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Abstract. Kernel-based feature extraction is widely used in image classification, and
different kernel methods extract the features based different criterion. KPCA maximizes
the determinant of the total scatter matrix of the transformed sample, while KDA seeks
the direction of discrimination. KPCA preserves the global property, and KDA utilizes
class information to enhance its discriminative ability so as to perform better than KPCA
in classifications. To apply the global property and discriminant ability of features, we
propose a novel parallel feature fusion method based maximum margin criterion, namely
discriminant parallel feature fusion. The advantage of algorithm lies in: 1) A constrained
optimization problem based on maximum margin criterion is created to solve the optimal
fusion coefficients to be most discriminant in the fused feature space. 2) An unique solu-
tion of optimization problem is transformed to an eigenvalue problem, which causes the
proposed fusion strategy to perform consistently. Besides of the detailed theory deriva-
tion, many experimental evaluations also are presented in this paper.
Keywords: Kernel learning, Image classification, Discriminant parallel feature fusion

1. Introduction. Dimensionality reduction (DR) is the most popular approach for fea-
ture extraction. DR has wide applications in computer vision, pattern recognition, gene
expression, paleontology, etc. To resolve the too large dimension problem when using
original face images, dimensionality reduction techniques are employed widely [1, 2].Two
of the most popular algorithms of these dimensionality reduction techniques are Principal
Component Analysis (PCA) [1] and Linear Discriminant Analysis (LDA) [2]. Recently,
the nonlinear methods, KPCA [7] and KFD [3, 4], have been widely used since kernel ma-
chine techniques [5, 6] were applied to the face recognition. The Gabor wavelets, which
capture the properties of spatial localization, orientation selectivity, and spatial frequency
selectivity to cope with the variations in illumination and facial expressions, are widely
employed in face recognition [8, 9]. As the relative works, recently video-based technol-
ogy have been developed and applied into many research topics including coding [10, 11],
enhancing [12, 13] and image processing [14, 15] as discussed in the previous section.

How to perform a wonderful classification based on the multiple features becomes a
crucial problem for pattern classification problem when multiple features are considered.
As a very efficient method, data fusion is applied to solve it, which has been widely
applied in many areas [16, 17, 18]. Existing fusion methods can be divided into the
following three schemes: the first scheme is to integrate all assimilated multiple features
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into a final decision directly; the second is to combine the individual decisions made by
every feature into a global final decision; and the third is to fuse the multiple features
to one new feature for classification. In this paper, we devote our attention to the third
fusion scheme, i.e., feature fusion. Recently many feature fusion methods for pattern
classification were proposed in the lectures [19, 20, 21].

In this paper, we focus on the linear combination fusion, but pay more attention to
how to find the fusion coefficients, and propose so called discriminant feature fusion for
supervising learning. The proposed discriminant fusion strategy has two advantages: 1)
fused data has the largest class discriminant owing to obtaining the fusion coefficients by
solving a constrained optimization problem created in the average margin criterion; 2)
fusion coefficients are unique owing to they are equal to the elements of the eigenvector
of one eigenvalue problem transformed by the above optimization problem. Moreover,
multiple kernel based combination learning methods are developed including Sparse Mul-
tiple Kernel Learning [25], Large Scale Multiple Kernel Learning [26], Lp-Norm Multiple
Kernel Learning [27], and on hyperspectral image classification [28]. These methods were
reported an excellent performance on feature extraction, classification of data analysis.
These methods applied the unchangeable combination parameters during kernel learning
machine. So the combined kernel structure is not changed with the distribution structure
of the data.

2. Kernel-Mapping Dimensionality Reduction. In this section we review and an-
alyze the kernel discriminant analysis (KDA), locality preserving projection (LPP) and
kernel principal component analysis (KPCA).

