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Biometric Template Protection: Bridging the
Performance Gap Between Theory and Practice

Karthik Nandakumar, Member, IEEE, and Anil K. Jain, Fellow, IEEE

Abstract—Biometric recognition is an integral component of
modern identity management and access control systems. Due
to the strong and permanent link between individuals and
their biometric traits, exposure of enrolled users’ biometric
information to adversaries can seriously compromise biometric
system security and user privacy. Numerous techniques have
been proposed for biometric template protection over the last
20 years. While these techniques are theoretically sound, they
seldom guarantee the desired non-invertibility, revocability, and
non-linkability properties without significantly degrading the
recognition performance. The objective of this work is to analyze
the factors contributing to this performance gap and high-
light promising research directions to bridge this gap. Design
of invariant biometric representations remains a fundamental
problem, despite recent attempts to address this issue through
feature adaptation schemes. The difficulty in estimating the
statistical distribution of biometric features not only hinders
the development of better template protection algorithms, but
also diminishes the ability to quantify the non-invertibility and
non-linkability of existing algorithms. Finally, achieving non-
linkability without the use of external secrets (e.g., passwords)
continues to be a challenging proposition. Further research on
the above issues is required to cross the chasm between theory
and practice in biometric template protection.

I. INTRODUCTION

B IOMETRIC recognition, or biometrics, refers to the au-
tomated recognition of individuals based on their bio-

logical and behavioral characteristics (e.g., face, fingerprint,
iris, palm/finger vein, and voice) [1]. While biometrics is the
only reliable solution in some applications (e.g. border control,
forensics, covert surveillance, and identity de-duplication),
it competes with or complements traditional authentication
mechanisms such as passwords and tokens in applications re-
quiring verification of a claimed identity (e.g., access control,
financial transactions, etc.). Though factors such as additional
cost and vulnerability to spoof attacks hinder the proliferation
of biometric systems in authentication applications, security
and privacy concerns related to the storage of biometric
templates have been major obstacles [2].

A template is a compact representation of the sensed bio-
metric trait containing salient discriminatory information that
is essential for recognizing the person (see Figure 1). Exposure
of biometric templates of enrolled users to adversaries can
affect the security of biometric systems by enabling presenta-
tion of spoofed samples [3] and replay attacks. This threat is
compounded by the fact that biometric traits are irreplaceable
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in nature. Unlike passwords, it is not possible to discard the
exposed template and re-enroll the user based on the same trait.
Moreover, it is possible to stealthily cross-match templates
from different databases and detect whether the same person
is enrolled across different unrelated applications. This can
severely compromise the privacy of individuals enrolled in
biometric systems.

In most operational (deployed) biometric systems, the bio-
metric template is secured by encrypting it using standard
encryption techniques such as Advanced Encryption Standard
(AES) and RSA cryptosystem. This approach has two main
drawbacks. Firstly, the encrypted template will be secure only
as long as the decryption key is unknown to the attacker.
Thus, this approach merely shifts the problem from biometric
template protection to cryptographic key management, which
is equally challenging. Even if the decryption key is secure,
the template needs to be decrypted during every authentication
attempt because matching cannot be directly performed in
the encrypted domain. Consequently, an adversary can glean
the biometric template by simply launching an authentication
attempt.

One way to address the limitations of the standard encryp-
tion approach is to store the encrypted template and decryption
key in a secure environment within a smart card or a secure
chip (e.g., A8 chip on Apple iPhone61, Privaris plusID2),
which is in the possession of the user. When biometric
matching is performed on the card (or chip), the template never
leaves the secure environment. While this solution addresses
the security and privacy concerns, it requires the user to carry
an additional authentication token (smart card or a mobile
device), thereby reducing user convenience and restricting the
range of applications. Due to the above limitations of existing
solutions, biometric template protection has emerged as one of
the critical research areas in biometrics and computer security
communities.

A. Biometric Template Protection Requirements

The general framework of a biometric system with template
protection is shown in Figure 2. Rather than storing the bio-
metric template in its original form (x), a biometric template
protection algorithm generates and stores a protected biometric
reference (v) derived from the original template. Note that
the term “protected biometric reference” not only includes
the protected biometric information, but also other system
parameters or values (e.g., cryptographic hashes) that need
to be stored, as well as any biometric side information (e.g.,

1http://support.apple.com/en-sg/HT5949
2http://www.privaris.com/products/indeX.html
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Fig. 1. Examples of biometric templates extracted from (a) fingerprint, (b) face, and (c) iris images. A fingerprint image is typically represented as an
unordered set of minutiae, which encodes the location (x,y) and orientation (θ) of friction ridge discontinuities. Face images are often represented as a linear
combination of basis faces, with the vector of weight coefficients constituting the template. An iris image is usually represented as a fixed-length binary string
called the IrisCode, which is obtained by binarizing the phase responses of Gabor filters applied to the given image.

information required for alignment, quality of the biometric
features, etc.) that directly does not leak information about
the user identity. On the other hand, supplementary data
(z) refers to entities that are not stored in the database,
but are required during both enrollment and authentication.
Examples of supplementary data include a password or secret
key provided by the user in addition to his biometric trait. The
use of supplementary data is optional, but if used, it provides
an additional factor of authentication.

Feature adaptation is also an optional step in a template
protection scheme. It is well-known that biometric samples
exhibit intra-subject variations due to various factors like
sensor noise, differences in user interaction, environmental
changes, and trait aging (see Figure 3). The objective of feature
adaptation is to minimize intra-subject variations in the sensed
biometric signal and/or represent the original features in a
simplified form (e.g., a binary string) without diluting their
distinctiveness. It must be emphasized that distinctiveness of
a biometric representation is a function of both intra-subject
variations and inter-subject variations. A highly distinctive rep-
resentation should have small intra-subject variations (features
extracted from multiple acquisitions of the same biometric
trait of a person should be similar), but large inter-subject
variations (features extracted from the same biometric trait of
different individuals should be different). When minimizing
intra-subject variations, care must be taken to preserve inter-
subject variations. Otherwise, distinctiveness of the features
may degrade, resulting in lower recognition performance.

