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Convolutional Neural Networks  
for Inverse Problems in Imaging

A review

In this article, we review recent uses of convolutional neural 
networks (CNNs) to solve inverse problems in imaging. It has 
recently become feasible to train deep CNNs on large databas-

es of images, and they have shown outstanding performance on 
object classification and segmentation tasks. Motivated by these 
successes, researchers have begun to apply CNNs to the resolu-
tion of inverse problems such as denoising, deconvolution, super-
resolution, and medical image reconstruction, and they have 
started to report improvements over state-of-the-art methods, 
including sparsity-based techniques such as compressed sensing. 
Here, we review the recent experimental work in these areas, 
with a focus on the critical design decisions: 

■■ From where do the training data come? 
■■ What is the architecture of the CNN? 
■■ How is the learning problem formulated and solved? 

We also mention a few key theoretical papers that offer perspec-
tives on why CNNs are appropriate for inverse problems, and we 
point to some next steps in the field.

Introduction
The basic ideas underlying the use of CNNs (also known as 
ConvNets) for inverse problems are not new. Here, we give a 
condensed history of CNNs to provide context to what fol-
lows. For further historical perspective, see [1]; for an acces-
sible introduction to deep neural networks and a summary of 
their recent history, see [2]. The CNN architecture was pro-
posed in 1986 [3], and neural networks were developed for 
solving inverse imaging problems as early as 1988 [4]. These 
approaches, which used networks with few parameters and did 
not always include learning, were largely superseded by com-
pressed sensing (or, broadly, convex optimization with regulariza-
tion) approaches in the 2000s. As computer hardware improved, 
it became feasible to train larger neural networks, until, in 2012, 
Krizhevsky et al. [5] achieved a significant improvement over the 
state of the art on the ImageNet classification challenge by using 
a graphics processing unit (GPU) to train a CNN with five con-
volutional layers and 60 million parameters on a set of 1.3 mil-
lion images. This work spurred a resurgence of interest in neural 
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networks and, specifically, CNNs—not only for computer vision 
tasks but also for inverse problems.

The purpose of this article is to summarize the recent works 
using CNNs for inverse problems in imaging, i.e., in problems 
most naturally formulated as recovering an image from a set 
of noisy measurements. This criterion excludes detection, seg-
mentation, classification, quality assessment, etc. We also focus  
on CNNs, avoiding other architectures such as recurrent neu-
ral networks, fully connected networks, and stacked denoising 
autoencoders. We organized our literature search by application, 
selecting topics of broad interest where we could find at least 
three peer-reviewed papers from the last ten years. (Much of the 
work on the theory and practice of CNNs is posted on the pre-
print server arXiv.org before eventually appearing in traditional 
journals. Because of the lack of peer review on arXiv.org, we 
have preferred not to cite these papers, except in cases where we 
are trying to illustrate a very recent trend or future direction for 
the field.) The resulting applications and references are summa-
rized in Table 1. The aim of this constrained scope is to allow 
us to draw meaningful generalizations from the surveyed works.

Background
We begin by introducing inverse problems and contrasting the 
traditional approach to solving them with a learning-based 
approach. For a textbook treatment of inverse problems, see 
[28]. Throughout the section, we use X-ray computed tomogra-

phy (CT) as a running example, and Figure 1 shows images of 
the various mathematical quantities we mention.

Learning for inverse problems in imaging
Mathematically speaking, an imaging system is an operator 

:H X Y"  that acts on an image ,x X!  to create a vector of 
measurements ,y Y!  with { } .H x y=  The underlying func-
tion/vector spaces are

■■ the space, ,X  of acceptable images, which can be two-
dimensional (2-D), three-dimensional (3-D), or even 
3-D+time, with its values representing a physical quantity 
of interest, such as X-ray attenuation or concentration of 
fluorophores

■■ the space, ,Y  of measurement vectors that depends on the 
imaging operator and could include images (discrete arrays 
of pixels), Fourier samples, line integrals, etc.

We typically consider x  to be a continuous object (function of 
space), while y  is usually discrete: .RY M=  For example, in 
X-ray CT, x  is an image representing X-ray attenuations, H rep-
resents the physics of the X-ray source and detector, and y  is the 
measured sinogram (see Figure 1).

In an inverse imaging problem, we aim to develop a recon-
struction algorithm (which is also an operator), : ,R Y X"  
to recover the original image, ,x  from the measurements, .y  
The dominant approach for reconstruction, which we call the 
objective function approach, is to model H  and recover an 
estimate of x  from y  by

	 , ,argminR y f H x y
x

obj
X

=
!

^ h" ", , � (1)

where :H X Y"  is the system model, which is usually lin-
ear, and :f RY Y "# + is an appropriate measure of error. 
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Figure 1. A block diagram of image reconstruction methods, using images from X-ray CT as examples. An image, ,x  creates measurements, ,y  that can 
be used to estimate x  in a variety of ways. The traditional approach is to apply a direct inversion, ,H 1-u  which is artifact prone in the sparse-measurement 
case (note the stripes in the reconstruction). The current state of the art is a regularized reconstruction, ,Rreg  written, in general, in (2). Several recent 
works apply CNNs to the result of the direct inversion or an iterative reconstruction, but it might also be reasonable to use as input the measurements 
themselves or the back projected measurements.

