D) and
δ+ = δ+(D)) ∆− = ∆−(D) and δ− = δ−(D) represent the maximum and
minimum (out-degrees) in-degrees of the digraph D.

We denote the converse of a digraph D by D−1, obtained by reversing the
direction of every arc of D. A biorientation of a graph G is a digraph
D which is obtained from G by replacing each edge xy by either (x, y) or
(y, x) or the pair (x, y) and (y, x). While a complete biorientation D of G is
obtained by replacing each edge xy by the pair of arcs (x, y) and (y, x). A
digraph D is connected if its underlying graph is connected. A component
of a digraph D is the digraph induced by a component of the underlying
graph of D. A directed tree is a digraph in which its underlying graph is
a tree. A rooted tree is a connected digraph with a vertex of in-degree 0,
called the root, such that every vertex different from the root has in-degree
1. In general, we call a vertex with in-degree 0 (out-degree 0) in a digraphD
a source (sink). A digraph is functional (contrafunctional) if every vertex
has out-degree (in-degree) 1.

Given a graph G, a set S ⊆ V (G) is a dominating set in G if each vertex
in V (G) \ S is adjacent to a vertex in S. The domination number γ(G) of
a graph G is the cardinality of a smallest dominating set of G. For more
information about this concept the reader can consult [9]. The concept of
domination in directed graphs was introduced by Fu [5]. A subset S of
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the vertices of a digraph D is called a dominating set if every vertex in
V (D) \ S is adjacent from a vertex in S. The domination number γ(D) is
the minimum cardinality of a dominating set in D.

Hedetniemi et al. [10] introduced the concept of global offensive alliances
in graphs. A subset S ⊆ V (G) is said to be a global offensive alliance in G
if |N [v]∩ S| ≥ |N [v]∩ S| for each v ∈ S, where S is the complement of the
set S in V (G). The global offensive alliance number γo(G) is the minimum
cardinality taken over all global offensive alliances in the graph G. As a
generalization of such alliances, Shafique and Dutton [14, 15] defined the
global offensive k-alliances in graphs. A set S of vertices of a graph G is
called a global offensive k-alliance (GOkA for short) if N [S] = V (G) and
|N(v)∩S| ≥ |N(v)∩S|+ k, for each v ∈ S. The global offensive k-alliance
number γo

k(G) is the minimum cardinality of a GOkA in the graph G. For
more information on global offensive (k-)alliances in graphs we suggest the
surveys [3, 13].

Alliances in graphs have been a relatively popular research topic in graph
theory in the last two decades, and a significant number of works dealing
with them can be found through the literature. However, although the
alliances are arising in a more natural way in a digraph than in a graph, the
case of alliances in digraphs has not attracted the attention of any research
till the recent work [12], where global defensive alliances in digraphs have
been introduced. Consider now a social network (Twitter for instance) and
an external entity which wants to spread some information in a positive
sense, but that can be taken as false or as true by any user based on the
number of opinions received from the other users (if one receives more true
opinions, it will take it as true, otherwise it will take it as false). Suppose
that the entity gives the information to a set of users S of the network.
Hence, in order that the information arrives in a true way to every user
of the network, it is necessary that any other user x /∈ S, that can hear
the news from the elements in S, will have a larger number of connections
inside the set S than outside, otherwise, the information will be taken as
false by x. Thinking in this way, it is readily observed that such a set S
must be a global offensive (k-)alliance in such network, that can be seen
as such set of elements which are more influential among every one. For
the sake of efficiency, the search of a minimum number of elements that
can be used to spread such kind of information is then connected with
precisely finding the global offensive (k-)alliance number of graphs. If such
network uses directions in the connections (like in the case of the Twitter
platform), then the definition of global offensive alliances in digraphs is
clearly of interest for the study of these kinds of problems, and thus the
following definition, and results concerning it are worthy.
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Definition 1.1. Let D be a digraph and let k ∈ {2−∆−(D), . . . ,∆−(D)}
be an integer. A set of vertices S ⊆ V (D) is called a global offensive k-
alliance (GOkA) in D if N+[S] = V (D) and deg−S (v) ≥ deg−

S
(v) + k, for

each v ∈ S. The global offensive k-alliance number, denoted γo
k(D), is

defined as the minimum cardinality of a GOkA in D. We call the global
offensive 1-alliance (number) just global offensive alliance (number), for
short.

