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ABSTRACT. Twin support vector machine (TWSVM) is faster than standard support vec-
tor machine (SVM), and least square twin support vector machine (LSTSVM) further
improve training speed. However, the previous works fail to achieve the robustness, espe-
cially for high dimensional heterogeneous data. To improve it, wavelet kernel TWSVM
1s introduced by combining wavelet kernel with TWSVM and LSTSVM. It keeps the ad-
vantages of TWSVM, LSTSVM and wavelet kernel, such as high training speed, approx-
imating arbitrary nonlinear functions. Additionally, it achieves a good trade-off between
robustness and high training speed. The theoretical analyses and experimental results
show that wavelet kernel TWSVM has better performance than those existing works.
Keywords: twin support vector machine, least square, nonlinear, kernel function,
wavelet kernel.

1. Introduction. Support vector machine(SVM) proposed by Cortes and Vapnik [1] is
one of the most popular machine learning algorithms based on structural risk minimiza-
tion guidelines. SVM shows many unique advantages in solving small sample, nonlinear
and high dimensional pattern recognition problems. Combining with other algorithms like
deep learning, colony algorithm, hybrid kernel function, SVM has been applied in many
fields, such as image recognition [2], image retrieval [3], network intrusion detection [4], in-
terference classification [5] and so on. Twin support vector machine (TWSVM) was firstly
proposed based on GEPSVM [6] by Jayadeva et al for binary classification [7]. TWSVM
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generates two nonparallel planes such that each plane is close to one of two classes and as
far as possible from the other. It is implemented by solving two smaller quadratic program-
ming problems (QPPs) rather than a single large QPP, which makes the learning speed of
TWSVM faster than the classical SVM. Now TWSVM and the improved TWSVM have
been applied in many aspects, such as data recognition [8], function regression [9] and
vehicle recognition [10] etc. In TWSVM, the inequality constraints are transformed into
equality constraints, then least square twin support vector machine(LSTSVM) was put
forward firstly by Xie [11], which has faster training speed than TWSVM.

For nonlinear situation, TWSVM uses kernel function mapping low dimensional data
to higher dimensional space. There are some frequently-used kernel functions like polyno-
mial kernel, Guassian kernel, RBF kernel and so on. Due to the fact that the wavelet tech-
nique shows promise for both non-stationary signal approximation and classification [12],
it is valuable for us to study the problem of combination about wavelet technique and
TWSVM.

Motivated by ideas and principles from multi-resolution and wavelet theory [13], we
present a wavelet twin support vector machine(WTWSVM) and least square wavelet twin
support vector machine(LSWTSVM) in this paper. Both of them have good classification
performance since the wavelet kernel function can approximate arbitrarily a nonlinear
function. The theoretical analyses and experimental results show the feasibility and va-

lidity of WTWSVM and LSWTSVM in classification.

2. Wavelet analysis and wavelet kernel. Now many scholars pay their attention
to multi-kernel learning for its superior performance in multi-view learning since many
kinds of information from multiple views can easily be combined. Wavelet decomposition
emerges as a powerful tool for approximation [12, 13, 14], which means that the wavelet
function is a set of bases that can almost approximate arbitrary function. Here, the
wavelet kernel has the same expression as the multidimensional wavelet function.

Based on wavelet theory, any signal can be approximately expressed by a family of
functions generated by dilations and translation of function called the mother wavelet,

b () = a0 (225 1)

a

where a,c,x € R, a is dilation factor, and c is translation factor. Therefore the wavelet
transform of the function f (x) € L (R) is written as:

Waolf) = {f(2), ha (z)) (2)
where < -, - > denotes the dot product in Ly (R) . Equation (2) means that W, . (f) is the
decomposition of the function f (z) on wavelet basis h,. () . Here the mother wavelet
function is necessary to satisfy the following condition,

~|H
Wh:/ H @) < 0 (3)
0

wl

where H (w) is the Fourier transform of the mother function h (w). So we can reconstruct
the function f (z) as follows:

) = Wih /_ h /0 @@ W (f) hae (2)dade (4)

If we take the final term to approximate (4), then:

S (@) =3 Wihae, (2) (5)
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where ?(m) is an approximation of f (z).
For a common multidimensional wavelet function, we can write it as the product of
one-dimensional (1-D for short) wavelet functions:

h(X) = Hh(wi) (6)

As a kernel function, the wavelet kernel must obey the Mercer theorem [15].