Table 1. Reviewed applications and associated references.  

denoising deconvolution superresolution MRI CT 

[6]–[11] [10], [12]–[14] [9], [15]–[20] [21]–[23] [24]–[27]
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Continuing the CT example, H  would be a discretization of the 
X-ray transform (such as MATLAB’s radon), and f  could 
be the Euclidean distance, { } .H x y 2-  For many appli-
cations, decades of engineering have gone into developing 
a fast and reasonably accurate inverse operator, ,H 1-u  so (1) 
is easily approximated by { } { };R y H y1

obj = -u  for CT, H 1-u  
is the filtered back projection (FBP) algorithm. An important, 
related operator is the back projection, : ,H Y XT

"  which can 
be interpreted as the simplest way to put measurements back 
into the image domain (see Figure 1).

These direct inverses begin to show significant artifacts 
when the number or quality of the measurements decreases, 
either because the underlying discretization breaks down or 
because the inversion of (1) becomes ill 
posed (lacking a solution, lacking a unique 
solution, or being unstable with respect to the 
measurements). Unfortunately, in many real-
world problems, measurements are costly (in 
terms of time, or, e.g., X-ray damage to the 
patient), which motivates us to collect as few 
as possible. To reconstruct from sparse or 
noisy measurements, it is often better to use a 
regularized formulation,

 , ,argminR y f H x y g x
x

reg
X

= +
!

^ ^h h" ", , � (2)

where :g RX " + is a regularization func-
tional that promotes solutions that match our 
prior knowledge of x  and, simultaneously, 
makes the problem well posed. For CT, g 
could be the total variation (TV) regularization, which penalizes 
large gradients in .x

From this perspective, the challenge of solving an inverse 
problem is designing and implementing (2) for a specific appli-
cation. Much effort has gone into designing general-purpose 
regularizers and minimization algorithms. For example, com-
pressed sensing [29] provides sparsity-promoting regularizers. 
Nonetheless, in the worst case, a new application necessitates 
developing accurate and efficient H , ,g  and ,f  along with a 
minimization algorithm.

An alternative to the objective function approach is called 
the learning approach, where a training set of ground-truth 
images and their corresponding measurements, {( , )} ,x yn n n

N
1=  

is known. A parametric reconstruction algorithm, ,Rlearn  is 
then learned by solving

	 , ( ),argminR f x R y g
,R n

N

n n
1

learn i= +
!i

i
H =i

^ h" ,/ � (3)

where H  is the set of all possible parameters, :f RX X "# + 
is a measure of error, and :g R"H + is a regularizer on the 
parameters with the aim of avoiding overfitting. Once the 
learning step is complete, Rlearn  can then be used to reconstruct 
a new image from its measurements.

To summarize, in the objective function approach, the 
reconstruction function is itself a regularized minimization 

problem, while in the learning approach, the solution of a regu-
larized minimization problem is a parametric function that can 
be used to solve the inverse problem. The learning formulation 
is attractive because it overcomes many of the limitations of 
the objective function approach: there is no need to handcraft 
the forward model, cost function, regularizer, and optimizer 
from (2). On the other hand, the learning approach requires a 
training set, and the minimization (3) is typically more dif-
ficult than (2) and requires a problem-dependant choice of ,f  
,g and the class of functions described by R and .H

Finally, we note that the learning and objective function 
approaches describe a spectrum rather than a dichotomy. In 
fact, the learning formulation is strictly more general, includ-

ing the objective function formulation as a 
special case. As we will discuss further in 
the section “Network Architecture,” which 
(if any) aspects of the objective formula-
tion approach to retain is a critical choice 
in the design of learning-based approaches 
to inverse problems in imaging.

CNNs
Our focus here is the formulation of (3) using 
CNNs. Using a CNN means, roughly, fixing 
the set of functions, Ri , to be a sequence of 
(linear) filtering operations alternating with 
simple nonlinear operations. This class of 
functions is parametrized by the values of the 
filters used (also known as filter weights), 
and these filter weights are the parameters 

over which the minimization occurs. For illustration, Figure 2 
shows a typical CNN architecture.

We will discuss the theoretical motivations for using CNNs 
as the learning architecture for inverse problems in the sec-
tion “Theory,” but we mention some practical advantages 
here. First, the forward operation of a CNN consists of (usu-
ally small) convolutions and simple, pointwise nonlinear func-
tions. This means that, once training is complete, the execution 
of Rlearn  is very fast and amenable to hardware acceleration 
on GPUs. Second, the gradient of (3) is computable via the 
chain rule, and these gradients again involve small convolu-
tions, meaning that the parameters can be learned efficiently 
via gradient descent.

