
------- - ------ ---- - - -------___ t_

Publication Number
5A22-7200-0

IBM Enterprise
Systems Architecture/370

Principles of Operation

File Number
5370-01

First Edition (August 1988)

Changes are made occasionally to the information herein; before using this publication in connection with
the operation of IBM equipment, refer to the latest IBM System/370, 30xx, 4300, and 9370 Processors Bibli­
ography, GC20-000 I, for the editions that are applicable and current.

IBM may have patents or pending patent applications covering subject matter described herein. Furnishing
this publication does not constitute or imply a grant of any license under any patents, patent applications,
trademarks, copyrights, or other rights of IBM or of any third party, or any right to refer to IBM in any
advertising or other promotional or marketing activities. IBM assumes no responsibility for any infringement
of patents or other rights that may result from the use of this publication or from the manufacture, use,
lease, or sale of apparatus described herein.

Licenses under IBM'S utility patents are available on reasonable and nondiscriminatory terms and conditions.
Inquiries relative to licensing should be directed, in writing, to: IBM Corporation, Director of Contracts and
Licensing, Armonk, NY, USA 10504.

References in this publication to IBM products, programs, or services do not imply that IBM intends to make
these available in all countries in which IBM operates.

Publications are not stocked at the address given below. Requests for IBM publications should be made to
your IBM representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been removed,
comments nlay be addressed to: IBM Corporation, Central Systems Architecture, Department E57, PO Box
950, Poughkeepsie, NY, USA 12602. IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1988. All rights reserved.

Preface

This publication provides, for reference purposes, a
detailed Enterprise Systems Architecture/370™
(ESA/370™) description.

The publication applies only to systems operating
as defmed by ESA/370. For systems operating in
accordance with the System/370 or System/370
extended-architecture (370-XA) defmitions, the IBM
System/370 Principles of Operation, GA22-7000, or
the IBM 370-XA Principles of Operation,
SA22-7085, should be consulted.

The publication describes each function at the level
of detail needed to prepare an assembler-language
program that relies on that function. It does not,
however, describe the notation and conventions
that must be employed in preparing such a
program, for which the user must instead refer to
the appropriate assembler-language publication.

The information in this publication is provided
principally for use by assembler-language program­
mers, although anyone concerned with the func­
tional details of ESA/370 will fmd it useful.

This publication is written as a reference and
should not be considered an introduction or a text­
book. It assumes the user has a basic knowledge of
data-processing systems. IBM publications relating
to ESA/370 are listed and described in the IBM
System/370, 30xx, 4300, and 9370 Processors Bibli­
ography, GC20-000 1.

All facilities discussed in this publication are not
necessarily available on every model. Furthermore,
in some instances the defmitions have been struc­
tured to allow for some degree of extendibility, and
therefore certain capabilities may be described or
implied that are not offered on any model. Exam­
ples of such capabilities are the use of a 16-bit field
in the subsystem-identification word to identify the
channel s:ub system , the size of the CPU address, and
the number of CPUs sharing main storage. The
allowance for this type of extendibility should not
be construed as implying any intention by IBM to
provide such capabilities. For information about
the characteristics and availability of facilities on a

specific model, see the functional characteristics
publication for that model.

Largely because this publication is arranged for ref­
erence, certain words and phrases appear, of neces­
sity, earlier in the publication than the principal
discussions explaining them. The reader who
encounters a problem because of this arrangement
should refer to the index, which indicates the
location of the key description.

The information presented in this publication is
grouped in 17 chapters and several appendixes:

Chapter 1, Introduction, highlights some of the
major facilities of ESA/370.

Chapter 2, Organization, describes the major
groupings within the system -- the central proc­
essing unit (cPu), storage, and input/output -- with
some attention given to the composition and char­
acteristics of those groupings.

Chapter 3, Storage, explains the information
formats, the addressing of storage, and the facilities
for storage protection. It also deals with dynamic
address translation (DAT), which, coupled with
special programming support, makes the use of a
virtual storage possible.