In the context of template security, the protected biometric
reference (v) is typically considered as public information
that is available to any adversary. Hence, v should satisfy the
following three properties:

• Non-invertibility or Irreversibility: It should be computa-
tionally difficult3 to obtain the original biometric template
from an individual’s protected biometric reference. This
property prevents the abuse of stored biometric data for

3A problem can be considered to be computationally hard or difficult if it
cannot be solved using a polynomial-time algorithm.

launching spoof or replay attacks, thereby improving the
security of the biometric system.

• Revocability or Renewability: It should be computation-
ally difficult to obtain the original biometric template
from multiple instances of protected biometric reference
derived from the same biometric trait of an individual.
This makes it possible to revoke and re-issue new in-
stances of protected biometric reference when a biometric
database is compromised. Moreover, this prevents an
adversary from obtaining the original template by com-
promising multiple biometric databases where the same
individual may be enrolled.

• Non-linkability or Unlinkability: It should be compu-
tationally difficult to ascertain whether two or more
instances of protected biometric reference were derived
from the same biometric trait of a user. The non-
linkability property prevents cross-matching across dif-
ferent applications, thereby preserving the privacy of the
individual.

Apart from satisfying the above three properties, an ideal
template protection algorithm must not degrade the recognition
performance of the biometric system. In many applications of
biometric recognition, especially those involving millions of
enrolled identities (e.g., border crossing and national registry),
recognition accuracy is of paramount importance. Moreover,
issues such as throughput (number of biometric comparisons
that can be performed in unit time) and template size must
also be considered in real-world applications.

II. BIOMETRIC TEMPLATE PROTECTION APPROACHES

Numerous template protection techniques have been pro-
posed in the literature with the objective of ensuring non-
invertibility, revocability, and non-linkability without compro-
mising on the recognition performance. The ISO/IEC Stan-
dard 24745 on Biometric Information Protection provides a
general guidance for the protection of biometric information.
According to this standard, a protected biometric reference
is typically divided into two parts, namely, pseudonymous
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Fig. 2. General framework of a biometric system with template protection.

(a) (b) 

(c) 

Fig. 3. Illustration of intra-subject variations observed in biometric samples. (a) Images of the same finger may exhibit variations in translation, rotation, and
non-linear distortion. (b) Pose, illumination, and facial expression changes may change the appearance of face images obtained from the same person. (c) Iris
images of the same eye may exhibit differences due to pupil dilation, partial closure of eyelids, and change in gaze angle.

identifier (PI) and auxiliary data (AD). Depending on how
these two components are generated, biometric template pro-
tection schemes can be broadly categorized as: (i) feature
transformation approach and (ii) biometric cryptosystems. A
detailed review of biometric template protection approaches is
beyond the scope of this paper and we refer the readers to [4],
[5], [6] for such in-depth analysis.

In the feature transformation approach (see Figure 4(a)), a
non-invertible or one-way function is applied to the biometric
template (x). While the transformed template is stored in the
database as PI, the transformation parameters are stored as
AD. During authentication, the AD makes it possible to apply
same transformation function to the biometric query (x

′
) and

construct PI
′
, which is compared to the stored PI. Thus, the

biometric matching takes place directly in the transformed
domain. Biohashing [7], cancelable biometrics [8], and robust
hashing [9] are some of the well-known schemes that can be
grouped under feature transformation. Some feature transfor-
mation schemes [7] are non-invertible only when the supple-
mentary data (e.g., key or password) is assumed to be a secret.

Techniques that can generate non-invertible templates without
the need for any secrets (e.g. [8]) are sometimes referred
to as keyless biometric template protection schemes. Such
schemes can be useful in applications (e.g., law enforcement)
where it may not be feasible or desirable to allow user-specific
supplementary data.

In biometric cryptosystems, the auxiliary data is often re-
ferred to as a secure sketch (see Figure 4(b)), which is typically
derived using error correction coding techniques. While the
secure sketch in itself is insufficient to reconstruct the original
template, it does contain adequate information to recover the
original template in the presence of another biometric sample
that closely matches with the enrollment sample [10]. The
secure sketch is either obtained as the syndrome of an error
correction code applied to the biometric template or by binding
the biometric template with a error correction codeword that
is indexed by a cryptographic key (e.g., fuzzy vault [11] and
fuzzy commitment [12]). A cryptographic hash of the original
template or the key used to index the error correction codeword
is stored as PI. Matching in a biometric cryptosystem is
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Fig. 4. There are two broad approaches for biometric template protection:
(a) feature transformation and (b) biometric cryptosystem. The protected
biometric reference (denoted by v) generally consists of two distinct parts,
namely, pseudonymous identifier (PI) and auxiliary data (AD).

performed indirectly by attempting to recover the original
template (x) using the secure sketch (AD) in conjunction
with the query biometric features (x

′
). The recovered template

is used to regenerate a new pseudonymous identifier (PI
′
),

which is compared to the stored PI to determine whether
the template and query match. Secure sketch constructions
have been proposed for various biometric modalities, including
fingerprint [13], face [14], and iris [15], [16].