When the first CNN-based method entered the ImageNet 
Large-Scale Visual Recognition Challenge in 2012 [5], its 
error rate on the object localization and classification task was 
15.3%, as compared to an error rate 26.2% for the next closest 
method and 25.8% for the 2011 winner. In subsequent com-
petitions (2013–2016), the majority of the entries (and all of 
the winners) were CNN based and continued to improve sub-
stantially, with the 2016 winner achieving an error rate of just 
2.99%. Can we expect such large gains in inverse problems? 
That is, can we expect denoising results to improve by an order 
of magnitude (20 dB) in the next few years? Next, we answer 
this question by surveying the results reported by recent CNN-
based approaches to image reconstruction.

In the objective 
function approach, the 
reconstruction function 
is itself a regularized 
minimization problem, 
while in the learning 
approach, the solution of 
a regularized minimization 
problem is a parametric 
function that can be  
used to solve the  
inverse problem.
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Current state of performance
Of the inverse problems we review here, denoising provides the 
best look at recent trends in results because there are standard 
experiments that appear in most papers. Work on CNN-based 
denoising from 2009 [6] showed an average peak signal-to-noise 
ratio (PSNR) of 28.5 on the Berkeley segmentation data set, a 
less than 1-dB improvement over contemporary wavelet and 
Markov random field-based approaches. For comparison, one 
very recent denoising work [11] reported a 0.7-dB improvement 
on a similar experiment, which remains less than 1 dB better than 
contemporary non-CNN methods (including block-matching and 
3-D filtering, which had remained the state of the art for years). 
As another point of reference, in 2012, one CNN approach [7] 
reported an average PSNR of 30.2 dB on a set of standard test 
images (Lena, peppers, etc.), less than 0.1 dB better than com-
parisons, and another [8] reported an average of 30.5 dB on the 
same experiment. Recently, [11] achieved an average of 30.4 dB 
under the same conditions. One important perspective on these 
denoising results is that the CNN is learning the distribution of 
natural images (or, equivalently, is learning a regularization). 
Such a CNN could be reused inside an iterative optimization as a 
proximal operator to enforce this learned regularization for any 
inverse problem.

The trends are similar in deblurring and superresolution, 
although experiments are more varied and therefore harder to 
compare. For deblurring, [12] showed around a 1-dB PSNR 
improvement over comparison methods, and [13] showed a 

further improvement of approximately 1 dB. For superresolu-
tion, work from 2014 [15] reported a less than 0.5-dB improve-
ment in PSNR over comparisons. During the next two years, 
[16] and [19] both reported a 0.5-dB PSNR increase over this 
baseline. Even more recent work, [30], improves on the 2014 
work by around 1.5 dB in PSNR. For video superresolution, 
[18] improves on non-CNN-based methods by about 0.5 dB 
PSNR and [20] improves upon that result by another 0.5 dB.

For inverse problems in medical imaging, direct com-
parison between works is impossible due to the wide vari-
ety of experimental setups. A 2013 CNN-based work [24] 
shows improvement in limited-view CT reconstruction over 
direct methods and unregularized iterative methods but does 
not compare to regularized iterative methods. In 2015, [25] 
showed (in full-view CT) an improvement of several decibels 
in signal-to-noise ratio (SNR) over direct reconstruction and 
around 1-dB improvement over regularized iterative recon-
struction. Recently, [26] showed about 0.5-dB improvement in 
PSNR over TV-regularized reconstruction, while [27] showed 
a larger (1–4 dB) improvement in SNR over a different TV-
regularized method (Figure 3). In magnetic resonance imaging 
(MRI), [22] demonstrates performance equal to the state of the 
art, with advantages in running time. 

Do these improvements matter? CNN-based methods have 
not, so far, had the profound impact on inverse problems that 
they have had for object classification. The difference between 
30 and 30.5 dB is impossible to see by eye. On the other hand, 

Rlearn {x } = c3 ° T (c2 ° T (c1 ° x + b1) + b2) + b3
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Figure 2. An illustration of a typical CNN architecture for 2562 pixel RGB images, including the objective function used for training. ( )T $  is the rectified 
linear unit function (point-wise nonlinear function). The symbol % denotes a 2-D convolution. The convolutions in each layer are described by a four-
dimensional tensor representing a stack of 3-D filters.
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these improvements occur in heavily studied fields: we have 
been denoising the Lena image since the 1970s. Furthermore, 
CNNs offer some unique advantages over many traditional 
methods. The design of the CNN architecture can be more or 
less decoupled from the application at hand and reused from 
problem to problem. They can also be expanded in straightfor-
ward ways as computer memory grows, and there is some evi-
dence that larger networks lead to better performance. Finally, 
once trained, running the model is fast (dozens of convolutions 
per image, usually less than 1 s). This means that CNN-based 
methods can be attractive in terms of running time even if they 
do not improve upon state-of-the-art performance.

Designing CNNs for inverse problems
In this section, we survey the design decisions needed to devel-
op CNN-based approaches for inverse problems in imaging. 
We organize the section around the learning equation as sum-
marized in Figure 4, first describing how the training set is 
created, then how the network architecture is designed, and, 
finally, how the learning problem is formulated and solved.

Training set
Learning requires a suitable training set, i.e., the (input, out-
put) pairs from which the CNN will learn. In a typical learning 
problem, training outputs are provided by some oracle label-
ing a set of inputs. For example, in object classification, a set 
of human graders might view a large number of images and 
provide annotations for each. In the inverse problem setting, 
this is considerably more difficult because no such oracle exists. 