2.1. KDA. KDA transforms the transformation matrix from the input space to a nonlin-
ear high-dimensional feature space [22]. Given L classes of M training samples {x1, x2, ..., xM}
in an N-dimensional space RN , the data are mapped into a feature space F via the fol-
lowing nonlinear mapping:

Φ : RN → F, xa Φ(x) (1)

The Fisher criterion in the feature space F is defined by

J(V ) =
V TSΦ

BV

V TSΦ
T V

(2)

where V is the discriminant vector, and SΦ
B and SΦ

T are the between-class scatter matrix
and total-scatter matrix, respectively. Any solution V belongs to the span of all training
patterns in RN . Hence, there exists coefficients cp(p = 1, 2, ...,M) such that

V =
M∑
p=1

cpΦ(xp) = Ψα (3)

where Φ = [Φ(x1),Φ(x2), ...,Φ(xM)] and α = [c1, c2, ..., cM ]T . Assuming that the data are
centered, the Fisher criterion is transformed into

J(α) =
αTKGKα

αTKKα
(4)

where G = diag(G1, G2, ..., GL), Gi is an ni × ni matrix whose elements are 1
ni

, and the

kernel matrix K is calculated by a basic kernel k(x, y).
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2.2. LPP. As a dimensionality reduction method, the locality preserving projection
(LPP) preserves the locality of the data during reducing the dimensionality. Givenm classes
of N-dimensional data {x1, x2, ..., xn}, the LPP aims to find a transformation matrix W to
map the N-dimensional sample vector to a lower-dimensional dataset {z1, z2, ..., zn}. The
objective function of LPP is defined as follows [22]:

min
∑
i,j

‖wTxi − wTxj‖
2
Sij subject to w

Tw = 1 (5)

where S is a similarity matrix whose elements measure the similarity of two points. By
minimizing the objective function in (5), LPP incurs a heavy penalty if the neighboring
mapped points, zi and zj, are far. However, it keeps the mapped points close if the original
points are close. Minimizing (5) is equivalent to the following equation:

1

2

∑
i,j

‖zi − zj‖2Sij = wTX(D − S)XTw = wTXLXTw (6)

where X = [x1, x2, ..., xn], and D is a diagonal matrix whose entries are the column or

row ( S is symmetric) sums of S; i.e., ,D = diag

[∑
j

S1j,
∑
j

S2j, ...,
∑
j

Snj

]
and L = D−S

is the Laplacian matrix. Matrix D describes the local structure information of the data.
A constraint is imposed as follows:

zTDz = 1⇒ wTXDXTw = 1 (7)

Then,

arg min
w

wTXLXTw s.t. wTXDXTw = 1 (8)

The optimal transformation vector w is computed through the solving of the eigenvalue
problem,

XLXTw = λXDXTw (9)

where L = D − S , and D = diag

[∑
j

S1j,
∑
j

S2j, ...,
∑
j

Snj

]
. The similarity matrix S is

defined as

Sij =

{
exp
(
− 1

k
‖xi − xj‖2

)
if xi is one of k nereast neighbors of xj
or xj is one of k nereast neighbors of xi

0
(10)

otherwise, the rank of XDXT is at most n , while XDXT is an N × N matrix. The
matrix XDXT is singular. LPP employs a procedure that is similar to Fisherface [17]
to overcome the singularity of XDXT . The procedure of LPP is described as follows:
Step 1: Project data with the projection matrix WPCA . Step 2: Construct the nearest-
neighbor graph G and the similarity matrix S . Step 3: Calculate W = WPCAWLPP ,
where WLPP is the LPP projection matrix.

2.3. KPCA. KPCA is a popular dimensionality reduction method as a kerenelized ver-
sion of PCA. For a clear description, we introduce PCA, which is then kernelized into

KPCA [15]. Given the training samples x1, x2, ..., xn , C = 1
n

n∑
i=1

(xi− x)(xi− x)T , where

overlinex is the mean of all of the training samples, x = 1
n

n∑
i=1

xi . Generally, the SVD is

applied to solving the singular matrix problem. If Q = [x1−x, ..., xn−x] , then C = 1
n
QQT

, and R = QTQ is the n × n positive definite matrix. The dimension of R is less than
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that of C . For the eigenvectors V1, V2, ..., Vm according to the m largest values (λ1 ≥
λ2 ≥ ... ≥ λm), the projection vectors are computed via wj = 1√

λj
Qvj, j = 1, 2, ...,m .

