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The relative orientations are

R1 =

0:9563 �0:0928 �0:2774

�0:2761 0:0268 �0:9608

0:0966 0:9953 0

R2 =

0:7951 0:3082 0:5222

0:4869 0:1888 �0:8528

�0:3614 0:9324 0

R3 =

�0:9876 �0:0271 �0:1544

�0:1543 �0:0042 0:9880

�0:0274 0:9996 0

R4 =

�0:9876 0:0271 0:1544

0:1543 �0:0042 0:9880

0:0274 0:9996 0

:

With the CPU times of 4.7 ms and 175.8 ms, we have

P = [�0:0080 0:0023 � 0:0030 � 0:0449 0:0220 � 0:0359]T

zmax(�P ) = 0:5159 < 1:

Hence, the grasp is force closure.

V. CONCLUSION AND FUTURE WORK

A shortcut is found to simplify Liu’s ray-shooting based algorithm
for force-closure test [4]. The optimal objective value of the LP
problem (2) with respect to t = �P is the ratio of d2 to d1; that
is, zmax(�P ) = d2=d1. If zmax(�P ) < 1, then the grasp is force
closure; otherwise, it is not. Consequently, we can skip the steps
of computing Q, d1, and d2. Having the geometric insight into the
maximum zmax(�P ), we can apply it to optimal grasp planning as a
force-closure index. As this work goes beyond the topic of the paper,
it is decent to leave it for the future.
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The Hierarchical Atlas

Brad Lisien, Deryck Morales, David Silver, George Kantor,
Ioannis Rekleitis, and Howie Choset

Abstract—This paper presents a new map specifically designed for robots
operating in large environments and possibly in higher dimensions. We call
this map the hierarchical atlas because it is a multilevel and multiresolution
representation. For this paper, the hierarchical atlas has two levels: at the
highest level there is a topological map that organizes the free space into
submaps at the lower level. The lower-level submaps are simply a collec-
tion of features. The hierarchical atlas allows us to perform calculations
and run estimation techniques, such as Kalman filtering, in local areas
without having to correlate and associate data for the entire map. This
provides a means to explore and map large environments in the presence
of uncertainty with a process named hierarchical simultaneous localization
and mapping. As well as organizing information of the free space, the map
also induces well-defined sensor-based control laws and a provably com-
plete policy to explore unknown regions. The resulting map is also useful
for other tasks such as navigation, obstacle avoidance, and global localiza-
tion. Experimental results are presented showing successful map building
and subsequent use of the map in large-scale spaces.

Index Terms—Concurrent mapping and localization, generalized
Voronoi diagram, Kalman filtering, mobile robots, simultaneous localiza-
tion and mapping (SLAM), topological maps.

I. INTRODUCTION

This paper presents a new map organization for mobile robots
which embodies scalability in both storage and computation to address
common robot tasks in large-scale environments. These tasks include
simultaneous localization and mapping (SLAM), path planning, global
localization, and obstacle avoidance in nonstatic environments. This
paper addresses each of these tasks, and presents experimental results
obtained with a mobile robot in a large environment containing cycles,
to show how the new map is well-suited to address these tasks.
The successful implementation of these tasks depends on a reliable

and usable map. With the choice of three basic types of maps, topo-
logical, grid-based, and feature-based, it seems that one must settle
for drawbacks inherent in each type in order to take advantage of its
particular benefits. Topological maps scale nicely to large planar envi-
ronments and to environments of higher dimension by storing a min-
imal amount of information. Such a minimalistic representation lacks
the necessary information to localize arbitrarily (can only localize to
nodes in the topological graph) and to disambiguate similar topolog-
ical regions.
Grid-based approaches offer discretized renditions of unstructured

free spaces which can be used for many robot tasks. However, the high
resolution required for accurate representations demands large amounts
of memory to store and computation time to maintain. Feature-based
methods extract distinct landmark features from the environment for
use in robot localization, but do not explicitly address obstacles unless
the obstacles have structured, observable characteristics. Feature- and
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grid-based methods also grow in complexity with the size of the envi-
ronment, in a manner which precludes them from scaling well to large
environments and higher dimensions.

Our approach is to combine the strengths of a topological map with
those of a feature-based map. We use a topological map to decompose
the space into regions, within which we can build a feature-based map
of moderate computational size to allow arbitrary localization. This
frees us from having to perform a complex mapping algorithm in a
large, global map. Our contribution is a new hierarchical map where
the generalized Voronoi graph (GVG) [1], [2] serves as our high-level
topological map, organizing a collection of feature-based maps at the
lower level. We term this hybrid map the hierarchical atlas.