Chapter 4, Control, describes the facilities for the
switching of system status, for special externally ini­
tiated operations, for debugging, and for timing. It
deals specifically with CPU states, control modes,
the program-status word (psw), control registers,
tracing, program-event recording, timing facilities,
resets, store status, and initial program loading.

Chapter 5, Program Execution, explains the role of
instructions in program execution, looks in detail at
instruction formats, and describes briefly the use of
the program-status word (psw), of branching, and
of interruptions. It contains the principal
description of the advanced address-space facilities
that are introduced in ESA/370. It also details the
aspects of program execution on one CPU as
observed by other CPus and by channel programs.

Enterprise Systems Architecture/370 and ESA/370 are trademarks of the International Business Machines Cor­
poration.

Preface iii

Chapter 6, Interruptions, details the mechanism that
permits the CPU to change its state as a result of
conditions external to the system, within the
system, or within the CPU itself. Six classes of
interruptions are identified and described: machine­
check interruptions, program interruptions,
supervisor-call interruptions, external interruptions,
input/output interruptions, and restart inter­
ruptions.

Chapter 7, General Instructions, contains detailed
descriptions of logical and binary-integer data
formats and of all unprivileged instructions except
the decimal and floating-point instructions.

Chapter 8, Decimal Instructions, describes in detail
decimal data formats and the decimal instructions.

Chapter 9, Floating-Point Instructions, contains
detailed descriptions of floating-point data formats
and the floating-point instructions.

Chapter /0, Control Instructions, contains detailed
descriptions of all of the semiprivilegedand privi­
leged instructions except for the I/O instructions.

Chapter /1, Machine-Check Handling, describes the
mechanism for detecting, correcting, and reporting
machine malfunctions.

Chapter /2, Operator Facilities, describes the basic
manual functions and controls available for oper­
ating and controlling the system.

Chapters 13-17 of this publication provide a
detailed defInition of the functions performed by
the channel subsystem and the logical interface
between the CPU and the channel subsystem.

Chapter /3, I/O Overview, provides a brief
description of the basic components and operation
of the channel subsystem.

Chapter /4, I/O Instructions, contains the
description of the I/O instructions.

Chapter /5, Basic I/O Functions, describes the basic
I/O functions performed by the channel subsystem,
including the initiation, control, and conclusion of
I/O operations.

Chapter /6, I/O Interruptions, covers I/O inter­
ruptions and interruption conditions.

iv ESA/370 Principles of Operation

Chapter /7, I/O Support Functions, describes such
functions as channel-subsystem usage monitoring,
resets, initial-program loading, reconfiguration, and
channel-subsystem recovery.

The Appendixes include:

• Information about number representation
• Instruction-use examples
• Lists of the instructions arranged in several

sequences
• A summary of the condition-code settings
• A summary of the differences between 370-XA

and ESA/370

• A summary of the differences between
System/370 and 370-XA

• A table of the powers of 2
• Tabular information helpful in dealing with

hexadecimal numbers
• An EBCDIC chart

Size Notation

In this publication, the letters K, M, G, and T
denote the multipliers 210, 220, 230, and 240,
respectively. Although the letters are borrowed
from the decimal system and stand for kilo (103

),

mega (106
), giga (109

), and tera (1012), they do not
have the decimal meaning but instead represent the
power of 2 closest to the corresponding power of
10. Their meaning in this publication is as follows:

Symbol Value

K (kil 0) 1t 024 = 210

M (mega) 1t 048 t 576 = 220

G (giga) 1,073,741,824 = 230

T (tera) 1,099,511,627,776 = 240

The following are some examples of the use of K,
M, G, and T:

2,048 is expressed as 2K.
4,096 is expressed as 4K.
65,536 is expressed as 64K (not 65K).
224 is expressed as 16M.
231 is expressed as 2G.
242 is expressed as 4T.

When the words "thousand" and "million" are
used, no special power-of-2 meaning is assigned to
them.