In this paper, we first dedicate a section to the computational complexity
of the problem of computing the global offensive k-alliance number of di-
graphs, by proving the NP-completeness of the respectively related decision
problem. We next give several bounds on γo

k(D) with some emphasis on the
case k = 1. For instance, we prove that γo

k(D) can be bounded from below
by (k+ δ−)n/(2∆++ δ−+k) and characterize all digraphs D attaining the
lower bound for the specific case k = 1. As a consequence of this result
we improve a lower bound on γo

1(G) = γo(G) (for graphs) given in [16].
Moreover, we show that (n+ n<k)/2 is a sharp upper bound on γo

k(D) for
a bipartite digraph D, where n<k is the number of vertices of in-degree less
than k. Also, we discuss some relationships between γo

1(D) and γ(D) with
emphasis on (contra)functional digraphs and rooted trees.

From now on, given any parameter η in a digraph D, a set of vertices of
cardinality η(D) is called an η(D)-set. Also, unless specifically stated, in
the whole article we shall assume k ∈ {2−∆−(D), . . . ,∆−(D)}.

2 Complexity issues

One first basic observation with respect to γo
k is the existent relationship

between global offensive k-alliances of graphs and that of digraphs. Let G
be a graph and D be a digraph obtained as a complete biorientation of G.
We can immediately observe that a set of vertices S is a global offensive
k-alliance in G if and only if S is a global offensive k-alliance in D. This
leads to the next result for which we omit its straightforward proof.

Proposition 2.1. For any graph G and any integer k, γo
k(G) = γo

k(D),
where D is the complete biorientation of G.

Such a relationship is very useful for giving a complexity result for the
problem of computing the global offensive alliance number of digraphs. On
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the other hand, the result is less useful while studying general digraphs,
since only digraphs for which an arc (u, v) exists if and only if the arc (v, u)
also exists can be considered.

We now consider the problem of deciding whether the global offensive k-
alliance number of a digraph is less than a given integer. That is stated in
the following decision problem.

GLOBAL OFFENSIVE k-ALLIANCE PROBLEM (GOk-A problem)
INSTANCE: A digraph D, an integer k, and a positive integer r.
QUESTION: Is γo

k(D) ≤ r?

The problem clearly belongs to NP since checking that a given subset of
V (D) is indeed a global offensive k-allience of cardinality at most r can be
done in polynomial time. Moreover, proving the NP-completeness of the
GOk-A problem above can be easily done (and therefore omitted) by mak-
ing use of Proposition 2.1, and the fact that the decision problem concerning
computing the global offensive k-alliance number of graphs is NP-complete
(see [4]).

Corollary 2.2. For a digraph D and an integer k, the GOk-A PROBLEM
is NP-complete.

We now focus on bipartite digraphs, and prove that the GOk-A PROBLEM
remains NP-complete, even when restricted to such class of digraphs if we
consider k ∈ {0, . . . ,∆+(D)}. By a bipartite digraph we mean a biorienta-
tion of a bipartite graph (see [1]). In order to deal with this, we make a
reduction from the well-known exact cover by 3-sets problem (EC3S prob-
lem). That is, we have a set A of exactly n different elements, where n
is a multiple of three, and exactly n subsets of A such that every subset
contains exactly 3 elements of A and every element occurs in exactly 3 sets.
It can be readily seen that at least n

3 sets are needed to cover all the n
elements. Further, it is well-known that deciding whether there are n

3 such
(pairwise disjoint) sets is in fact NP-complete (see [6]).

Theorem 2.3. For a digraph D and an integer k ∈ {0, . . . ,∆−(D)}, the
GOk-A PROBLEM is NP-complete for bipartite digraphs.