For example, in X-ray CT, to generate a training set, we would 
need to image a large number of physical phantoms for which 
we have exact 3-D models, which is not feasible in practice. The 
choice of the training set also constrains the network architec-
ture because the input and output of the network must match the 
dimensions of yn  and ,xn  respectively.

Generating training data
In some cases, generating training data is straightforward 
because the forward model we aim to invert is known exactly 
and easily computable. In denoising, training data are generated 
by corrupting images with noise; the noisy image then serves as 
training input and the clean image as the training output, as in, 
e.g., [6] and [7]. Or, the noise itself can serve as the oracle 
output, in a scheme called residual learning [11], [23]. Super-
resolution follows the same pattern, where training pairs are eas-
ily generated by downsampling, as in, e.g., [19]. The same is true 

Ground Truth FBP SNR 13.43 TV SNR 24.89 FBP ConvNet SNR 28.53

(a) (b) (c) (d)

Figure 3. An example of X-ray CT reconstructions. (a) The ground truth comes from an FBP reconstruction using 1,000 views. (b)–(d) are reconstructions from 
just 50 views using FBP, a regularized reconstruction, and from a CNN-based approach. The CNN-based reconstruction preserves more of the texture present in the 
ground truth and results in a significant increase in SNR. (Images are reproduced with permission from [27]).

Rlearn = arg min
Rθ , θ ∈ Θ a

N

n = 1

f (xn, Rθ (yn)) + g (θ )

A) Training SetD) Optimization

C) Cost Function and
Regularization

B) Network Architecture

Figure 4. The learning equation, which we use to organize the parts of 
the section “Designing CNNs for Inverse Problems”.
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for deblurring, where training pairs can be generated by blur-
ring [12]–[14].

In medical imaging, the focus is on reconstructing 
from real measurements, and the corresponding ground truth 
is not usually known. The emerging paradigm is to learn to 
reconstruct from sparse measurements, using reconstructions 
from fully sampled measurements to train. For example, in 
MRI reconstruction, [22] trains by using undersampled k-space 
data as inputs and reconstructions from fully sampled k-space 
data as outputs. Likewise, [27] uses a low-view CT reconstruc-
tion as input and a high-view CT reconstruction as output. Or 
the CNN can learn from low-dose (noisy) measurements [25].

Preprocessing
Another aspect of training data preparation is whether the 
training inputs are the measurements themselves or whether 
some preprocessing occurs. In denoising, it is natural to use 
the raw measurements, which are of the same dimensions as 
the reconstruction. But, in the other applications, the trend is 
to use a direct inverse operator to prepro-
cess the network input. Following the nota-
tion in the section “Learning for Inverse 
Problems in Imaging,” this can be viewed 
as a combination of the objective function 
and learning approach, where instead of 
Rlearn  being a CNN, it is the composition of 
a CNN with a direct inverse: .R H 1%i -u  For 
example, in superresolution, [16], [18], and 
[19] first upsample and interpolate the 
low-resolution input images; in CT, [25] and [27] preprocess 
with the FBP ([25] also preprocesses with an iterative recon-
struction); and, in MRI, [21] preprocesses with the inverse 
Fourier transform.

Without preprocessing, the CNN must learn the underly-
ing physics of the inverse problem. It is not even clear that 
this is possible with CNNs (e.g., what is the meaning of fil-
tering an X-ray CT sinogram?). Preprocessing is also a way 
to leverage the significant engineering effort that has gone 
into designing these direct inverses over the past decades. 
Superficially, this type of preprocessing appears to be inver-
sion followed by denoising, which is a standard, if ad hoc, 
approach to inverse problems. What is unique here is that the 
artifacts caused by direct inversion, especially in the sparse 
measurement case, are usually highly structured and there-
fore not good candidates for generic denoising approaches. 
Instead, the CNN is allowed to learn the specific character 
of these artifacts.

A practical aspect of preprocessing is controlling the 
dynamic range of the input. While not typically a problem 
when working with natural images or standardized data sets, 
there may be huge fluctuations in the intensity or contrast 
of the measurements in certain inverse problems. To avoid a 
small set of images dominating the error during training, it is 
best to scale the dynamic range of the training set [23], [27]. 
Similarly, it may be advantageous to discard training patches 
without sufficient contrast.

Training size
CNNs typically have at least thousands of parameters to train; 
thus, the number of (input, output) pairs in the training set is 
of important practical concern. The number of training pairs 
varied among the papers we surveyed. The biomedical imag-
ing papers tended to have the fewest samples (e.g., 500 
brain images [21] or 2,000 CT images [24]), while papers on 
natural images had the most (e.g., pretraining with 395,909 
natural images [20]). 

A further complication is that, depending on the network 
architecture, images may be split into patches for training. 
Thus, depending on the dimensions of the training images and 
the chosen patch size, numerous patches can be created from a 
small training set. The patch size also has important ramifica-
tions for the performance of the network and is linked to its 
architecture, with larger filters and deeper networks requiring 
larger training patches [17].