For any sample x , the j th feature is yj = wTj x = 1√
λj
vTj Q

Tx, j = 1, 2, ...,m . PCA is

kernelized as follows. c = 1
n

n∑
i=1

(Φ(xi) − Φ)(Φ(xi) − Φ)T , where Φ = 1
n

n∑
i=1

Φ(xi) , and if

C ′ = 1
n

n∑
i=1

Φ(xi)Φ(xi)
T and Q = [Φ(x1), ...,Φ(xn)] , then C ′ = frac1nQQT according to

R′ = QTQ using the kernel function. If the eigenvectors u1, u2, ..., um are computed ac-
cording to the m th eigenvalue λ1 ≥ λ2 ≥ ... ≥ λm of R , then w1, w2, ..., wm is calculated
by wj = 1√

λj
Quj, j = 1, 2, ...,m and yj = wTj x = 1√

λj
uTj [k(x1, x), k(x2, x), ..., k(xn, x)]

2.4. Discussion. KPCA maximizes the determinant of the total scatter matrix of the
transformed sample, while KDA seeks the direction of discrimination. Both KPCA and
LPP are unsupervised learning methods, while KDA is a supervised learning method.
KPCA preserves the global property, while LPP preserves the local structure. As a
global method, KDA utilizes class information to enhance its discriminative ability, and
therefore, it performs better than KPCA in assigning classifications.

3. Discriminant parallel feature fusion. In this section, firstly we introduce the basic
idea of discriminant parallel feature fusion briefly, and then emphasize the theory deriva-
tion of seeking the fusion coefficients in detailed. On current machine learning methods,
the performance of many linear learning methods is improved because the data distribu-
tion in the nonlinear feature space is easy to classification owing to data mapping. The
geometrical structure of the data in the mapping space, which is totally determined by
the mapping model, has significant impact on the performance of these learning meth-
ods. The discriminative ability of the data in the feature space could be even worse if an
inappropriate model is used. So, we present a novel discriminant kernel fusion method,
and in this framework a constrained optimization problem based on maximum margin
criterion is created to solve the optimal fusion coefficients, which causes that fused data
has the largest class discriminant in the fused feature space. An unique solution of op-
timization problem is transformed to an eigenvalue problem, which causes the proposed
fusion strategy to perform a consistent performance.

Given a sample set xij(i = 1, 2, ..., C; j = 1, 2, ..., ni), and multiple feature sets ymij (i =
1, 2, ..., C; j = 1, 2, ..., ni;m = 1, 2, ...,M), where M denotes the number of multiple fea-
tures sets, the fused feature with the linear combination can be described as follows.

zji =
M∑
m=1

amy
m
ij (11)

where am(m = 1, 2, ...,M) and zij(i = 1, 2, ..., C; j = 1, 2, ..., n) denote the combination
fusion coefficients and the fused feature respectively. Now we focus how to obtain am(m =
1, 2, ...,M), and our goal is to find such fusion coefficients that they are unique and cause
the largest class discriminant in the fused feature space. For supervised learning, we can
calculate the average margin distance between two classes C1

p and C1
q in fused feature

space consisted of the fused featurezji = yjiα(i = 1, 2, . . . , C; j = 1, 2, . . . , ni), where

α = [a1, a2, . . . , aM ]T and yji = [y1
ij, y

2
ij, . . . , y

M
ij ]. The average margin distance can be
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defined by

Dis =
1

2n

L∑
p=1

L∑
q=1

npnqd
(
C1
p , C

1
q

)
(12)

where d
(
C1
p , C

1
q

)
denotes the margin distance between pth and qth classes. Given the

feature vector zji in the dimension-reduced space F 1 , and m1
i (i = 1, 2, . . . , L) and m1

i de-
note the mean of every class and the mean of total samples respectively. Firstly we can
calculate d