Bytes, Characters, and Codes

Although the System/360 architecture was ori­
ginally designed to support the Extended Binary­
Coded-Decimal Interchange Code (EBCDIC), the
instructions and data formats of the architecture are
for the most part independent of the external code
which is to be processed by the machine. For most
instructions, all 256 possible combinations of bit
patterns for a particular byte can be processed,
independent of the character which the bit pattern
is intended to represent. For instructions which
use the zoned format, and for those few
instructions which are dependent on a particular
external code, the instruction TRANSLATE may be
used to convert data from one code to another
code. Thus, a machine operating in accordance
with FSA/370 can process EBCDIC, ASCII, or any
other code which can be represented in eight or
fewer bits per character.

In this publication, unless otherwise specified, the
value given for a byte is the value obtained by con­
sidering the bits of the byte to represent a binary
code. Thus, when a byte is said to contain a zero,
the value 00000000 binary, or 00 hex, is meant, and
not the value for an EBCDIC character "0," which
would be FO hex.

Other Publications

The channel-to-channel adapter is described in the
publication IBM Channel-to-Channel-Adapter,
SA22-7091.

The I/O interface is described in the publication
IBM System/360 and System/370 I/O Interface
Channel to Control Unit Original Equipment Man­
ufacturers' I njormation, GA22-6974.

The mathematical assists are described in the publi­
cation IBM System/ 370 Mathematical Assists,
SA22-7094, which describes the instructions
ARCTANGENT, COMMON LOGARITHM, COSINE,

EXPONENTIAL, MULTIPLY AND ADD, NATURAL

LOGARITHM, RAISE TO POWER, SINE, and SQUARE

ROOT.

Vector operations are described in the publication
Enterprise System~ Architecture/370 and
System/370 Vector Operations, SA22-7125.

The interpretive-execution facility is described in
the publication IBM 370-XA Interpretive Execution,
SA22-7095.

Preface V

This page is intentionally left blank.

vi ESAj370 Principles of Operation

Contents

Chapter 1. Introduction
Highlights of ESA/370

Advanced Address-Space Facilities
The 370-XA Base .. .

System Program
Compatibility

Compatibility among ESA/370 Systems
Compatibility among ESA/370, 370-XA,

a1ld System/370
Control-Program Compatibility
Problem-State Compatibility

Availability

Chapter 2. Organization
Main Storage
CPU

PSW
General Registers
Floating-Point Registers
Control Registers
Access Registers
Vector Facility

I/O
Channel Subsystem
I/O Devices and Control Units

Operator Facilities

Chapter 3. Storage
Storage Addressing

Information Formats
Integral Boundaries

Address Types and Formats
Address Types

Absolute Address
Real Address
Virtual Address
Primary Virtual Address
Secondary Virtual Address
AR -Specified Virtual Address
Home Virtual Address ..
Logical Address . . .
Instruction Address
Effective Address .,

Address Size and Wraparound .,
Address Wraparound

Storage Key
Protection

Key-Controlled Protection
Fetch-Protection-Override Control .. .

Page Protection
Low-Address Protection

Reference Recording

1-1
1-1
1-1
1-2
1-3
1-3
1-3

1-4
1-4
1-4
1-4

2-1
2-2
2-2
2-2
2-3
2-3
2-3
2-3
2-4
2-4
2-6
2-6
2-6

3-1
3-2
3-2
3-3
3-3
3-3
3-4
3-4
3-4
3-4
3-4
3-4
3-4
3-4
3-5
3-5
3-5
3-5
3-7
3-8
3-8
3-9
3-9

3-10
3-10

Change Recording
Prefixing
Address Spaces

Changing to Different Address Spaces
Address-Space Number

ASN Translation
AS N -Translation Controls

Control Register 14
Control Register 0

ASN-Translation Tables
ASN -First-Table Entries
ASN -Second-Table Entries

AS N -Translation Process ...
ASN-First-Table Lookup .
ASN -Second-Table Lookup
Recognition of Exceptions during AS N

Translation
ASN Authorization

ASN-Authorization Controls
Control Register 4
ASN-Second-Table Entry
Authority-Table Entries .