Proof. As already mentioned, the problem is in NP. We now describe a
polynomial transformation of the EC3S problem to the GOk-A PROBLEM.
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Consider a set A of exactly n different elements, where n is a multiple of
three, and exactly n subsets of A, such that every subset contains exactly
3 elements of A and every element occurs in exactly 3 sets. Let A =
{v1, . . . , vn} and U = {U1, . . . , Un} be the set of elements and the collection
of subsets of elements of A, respectively. Let us construct a digraph D as
follows. For any element of vi ∈ A we create a vertex vi of D, and for
any set of Ui ∈ U , we create a vertex ui of D. If an element vi occurs
in a set Uj , then we add the arcs (vi, uj) and (uj , vi) (two opposite arcs).
Now, for any vertex vi ∈ A, we add k + 2 vertices vi,1, . . . , vi,k+2 and the
arcs (vi,1, vi), . . . , (vi,k+2, vi), and for any vertex ui, we add k + 3 vertices
ui,1, . . . , ui,k+3 and the arcs (ui,1, ui), . . . , (ui,k+3, ui). We can easily note
that the digraph constructed in this way is bipartite (an example for the
case k = 1 is depicted in Figure 1, for which A = {v1, v2, v3, v4, v5, v6} and
U = {U1, U2, U3, U4, U5, U6} where Ui = {vi, vi+1, vi+2}, in which v7 = v1
and v8 = v2. Note that an edge with two sided arrows stands for a pair of
opposite arcs). Furthermore, this is a polynomial time reduction.

v1 v2 v3 v4 v5 v6

u1 u2 u3 u4 u5 u6

Figure 1: The depiction of the example for the case k = 1.

We shall now prove that deciding whether there are n
3 subsets in U which

cover the set A is equivalent to prove that D has global offensive k-alliance
number equals n

3 + n(2k + 5).
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We first assume that there are n
3 sets, w.l.g. say U1, . . . , Un/3, which cover

the set A. Let S be the set of vertices of D given by the union of the sets
S1 and S2 such that

S1 = {u1, . . . , un/3}
and

S2 = {vi,j , ul,q : i, l ∈ {1, . . . , n}, j ∈ {1, . . . , k + 2}, q ∈ {1, . . . , k + 3}} .

Note that any vertex uj with j > n/3 satisfies that deg−S (uj) = k + 3 =
deg−

S
(uj) + k. Moreover, since any vertex vi with i ∈ {1, . . . , n} occurs

in exactly one set Ul with l ∈ {1, . . . , n/3}, it is satisfied that deg−S (vi) =
k + 3 > k + 2 = deg−

S
(vi) + k. Thus, S is a GOkA in D, and so, γo

k(D) ≤
n
3 + n(2k + 5).

On the other hand, let S′ be a γo
k(D)-set. Since any vertex vi,j and any

vertex ul,q with i, l ∈ {1, . . . , n}, j ∈ {1, . . . , k + 2} and q ∈ {1, . . . , k + 3}
has in-degree zero, we deduce that such vertices must belong to S′, which
means

|S′ ∩ S2| = n(2k + 5). (1)

Now, if there is a vertex vi for which N−
S′(vi) ∩ {u1, . . . , un} = ∅, then

deg−S′(vi) = k+2 < k+3 = deg−
S′(vi)+ k, which is not possible. Thus, any

vertex vi, with i ∈ {1, . . . , n} must have an in-neighbor in S′∩{u1, . . . , un}.
Let t = |S′ ∩ {u1, . . . , un}|. Since every vertex vi has at least one in-
neighbor in S′ ∩ {u1, . . . , un} and every vertex ui has three out-neighbors
in {v1, . . . , vn}, we have

3t ≥
n∑

i=1

|N−
S′∩{u1,...,un}| ≥ n. (2)

Therefore, by using (1) and (2), we deduce that γo
k(D) ≥ n

3 + n(2k + 5),
which leads to the desired equality.

We now assume that γo
k(D) = n

3 + n(2k + 5) and let Q be a γo
k(D)-set. As

stated while proving the previous implication, it must happen that

{vi,j , ul,q, : i, l ∈ {1, . . . , n}, j ∈ {1, . . . , k + 2}, q ∈ {1, . . . , k + 3}} ⊂ Q.