By choosing the GVG as the basis for our topology, we inherit all
of its well-documented properties. In addition to segmenting the envi-
ronment into manageable feature regions, the GVG offers the ability to
plan paths and safely navigate in the presence of obstacles, a charac-
teristic which most feature-based maps lack. Moreover, the GVG em-
bodies an exploration strategy with which we can autonomously and
completely chart an environment. The feature-based maps encode the
necessary informationwithwhichwe can localize arbitrarily while nav-
igating, as well as provide detailed descriptions of areas which we can
use to disambiguate regions.

II. PRIOR WORK

SLAM [3] is the process of building a map of an unknown environ-
ment, while at the same time using that map to maintain an accurate es-
timate of the pose of the robot within the environment. The hierarchical
atlas was originally developed to address the problems of autonomous
exploration and SLAM in large-scale environments [4], and so we will
discuss other maps in this context.

A. Feature-Based Maps

Conventional SLAM techniques have generally built feature-based
maps. This process involves fusing observations of features or land-
marks with dead-reckoning information to track the location of the
robot in the environment and build a map of landmark locations. The
numerous implementations typically include variations on the Kalman
filter [5]–[9] or particle filters [10], [11]. The extended Kalman filter
(EKF) [6], [9] uses a linear approximation of the system to maintain
a state vector containing the locations of the robot and landmarks, as
well as an approximation of correlated uncertainty in the form of a co-
variance matrix. One well-knownweakness of the EKF is the growth of
complexity due to the update step which requires computational time
proportional to the square of the number of landmarks. This becomes
prohibitive in large environments.

Each of these feature-based methods has its advantages and disad-
vantages. Yet, common to all is the increase in computational com-
plexity with the size of the environment and number of landmarks. A
number of techniques have been proposed to alleviate this problem,
such as the extended information filter [12], [13], the unscentedKalman
filter [7], and fastSLAM [11], but growth of complexity is inherent in
maintaining a global map. Also, these methods do not provide a com-
plete or structured means to direct exploration.

B. Submapping Strategies

Since the complexity of the global map cannot be avoided, some re-
searchers have proposed dividing the global map into submaps, within
which the complexity can be bounded. Connections between submaps

Fig. 1. In the plane, the GVG is the set of points equidistant to two obstacles.

are represented by an ad hoc topology consisting solely of their inter-
connection. Chong and Kleeman [14] introduced a topology of mul-
tiple, connected local maps where a new map is started when the vari-
ance in robot position becomes too large. These locally accurate maps
are linked through coordinate transformations between their origins.
Bosse et al. [15] introduced the term atlas to refer to a collection of

submaps built with a similar method of creating a new map when the
uncertainty of the robot location grows above some limit. Simhon and
Dudek [16] proposed a strategy to create new maps in the presence of
feature-rich regions or islands of reliability. On a related note, Thrun
[17] uses a topological map to segment a grid-based map into submaps
as a postprocessing step.

C. Topological Maps

Kuipers and Byun [18] developed a three-level hierarchy of con-
trol, topology, and geometry, with which they simulated an exploration
and mapping strategy. The control level determined distinctive places,
the topological level tied these distinctive places together, and the geo-
metric level built metric maps around this framework. The authors par-
ticularly like that Kuipers, as well asMataric [20], impart an underlying
philosophy on how topological maps can be used for task decomposi-
tion. Mataric [20] was among the first researchers to successfully de-
velop a mapping, path planning, and navigation strategy based on a
topological map. In more recent work, Kuipers et al. [19] built detailed
grid maps in the vicinity of nodes to aid in recognizing nodes while
mapping.
Choset and Nagatani [21] use the GVG as the topology for their map.

Nodes of the GVG are either meet points, the set of points equidistant
to three or more obstacles, or boundary points, where the distance be-
tween two obstacles equals zero. These nodes are connected by edges
which are paths of two-way equidistance (Fig. 1). The definition of the
nodes and edges automatically induces well-defined control laws that
allow a robot to trace an edge (either known or unknown a priori) and
home in to a meet point. Exploration is achieved by having a robot
sequentially traverse unexplored edges emanating from meet points. If
the robot encounters a boundary node or a previously visited meet point
(i.e., there is a cycle), the robot follows the partially explored GVG to a
meet point with an unexplored edge associated with it. When there are
no meet points with unexplored edges, exploration is complete. There-
fore, in addition to prescribing low-level control laws, the GVG also
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Fig. 2. Examples of weak meet points resulting from a door jamb and corner.

provides an arbitration scheme among the control laws to achieve ex-
ploration.