Theorem 2.1. ® is a map from Euclidean space RN to Hilbert space H:
d: RV > H (7)

and the function K (1, xs) must obey the equation as follows which could be called kernel
function

K (21, 22) = (@ (21) - @ (22)) (8)

where ® (x) is a mapping function, and < - > is the inner product in Hilbert space H.
All wavelet kernels also obey the following theorems [15].

Theorem 2.2. Let h(x) be a mother wavelet, and let a and ¢ denote the dilation and
translation respectively. Here x,a,c € R, and if X, X' ¢ RN | the dot-product kernels are
set to

K(X,X’):ﬁh(xigci)h(gj/ia_cli) 9)

and translation-invariant wavelet kernels satisfying the translation invariant kernel theo-
rem are set to

N

K (X, X :gh (”C;x/) (10)

3. Twin support vector machine. To improve training speed of SVM, Javadeva et.al
proposed twin support vector machine (TWSVM) inspired by GEPSVM [7]. For a binary
classification problem, the goal of TWSVM is to find a pair of nonparallel hyperplanes.
Suppose that data points belonging to positive class denoted by A; € R™*", where each
row A; € R" represents a data point. Similarly, Ay € R™2*" represents all of negative
points.

3.1. Linear twin support vector machine. For the linear case, the two nonparallel
hyperplanes are generated by TWSVM as follows:
fr(x)=wiz+b =0 (11)
fo(x)=wlz+b,=0
where wy, ws € R", by, by € R. The TWSVM seeks two nonparallel hyperplanes (11) such
that each hyperplane is closer to one of the two classes and as far as possible from the
other [6]. The distance of a point from two hyperplanes can determine that a data point

belongs to negative class or positive class. Formally, the TWSVM can be described as
the following QPPs.

min %(Awl + bl)T (Aw1 + bl) -+ clegfl

s.t. — (Bw1 + b1> + él > 62,51 >0 (12)

min %(ng + bg)T (Bw2 + bg) + CQ€1T§2 (13)
s.t. —(Aw2+62)+52 261,52 20
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where c1,co > 0 are the pre-specified penalty factors, and ey, e; are vectors of ones
of appropriate dimensions. By introducing Lagrangian multipliers o and 3, we construct
the Lagrange function as follows.

L (wb b1> 517 a, 5) = %(Awl + elbl)T (Awl + elbl) + 016551 (14)
+a” (Bwy + exby — & +e2) — 74

Then we can get the following Karush-Kuhn-Tucher conditions:

AT (Awy +e1by) + BTa =0 (15)

el (Awy +eib) +eta=0 (16)

ciea —a— =0 (17)

— (Bwi + €2b1) + & = €2,61 > 0 (18)

o’ (Bwi + b1 — & —e2) = 0,876 =0 (19)
a>0,8>0 (20)

Combing equation (5) with (6), we can obtain:
[AT el J[A e ][ w bl}T—l—[BT e Ja=0 (21)

Define H = [ A e } and G = [ B ey } Now, the Wolfe dual of the QPPs can be
described respectively as follows:

max ela — %aTG(HTH)_lGTa

22
s.t. 0 <a<ce 22)

max el 3 — %BTH (GTG) HTpB

s.t. 0< B < cyeq (23)

where G = [ B e ], H = [ A e ], a = R™ and f = R™, are Lagrangian multipliers.
By defining vy = [wy, b;] and vy = [wy, bs], we can obtain the following results.

v = —(HTH)_IGTa (24)

v = (GTG)'H (25)

The new sample point is assigned to positive class or negative class depending on the
function (26).