Both the template protection approaches have their own
strengths and limitations. The primary challenge in the feature
transformation approach is finding an appropriate transforma-
tion function that provides non-invertibility, but at the same
time tolerant to intra-subject variations [17]. The strength of
biometric cryptosystems is the availability of bounds on the
information leaked by the secure sketch if we assume that the
biometric data distribution is known [10], [18]. On the flip
side, most biometric cryptosystems require the features to be
represented in standardized data formats like binary strings
and point sets, which often leads to loss of discriminatory in-

formation and consequent degradation in recognition accuracy.
Due to the properties of linear error correction codes4 that are
commonly used in secure sketch constructions, it is difficult
to achieve non-linkability in biometric cryptosystems.

One way to overcome the above limitations is to apply
a feature transformation function to the biometric template
before it is protected using a biometric cryptosystem. Since
this involves both feature transformation and secure sketch
generation, such systems are known as hybrid biometric cryp-
tosystems [19], [20]. Another promising approach is secure
computation based on homomorphic encryption. While this
approach offers the attractive proposition of performing bio-
metric matching directly in the encrypted domain, it typically
comes at the cost of a significant increase in the computational
burden and communication overhead [21].

A. The Gap Between Theory and Practice

Most of the existing techniques do not satisfy the desired
template protection requirements in practice. As an example,
consider the results published by the on-going Fingerprint Ver-
ification Competition (FVC-onGoing5). Six algorithms were
able to achieve an equal error rate (EER) of less than 0.3% on
the FVC-STD-1.0 benchmark dataset when operating without
any template protection. On the other hand, the lowest EER
achieved by a fingerprint verification system with template
protection on the same dataset was 1.54%, which is more
than 5 times higher. Reduction in accuracy was also observed
during independent testing of template protection algorithms
in [22].

Even if we assume that a small degradation in the recog-
nition performance is acceptable in some applications, it is
imperative to precisely quantify (in terms of bits) the non-
invertibility and non-linkability of the protected biometric
reference. This is necessary to benchmark the utility of a
biometric template protection scheme. In cryptography, “se-
curity strength” (measure of the computational effort required
to break a cryptosystem using the most efficient known attack)
is one of the metrics used to compare different cryptosystems.
It is well-known that an AES system with a 128-bit key
or a RSA cryptosystem with a 3072-bit key can provide a
security strength of approximately 128 bits 6. However, there
is no consensus within the biometrics community on analogous
metrics that can be used to measure the non-invertibility,
revocability, and non-linkability properties of biometric tem-
plate protection algorithms as well as the methods to compute
these metrics [23]. Consequently, practical template protection
schemes neither have proven non-invertibility/non-linkability
guarantees nor do they achieve satisfactory recognition per-
formance. This explains why despite 20 years of research,

4In a linear error correcting code, any linear combination of codewords is
also a codeword. Consequently, if two secure sketches are derived from the
biometric data of the same user using different codewords, a suitable linear
combination of these two sketches is highly likely to result in a decodable
codeword. This paves the way for verifying whether the two secure sketches
belong to the same user, thereby making them linkable.

5https://biolab.csr.unibo.it/fvcongoing/UI/Form/Home.aspx
6Barker et al., “Recommendation for Key Management”, NIST 800-57, July

2012.
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operational biometric systems do not go beyond encrypting the
template using standard encryption techniques and/or storing
them in secure hardware.

The gap between theory and practice of template protection
can be attributed to three main reasons:

1) The template protection schemes generally require the
use of simple distance metrics such as Hamming dis-
tance or a measure of set difference to compute the sim-
ilarity between biometric features [10]. Consequently,
the burden of handling intra-subject variations observed
in the biometric samples shifts completely to the fea-
ture extraction stage. Thus, the foremost challenge in
biometric template protection is the design of feature
extractors, which not only need to extract highly robust
and distinctive features, but also represent them in a
simplified form (e.g., a fixed-length binary string) that is
suitable for applying the template protection construct.

2) Template protection techniques typically result in a
trade-off between non-invertibility and recognition per-
formance [17], [24] due to the following reason. Max-
imizing non-invertibility implies that the protected bio-
metric reference should leak as little information about
the original template as possible. However, high recog-
nition performance can be achieved only when the pro-
tected biometric reference retains all the discriminatory
information contained in the original template. This
conundrum can be solved only by understanding the
statistical distribution of biometric features and design-
ing template protection schemes that are appropriate for
the underlying feature distribution. For example, it is
well-known that bits in an IrisCode [25] or the minutiae
locations in a fingerprint [26] are neither independent
nor do they follow a uniformly random distribution. This
inherent redundancy in the biometric features could be
exploited to handle intra-subject variations without com-
promising on inter-subject variations. In many biomet-
ric cryptosystems, the template is protected by adding
noise to the true biometric information. In this case,
knowledge of the feature distribution could be useful
in selecting the appropriate noise distribution. Modeling
the biometric feature distribution is also required for
obtaining realistic estimates for the non-invertibility and
non-linkability of a protected biometric reference. If
the biometric feature distribution is known, it may be
possible to formulate biometric template protection as an
optimization problem and systematically find solutions
that maximize both recognition performance and non-
invertibility. Thus, knowledge of the statistical distri-
bution of biometric features is beneficial for biometric
template protection. However, estimating the feature
distributions is a challenging task.

3) Compared to the issue of non-invertibility, the problem
of ensuring non-linkability and revocability of protected
biometric reference has not been adequately addressed
in the literature. While many template protection con-
structs claim to provide non-linkability and revocability,
a deeper analysis indicates that this is often achievable

only with the involvement of an additional authentication
factor (supplementary data) such as a password or secret
key [27].

The primary contribution of this paper is to provide an in-
depth analysis of the above three challenges, discuss some of
the solutions that have been proposed to overcome them, and
identify unresolved issues that require further research.