Localization with the GVG is trivial in environments for which the
GVG is known to be a tree; the topology automatically dictates at which
node the robot is located. The challenge arises when the GVG of the
environment contains cycles and the nodes look similar to each other.
Here, Choset and Nagatani [21] use the relationships among neigh-
boring nodes to localize the robot; this is called topological graph
matching. To further enhance the topological matching, Choset and Na-
gatani also use metric information about the nodes and edges. Dudek
et al. [22] propose an exploration strategy which maintains a tree of all
possible representations of the topological structure to ensure that the
correct representation is always present in the exploration tree.

III. HIERARCHICAL ATLAS

The hierarchical atlas combines the strengths of a topological map
with those of a feature-based map. The topological map decomposes
the space into regions within which a feature-based map of moderate
computational complexity is built. The complexity is limited, because
the sizes of the subspaces and the number of features are also limited.

The topological graph of the hierarchical atlas is based on the GVG
[1], [2], selected because its nodes have a definite location in the free
space, and its edges not only connect neighboring nodes, but also define
paths through the free space. Moreover, these paths can be traversed
using sensor-based control laws [23]. In other words, the GVG is both
abstract and embedded in the free space.

We do not use the full GVG. We eliminate boundary edges, which
are those edges that terminate at an obstacle in a boundary point. Such
edges can arise from door jambs and corners, as shown in Fig. 2, or
simply from noise in the sensor data. Because they are potentially “un-
stable,” add no topologically significant information, and are easily de-
tectable, boundary nodes, boundary edges, and the weak meet points
associated with them are left off the graph. The resulting structure is
known as the reduced GVG (RGVG) [24].

Each submap of the hierarchical atlas is an edge map, a local map of
one edge referenced from onemeet point toward another. Thus, for each
edge in the RGVG, there are two edge maps, one originating from each
meet point. Since the nodes of the RGVG serve as origins for the edge
maps, the local maps are tied both to the topological map and to the
free space (Fig. 3). This is a key advantage that the RGVG contributes
to the hierarchical atlas over the submapping strategies presented in
Section II-B. Having stable origins that can be easily acquired allows
for substantial simplification of edge-map alignment when comparing
two edge maps (Section IV-E).

Fig. 3. (a) Placement and orientation of edge-map frames are determined
by meet points in the GVG. (b) Resulting edge maps are stored as individual,
abstract structures.

IV. BUILDING THE HIERARCHICAL ATLAS: HSLAM

SLAM involving exploration in large-scale spaces was the original
motivation for developing hierarchical SLAM (HSLAM), which in-
spired us to create the hierarchical atlas. There are four criteria that
HSLAM was designed to address: resolution versus scalability; reduc-
tion of computational complexity; obstacle avoidance; and exploration
strategy. The tradeoff between resolution and scalability arises, since
the environment must be represented with enough detail to be able to
disambiguate regions and to use observations from the environment to
control position uncertainty. On the other hand, the information must
not be excessive, and must be organized in such a way so as to remain
tractable in large environments. Computational complexity is closely
related to the previous issue, and is important to moderate since the
map must be built online if the robot is to use the map while exploring.
In this paper, we do not calculate the actual improvement, but intu-
ition suggests that complexity is reduced because instead of consid-
ering one large space, we consider several small ones. Obstacle avoid-
ance is crucial, in order to be able to deploy an autonomous system
which must harm neither itself nor the environment. Finally, for a robot
to autonomously build a complete map, it must have a strategy to direct
the full exploration of the environment.
HSLAM embodies solutions to each of these issues. The low-reso-

lution, scalable topological map is used to organize the high-resolution
local feature maps. Computational complexity is managed by breaking
the feature map into submaps. The nodes also simplify the computation
required for alignment during submap comparison. The GVG captures
the salient aspects of the free space to enable obstacle avoidance and
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path planning. Finally, the GVG offers the strategy of topological graph
exploration.

A. Graph Exploration

All navigation and decision making are performed in the context of
graph exploration, using the RGVG as explained in Section II-C. Graph
exploration is achieved by tracing edges and building edge maps until
no node in the graph has an unexplored edge. For tree-like environ-
ments, graph exploration is trivial, since there can never be an ambi-
guity in node location. However, when a cycle is traversed in the GVG,
the robot must be able to determine that it has returned to a previously
visited location. Since topological information alone is not sufficient to
disambiguate regions, HSLAM compiles node information and creates
the high-detail edge maps. We feel this is an important contribution of
this work: the deliberate and complete exploration of unknown spaces.

B. Node Information

The characteristics of a node include its degree and equidistance
value. The node degree is the number of nonboundary edges emanating
from themeet point. Generally, this number is three, however, four-way
meet points occur frequently in office environments.