Moreover, we can similarly see that |Q∩{u1, . . . , un}| ≥ n/3, and that every
vertex in the set {v1, . . . , vn} has at least one in-neighbor inQ∩{u1, . . . , un}.
Since γo

k(D) = n
3 +n(2k+5), it must happen that |Q∩{u1, . . . , un}| = n/3,

which leads to that every vertex in {v1, . . . , vn} has exactly one in-neighbor
in Q ∩ {u1, . . . , un}. Let W = Q ∩ {u1, . . . , un} (note that |W | = n/3).
If the sets (without loss of generality, say, C1, . . . , Cn/3), corresponding
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to the vertices of W , do not form an exact cover of U , then either there
is an element of A which is not in any set C1, . . . , Cn/3 or there is an
element of A which belongs to two sets of C1, . . . , Cn/3. Both situations
lead to a contradiction with the fact that |W | = n/3 and every vertex vi,
i ∈ {1, . . . , n}, has exactly one in-neighbor in W . Therefore, C1, . . . , Cn/3

form an exact cover of the elements in A, and this completes the proof of
this implication, and the desired reduction.

3 Bounding γo
k(D)

Since the problem of computing the global offensive k-alliance number of
digraphs is NP-hard, it is then desirable to bound it for general digraphs.
We begin exhibiting a lower bound on γo

k(D) for a general digraph D. In
order to characterize all digraphs attaining the bound with k = 1, we define
the family Φ of digraphs as follows. Suppose that D̂ is a digraph with the
set of vertices {v1, . . . , vn′ , u1, . . . , up} such that

(i) (r′ +1)n′ ≡ 0 (mod p) and (r′ +1)n′/p ≥ deg+
D̂
(vi), for each 1 ≤ i ≤ n′,

(ii) the in-degrees of all vertices vi in D̂⟨{v1, . . . , vn′}⟩ equal r′,
(iii) deg+

D̂
(ui) = 0 and deg−

D̂
(ui) ≥ 2r′ + 1, for each 1 ≤ i ≤ p.

We now add r = (r′ + 1)n′/p arcs from each ui, 1 ≤ i ≤ p, to the vertices
in {v1, . . . , vn′} such that all vertices vi are incident to r′+1 such arcs. Let
D be the obtained digraph, and let Φ be the family of all digraphs D.

As an example, let D be obtained from the complete biorientation of the
cycle Ct on vertices v1, . . . , vt with t ≥ 5, by adding three new vertices u1,
u2 and u3 and the set of new arcs

{(ui, v1), . . . , (ui, vt)}3i=1 ∪ {(vj , u1), (vj , u2), (vj , u3)}5j=1.

Then, D is a member of Φ with (n′, p, r′, r) = (t, 3, 2, t), in which D̂ is the

graph with V (D̂) = V (D) and E(D̂) = E(D) \ {(ui, v1), . . . , (ui, vt)}3i=1.
Such a digraph D, for t = 7, is depicted in Figure 2

Theorem 3.1. If D is a digraph of order n, minimum in-degree δ− and
maximum in-degree ∆−, then

γo
k(D) ≥

(
k + δ−

2∆+ + δ− + k

)
n.

Moreover, for the case k = 1, the equality in the bound holds if and only if
D ∈ Φ.
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v1

v2

v3 v4

v5

v6

v7

u1

u2

u3

....

....

....

Figure 2: An edge with two sided arrows stands for a pair of opposite
arcs. Every vertex ui is adjacent to all vertives vj , and each vertex vj with
j ∈ {1, . . . , 5} is adjacent to u1, u2 and u3.

Proof. Let S be a γo
k(D)-set. We have

∆+|S| ≥ |(S, S)D| = ∑
v∈S deg−S (v) ≥

∑
v∈S(deg

−
S
(v) + k)

= k|S|+∑
v∈S deg−(v)−∑

v∈S deg−S (v)

≥ (k + δ−)|S| −∆+|S|.

(3)

Therefore, the bound can be deduced from the above. We next consider the

case k = 1, which particularly means γo
1(D) ≥

(
1+δ−

2∆++δ−+1

)
n, and present

the characterization of the digraphs achieving the equality in this situation.