III. DESIGNING INVARIANT FEATURE REPRESENTATIONS

A traditional biometric system accounts for intra-subject
variations in two ways. Firstly, the feature extraction algo-
rithm attempts to extract an invariant representation from the
noisy biometric samples. Secondly, the matching algorithm
is designed to further suppress the effect of intra-subject
variations and focus only on features that are distinctive across
individuals. Consider the example of a fingerprint recognition
system (see Figure 5). An accurate fingerprint matcher not
only handles missing and spurious minutiae, but also other
intra-subject variations like rotation, translation, and non-linear
distortion (see Figure 5(c)). When this matcher is replaced
by a simple set difference metric (that accounts for only
missing and spurious minutiae), it becomes imperative to
represent the extracted minutiae in a form that is invariant to
rotation, translation, and non-linear distortion without affecting
their distinctiveness. Failure to do so will naturally lead to
significant degradation in the recognition performance.

Even in the case of iris recognition, it is not possible to
achieve good recognition performance by directly computing
the Hamming distance between two IrisCodes. Practical iris
recognition systems compute normalized Hamming distance
(that ignores bit locations erased by noise) over multiple
cyclical shifts applied to one of the IrisCodes (to account
for rotation variations). If this practical subtlety is ignored
and a simple Hamming distance metric is enforced, the iris
recognition accuracy is likely to decrease substantially.

Rather than developing new invariant feature extractors,
which in itself is one of the fundamental problems in bio-
metric recognition, researchers working on biometric template
protection often implement a feature adaptation step on top
of the original feature extractor. It must be emphasized that
feature adaptation is not the same as feature transformation. In
feature transformation, the goal is to obtain a non-invertible
and revocable template. In contrast, adapted templates need
not satisfy the non-invertibility and revocability properties.
Instead, feature adaptation schemes are designed to satisfy
one or more of the following three objectives: (i) minimize
intra-subject variations without diluting their distinctiveness,
(ii) represent the original features in a simplified form, and
(iii) avoid the need for biometric side information (e.g.,
alignment parameters). While a feature transformation scheme
may employ feature adaptation in the process of securing the
template, the converse is not true.

The simplest and most common feature adaptation strategy
is quantization and reliable component (feature) selection. The
quantization of Gabor phase responses to generate a binary
IrisCode and selection of reliable bits within an IrisCode [28]
is a good illustration of this adaptation strategy. Another typi-
cal example is the quantization of fingerprint minutiae location
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(a) (b) (c) 

Fig. 5. Complexity in fingerprint minutiae matching. (a) and (b) are two fingerprint images from the same finger with minutiae features marked on them.
The two minutiae sets after global alignment are shown in (c). Apart from missing and spurious minutiae that can be captured well using the set difference
metric, one can observe that the matching minutiae (marked by green ellipses) are not perfectly aligned due to non-linear distortion. This explains why a
simple set difference metric is unlikely to provide accurate recognition.

and orientation features and selection of good quality minutiae
[13] when designing a fingerprint cryptosystem. Though the
process of quantization and feature selection reduces intra-
subject variations, it is also likely to decrease inter-subject
variations. Thus, the challenge is to strike an optimum balance
between reducing intra-subject variations and preserving inter-
subject variations. Moreover, if quantization and reliable com-
ponent selection is user-specific, the quantization parameters
and selected components need to be stored as auxiliary data,
which is likely to decrease the non-invertibility and non-
linkability of the protected biometric reference [29].

Other strategies for feature adaptation include biometric
embedding and alignment-free representation. In biometric
embedding, the goal is to obtain a new representation for the
given biometric features so that simple distance metrics (e.g.,
Hamming distance or set difference) can be used to compare
biometric samples in the modified representation space. Con-
version of a real/complex vector or point set into a fixed-length
binary string is an example of biometric embedding. On the
other hand, the objective of an alignment-free representation
is to generate templates that can be directly matched without
the need for any alignment parameters. Such a need often
arises when dealing with biometric traits like fingerprint
and palmprint. Many practical feature adaptation schemes
involve a combination of different adaptation strategies. For
instance, quantization and feature selection are often applied
in conjunction with biometric embedding or alignment-free
representation to obtain the adapted features. Similarly, some
alignment-free representations proposed in the literature also
perform embedding in a new feature space.

A. Biometric Embedding

Biometric embedding algorithms can be classified based on
their input and output representations. Two types of embedding
algorithms that are commonly used for biometric feature
adaptation are: (i) real vector into a binary string, and (ii)
point set into a binary string.

1) Real Vector to Binary String: Conversion of a real
vector into a binary string involves two essential steps: (i)
quantization - mapping continuous values into discrete values,
and (ii) encoding the discrete values as bits. The critical
parameters in quantization are the number of quantization
levels and the quantization intervals. The Detection Rate
Optimized Bit Allocation (DROBA) scheme [30] proposes
an adaptive bit allocation strategy, where the total number
of bits in the binary string is fixed and the number of bits
allocated to each feature dimension is varied based on the
feature distinctiveness. Specifically, a higher number of bits
(i.e., more levels of quantization) is allocated to a particular
feature dimension if the mean feature value of that subject is
very different from the population mean. Furthermore, this
scheme advocates the use of equal-probability quantization
intervals in order to maximize the entropy of the resulting
binary string. While the DROBA approach optimizes the
detection rate (genuine accept rate) at the minimum (low) false
accept rate, it requires many training samples per subject in
order to determine user-specific feature statistics. Furthermore,
the need for storing user-specific quantization information
increases information leakage when the resulting binary string
is eventually secured using a template protection scheme [29].