The node equidistance value is the distance to the nearest obstacles
at a meet point. This number is the result of sensor data, and thus has
uncertainty associated with it. A scalar Mahalanobis distance test is
used to determine possible matches, according to

�
2

ij =
(�i � �j)

2

�2i + �2j
(1)

where �i and �j are the equidistance values for nodes i and j, and �2i
and �2j are the variances in �i and �j . If �2ij falls below a threshold,
then the equidistance for node i and node j match. The variance in
equidistance after homing was determined by analyzing data collected
at various meet points in the environment.

C. Edge-Map Creation

While traversing each edge, a feature map of landmark locations is
built using an EKF [6]. The locations of the (r)obot and (l)andmarks
are maintained in a state vectorX, with covariance matrix P , where

X = [xr yr �r xl1 yl1 � � � xln yln]
T
: (2)

When the robot is at a meet point and facing the edge departure di-
rection, X and P are initialized to all zeros, defining the location of
the robot at the origin. Every sensor update consists of an odometry
measurement and a series of range and bearing measurements to vis-
ible point landmarks. The odometry is used as an input U to predict
the state of the robot at the next step, X̂k+1, according to the nonlinear
state transition equation f(X;U). The corresponding prediction co-
variance P̂k+1 is calculated by

P̂k+1 = rfPkrf
T +Q (3)

whereQ represents the uncertainty associated with the odometry input.
When a feature is sensed, its measurement must either be associated

with an existing feature in the map, or it must be added as a new mea-
surement. The location of the robot, along with the locations of land-
marks, are used to predict the expected values of range and bearing in

a measurement estimate, Ẑ , using the sensor model equation, h(X).
The measurements of range and bearing, Z , are checked against the
estimates with a Mahalanobis distance �, computed by

�
2

ij = (Zi � Ẑj)
T
S
�1

ij (Zi � Ẑj) (4)

where Sij is the measurement covariance for the measurement/esti-
mate pair. Each measurement is associated with the existing landmark
yielding the minimum distance �, provided that this minimum falls
below an acceptance threshold. If multiple landmarks pass the ac-
ceptance threshold, then the measurement is discarded to avoid false
matches. If the smallest � exceeds a high threshold, meaning that
the measurement is extremely unlikely to have been of any existing
landmark, then the measurement is used to initialize a new landmark.
With a set of range and bearing estimates, we can compute rh and
the Kalman gain

K = P̂rh
T
S
�1

: (5)

The difference between the estimated and measured values, or innova-
tion, is used to compute a state update

Xk+1 = X̂k+1 +K(Z � Ẑ): (6)

The updated covariance is then given by

Pk+1 = P̂k+1 �KSK
T
: (7)

Once the robot arrives at the terminating meet point, the state vector
contains our feature map of landmarks, the final robot location is the
location of the end meet point, and the covariance matrix represents the
uncertainty in the map. We rotate the map and its covariance matrix
through a standard linear transformation to align the x axis to pass
through the terminal meet point. Thus, every aspect of the edge map’s
coordinate frame is completely tied to nodes of the GVG.
While traversing the edge, the robot records all odometry data and

measurements to landmarks.When it arrives at the opposite meet point,
the robot reverses this sensor log through the EKF to produce the edge
map as referenced from the opposite meet point. So, each edge has two
representations stored in the atlas.
We use a basic EKF to build our feature maps, showing that our

approach can tame the computationally unruly algorithm in large envi-
ronments. It should be noted that any method for creating feature maps
could be used in its place.

D. Edge-Map Association

In the previous section, we discuss data association for landmarks
within a single edge map. In this section, we consider data association
for edge maps within the entire atlas. In other words, we need a means
by which we can determine whether a recently constructed edge map
is new or may already exist.
When the robot homes into a meet point, there is characterized un-

certainty in the robot location relative to the true meet-point location.
Since this uncertain robot location is used as the origin for a map, two
maps of the same edge built at different times will have slightly dif-
ferent origins. The difference in origins can be viewed as an offsetQ,
consisting of

Q = [Qx Qy Q�]
T (8)
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Fig. 4. Odometry logged during the autonomous HSLAM experiment is shown overlaid on a schematic of the environment. Small orientation errors accumulate
to result in large position uncertainty over the length of the path.

where Qx and Qy represent the spatial offset and Q� is the offset in
orientation. This offset must be determined to align the twomaps before
they can be matched.

The location of a landmark from the (C)andidate map can be ex-
pressed in the frame of the (E)xisting map by using the frame offset
according to

X
E
C =

xEC

yEC
=

Qx + xC cosQ� � yC sinQ�

Qy + xC sinQ� + yC cosQ�

: (9)

The offsetQ is initially assumed to be zero with covariance matrix T .
The matrix T is initialized with x � y covariance, according to the
uncertainty of the existing edge-map origin combined with the uncer-
tainty of homing in on a meet point. The variance in Q� is an angular
variance at the origin obtained by combining the spatial variance of the
meet points at the distance of the opposite meet point.