Suppose that the lower bound holds with equality for a digraph D. Hence,
all the inequalities in (3) necessarily hold with equality. In particular, this
means

∑
v∈S deg−(v) = δ−|S|, which is equivalent to say that the in-degrees

deg−(v) = deg−S (v) + deg−
S
(v) of all vertices in v ∈ V (D′) equal δ−, where

D′ is the subdigraph induced by S. Moreover, deg−S (v) = deg−
S
(v)+1 (note

that k = 1) for all v ∈ V (D′), by the equality in the second inequality in
(3). Therefore, all vertices in V (D′) have the same in-degree, say r′, in
the subgraph induced by V (D′). On the other hand, every vertex in S is
adjacent to precisely ∆+ vertices of D′ since ∆+|S| = |(S, S)D|. Now, since
deg−S (v) = deg−

S
(v) + 1 = r′ + 1 for all v ∈ V (D′), and ∆+|S| = |(S, S)D|,

we have that |V (D′)|(r′ + 1) = |S|∆+. Thus, the membership of D in Φ

easily follows by choosing |V (D′)|, D− (S, S)D, ∆+ and S for n′, D̂, r and
the set {u1, . . . , up}, respectively, in the description of Φ. Thus, D ∈ Φ.
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Conversely, let D ∈ Φ. It can be observed that {u1, . . . , up} is a GO1A in
D. Moreover, (n, δ−,∆+) = (n′ + p, 2r′ + 1, n′(r′ + 1)/p). Thus, γo

1(D) ≤
p = (1 + δ−)n/(2∆+ + δ− + 1). This completes the proof.

As a result of the lower bound in Theorem 3.1 we have the following.

Corollary 3.2. For any graph G of order n, minimum degree δ and max-
imum degree ∆, γo

k(G) ≥ ⌈(k + δ)n/(2∆ + δ + k)⌉.

Proof. Let D be the complete biorientation of G. It is then straightforward
to note that |V (D)| = n, δ+(D) = δ−(D) = δ, ∆+(D) = ∆−(D) = ∆,
and that γo

k(D) = γo
k(G) by Proposition 2.1. Now the result follows from

Theorem 3.1.

For the particular case of k = 1, Sigarreta and Rodŕıguez-Velázquez [16]
proved that

γo
1(G) ≥

{
⌈(1 + δ)n/(2∆ + δ + 1)⌉, if δ is odd,

⌈nδ/(2∆ + δ)⌉, otherwise.
(4)

Since ⌈(1+δ)n/(2∆+δ+1)⌉ ≥ ⌈nδ/(2∆+δ)⌉, Corollary 3.2 is an improve-
ment of the lower bound given in (4) when δ is even.

We next continue with an upper bound on γo
k(D).

Theorem 3.3. Let D be a bipartite digraph of order n and let n<k be the
number of vertices of in-degree less than k in D. Then,

γo
k(D) ≤ n+ n<k

2
,

and this bound is sharp.

Proof. We consider V<k as the set of all vertices of in-degree less than k.
Let X and Y be the partite sets of D and X ′ = X \V<k and Y ′ = Y \V<k.
Moreover, we may assume that |X ′| ≥ |Y ′|. The above argument guarantees
that each vertex in X ′ has at least k in-neighbors and all such in-neighbors
belong to Y , necessarily. Therefore, V (D)\X ′ is a GOkA in D. Therefore,

γo
k(D) ≤ n−|X ′| ≤ n− |X ′|+ |Y ′|

2
= n− |X|+ |Y | − n<k

2
=

n+ n<k

2
. (5)
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The sharpness of the upper bound can be seen as follows. We begin with the
complete biorientation D′ of the complete bipartite graph Kp,p with partite
sets X = {x1, . . . , xp} and Y = {y1, . . . , yp} such that k ≤ p ≤ 2k − 1. We
obtain the digraph D by removing the set of arcs {(xi, yj), (yj , xi)}ki,j=1.

This shows that n<k = 2k. Now, let S be a γo
k(D)-set. Clearly, {xi, yi}ki=1 ⊆

S. If a partite set, say X, is a subset of S, then |S| = |X| + |Y ∩ S| ≥
|X|+ k = (n+ n<k)/2 which implies the equality in the upper bound. So,
we may assume that both X \ S and Y \ S are nonempty. Let t1 = |X \ S|
and t2 = |Y \ S|. Suppose that y ∈ Y \ S. Since deg−S (y) ≥ deg−

S
(y) + k,

we have |X ∩ S| ≥ t1 + k. Moreover, |Y ∩ S| ≥ t2 + k by a similar fashion.
Together the last two inequalities imply |S| ≥ t1 + t2 +2k = n− |S|+n<k.
Thus, |S| ≥ (n+n<k)/2 which results in γo

k(D) = (n+n<k)/2 by (5). This
completes the proof.