While the DROBA scheme focuses on the quantization step,
the Linearly Separable Subcodes (LSSC) method attempts to
develop a better encoding scheme for encoding the discrete
values as bits. The gray coding scheme, which is traditionally
used for binary encoding, maps the discrete values into bits
such that adjacent quantization levels differ only by a single
bit. The problem with the gray code approach is that it
does not preserve the distances between the samples after
encoding. Though the Hamming distances between genuine
samples is likely to remain small (because feature values
of two samples from the same subject can be expected to
be similar), it is possible that two dissimilar feature values
may also have a small Hamming distance. Consequently, the
recognition performance based on the resulting binary string
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will degrade significantly. A unary coding scheme solves this
problem, but it does not produce a compact representation. The
LSSC method attempts to generalize the idea of unary coding.
A partially linearly separable subcode was also proposed in
[31] to obtain a better compromise between compactness and
distance preservation.

2) Point Set to Binary String: The most well-known exam-
ple of point set based biometric representation is a collection
of fingerprint minutia. Techniques for converting unordered
point sets (especially fingerprint minutiae) into fixed-length
binary strings include local point aggregates [32] and spectral
minutiae [33]. In the local aggregates approach [32], the
fingerprint region is divided into a fixed number of randomized
local regions (could be over-lapping) and aggregate features
are computed based on the minutiae falling within each local
region. The resulting feature vector is then converted into a
binary string using the techniques described in section III-A1.
The main limitation of this approach is that it requires the
fingerprints to be aligned before feature adaptation.

The spectral minutiae representation is obtained by consid-
ering the minutiae set as a collection of 2-dimensional Dirac-
delta functions and obtaining its Fourier spectrum after low
pass filtering [33]. Only the magnitude spectrum is considered
and it is sampled on a log polar grid to obtain a fixed-length
vector. Theoretically, the magnitude spectrum is invariant to
rotation and translation due to the shift, scale, and rotation
properties of the Fourier transform. Hence, it is possible
to perform matching between two spectral minutiae vectors
without aligning them first. However, in practice, alignment
based on singular points (core and delta) is required to achieve
good recognition performance [33] because large rotation
or translation may lead to partial overlap between different
impressions of the same finger. Another variation of the
spectral minutiae approach is the binarized phase spectrum
representation [34], where the phase spectrum is considered
instead of the magnitude spectrum (see Figure 6). However,
this approach also requires prior fingerprint alignment.

B. Alignment-free Representation

A possible solution to the problem of fingerprint alignment
is the use of local minutiae structures, which consist of
features that characterize the relative information between two
or more minutiae (e.g., distance between two minutiae) [35].
Since such features are relative, they are invariant to global
rotation and translation of the fingerprint and hence, no a priori
alignment is needed before matching. An additional benefit is
that such features are robust to nonlinear distortion. However,
if the matching is based only on the local minutiae information
and the global spatial relationships between minutiae are
ignored, some degradation in the recognition accuracy may
occur.

The simplest local minutiae structure is based on minutia
pairs, where the distance between the pair and the orientation
of each minutia with respect to the line connecting them can
be used as the invariant attributes [19]. The most commonly
used local minutiae structure is the minutia triplet, where
relative features (distances and angles) are computed from

(a) 

(b) 

Fig. 6. An example of embedding a point set as a binary string. (a) Fingerprint
with minutiae (point set) marked on it and (b) the corresponding binary string
representation obtained using the binarized phase spectrum technique [34].

combinations of three minutiae. Rather than defining the local
neighborhood based on a fixed number of minutiae, it is also
possible to construct a local descriptor by considering all
minutiae that fall within a fixed radius of a minutia point. An
example of this latter approach is the Minutia Cylinder Code
(MCC) [35]. The MCC is obtained by dividing the cylindrical
region (with its axis along the minutia orientation) around
each minutia into a finite number of cells and encoding the
likelihood of another minutia in the fingerprint with a specific
angular difference from the reference minutia being present in
the specific cell. It is also possible to binarize the MCC to get
a fixed-length binary string describing each minutia point.

C. Open Issues in Feature Adaptation

Though a significant amount of research effort has been
devoted towards feature adaptation, three main issues remain
unresolved. Firstly, existing feature adaptation techniques in-
variably result in loss of some discriminatory information
leading to lower recognition performance. A possible reason
for this phenomenon is that most of these techniques focus
only on minimizing intra-subject variations, while ignoring
the need to preserve inter-subject variations. Hence, there
is a strong need for distance-preserving feature adaptation
strategies.

The second unresolved issue is the coupling between the
feature adaptation strategy and the template protection tech-
nique. Recall that the main objective of feature adaptation
is to generate an invariant representation that can be easily
secured using an existing template protection scheme. There-
fore, it is essential to carefully consider the requirements of
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the template protection scheme while designing the feature
adaptation strategy. For instance, the error correction scheme
used in a biometric cryptosystem may have the ability to
correct a limited amount of errors. Since this error correction
capability implicitly determines the system threshold, the
feature adaptation scheme must be designed such that the
number of errors between samples of the same user fall below
this threshold, while the number of errors encountered during
impostor comparisons is greater than the error correction
capability. A feature adaptation scheme that is designed in
isolation may not satisfy the above requirement. Alternatively,
one can argue that it may be better to design a biometric
template protection scheme that directly secures the template
in its original representation rather than attempting to adapt
the template to fit the template protection scheme. As an illus-
tration, suppose that we wish to protect a biometric template
represented as a real vector. This template can be protected
either by converting it into a binary string and applying a
fuzzy commitment scheme [12] to the binary template or by
directly applying a secure sketch designed for the continuous
domain [36]. It is not clear which of the above two strategies
will lead to a better outcome.

Finally, the statistical properties of the adapted features is
seldom given attention in the design of a feature adaptation
scheme. For example, consider the case of a feature adaptation
scheme generating a binary string as output. Apart from having
low intra-subject variations and high distinctiveness, it would
be ideal if the resulting binary string is uniformly random
(i.e., has high entropy). Such a representation is likely to have
better non-invertibility properties when it is eventually secured
using a biometric cryptosystem (cf. Section IV). Moreover, one
of the implicit benefits of feature adaptation could be a new
representation that makes it easier to characterize the statistical
distribution of biometric features. However, the design of such
feature adaptation strategies is still an open research problem.