The first step in the alignment is associating the landmarks between
the two maps. This is accomplished with a Mahalanobis distance test
for each landmark, with the innovation covariance matrix S consisting
of

Sij = Pii + Pjj +MjTM
T
j (10)

where i and j correspond to landmarks in the existing map and candi-
date edge map, respectively. The matrix Mj is essentially a Jacobian
which maps the effect of the offset into an x�y uncertainty of the land-
mark j in the existing edge-map frame. This mapping is drawn from
(9).

Once the landmarks in the two maps have been associated, an offset
between the two maps is computed with a weighted least-squares algo-
rithm. This is achieved by choosing aQ which minimizes

JLS = X
E
C �X

E
E

T

��1 X
E
C �X

E
E (11)

where the landmark locations X for both edge maps are expressed in
the frame of the existing edge map, and � is the combined uncertainty
given by

� = PE + PC +MTM
T
: (12)

The resulting offset Q with updated covariance matrix T are then
used in a map-wide Mahalanobis distance comparison

�
2 = X

E
C �X

E
E

T

S
�1

X
E
C �X

E
E : (13)

Fig. 5. RGVG for the sixth floor of Wean Hall is shown, where dark circles
represent nodes with their indexes and lines show their interconnections.

The innovation covariance matrix is the combined uncertainty repre-
sented in the frame of the existing edge map. Therefore, the covariance
matrix of the candidate frame must be rotated to reflect the offset, re-
sulting in

S = PE +GPCG
T +MTM

T (14)

where G is composed of two-by-two rotation matrices on the block
diagonal, andM is recomputed according to the new offset.
There are actually two levels of information which must be used

in order to confirm a successful match. Since the Mahalanobis dis-
tance increases for a fixed probability of match as degrees of freedom
are increased, edge maps which have few associated landmarks could
yield deceptively low Mahalanobis distances. Therefore, a minimum
threshold of associated landmarks must be passed before a low Maha-
lanobis distance can signal a match.
While exploring a large unknown environment, a match between

edges does not give an absolute confirmation that the edges are the
same, since we must allow for isomorphic edge maps. Edge-matching
information is better suited to eliminating nonmatching candidates in
order to narrow the search pool of possible topological configurations.
In practice, we found that the edge maps for the environments in which
we ran experiments proved to be detailed enough to uniquely disam-
biguate edges. We exploited this observation to close loops in our im-
plementation of autonomous HSLAM.

E. Edge Map Reobservation

When an edge is retraversed and the new edge map is positively as-
sociated with an existing edge, the information in the newly created
edge map can be used to update the existing map. This is achieved by
a merging operation [25] based on the Kalman filter.
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Fig. 6. Embedding of the edge maps of the hierarchical atlas in the environment. Nodes are shown as dark circles and the positions of landmarks as stars.

First the two edge maps must be aligned by following the procedure
outlined in Section IV-D. Once the offset has been found, the existing
edge map can be updated with a correction, �XE, computed by

�XE = PEH
T
S
�1

X
E

C �X
E

E (15)

where S is computed according to

S = HPEH
T +GPCG

T +MTM
T
: (16)

The purpose of the matrixH is to arrange the landmarks in the existing
edge according to the order of association. The covariance of the ex-
isting edge is also updated by

�PE = �(PEH
T
S
�1)S(PEH

T
S
�1)T : (17)

The offsetQ is a new measurement of the meet-point location rela-
tive to the existing location. The offset is used to move the origin of the
edge map by shifting the locations of the other landmarks. The amount
that the origin is moved depends on the uncertainty in the origin of
the existing edge map, relative to the uncertainty of the new measure-
ment. The location and uncertainty of the existing edge-map origin is
maintained and updated with each observation by a merging operation
similar to the one previously discussed. Since the opposite meet-point
location also gets updated by (15), the edge must be rotated to once
again align the opposite meet point with the x axis, as when the edge
map was first created.

The final step is to insert any additional landmarks seen during the
recent traversal of the edge. To assure that the landmark is new and not
simply a poor estimate of an existing landmark, the minimum �2 for
the landmark must pass a high threshold, similar to adding a landmark
to the state vector, as discussed in Section IV-C.

F. Experimental Results

Our techniques were implemented on a Nomadic Scout mobile base
using an omnidirectional camera setup to obtain range and bearing
measurements to engineered landmarks. All navigation of the GVG
was performed by processing data from the Scout’s sonar sensors
to build a local map of obstacles. Experimental data were collected
while the robot autonomously mapped the sixth floor of Wean Hall at
Carnegie Mellon University (Pittsburgh, PA).