(
C1
p , C

1
q

)
(p = 1, 2, ..., L; q = 1, 2, . . . , L) as follows.

d
(
C1
p , C

1
q

)
= d

(
m1
p,m

1
q

)
− S(C1

p)− S(C1
q ) (13)

where S(C1
p)(p = 1, 2, . . . , L) is the measure of the scatter of the class C1

p and d
(
m1
p,m

1
q

)
is the distance between the means of two classes. Let S1

p(p = 1, 2, . . . , L) denote the

within-class scatter matrix of class p, then tr(S1
p)(p = 1, 2, . . . , L) measures the scatter of

the class p can be defined as follows.

tr(S1
p) =

1

np

np∑
j=1

(zjp −m1
p)
T (zjp −m1

p) (14)

And we can define tr(S1
B) and tr(S1

W ) denote the trace of between classes scatter matrix
and within classes scatter matrix of dimension-reduced space F 1respectively as follows.

tr(S1
B) =

L∑
p=1

np(m
1
p −m1)T (m1

p −m1) (15)

tr(S1
W ) =

L∑
p=1

ni∑
j=1

(zjp −m1
p)
T (zjp −m1

p) (16)

Hence S(C1
p) = tr(S1

p). So

Dis =
1

2n

L∑
p=1

L∑
q=1

npnq
[
d(m1

p,m
1
q)− S(C1

p)− S(C1
q )
]

=
1

2n

L∑
p=1

L∑
q=1

npnqd(m1
p,m

1
q)−

1

2n

L∑
p=1

L∑
q=1

npnq
[
tr(S1

p) + tr(S1
q )
]

(17)

Firstly we use Euclidean distance to calculate d(m1
p,m

1
q) as follows.

1

2n

L∑
p=1

L∑
q=1

npnqd(m1
p,m

1
q) =

1

2n

L∑
p=1

L∑
q=1

npnq(m
1
p −m1

q)
T (m1

p −m1
q) (18)

According to equation (5), (6), (8) and (9), it is easy to obtain

1

2n

L∑
p=1

L∑
q=1

npnqd(m1
p,m

1
q) = tr(S1

B) (19)

1

2n

L∑
p=1

L∑
q=1

npnq
[
tr(S1

p)
]

=
1

2
tr(S1

W ) (20)

Hence

1

2n

L∑
p=1

L∑
q=1

npnq
[
tr(S1

p) + tr(S1
q )
]

= tr(S1
W ) (21)
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. We can obtain

Dis = tr(S1
B)− tr(S1

W ) (22)

In the previous work in [22], Li applied the maximum margin criterion to feature ex-
traction by maximizing the average margin distance. In this paper, we expect to create an
optimization problem based on maximum margin criterion to seek an optimal projection
vector α.
Proposition 1. Let

G = 2
L∑
i=1

1

ni

[
ni∑
j=1

ni∑
k=1

(yji )
Tyki

]
−

L∑
i=1

L∑
p=1

ni∑
j=1

np∑
qj=1

(
1

n
(zji )

Tyqp

)
−

L∑
i=1

ni∑
j=1

(yji )
Tyji (23)

Then Dis = αTGα.
Proof. From equation (5) and (6), we can obtain

tr(SB) =
L∑
i=1

1

ni

[
ni∑
j=1

ni∑
k=1

(yji )
Tyki

]
−

L∑
i=1

L∑
p=1

ni∑
j=1

np∑
qj=1

(
1

n
(zji )

T zqp

)
(24)

tr(SW ) =
L∑
i=1

ni∑
j=1

(zji )
T zji −

L∑
i=1

1

ni

[
ni∑
j=1

ni∑
k=1

(
zji
)T
zki

]
(25)

From equation (2) zji = yjiα, we can obtain Let

G = 2
L∑
i=1

1

ni

[
ni∑
j=1

ni∑
k=1

(yji )
Tyki

]
−

L∑
i=1

L∑
p=1

ni∑
j=1

np∑
qj=1

(
1

n
(zji )

Tyqp

)
−

L∑
i=1

ni∑
j=1

(yji )
Tyji (26)