As an immediate consequence of the definitions given in the introduction,
we have γ(D) ≤ γo

1(D), for any digraph D. On the other hand, one can
observe that any directed tree is a bipartite digraph. So, as an immediate
consequence of Theorem 3.3 we have the following result.

Corollary 3.4. Let T be a directed tree of order n. Then, the following
statements hold.

(i) γ(T ) ≤ ⌊(n+ q)/2⌋, where q is the number of sources.

(ii) If T is a rooted tree, then γ(T ) ≤ ⌈n/2⌉. ([11])

We shall show in Section 3.1 that there are some infinite families of directed
trees for which γo

1 and γ differ.

3.1 The specific case of (contra)functional digraphs
and rooted trees when k = 1

In this section, we investigate the global offensive alliance number and the
domination number for (contra)functional digraphs and rooted trees.

Proposition 3.5. For any rooted tree or contrafunctional digraph D,

γo
1(D) = γ(D).
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Proof. Since every vertex in a contrafunctional digraph has in-degree one,
every dominating set is a GO1A. Similarly, every dominating set is a GO1A
in a rooted tree (the root of a rooted tree belongs to every dominating set
and every GO1A). Therefore, γo

1(D) ≤ γ(D) which implies the equality.

Note that the difference between γo
1(D) and γ(D) can be arbitrarily large,

even for connected functional digraphs and directed trees as we can see
in the following example. Let b be an arbitrary positive integer. Let D′

be obtained from a directed cycle C on vertices v1, . . . , v2b by adding new
vertices v′1, . . . , v

′
2b and arcs (v′1, v1), . . . , (v

′
2b, v2b). Then, {v′1, . . . , v′2b} is the

minimum dominating set in D′ while {v′1, . . . , v′2b}∪{v2i}bi=1 is a minimum
GO1A in D′. Thus, γo

1(D
′) − γ(D′) = b (see Figure 3 when b = 4). We

now let T be a directed tree by removing one arc from the directed cycle
C of D′. It is easy to see that γo

1(T )− γ(T ) = 3b− 2b = b.

◦ •

◦

•

◦•

◦

•

• •

•

•

••

•

•

Figure 3: The sources form a (unique) minimum dominating set and the
black vertices form a minimum GO1A.

A vertex y is called accessible or reachable from x if there is a path in D
from x to y. Let R(x) be the set of all vertices accessible from x and let
R−1(x) be the set of all vertices from which x is accessible. We make use
of the following lemma due to Harary.

Lemma 3.6. ([7]) A digraph D is functional if and only if each of its
components consists of exactly one directed cycle C and for each vertex v
of C, the converse of subgraph induced by R−1(v) of the digraph D − C is
a rooted tree with the root v.
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Theorem 3.7. Let D be a connected functional digraph of order n with q
sources. Then,

γo
1(D) ≤

⌊
n+ q + 1

2

⌋
.

Furthermore, this bound is sharp.

Proof. We consider a connected functional digraphD in view of Lemma 3.6.
Let C be the unique directed cycle of D. Let Q be the set of all sources in
D. Then D′ = D−Q is still a connected functional digraph with the unique
directed cycle C. We define the height h(D′) of the connected functional
digraph D′ as max{dD′(v, V (C)) | v ∈ V (D′)} where dD′(v, V (C)) repre-
sents the length of a shortest path between v and a vertex of V (C). Let
D′