To begin mapping, the robot accessed the GVG and then traversed
the GVG to the meet-point location of nodeN0 (see Fig. 5). The robot
then traverses to nodeN1, followed by nodeN2, and so on around the
outside of the loop by always choosing to explore edges to the right.
As the robot compiles node information (Section IV-B) and edge-map
information (Section IV-C), it is tested against the data which exists

Fig. 7. Edge map connecting node with is shown with landmark
locations as crosses and the opposite meet-point location as an asterisk, all with
uncertainty ellipses. The edge-map origin is also shown to demonstrate how the
edge map is referenced to the meet points.

Fig. 8. Landmark location indicated in Fig. 7 is shown in greater detail,
demonstrating the inconsistency between the edge map and the floor plan. The
corner of the doorway should lie at the location of the landmark.

in the incomplete atlas. When the robot completes the outside loop,
returns to node N1, and traces the edge to N0, the data from the two
adjacent nodes and the edge map between them match the previously
observed information stored in the incomplete atlas. The information
compiled for the recent edge map is then used to update the matched
edge, as described in Section IV-D. The closest node with unexplored
edges is then node N12, so the robot back traces the graph and con-
tinues to trace unexplored edges and close loops until no node in the
graph has any unexplored edges.
The path of the robot as reckoned from odometry can be seen super-

imposed on a schematic of the sixth floor of Wean in Fig. 4. This is ob-
viously insufficient for mapping, as small errors in orientation quickly
accrue to cause sizable error in position. The RGVG of the environ-
ment is shown in Fig. 5, and the hierarchical atlas can be seen in Fig. 6.
This figure was generated by tying the edge maps to meet-point loca-
tions determined on the floor plan. It can be seen that the hierarchical
atlas closely resembles the true layout of the floor.
The individual edge map connecting node N1 with node N12 is

shown in Fig. 7. Landmark locations are shown as crosses, and the
opposite meet point as an asterisk. Both are shown with their cor-
responding covariance ellipses. To facilitate repeatable experiments,



IEEE TRANSACTIONS ON ROBOTICS, VOL. 21, NO. 3, JUNE 2005 479

Fig. 9. Path planned from a conference room to an office on the sixth floor of Wean Hall is shown with the start as a dark circle and the goal as a star.

landmarks are generally placed along the walls of the corridors at cor-
ners. Most of the landmark locations align well with corners in the floor
plan, except for one, indicated in Fig. 7 and shown in greater detail in
Fig. 8. After investigating this problem, it was determined by manually
measuring that the floor plan was actually incorrect, showing that our
algorithm was accurate enough to identify errors in the schematic.

V. OTHER APPLICATIONS OF THE HIERARCHICAL ATLAS

Although originally developed for the purposes of SLAM, the hier-
archical atlas is well suited to handling other typical tasks of mobile
robot operation. In fact, the reason that the hierarchical atlas is so well
suited to the tasks of navigation, obstacle avoidance, and global local-
ization, is that a robot needs the functionality for handling these tasks
to achieve autonomous SLAM.

A. Navigation

In large environments, it would be impractical to pose navigation
problems with start and goal locations in terms of global coordinates.
Imagine receiving directions from Pittsburgh to NewYork City in terms
of latitude and longitude. Rather than choosing a path heading north-
east along whichever back road was heading in the proper direction,
you would want to access a well-connected interstate to get into the
city, after which you would leave the highway and ultimately find your
destination.

The GVG provides this roadmap [23] through the environment
and does so as the “safest” route, i.e., the furthest from all obstacles.
While tracing between nodes of the GVG, there is no need to track the
global position of the robot, since the path is determined entirely by
the topology. If the robot is on the GVG and the goal location is closer
than any obstacle, the robot is guaranteed a safe, straight-line path to
the goal. Once on the departure edge, that edge which contains the
goal, our edge map allows accurate localization to determine when to
depart from the GVG, and then how to track the path of departure to
the goal location, as referenced in the edge map.