, It is easy to obtain

tr(SΦ
B)− tr(SΦ

W ) = αTGα (27)

According to Propositions 1, we can obtain Dis = αTGαw

According to the maximum margin criterion and Proposition 1, we can create an opti-
mization problem constrained by the unit vector α, i.e., αTα = 1, as follows.

max
α

αTGα (28)

subject to

αTα− 1 = 0 (29)

In order to solve the above constrained optimization equation, we apply a Lagrangian

L(α, λ) = αTGα− λ(αTα− 1) (30)

with the multiplierλ. The derivative of L(α, λ) with respect to the primal variables must
vanish, that is

∂L(α, λ)

∂α
= (G− λI)α = 0 (31)

∂L(α, λ)

∂λ
= 1− αTα = 0 (32)

Hence

Gα = λα (33)

The detail optimal parameter vectors is defined to denote the class discriminative ability
of the data, and the ability is measured by maximum margin criterion, which is created
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to solve the optimal fusion coefficients, which causes that fused data has the largest class
discriminant in the fused feature space. An unique solution of optimization problem
is transformed to an eigenvalue problem, which causes the proposed fusion strategy to
perform a consistent performance.

The problem of solving the constrained optimization function is transformed to the
problem of solving eigenvalue equation shown in (19). The fusion coefficients are equal to
the elements of eigenvector of corresponding to the largest eigenvalue, while is a matrix
which can be calculated by multiple features.

As above discussion, discriminant feature fusion finds a discriminating fused feature
space, in which data has largest class discriminant. And then the fusion coefficients are
equal to the elements of eigenvector of an eigenvalue problem corresponding to the largest
eigenvalue, and the solution of the eigenvalue problem is unique, so the fusion coefficients
are unique.

4. Experimental results. In our experiments, we implement our algorithm in the two
face databases, ORL face database [24] and Yale face database [23]. The ORL face
database, developed at the Olivetti Research Laboratory, Cambridge, U.K., is composed
of 400 grayscale images with 10 images for each of 40 individuals. The variations of the
images are across pose, time and facial expression. The Yale face database was constructed
at the Yale Center for Computational Vision and Control. It contains 165 grayscale images
of 15 individuals. These images are taken under different lighting condition (left-light,
center-light, and right-light), and different facial expression (normal, happy, sad, sleepy,
surprised, and wink), and with/without glasses.

The experimental procedural parameter In the practical applications are chosen as fol-
lows. The kernel function is adaptively chosen subject to the training samples set. The
training sample set is constructed by the training images, and the kernel function can
be adaptively chosen by kernel machine. In the experiments, we choose the procedural
parameters through cross-validation method for the practical application. All training
samples are considered the samples to cross-validation method. In the practical appli-
cations, we choose it with expert experience for some applications. And the detailed
parameter will be solved through optimizing the constrained equations.

In our experiments, to reduce computation complexity, we resize the original ORL face
images sized 112× 92 pixels with a 256 gray scale to 48× 48 pixels, and some examples
are shown in Fig. 1a. We randomly select 5 images from each subject, 200 images in
total for training, and the rest 200 images are used to test the performance. Similarly,
the images from Yale databases are cropped to the size of 100 × 100 pixels, and some
examples are shown in Fig. 1b. Randomly selected 5 images per person are selected as
the training samples, while the rest 5 images per person are used to test the performance
of the algorithms.

From the theory derivation of discriminant fusion in Section 2, it is easy to predict
that the proposed algorithm gives the better performance compared with the classical
fusion [4], and here only a set of experiments are implemented for evaluation. Firstly
we extract the linear and nonlinear features with KDA and KPCA, and then classify
the fused feature of the two features with Fisher classifier. Supposed y1

ij and y2
ij(i =

1, 2, . . . , C; j = 1, 2, . . . , ni) denote the linear and nonlinear feature derived from PCA

and KPCA respectively, the fused feature, zji =

(
y1
ij

y2
ij

)
based on the classical fusion [4],

while zji =
2∑

m=1

amy
m
ij based on discriminant fusion strategy. Here Polynomial kernel and
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(a) (b)

Figure 1. Example face images of face databases used in our experiments.
(a) Example cropped face images from the ORL face database in our ex-
periments (cropped to the size of 48× 48 to extract the facial region). (b)
Example cropped face images from the Yale face database in our experi-
ments (cropped to the size of 100× 100 to extract the facial region).