IV. SOLVING THE RECOGNITION PERFORMANCE VS.
SECURITY CONUNDRUM

The main limitation of state-of-the-art template protection
techniques is the trade-off between recognition performance
and the level of security offered by them. The first step towards
solving this problem is to clearly define the notion of security,
establish metrics to quantify security properties such as non-
invertibility and non-linkability, and develop methodologies to
compute such metrics. Once this is achieved, algorithms need
to be developed to jointly maximize performance and security.

The lack of a well-accepted notion of security is a critical
lacuna in the area of template protection. It is important to
emphasize that a biometric template protection scheme is not
designed to prevent other adversary attacks on a biometric
system such as spoofing or zero-effort impostor attack. There-
fore, the vulnerability of a biometric system to such attacks
cannot be considered as the sole basis for evaluating a template
protection scheme. For instance, a false accept rate (FAR) of
0.01% implies that 1 in 10,000 zero-effort impostor attempts
is likely to succeed. At this FAR, it is possible to argue
that the non-invertibility of a template protection scheme can

be no more than log2(10
4) bits because, on average, only

10, 000 attempts would be required to find a biometric sample
that closely matches with the stored template. However, such
an argument is unfair since it is based on the assumption
that an attacker has access to a large biometric database and
is able to mount an off-line7 zero effort impostor attack.
Therefore, it may be better to consider vulnerability to zero-
effort attacks as a distinct threat and report the FAR of the
biometric system before and after the application of biometric
template protection. Ideally, the FAR should be included as
part of the recognition performance and not security analysis.
Furthermore, the FAR of the biometric system after template
protection should be reported based on the assumption that
the attacker has full knowledge about the system, including
access to any supplementary data (if used).

In the context of biometric template protection, the terms
security and privacy have been used ambiguously in the
literature. One of the reasons for this ambiguity is that
many biometric cryptosystems are motivated by the desire
to generate a cryptographic key from the biometric data or
securely bind a key together with the biometric data. Template
protection is only a by-product of this key generation/binding
process. Therefore, in biometric cryptosystems, security is
often defined in terms of the secret key rate, which measures
the amount of randomness in the key bound to the template
or extracted from the biometric data [18], [37]. While the
term privacy leakage is commonly used in biometric cryp-
tosystems as a proxy for measuring non-invertibility, one can
find instances where the term privacy actually refers to non-
linkability. To further complicate matters, notions such as
weak (or conditional) and strong (or unconditional) biometric
privacy have been proposed [38]. Here, weak biometric privacy
refers to non-invertibility given only the protected biometric
reference v, whereas strong biometric privacy refers to non-
invertibility given v and the associated cryptographic key (one
that is bound to the template or extracted from the biometric
data). In the literature on feature transformation, the terms
security and privacy typically refer to non-invertibility and
non-linkability, respectively. To avoid confusion, it has been
suggested that specific properties such as non-invertibility (or
irreversibility) and non-linkability (or unlinkability) must be
considered instead of employing generic terms like security
and privacy [39].

A. Metrics for Measuring Non-invertibility

Non-invertibility refers to the difficulty in obtaining (ei-
ther exactly or within a small margin of error) the original
biometric template from an individual’s protected biometric
reference. This is also referred to as full-leakage irreversibility
in [39]. A number of metrics have been proposed in the
literature to measure non-invertibility of a protected biometric
reference.

A direct measure of non-invertibility is the conditional
Shannon entropy of the original template x given the protected

7Since most practical biometric systems restrict the number of failed
authentication attempts, it is usually not possible to mount online zero effort
impostor (FAR) attacks.
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biometric reference v, i.e., H(x|v). This quantity measures
the average uncertainty in estimating x given the knowledge
of v. Note that H(x|v) = H(x)− I(x; v), where H(x) is the
entropy of the unprotected template x and I(x; v) is the mutual
information between x and v. In the literature, a normalized
quantity called the privacy leakage rate [37], which can be
expressed as H(x|v)/H(x), has also been proposed to measure
non-invertibility.

In the context of biometric cryptosystems, I(x; v) is also
referred to as entropy loss, which measures the amount of
information leaked by the secure sketch about the biometric
template. Entropy loss is a useful measure to compare multiple
template protection schemes applied to the same biometric
data. In this scenario, since H(x) is constant, the scheme
with a lower entropy loss should be preferred because it
will lead to larger H(x|v). Furthermore, when the secure
sketch is obtained by binding the template with a secret
cryptographic key (K), it is also important to consider H(K|v).
Many biometric cryptosystems (e.g., fuzzy vault and fuzzy
commitment) do not offer strong biometric privacy [40] in the
sense that it is trivial to recover the original biometric template
given K and v. In such cases, the non-invertibility should be
defined as the minimum of H(K|v) and H(x|v).