Fig. 9 shows the path that the robot planned and traversed to get from
a conference room to an office on the sixth floor ofWean Hall. The path
is shown as recorded by the EKF along the corridors. Fig. 10 is a closer
view of the robot path as it arrives at the goal, showing the point of de-
parture from the GVG. When the robot reaches the node from which
the goal is specified in x�y coordinates,N4, it loads the goal edgemap
into memory and initializes its location as the origin with uncertainty,
according to the edge-map origin uncertainty and homing uncertainty.
This quantity is rather large initially, but quickly decreases as measure-
ments are made to landmarks and the robot localizes itself within the
map. This can be seen in Fig. 10 as the consecutively shrinking covari-
ance ellipses. It should be noted that though the meet-point origin has
large uncertainty, the landmarks have much smaller uncertainty with
respect to each other. The reduction of uncertainty as the robot drives

Fig. 10. Path of the robot on the departure edge is shown navigating from
node to the goal location (star). Samples of the robot covariance are plotted
along the path to show the uncertainty decreasing as the robot localizes in the
edge map.

to the goal shows the robot localizing within the local map of land-
marks in which the goal location is described.

B. Global Localization: Wake-Up Problem

The hierarchical atlas is well suited to handle the global localization
“wake-up” robot problem. The goal of the wake-up robot problem is
to determine where in the environment a robot is initialized, given a
map of the environment. This problem is nearly solved by the HSLAM
implementation, since we require similar functionality to recognize cy-
cles.
To resolve its location, the robot first accesses the GVG and then fol-

lows the GVG edge to a meet point. At the meet point, the node infor-
mation of Section IV-B is used to eliminate nodes which are highly im-
probable matches and generate a list of candidate nodes. The robot then
drives to a neighboring node, building an edge map while traversing.
Upon arrival at the opposite meet point, the robot again compares node
information to discard improbable matches. To further narrow the can-
didate pool, the recently constructed edge map is used to test against
the remaining hypotheses, as described in Section IV-D. If an ambi-
guity still exists, further edges are traversed until it is settled.
To demonstrate global localization, the robot was arbitrarily placed

on the sixth floor ofWean Hall and given the hierarchical atlas of Fig. 6.
The robot accessed and then traced the GVG to N1, at which point
it compares the recently sensed node information to the nodes in the
graph, yielding a candidate set of N1; N2; N3; N6; N8, and N12. The
robot then chooses to trace the edge leading to N2. Upon arrival, the
robot could be at one of 18 locations, since the six original candidate
nodes each has three possible destinations. Due to the arrangement of
the original candidate nodes in the graph, some of the 18 possible nodes
are repeats, and thus there are only 12 unique locations. The node infor-
mation then dismisses six of the 12 nodes, coincidentally leaving the
original six nodes: N1; N2; N3; N6; N8, and N12. The edge map for
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Fig. 11. Path that the robot traversed during the “kidnapped” robot experiment is shown in contrast to the navigation experiment shown in Fig. 9. The start is
denoted by a dark circle and the goal by a star.

the recently traversed edge then rules out all but one possible location,
N2, and the robot has successfully localized.

C. Global Localization: Kidnapped Problem

The “kidnapped” robot problem adds another layer of difficulty to
global localization. In this situation, the robot first has a belief about its
location in the environment, but is either moved by an outside agent or
makes a poor decision and becomes lost. The difficulty lies in recog-
nizing that the robot is lost. Once this is realized, the robot must “un-
learn” its belief, and the problem becomes equivalent to the wake-up
problem of Section V-B.

We tested the kidnapped problem with the same goal location as the
navigation problem of Section V-A. The path of the robot can be seen
in Fig. 11. The robot is intentionally “confused” by starting it on the
opposite side of the GVG. When the robot accesses the GVG and turns
right, it expects to drive to nodeN2 of Fig. 5, but instead ends up at node
N1. Continuing on its topologically planned path to nodeN4, it turns to
the edge which leads to N12. Expecting to arrive atN3, the robot tests
the recently traversed edge map against the expected edge map, which
results in a failedmatch. Because of the failed test, the robot determines
that it is lost and begins global localization with the information sensed
at nodesN1 andN12, along with the edge map connecting them. With
this information, the robot successfully localizes itself to nodeN12, at
which point, the robot plans a new path to nodeN4, eventually arriving
at the goal.

D. Nonstatic Obstacle Avoidance

Since the sensor-based GVG is used as the basis for all navigation
in the hierarchical atlas framework, the robot has the ability to avoid
obstacles that are not stored in the map. In fact, no obstacles are ever
stored in the map, but are instead handled “on the fly” at the time of
traversal.

It should be clarified that by “nonstatic” obstacles, we have in mind
stationary objects that could be added to or removed from the environ-
ment, such as clutter in corridors. Our approach is not yet engineered
to handle obstacles in motion, such as a large number of people moving
in the vicinity of the robot.

This functionality was important when running experiments in an
office environment over a period of a few months, since chairs, desks,
boxes, and other clutter made their way into and out of the corridors
regularly. To demonstrate this behavior, we will use the final portion
of the navigation example of Section V-A where the robot departs the
GVG. Fig. 12 shows the sonar map and robot path to the goal logged
during the original navigation experiment. The sonar map roughly de-
scribes the status of the environment when originally mapped. Fig. 13
shows the sonar map and resulting robot path to the goal logged when
some exaggerated clutter was added to the environment.