With a large CNN and a small training set, overfitting must 
be avoided by regularization during learning and/or the use of a 

validation set (e.g., [24] and discussed more 
in the sections “Cost Function and Regular-
ization” and “Optimization”). These strate-
gies are necessary to produce a CNN that 
generalizes at all, but they do not overcome 
the fact that the performance of the CNN 
will be limited by the size and variety of 
the training set. One strategy to increase the 
training set size is data augmentation, where 
new (input, output) pairs are generated by 

transforming existing ones. For example, [20] augmented train-
ing pairs by scaling them in space and time, turning 20,000 pairs 
into 70,000 pairs. The augmentation must be application specif-
ic because the trained network will be approximately invariant 
to the transforms used. Another strategy to effectively increase 
the training set size is to use a pretrained network. For example, 
[18] first trains a CNN for image superresolution with a large 
image data set, then retrains with videos.

Network architecture
By network architecture, we mean the choice of the family 
of CNNs, Ri  parameterized by i . In our notation, Ri  rep-
resents a CNN with a specific architecture, while i  are the 
weights to be learned during the training. There is great variety 
among CNN-based methods regarding their architecture: how 
many convolutional layers, what filter sizes, which nonlineari-
ties, etc. For example, [19] uses 8,032 parameters, while [20] 
uses on the order of 100,000. In this section, we survey recent 
approaches to CNN architecture design for inverse problems.

The simplest approach to architecture design is simply a 
stack of series of convolutional layers and nonlinear functions 
[26], [10]; see Figure 2. This provides a baseline to check the 
feasibility of the network for the given application. It is straight-
forward to adjust the size of such a network, either by changing 
the number of layers, the number of channels per layer, or the 
size of the filters in each layer. For example, keeping the filters 
small (3 3#  pixels) allows the network to be deeper for a given 

Can we expect large  
gains in inverse problems, 
such as improving the 
denoising results by an 
order of magnitude in  
the next few years?
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number of parameters [23]; constraining the filters to be sepa-
rable [12] further reduces the number of parameters. Doing this 
can give the experimenter a sense of the training time required 
on their hardware as well as the effects of the network size on 
performance. From this simple starting point, the architecture 
can be tweaked for greater performance; for example, by add-
ing downsampling and upsampling operations [27] or by simply 
adding more layers [20].

Instead of using ad hoc architecture design, one can adapt 
a successful CNN architecture from another application. For 
example, [27] adapts a network designed for biomedical image 
segmentation to CT reconstruction by changing the number of 
output layers from two (background and foreground images) to 
one (reconstructed image). These architectures can also be con-
nected end to end, creating modular or hierarchical designs. For 
example, a four-times superresolution architecture can be created 
by connecting two two-times superresolution 
networks [16]. This is distinct from training 
a two-times superresolution network and 
applying it twice because the two modules of 
the CNN are trained as a unit.

A second approach is to begin with an 
iterative optimization algorithm and unroll it, 
turning each iteration into a layer of a net-
work. In such a scheme, filters that are nor-
mally fixed in the iterative minimization are 
instead learned. The approach was pioneered 
in [31] for sparse coding; their results showed 
that the learned algorithms could achieve a 
given error in fewer iterations than the standard ones. Because 
many iterative optimization algorithms alternate filtering 
steps (linear updates) with pointwise nonlinear steps (proximal/
shrinkage operations), the resulting network is often a CNN. This 
was the approach in [22], where the authors unrolled the alternat-
ing direction method of multipliers (ADMM) algorithm to design 
a CNN for MRI reconstruction, with state-of-the-art results and 
improvements in running time. For networks designed in this 
way, the original algorithm is a specific case, and, therefore, the 
performance of the network cannot be worse than the original 
algorithm if training is successful. The concept of unrolling can 
also be applied at a coarser scale, as in [13], where the modules 
of the network mimic the steps of a typical blind deconvolution 
pipeline: extract features, estimate kernel, estimate image, repeat.

Another promising design approach, similar to unrolling, 
is to learn only some part of an existing iterative method. For 
example, given the modular nature of popular iterative optimi-
zation schemes such as the ADMM, a CNN can be employed 
as a proximal (denoising) operator, while the rest of the algo-
rithm remains unchanged [32]. This design combines many of 
the good aspects of both the objective function and learning-
based approaches and allows a single CNN to be used for sev-
eral different inverse problems without retraining.

Cost function and regularization
In this section, we survey the approaches taken to actually 
train the CNN, including the choice of a cost function, ,f  

and regularizer, .g  For a textbook coverage of the subject of 
learning, see [33].

Understanding the learning minimization problem as a 
statistical inference can provide useful insight into the selec-
tion of the cost and regularization functions. From this per-
spective, we can formulate the goal of learning as maximizing 
the conditional likelihood of each training output given the 
corresponding training input and CNN parameters:

{( , )} ,

( | , ),arg max

x y

R P y x

given
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n n n
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n n

1

1
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!i H

=
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%

where P is a conditional likelihood. When this likelihood fol-
lows a Gaussian distribution, this optimization is equivalent 
to the one from the “Background” section, (3), with f  being 

the Euclidean distance and no regulariza-
tion. Put another way, learning with the 
standard, Euclidean cost, and no regular-
ization implicitly assumes a Gaussian noise 
model; this is a well-known fact in inverse 
problems in general. This formulation 
is used in most of the works we surveyed 
[6], [7], [11], [12], [18], [19], [23], [25], [26], 
despite the fact that several raise questions 
about whether it is the best choice [25], [34].