1 = D′. We select a source v1 with maximum distance from C and let u1

be its unique out-neighbor. Let D′
2 = D′

1−N−
D1

[u1]. Iterate this process for
the remaining connected functional digraphD′

i untilD
′
p is the directed cycle

C on vertices w1, . . . , w|V (C)| or a connected functional digraph with height

one. In fact, we have a partition {Q,N−
D1

[u1], . . . , N
−
Dp−1

[up−1], V (D′
p)} of

V (D). If D′
p is the directed cycle C, then

S1 = Q ∪ {ui}p−1
i=1 ∪ {w2j−1}⌊(|V (C)|+1)/2⌋

j=1

is a GO1A in D. Let D′
p contain the directed cycle C and some arcs

(w′
j , wj) for some 1 ≤ j ≤ |V (C)|. We observe that D′

p − {w′
j , wj}j , with

j ∈ {1, . . . , |V (C)|}, is either a disjoint union of some directed paths Pr on
vertices x1, . . . , xr, or it is empty. If it is empty, then

S2 = Q ∪ {ui}p−1
i=1 ∪ {wj}|V (C)|

j=1

is a GO1A in D. So, we assume D′
p − {w′

j , wj}j , with j ∈ {1, . . . , |V (C)|},
is not empty. Let Ve be the set of vertices on the directed paths Pr with
even subscripts. Then,

S3 = Q ∪ {ui}p−1
i=1 ∪ {wj}j ∪ Ve

is a GO1A in D.

On the other hand, p−1 ≤ (n−q−|V (D′
p)|)/2. Moreover, the cardinalities

of the sets {w2j−1}⌊(|V (C)|+1)/2⌋
j=1 , {wj}|V (C)|

j=1 and {wj}j ∪ Ve are bounded
from above by (|V (D′

p)|+ 1)/2 for S1, S2 and S3, respectively. Therefore,
for any i ∈ {1, 2, 3} we have,

γo
1(D) ≤ |Si| ≤ q + (n− q − |V (D′

p)|)/2 + (|V (D′
p)|+ 1)/2 = (n+ q + 1)/2.
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To see the sharpness of the bound, consider a directed cycle C on vertices
y1, y2, . . . , yt and add disjoint directed paths xi,1, . . . , xi,2ki+1 for each 1 ≤
i ≤ t, for which xi,2ki+1 is adjacent to yi. Let D

∗ be the obtained connected
functional digraph. It is now easy to see that {xi,1, xi,3, . . . , xi,2ki+1}ti=1 ∪
{y1, y3, . . . , y2⌊(t+1)/2⌋−1} is a minimum dominating set in D∗ of cardinality

⌊n+q+1
2 ⌋. Therefore, γo

1(D
∗) = ⌊n+q+1

2 ⌋.

4 Concluding remarks

We have introduced and begun the study of several combinatorial and com-
putational properties of the global offensive k-alliances in digraphs. The
results presented above have allowed us to generate a new research line on
the theory of digraphs which we intend to continue exploring by possibly
dealing with some and/or all the following open problems.

• Similarly to the case of graphs, alliances can be analyzed not only
from a global way, but also in a local way. That is, for a given digraph
D = (V (D), A(D)), one can consider a set of vertices S ⊆ V (D) as an
offensive k-alliance inD if deg−S (v) ≥ deg−

S
(v)+k for all v ∈ ND(S)\S

(which is equivalent to say that S is not necessarily a dominating set in
D). The offensive k-alliance number, which could be denoted aok(D),
is then defined as the minimum cardinality of an offensive k-alliance
in D. The study of the non global case for an offensive k-alliance may
be of potential interest to continue this research line, which we have
presented in this article.

• Another issue that requires to be dealt with concerns completing the
NP-hardness property of computing the global offensive k-alliance
number of bipartite digraphs. That is, finding which is the complexity
of the GOk-A problem studied above for suitable negative values of
k. It would probably not be surprising if such problem belongs to
the so-called NP-hard class (as for the other values for which it is
already proved here): however, a proof of it is required. In this sense,
it is maybe possible to adapt the idea of the proof [4, Theorem 2]
to directed graphs to make the reduction. In addition, finding some
classes of digraphs for which such a problem could be polynomially
solved will give more insight into the study of global offensive k-
alliances in digraphs.

• Since the global offensive k-alliances can be used to model the situa-
tion of finding the most influential elements of a network, it is worth
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finding some algorithms (that could even not be polynomial) together
with some heuristics that would allow one to make some implementa-
tions and experiments on real social networks in order to detect the
“influencers” (according to the social network terminology) of such
networks.
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