Gaussian kernel with different coefficients are selected for KPCA, and accuracy rate is
applied to evaluate the recognition performance.

As Table 1, 2, 3, 4 shown, the proposed method gives a higher performance than the
classical fusion method [4] under the same kernel parameters for KPCA.

Since the fusion coefficients of the discriminant fusion strategy are obtained by solving
the optimization problem based on maximum margin criterion and data has the largest
class discriminant in the fused feature space, it is not surprised that discriminant fusion
gives a consistently better performance than classical fusion [4]. But besides the above
advantages, the following cases are worthy to be considered: 1) Since the maximum margin
criterion is used to create the constrained optimization problem, the fusion strategy is only
adapted to the supervised learning. 2) The fusion coefficients are obtained by solving
one eigenvalue problem, which causes the increasing of time consuming than classical
strategy, so it should evaluate the balance of time consuming and classification accuracy.
3) Discriminant fusion strategy is only a linear combination of multiple features with
different combination coefficients, so other fusion strategies can be considered to create
based on the discriminant analysis.

Table 1. Performance on ORL face database. (Polynomial kernel for KPCA)

Methods d=2 d=3 d=4 d=5
Fusion method[4] 0.82 0.83 0.82 0.80
Our method 0.84 0.85 0.86 0.84

Table 2. Performance on ORL face database. (Gaussian kernel for
KPCA)(Gaussian kernel 1 denotes σ2 = 1 × 107; Gaussian kernel 2: σ2 =
1× 108; Gaussian kernel 3: σ2 = 1× 109; Gaussian kernel 4: σ2 = 1× 1010)

Methods Gaussian
kernel 1

Gaussian
kernel 2

Gaussian
kernel 3

Gaussian
kernel 4

Fusion method[4] 0.75 0.84 0.84 0.80
Our method 0.80 0.85 0.87 0.85
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Table 3. Performance on Yale face database. (Polynomial kernel for KPCA)

Methods d=2 d=3 d=4 d=5
Fusion method[4] 0.85 0.84 0.86 0.86
Our method 0.89 0.88 0.89 0.89

Table 4. Performance on Yale face database. (Gaussian kernel for KPCA)
(Gaussian kernel 1 denotes σ2 = 1× 105; Gaussian kernel 2: σ2 = 1× 106;
Gaussian kernel 3: σ2 = 1× 107; Gaussian kernel 4: σ2 = 1× 108)

Methods Gaussian
kernel 1

Gaussian
kernel 2

Gaussian
kernel 3

Gaussian
kernel 4

Fusion method[4] 0.74 0.83 0.82 0.810
Our method 0.77 0.85 0.84 0.84

The results shows the proposed algorithm outperforms the classical method on classi-
fication performance. Our work only pays attention to the classification problem based
on kernel learning. So the experiments show the classification performance, and the cri-
terion of kernel optimization is created by increasing the classification performance. So,
the kernel optimization criterion is not adaptive to clustering. The clustering application
based kernel optimization is our future research work.

5. Conclusions. A novel parallel feature fusion based maximum margin criterion, namely
discriminant parallel feature fusion, for pattern classification in this paper. We create a
constrained optimization problem based on maximum margin criterion to find the fu-
sion coefficients of the parallel feature fusion and transform the optimization problem
into an eigenvalue problem, which brings two advantages, i.e., fused data has the largest
class discriminant and fusion coefficients are unique. This paper only proposes a lin-
ear combination fusion strategy based on discriminant analysis, and we expect to give
a promising idea for other fusion strategy. On the computation efficiency, the iteration
solution method will cost much time, but this training step can be implemented off-line.
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system based on Wireless Sensor Network).
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