An alternative is the maximum a pos-
teriori formulation, which maximizes the 
joint probability of the training data and 

the CNN parameters, which can be decomposed into several 
terms using Bayes’ rule:
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This formulation explicitly allows prior information about the 
desired CNN parameters, ,i  to be used. Under a Gaussian 
model for the weights of the CNN as well as the noise, this for-
mulation results in a Euclidean cost function and a Euclidean 
regularization on the weights of the CNN, ( ) | | | | .g 2

2
2i v i= -  

Other examples of regularizations for CNNs are the total gen-
eralized variation norm or sparsity on the coefficients. Regu-
larized approaches are taken in [10], [15], [21], and [22].

Optimization
Once an objective function for learning has been fixed, it still 
must be actually minimized. This is a crucial and deep topic, 
but, from the practical perspective, it can be treated as a black 
box due to the availability of several high-quality software 
libraries that can perform efficient training of user-defined 
CNN architectures. For a comparison of these libraries, refer 
to [35]; here, we provide a basic overview.

The popular approaches to CNN learning are variations 
on gradient descent. The most common is stochastic gradi-
ent descent (SGD), used, e.g., in [16] and [25], where, at each 

The notion of universal 
approximation tells us 
what the network can 
learn, not what it does 
learn, and comparison  
to established algorithms 
can help guide our 
understanding of CNNs  
in practice.
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iteration, the gradient of the cost function is computed using 
random subsets of the available training. This reduces the 
overall computation compared to computing the true gradi-
ent, while still providing a good approximation. The process 
can be further tuned by adding momentum, i.e., combining 
gradients from previous iterations in clever ways or by using 
higher-order gradient information as in BFGS [22].

Initial weights can be set to zero or chosen from some 
random distribution (Gaussian or uniform). Because learn-
ing is nonconvex, the initialization does potentially change 
which minimum the network converges to, but not much dif-
ference is observed in practice. However, good initializations 
can improve the speed of convergence. This explains the po
pularity of taking pretrained networks, or, in the case of an 
unrolled architecture, initializing the network weights based 
on corresponding known filters. Recently, a procedure called 
batch normalization, where the inputs to each layer of the 
network are normalized, was proposed as a way to increase 
learning speed and reduce sensitivity to initialization [36].

As mentioned in the section “Train-
ing Set,” overfitting is a serious risk when 
training networks with potentially millions 
of parameters. In addition to augmenting the 
training set, steps can be taking during train-
ing to reduce overfitting. The simplest is to 
split the training data into a set used for opti-
mization and a set used for validation. Dur-
ing training, the performance of the network 
on the validation set is monitored, and training is terminated 
when the performance on the validation set begins to decrease. 
Another method is dropout [37], where individual units of the 
network are randomly deleted during training. The motivation 
for dropout is the idea that the network should be regularized by 
forming a weighted average of all possible parameter settings, 
with weights determined by their performance. While this regu-
larization is not feasible, removing units during training pro-
vides a reasonable approximation that performs well in practice.

Theory
The excellent performance of CNNs for various applications is 
undisputed, but the question of “Why?” remains mostly unan-
swered. Here, we bring together a few different theoretical per-
spectives that begin to explain why CNNs are a good fit for 
solving inverse problems in imaging.

Universal approximation
We know that neural networks are universal approximators. 
More specifically, a fully connected neural network with 
one hidden layer can approximate any continuous function 
arbitrarily well, provided that its hidden layer is large enough 
[38]. The result does not directly apply to CNNs because they 
are not fully connected, but, if we consider the network patch 
by patch, we see that each input patch is mapped to the cor-
responding output patch by a fully connected network. Thus, 
CNNs are universal approximators for shift-invariant func-
tions. From this perspective, statements such as “CNNs work 

well because they generalize X algorithm” are vacuously true 
because CNNs generalize all shift-invariant algorithms. On 
the other hand, the notion of universal approximation tells us 
what the network can learn, not what it does learn, and com-
parison to established algorithms can help guide our under-
standing of CNNs in practice.

Unrolling
The most concrete perspective on CNNs as generalizations of 
established algorithms comes from the idea of unrolling, which 
we discussed in the section “Network Architecture.” The idea 
originated in [31], where the authors unrolled the ISTA algo-
rithm for sparse coding into a neural network. This network is 
not a typical CNN because it includes recurrent connections, 
but it does share the alternating linear/nonlinear motif. A more 
general perspective is that nearly all state-of-the-art iterative 
reconstruction algorithms alternate between linear steps and 
pointwise nonlinear steps, so it follows that CNNs should be 
able to perform similarly well given appropriate training. One 

refinement of this idea comes from [27], 
which establishes conditions on the forward 
model, ,H  that ensure that the linear step of 
the iterative method is a convolution. All of 
the inverse problems surveyed here meet 
these conditions, but the theory predicts that 
certain inverse problems, e.g., structured 
illumination microscopy, should not be ame-
nable to reconstruction via CNNs. Another 

refinement concerns the popular rectified linear unit (ReLU) 
employed as the nonlinearity by most CNNs: results from spline 
theory can be adapted to show that combinations of ReLUs can 
approximate any continuous function. This suggests that the 
combinations of ReLUs usually employed in CNNs are able to 
closely approximate the proximal operators used in traditional 
iterative methods.