1 = arg min ————
k=12 [Jwgl]

(26)
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3.2. Nonlinear twin support vector machine. For the nonlinear case, the TWSVM

uses kernel function to map training data from low dimensional input space to high

dimensional space like SVM. Two nonparallel hyperplanes are as follows:
I _Kng,CT; up +by =0

f,:K .I'T,CT U2+b2:0 (27>

where C' = [A, B]T, and K(-) is a kernel function. One of two nonparallel hyperplanes
can be obtained by solving the following QPP.
min %(K (A, CT) Uy + €1b1)T (K (A, CT) Uy + €1b1) + 016251 (28)
s.t. — (K (B,C'T) Uy + 6251) +&6 2>26e,6 20
Similarly to linear TWSVM, the dual problem of (28) can be represented as follows:
max ela — %ozTR(STS)_lRTa
s.t. 0<a<cey
where S = [K(A,C"),e,], R=[K(B,C"), es].

Define z; = [uy,b] and 2o = [ug, by]. We can solve the dual problems (29) and get
the following result.

(29)

= —(STS) ' Ra (30)
Similarly, we can obtain the other result.
2z = (RTR)™'SpB (31)
4. Least Squares Twin support vector machine. Suykens proposed least square
support vector machine (LSSVM) in 1999 [18]. Now LSSVM has attracted much attention
since it has faster training speed than that of SVM.

In this paper, just the nonlinear case was considered. LSTWSVM needs to find two
nonparallel hyperplanes based on kernel functions like TWSVM as follows:

K l’,CT U1+b1 =0
{ KE%‘,CT; U2+b2 =0 (32)
where CT = [AT, BT], K(-) and is a kernel function. LSTWSVM needs to determine two

QPPs as follows.
min  1||K (4,C7) u1+€151||2‘|‘%5%

33
s.t. (K (B, CT) U + 62b1) + 51 = €9 ( )
min H (B C )U2+€262H2+ éﬁg (34)
s.t. ( C )U2+61b2) +€2 =€
We can convert the QPPs (33) and (34) into the following unconstrained optimization
problems.

9 35
HIK (B,CT) s+ el + %ler — (K (A,c)u2+6152> (%)

By KKT conditions, the optimal solutions can be described as follows:

{ 11K (A, CT) ul—l—elblH + < |le2 + (K (B,C* U1+€261)H2
[

(uy,by)" = — (HTH + éGTG>_1HTeQ
(tg, by) = (GTG + éHTH> e
where H= [K (A, C’T) ,61}, G= [K (B,CT) ,62}.

(36)
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5. Wavelet kernel Twin support vector machine. The wavelet kernel (10) used in
this article are given in part 2. Without loss of generality, we construct a translation-
invariant mother wavelet kernel by a wavelet function adopted in [12]:

h(z) = cos (1.752) exp (-?) (37)

Lemma 5.1. Given the mother wavelet (10) and the dilation a,c,z € R, if X, X' € RV,
then the wavelet kernel of the mother wavelet is

K (XX = TTh (25)
= IJ_V[ (cos <1 75 x @iz z’)> exp (—Hz’gg"”2>>

(38)

That is a kind of multidimensional wavelet kernel. TWSVM with wavelet kernel
determines two nonparallel hyperplanes as follows.

! N ;
K (X0 b= S () [T 0 (22) + b
LN (39)
K(X,OT)U2+b2:ZU2()H ( )+b2
Now, the decision function of WTWSVM for classification is given as
Z u H h ( ) +b
i = arg min (40)

k=12 [

The test data can be classified based on result of the equation (40).