While the conditional Shannon entropy is a good measure
of the average difficulty in inverting a protected biometric ref-
erence, researchers have also proposed the use of min-entropy
[10] to account for the worst case scenario. For a discrete
random variable A with probability mass function P , Shannon
entropy is defined as H(A) = Ea(− log2(P (A = a))) and
min-entropy is defined as H∞(A) = (− log2(maxa P (A =
a))). Thus, min-entropy measures the uncertainty in pre-
dicting the most likely value of a discrete random variable.
The conditional min-entropy is defined as H̃∞(A|B) =
− log(Eb→B

[
2−H∞(A|B=b)

]
) and the corresponding entropy

loss is computed as H∞(A)− H̃∞(A|B).
In the case of feature transformation, it is difficult to

theoretically measure the entropy loss introduced by the
transformation scheme. Consequently, the non-invertibility of
feature transformation schemes is typically measured empir-
ically based on the computational complexity of the best
known template inversion attack. In particular, the coverage-
effort curve [17] was proposed to analyze the non-invertibility
of transformed templates. The Coverage-Effort (CE) curve
measures the number of guesses (effort) required to recover a
fraction (coverage) of the original biometric data. This mea-
sure is analogous to the normalized privacy leakage rate [37]
defined earlier. The main pitfall of such empirical measures
is that it is impossible to guarantee that the attacker cannot
come up with a better template inversion strategy than what
is known to the system designer.

Recall that one of the goals of biometric template protection
is to prevent the attacker from launching spoof and replay
attacks using the compromised template. To launch such
attacks, it may not be necessary to exactly recover the original
template from the protected biometric reference. Instead, it is
sufficient for the attacker to obtain a close approximation (also
known as a pre-image), which can be replayed to the system to
gain illegitimate access. Note that in a biometric cryptosystem,

it is often straightforward to recover the original template if
a close approximation of this template is available. Thus, the
vulnerability of a biometric cryptosystem to pre-image attacks
is already factored into the non-invertibility analysis of such
a system. Therefore, analysis of pre-image attacks may be
valid only for the feature transformation approach. Metrics
to evaluate the difficulty in carrying out such attacks have
been discussed in [17], [39], [41]. However, for the sake of
simplicity, we avoid a detailed discussion of these metrics in
this paper.

B. Methods for Computing Non-invertibility Metrics

Since the non-invertibility metrics for feature transformation
schemes are generally computed empirically, this section will
focus only on methods to compute the non-invertibility metrics
for biometric cryptosystems. While the metrics for measuring
non-invertibility discussed earlier are theoretically sound, they
are not easy to compute for an arbitrary biometric template
protection scheme. In most biometric cryptosystems, the in-
herent properties of the underlying error correction technique
can be used to establish upper bounds on the entropy loss [10],
[18], [40], [37]. Typically, the entropy loss is an increasing
function of the error correction capability of the system. In
other words, if larger tolerance for intra-subject variations is
desired, the entropy loss will be higher. Consequently, the
resulting protected biometric references will leak more infor-
mation about the original template. Since the above bounds are
usually derived based on simplifying assumptions about the
biometric feature distribution, their utility will depend on the
extent to which the given biometric features conform to these
assumptions. Even when a reliable estimate for the entropy
loss is available, it is still difficult to directly compute H(x|v).
This is because of the complexity in estimating the entropy of
biometric features (H(x)).

1) Biometric Entropy Estimation: The primary difficulty
in estimating the entropy of biometric features is the lack
of statistical models to accurately characterize the intra- and
inter-subject variations. A few attempts have been made in the
literature to characterize the distribution of minutiae points in a
fingerprint [26], [42]. However, these models were proposed in
the context of estimating fingerprint individuality8. Moreover,
they rely on some simplifying assumptions in order to keep the
problem tractable. Therefore, such models cannot be directly
used to infer the entropy of a fingerprint minutiae template.

Entropy of a biometric template can be estimated by com-
puting the relative entropy (also known as Kullback-Leibler
divergence) between the feature distributions of a specific user
and the feature distribution of the population as a whole [43].
This quantity measures the reduction in uncertainty about the
identity of the user due to the knowledge of his/her biometric
feature measurements. The average relative entropy among all
the users enrolled in the system can be used as an estimate
of the biometric feature entropy. However, the main drawback
of the work in [43] is the use of a simple Gaussian model to

8More precisely, the goal in [26], [42] is to estimate the probability of a
false correspondence/match between minutiae templates from two arbitrary
fingerprints belonging to different fingers.
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characterize the feature distributions, which does not hold true
for most biometric modalities.

An alternative to modeling the complex feature distributions
is to compute the entropy based on match score distributions.
A good example of estimating entropy based on match scores
is the analysis of impostor score distribution using IrisCodes
extracted from 632, 500 different iris images [44]. Based on
this approach, it has been estimated that a 2, 048 bit IrisCode
representation contains approximately 249 degrees of freedom.
However, this result is based on a simple matching model
that ignores the need to test multiple relative rotations of
the IrisCode. Therefore, one cannot directly conclude that the
entropy of an IrisCode template is 249 bits. Moreover, it is not
straightforward to obtain a precise estimate of individuality
of the IrisCode representation using the above result because
it fails to take into account the genuine score distribution
(consequently, intra-subject variations are not modeled). A
simple extension of the above approach is to measure the
relative entropy between genuine and impostor match score
distributions [45]. But this approach may grossly underesti-
mate the entropy of the biometric features and the resulting
entropy estimates should be considered as a very loose lower
bound.

C. Open Issues in Non-invertibility Analysis

Despite significant progress in analyzing the non-
invertibility of template protection schemes, there is no con-
sensus yet on the standard metrics to be used for measuring
non-invertibility and well-defined methodologies to compute
these metrics. Efforts to standardize these metrics are still
under progress [23]. Once such metrics are standardized, the
focus should shift towards the development of a suitable
framework that allows joint optimization of recognition per-
formance and non-invertibility for both feature transformation
schemes and biometric cryptosystems.

One way to overcome the inherent trade-off between non-
invertibility and recognition performance is to develop tech-
niques for multibiometric9 template protection. It is well-
known that multibiometric systems lead to a significant im-
provement in the recognition performance. When multiple
templates are secured together as a single construct, the in-
herent entropy of the template is also likely to higher, thereby
leading to stronger non-invertibility. While a few solutions
have been proposed recently for multibiometric cryptosys-
tems [46], the fundamental challenge lies in overcoming the
compatibility issues between different biometric templates and
generating a combined multibiometric template from different
modalities, which preserves the distinctiveness of individual
templates. The advancements in the area of feature adaptation
can also play a key role in overcoming the above challenge.