Invariance
Another perspective comes from work on scattering trans-
forms, which are cascades of linear operations (convolutions 
with wavelets) and nonlinearities (absolute value) [39] with 
no combinations formed between the different channels. This 
simplified model shows invariance to translation and, more 
importantly, to small deformations of the input (diffeomor-
phisms). CNNs generalize the scattering transform, giving the 
potential for additional invariances, e.g., to rigid transforma-
tions, frequency shifts, etc. Such invariances are attractive for 
image classification, but more work is needed to connect these 
results to inverse problems.

Critiques
While the papers we have surveyed present many reasons 
to be optimistic about CNNs for inverse problems, we also 
want to mention a few general critiques of the approach. We 
hope these can be useful points to think about when writing 
or reviewing manuscripts in the area, as well as jumping-off 
points for future research.

The most concrete 
perspective on CNNs 
as generalizations of 
established algorithms 
comes from the idea  
of unrolling.
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Algorithm descriptions and reproducibility
When planning this survey, we aimed to measure quantitative 
trends in the literature, e.g., to plot the number of training samples 
versus the number of parameters for each network. We quickly 
discovered this is nearly impossible. Very few manuscripts clear-
ly noted the number of parameters they were training, and only 
some provided a clear-enough description of the network for us 
to calculate the value. Many more included a figure of network 
architecture along the lines of Figure 2, but without a clear state-
ment of the dimensions of each layer. Similar problems exist in 
the description of the training and evaluation procedures, where 
it is not always clear whether the evaluation data come from 
simulation or from a real data set. As the field matures, we hope 
papers converge on a standard way to describe network architec-
ture, training, and evaluation.

The lack of clarity presents a barrier to the reproducibil-
ity of the work. Another barrier is the fact that training often 
requires specialized or expensive hardware. While GPUs have 
become more ubiquitous, the largest (and best-performing) 
CNNs remain difficult for small research groups to train. For 
example, the CNN that won the ImageNet Large-Scale Visual 
Recognition Challenge in 2012 took “between five and six 
days to train on two GTX 580 3GB GPU” [5].

Robustness of learning
The success of any CNN-based algorithm hinges on finding a 
reasonable solution to the learning problem (3). As stated pre-
viously, this is a nonconvex problem, where the best solution 
we can hope for is to find one of many local minima of the 
cost. This raises questions about the robustness of the learning 
to changes in the initialization of parameters and the specifics 
of the optimization method employed. This is in contrast to 
the typical convex formulations of inverse problems, where the 
specifics of the initialization and optimization scheme prov-
ably do not affect the quality of the result.

The uncertainty about learning complicates the comparison 
of any two CNN-based methods. Does A outperform B because 
of its superior architecture, or simply because the optimization 
of A fell into a superior local minimum? As an example of the 
confusion this can cause, [34] shows, in the context of denoising, 
superresolution, and JPEG deblocking that a network trained 
with the l1  cost function can outperform a network trained 
with the l2  cost function even with regard to the l2  cost. In the 
authors’ analysis of this highly disturbing result, they attribute it 
to the l2  learning being stuck in a local optimum. Regardless, 
the vast majority of work relies on the l2  cost, which is compu-
tationally convenient and provides excellent results.

There is some indication that large networks trained with 
lots of data can overcome this problem. In [40], the authors 
show that larger networks have more local minima, but that 
most local minima are equivalent in terms of testing perfor-
mance. They also identify that the global minima likely cor-
respond to parameter settings that overfit the training set. More 
work on the stability of the learning process will be an impor-
tant step toward wider acceptance of CNNs in the inverse 
problem community.

More generally, how sensitive are the results of a given experi-
ment to small changes in the training set, network architecture, 
or optimization procedure? Is it possible for the experimenter to 
overfit the testing set by iteratively tweaking the network archi-
tecture (or the experimental parameters) until state-of-the-art 
results are achieved? To combat this, CNN-based approaches 
should provide carefully constructed experiments with results 
reported on a large number of testing images. Even better are 
competition data sets, where the testing data is hidden until algo-
rithm development is complete.

Can we trust the results?
Once trained, CNNs remain nonlinear and highly complex. 
Can we trust reconstructions generated by such systems? 
One way to look at this is to evaluate the sensitivity of the 
network to noise: ideally, small changes to the input should 
cause only small changes to the output; data augmentation 
during training can help achieve this. Similarly, demonstrat-
ing generalization between data sets (where the network 
learns on one data set, but is evaluated on another) can help 
improve confidence in the results by showing that the perfor-
mance of the network is not dependent on some systematic 
bias of the data set.