6. Experiments. To test the performance of our proposed approaches, we compared
numerically WITWSVM and WLSTSVM with Gaussian kernel TWSVM (GTWSVM)
and Gaussian kernel LSTSVM (GLSTSVM) respectively on a synthetic dataset and 12
datasets from UCI Repository [19]. All experiments were implemented by using MATLAB
8.4 on a personal computer with 1.6GHz and 4GB RAM.

In first experiment, a synthetic dataset with cross noise is presented to demonstrate
the effectiveness of the proposed approaches. Ten-fold cross-validation is carried out to
determine the parameters. From a and b in Fig.1, we can see WTWSVM has better
classification performance than standard TWSVM with Gaussian kernel. From ¢ and d
in Fig.1, it can be also easily seen that the classification performance of WLSTSVM is
superior to that of LSTSVM with Gaussian kernel. So Fig.1 shows WTWSVM has best
performance in four approaches.

We validate the effectiveness of WTWSVM and WLSTSVM by the second experi-
ment. All the datasets are available from UCI Repository [19]. The selected datasets are
listed in Table 1.

Table 2 compares the performance of the WTWSVM classifier with that of GTWSVM.
It can be seen from Table 2 that WTWSVM has not higher classification precision than
GTWSVM, but WITWSVM is faster obviously than GTWSVM on the vast majority of
datasets. The results in Table 3 demonstrate that WLSTSVM has higher training speed
than GLSTSVM.

In the two experiments, WIT'WSVM has better classification results than GTWSVM
on most datasets, especially on high-dimensional datasets, which verifies that wavelet
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FIGURE 1. Learning results of the four algorithms on the Cross-planes data set

TABLE 1. Attribute characteristics of the UCI datasets

Dataset Dimension Number Dataset Dimension Number

australian 14 690 ionosphere 34 351
breast 9 277 pima 8 768
bupa 6 345 sonar 60 268
diabetes 8 768 vote 15 435
german 24 1000 wdbc 31 569
heart 13 270 wpbc 33 198

kernel can save more data distribution details and have better classification results than
Gaussian kernel.

7. Conclusion. In this paper, a new wavelet kernel is proposed. Compared with Gauss-
ian kernel, it is orthonormal or orthonormal approximately. Based on this construction, a
WTWSVM and a WLSTSVM are introduced respectively. The theoretical analyses and
experiment results show the feasibility and validity of the WLSTSVM and WTWSVM.
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TABLE 2. Performance comparison of WTWSVM and GTWSVM

dataset WTWSVM GTWSVM
Accuracy(%) Time(s) Accuracy(%) Time(s)
australian 80.75 67.2583 85.61 557.28
Breast 73.25 41.78 84.21 111.47
Bupa 70.15 53.8363 69.56 148.7
Diabetes 82.63 859 78.57 711.69
german 78.61 72.74 76 1248
heart 81.81 87.362 87.27 104.7
ionosphere 94.37 99.73 97.18 168.571
pima 77.27 195.44 85.32 713.83
sonar 88.10 50.23 95.34 78.6044
vote 97.73 107.66 97.72 236.63
wdbc 98.12 722.64 97.39 447.04
wpbc 90.02 58.81 85.36 70.91

TABLE 3. Performance comparison of WLSTWSVM and GLSTSVM

dataset WLSTSVM GLSTSVM
Accuracy(%) Time(s) Accuracy(%) Time(s)
australian 62.59 8.6013 84.17 368.55
breast 78.57 1.8461 71.92 56.07
bupa 64.29 1.3827 75.36 79.98
diabetes 65.34 3.711 74.63 395.1
german 76.62 31.1324 74.5 730
heart 56.63 3.0566 85.45 ol
ionosphere 80.28 21.9363 95.77 91.14
pima 69.88 3.8671 79.87 395.19
sonar 60.23 39.463 86.04 35.62
vote 69.32 6.1508 96.59 167
wdbc 61.22 30.7230 96.52 300.31
wpbc 70.73 11.7649 85.36 65.89
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