V. ACHIEVING REVOCABILITY AND NON-LINKABILITY

While revocability and non-linkability are also core require-
ments of a template protection scheme, the analysis of these

9Multibiometric systems accumulate evidence from more than one biomet-
ric identifier (multiple traits like fingerprint and iris or multiple fingers/ irides)
in order to recognize a person.

two properties has received considerably less attention in the
literature compared to non-invertibility. Recently, it has been
demonstrated that many well-known biometric cryptosystems
do not generate revocable or non-linkable templates [24], [27],
[47], [48]. Though feature transformation schemes are widely
proclaimed as “cancelable biometrics” in acknowledgement of
their strengths in achieving revocability and non-linkability,
the real capability of such schemes to guarantee these two
properties is still questionable. If we assume that the attacker
has full knowledge of the protected biometric reference and
any supplementary data involved, the revocability and non-
linkability of feature transformation schemes appear to depend
on the difficulty in obtaining a pre-image of the transformed
template. When the pre-image is easy to compute given the
transformation parameters and the transformed template, it
may be possible to correlate the pre-images obtained from
multiple transformed templates to invert and/or link them
[17]. Therefore, there is a critical need to develop one-way
transformation functions that do not allow easy computation
of a pre-image.

One possible way to achieve revocability and non-linkability
is to use hybrid biometric cryptosystems [19], [20]. While
a combination of secure sketch and feature transformation
enhances the non-invertibility of the protected biometric refer-
ence, the feature transformation step ensures the revocability
and non-linkability properties. However, this may come at the
cost of a degradation in the recognition performance.

Another practical solution for achieving revocability and
non-linkability is the use of two- or three-factor authentication
protocols. In such protocols, either the supplementary data
is assumed to be a secret [7] or the auxiliary data (AD)
and pseudonymous identifier (PI) are not stored together in
order to prevent the possibility that both AD and PI are
compromised simultaneously [49]. For example, the transfor-
mation parameters in a feature transformation scheme can be
dynamically generated based on a password or PIN supplied
by the user or derived based on a key stored on a smart card
held securely by the user. Similarly, the AD in a biometric
cryptosystem could be stored on a smart card, while the PI is
stored in a central database. Apart from ensuring revocability
and non-linkability, an additional advantage of such protocols
is improved robustness against zero-effort impostor (FAR)
attacks because the attacker must be able to obtain more than
one authentication factor (biometrics & password or biometrics
& smart card) for successful authentication. However, if we
assume that all the other factors except the biometric trait is
available to the attacker, the advantages of such multi-factor
authentication protocols vanish, and their properties are no
better than those of the underlying template protection scheme.

VI. SUMMARY AND FUTURE RESEARCH DIRECTIONS

While biometric template protection has been an active
research topic over the last 20 years, existing solutions are
still far from gaining practical acceptance. The key reason for
this failure is the unacceptable degradation in the recognition
performance combined with unprovable security claims. In
this paper, we have identified three main issues that must be
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addressed to bridge this gap. Designing invariant biometric
representations with high entropy will not only improve the
recognition performance, but also enhance the non-invertibility
of the protected template. This is because the information
leaked by a protected template is often proportional to the
tolerance allowed to account for intra-subject variations. Fur-
thermore, standardized metrics are required for measuring the
security properties of a template protection scheme, especially
non-invertibility. Systematic formulation of such metrics and
methodologies to compute them, followed by independent
benchmarking of template protection algorithms based on
these metrics will greatly enhance the public confidence in
biometric template protection technologies. Finally, practical
solutions must be devised to ensure revocability and non-
linkability of protected templates.

Apart from the open research issues identified earlier in
the context of feature adaptation (cf. Section III-C) and non-
invertibility analysis (cf. Section IV-C), a number of other
questions remain unanswered.

• There is a greater need for template security in scenarios
where the biometric data is stored in centralized repos-
itories. Such databases are commonplace in large-scale
identification systems (e.g., India’s Aadhaar program,
Office of Biometric Identity Management (formerly US-
VISIT) program). However, almost all existing template
protection techniques have been designed for the authen-
tication use-case (one-to-one verification) as opposed to
identification (one-to-many matching). It is not clear if
such techniques can be scaled up to meet the require-
ments of an identification system, especially given the
stringent constraints on accuracy and throughput in such
applications.

• Another lacuna in template security is the absence of
an entity similar to public key infrastructure, which can
create, manage, and revoke biometric information [50].
A related issue is how to revoke and re-issue a protected
biometric reference without re-enrolling the user, which
is often impractical.

• Attack on the template is just one of the possible adver-
sarial attacks on a biometric system [4]. It is possible that
efforts to secure the template may have a direct impact
on other types of attacks [6]. Therefore, a system level
analysis of the effect of template protection algorithms is
required.

• Finally, smartphones are turning out to be the preferred
platform for integration of biometric technologies. For
example, the Touch-ID fingerprint recognition system in
iPhone-6 enables phone unlocking capability as well as
mobile payments via the Apple Pay service. In the near
future, it may be possible to capture face, fingerprint, iris,
and voice biometric modalities using a commodity smart-
phone. The ability to securely authenticate a smartphone
user using multibiometrics can be expected to open up a
number of new applications involving mobile commerce
and transactions. In this context, it is necessary to review
whether the current state-of-the-art (storing the encrypted
biometric templates on a secure chip) is adequate for

the range of applications envisioned and develop novel
template protection strategies as well as remote biometric
authentication protocols suitable for this domain.
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