A related question is how to measure the quality of the results. 
Even if a robust SNR improvement can be demonstrated, prac-
titioners will inevitably want to know, e.g., whether the result-
ing images can be reliably used for diagnosis. To this end, as 
much as possible, methods should be assessed with respect to the 
ultimate application of the reconstruction (diagnosis, quantifica-
tion of biological phenomenon, etc.) rather than an intermediate 
measure such as SNR or structural similarity (SSIM). While this 
critique can be made of any approach to inverse problems, it is 
especially relevant for CNNs because they are often treated as 
black boxes and because the reconstructions they generate are 
plausible-looking by design, hiding areas where the algorithm is 
less sure of the result.

Next steps
So far, we have given a small look into the wide variety of ways 
that researchers have applied CNNs to solve inverse problems 
in imaging. Because CNNs are so powerful and flexible, we 
believe there is plenty of room to create even better systems. 
Next, we suggest a few directions that this future research 
might take.

Biomedical imaging
CNNs have so far been applied mostly to inverse problems where 
the measurements take the form of an image and the measurement 
model is simple, and less so for CT and MRI, which have rela-
tively more complicated models. A search on arXiv.org reveals 
dozens more CT and MRI papers submitted within the last few 
months, suggesting many incoming contributions in these areas. 
We expect diffusion into other modalities such as positron-emis-
sion tomography, single-photon emission CT, transmission elec-
tron microscopy, structured illumination microscopy, ultrasound, 
superresolution microscopy, etc. to follow. 
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Central to this work will be questions of how best to com-
bine CNNs with knowledge of the underlying physics as well as 
direct and iterative inversion techniques. Most of the surveyed 
works involve using a CNN to correct the artifacts created by 
direct or iterative methods, where it remains an open question 
what is the best such prereconstruction method. One creative 
approach is to build the inverse operator into the network archi-
tecture as in [22], where the network can compute inverse Fou-
rier transforms. Another would be to use the back-projected 
measurements, ,H yT  which at least take the form of an image 
and could reduce the burden on the CNN to learn the physics 
of the forward model. CNNs could be deployed in a variety of 
other ways here, too, e.g. using a CNN to approximate a high 
quality, but extremely slow reconstruction method. With enough 
computing power, a training set could be generated by running 
the slow method on real data, and, once trained, the resulting 
network could provide very fast and accurate reconstructions.

Cross-task learning
In cross-task learning (also called transfer learning, although 
this can have other meanings as well), an algorithm is trained 
with one data set and deployed on a different, but related, 
task. This is attractive in the inverse problem setting because 
it avoids the costly retraining of the network when imaging 
parameters change (different noise levels, image dimensions, 
etc.), which may occur often. Or we could imagine a network 
that transfers between completely different imaging modali-
ties, especially when training data for the target modality are 
scarce; e.g., a network could train on denoising natural images 
and then be used to reconstruct MRI images. Recent work has 
made progress in this direction by learning a CNN-based prox-
imal operator, which can be used inside an iterative optimiza-
tion method for any inverse problem [32].

Multidimensional signals
Modern inverse problems in imaging increasingly involve 
reconstruction of 3-D or 3-D+time images. However, most 
CNN-based approaches to these problems involve 2-D inputs 
and outputs. This is likely because much of the work on deep 
neural networks in general has been in two dimensions and 
because of practical considerations. Specifically, learning 
strongly relies on GPU computation, but current GPUs have 
maximally 24 GB of physical memory. This limitation makes 
training a large network with 3-D inputs and outputs infeasible.

One way to overcome this issue is model parallelism, in 
which a large model is partitioned onto separable computers. 
Another is data parallelism, where it is the data that are split. 
When used together, large computational gains are achieved 
[41]. Such approaches will be key in tackling multidimensional 
imaging problems.

Generative adversarial networks and perceptual loss
CNN-based approaches to inverse problems also stand to ben-
efit from new developments in neural network research. One 
such development is the generative adversarial network (GAN) 
[42], which may offer a way to break current limits in supervised 

learning. Basically, two networks are trained in competition: 
the generator tries to learn a mapping between training sam-
ples, while the discriminator attempts to distinguish between 
the output of the generator and real data. Such a setup can, 
e.g., produce a generator capable of creating plausible natural 
images from noise. The GAN essentially revises the learning 
formulation (3) by replacing the cost function f  with another 
neural network. In contrast to a designed cost function, which 
will be suboptimal if the assumed noise model is incorrect, the 
discriminator network learns a cost function that models the 
probability density of the real data. GANs have already begun 
to be used for inverse problems, e.g., for superresolution in [30] 
and deblurring in [14].

A related approach is perceptual loss, where a network is 
trained to compute a loss function that matches human per-
ception. The method has already been used for style transfer 
and superresolution [43]. Compared to the standard Euclidean 
loss, networks trained with perceptual loss give better looking 
results, but do not typically improve the SNR. It remains to be 
seen whether these ideas can gain acceptance for applications 
such as medical imaging, where the results must be quantita-
tively accurate.
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