Fig. 12. Sonar map as the robot traveled along the final edge of Fig. 9 to the
goal is shown. The goalmeet point is shown by a dark circle and the goal location
by a star. Filtered sonar points are represented by dark squares.

Fig. 13. As in Fig. 12, this figure shows the robot navigating to the goal on
the final edge. However, the path is partially obstructed by an obstacle that was
not present when the map was created. The goal meet point is shown by a dark
circle and the goal location by a star. Filtered sonar points are represented by
dark squares.

Despite the addition of clutter placed directly in the first path of the
robot, it was able to navigate to the goal along the safest path, which
remained furthest from all obstacles.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we outlined the uses of the hierarchical atlas as a tool
to enable navigation, exploration, mapping, and global localization for
large-scale environments in the presence of uncertainty. We have also
presented experimental results proving the feasibility and effectiveness
of these techniques in a large, planar environment.
In order to detect when the robot is lost, a feature map of each edge

is built as the robot navigates the GVG to a goal location. At each meet
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point, the robot constructs an edgemap from the recently traversed edge
and then compares it with the edge map from which the robot believes
was traveled using the techniques of Section IV-D. If the current edge
map does not associate with the expected edge map, the robot declares
itself lost and begins global localization initialized with the most recent
two nodes and edge map. Once the robot has determined its location,
it can replan a path and continue on to the goal.

The key feature of this hierarchical approach is the meaningful em-
bedding of submaps into the free space. Since the RGVG has a con-
crete basis in the free space, we are able to tie our edge maps to the
environment. Through the RGVG, we also acquire a deliberate and
complete exploration strategy and the ability to autonomously navigate
in the presence of obstacles, both of which are lacking from typical
feature-based approaches.

We term this approach hierarchical, because we believe the topolog-
ical architecture induces a natural hierarchy of symbols and connec-
tions among them in the free space. Similar to Kuipers, our symbols
are the nodes of the RGVG, and the connections are the edges. How-
ever, our approach is hierarchical because the connections themselves
can be further discretized into a collection of symbols and connections.
Such lower-level symbols are the features of the edge maps At an even
lower level, the robot’s environment can be modeled by a local map,
such as a fine grid. Finally, our approach decomposes the actual tasks
in a hierarchical fashion. For example, with navigation, at the highest
level, the topological map dictates the sequence of submaps through
which to pass. This, in turn, determines which controls to invoke. At
the next lower level, the feature maps allow for localization along the
edge, and finally, at the lowest level, the odometry and sensor informa-
tion provide feedback for control laws that follow the edge and drive
toward the goal.

We do not believe the RGVG is the only choice for a topological
map, nor are we committed to using Kalman filtering to create the
lower-level edge maps. We believe the RGVG is a good example of
a topological map, because there is a one-to-one relationship between
the elements of the fundamental groups of the RGVG and the free
space. This means that for every cycle in the free space, there is a cor-
responding cycle in the RGVG and vice versa. However, in its current
form, the choice of the RGVG is not appropriate in wide-open envi-
ronments which do not have particularly rich topologies. This suggests
that we need a different high-level map other than the RGVG in such
cases. Future work will consider developing such a map.

We chose the RGVG over the GVG because the RGVG handles in-
stabilities inherent in the GVG. However, the RGVG does not handle
all of them. Future workwill also consider using the edgemaps to better
resolve such instabilities. The RGVG (as well as the GVG) generalizes
into higher dimensions [1]. Whereas in the plane, RGVG edges are the
set of points equidistant to two obstacles in three dimensions, RGVG
edges are the set of points equidistant to three obstacles. We can use the
same control laws to trace RGVG edges in three dimensions [2] and the
same Kalman-filtering equations described in this paper to generate a
hierarchical atlas in three dimensions.

Finally, instead of a Kalman filter, our approach could have easily
used Bayesian methods for the low-level mapping. One advantage of
Bayesian techniques over Kalman filtering is that they allow for mul-
timodal hypotheses. It is worth noting that our topological framework
allows for multiple hypotheses in global localization where the topo-
logical map is used to select which hypotheses to consider. It is our
belief that the complexity of global localization is greatly alleviated by
a coarse discretization of the world. However, when the discretization
is based on an arbitrary method, such as a square grid, the accuracy of
the discrete representation, and thus the localization, is directly related
to the resolution of the grid. The RGVG offers a coarsely discretized
map without any sacrifice in completeness of the representation of the
environment or accuracy in localization.
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