ASN-Authorization Process
Authority-Table Lookup
Recognition of Exceptions during AS N

Authorization
Dynamic Address Translation

Translation Control ...
Translation Modes
Control Register 0
Control Register 1
Control Register 7
Control Register 13

Translation Tables
Segment-Table Entries
Page-Table Entries
Summary of Segment-Table and

Page-Table Sizes
Translation Process

Effective Segment-Table Designation
Inspection of Control Register 0
Segment-Table Lookup
Page-Table Lookup
Formation of the Real Address .
Recognition of Exceptions during

Translation
Translation-Lookaside Buffer

TLB Structure
Formation of TLB Entries
Use of TLB Entries
Modification of Translation Tables

Address Summary

3-11
3-11
3-13
3-13
3-13
3-14
3-15
3-15
3-15
3-15
3-1'5
3-16
3-17
3-18
3-19

3-19
3-19
3-19
3-20
3-20
3-20
3-20
3-22

3-22
3-22
3-24
3-24
3-24
3-24
3-25
3-25
3-26
3-26
3-27

3-27
3-27
3-28
3-30
3-30
3-30
3-31

3-31
3-31
3-31
3-32
3-32
3-33
3-35

Contents vii

Addresses Translated
Handling of Addresses

Assigned Storage Locations

Chapter 4. Control
Stopped, Operating, Load, and Check-Stop

States
Stopped State
Operating State
Load State
Check-Stop State

Program-Status Word
Program-Status-Word Format

Control Registers
Tracing

Control-Register Allocation
Trace Entries
Operation

Pro gram-Event Recording ..
Control-Register Allocation
Operation

Identification of Cause
Priority of Indication

Storage-Area Designation
PER Events

Successful Branching
Instruction Fetching
Storage Alteration
General-Register Alteration
Store Using Real Address

Indication of PER Events Concurrently
with Other Interruption Conditions

Timing
Time-of-Day Clock

Format
States
Changes in Clock State
Setting and Inspecting the Clock

TOD-Clock Synchronization
Clock Comparator
CPU Timer

Externally Initiated Functions
Resets

CPU Reset
Initial CPU Reset
Subsystem Reset
Clear Reset
Power~On Reset

Initial Program Loading
Store Status

Multiprocessing
Shared Main Storage
CPU -Address Identification

CPU Signaling and Response
Signal-Processor Orders ..
Conditions Determining Response

viii ESAj370 Principles of Operation

3-35
3-36
3-39

4-1

4-1
4-2
4-2
4-2
4-2
4-3
4-5
4-6
4-9
4-9

4-10
4-12
4-12
4-13
4-14
4-14
4-15
4-16
4-16
4-16
4-17
4-17
4-17
4-18

4-18
4-21
4-21
4-21
4-22
4-23
4-23
4-24
4-25
4-26
4-27
4-27
4-30
4-31
4-31
4-31
4-32
4-32
4-33
4-33
4-34
4-34
4-34
4-34
4-36

Conditions Precluding Interpretation of
the Order Code

Status Bits

Chapter 5. Program Execution
Instructions

Operands
Instruction Formats

Register Operands
Immediate Operands
Storage Operands

Address Generation
Bimodal Addressing ..
Sequential Instruction-Address Generation
Operand-Address Generation

Formation of the Intermediate Value
Formation of the Address

Branch-Address Generation
Formation of the Branch Address

Instruction Execution and Sequencing
Decision Making
Loop Control
Subroutine Linkage without the Linkage

Stack
Interruptions
Types of Instruction Ending

Completion
Suppression
Nullification
Termination

Interruptible Instructions
Point of Interruption
Execution of Interruptible Instructions

Exceptions to Nullification and
Suppression

Storage Change and Restoration for
DAT -Associated Access Exceptions

Modification of DA T -Table Entries
Trial Execution for Editing Instructions

and Translate Instruction
Authorization Mechanisms

Mode Requirements
Extraction-Authority Control
PSW -Key Mask
Secondary-Space Control
Subsystem-Linkage Control
ASN-Translation Control
Authorization Index
Access-Register and Linkage-Stack

Mechanisms
PC-Number Translation

PC-Number Translation Control
Control Register 0
Control Register 5

PC-Number Translation Tables

4-36
4-37

5-1
5-2
5-2
5-3
5-4
5-5
5-5
5-5
5-5
5-5
5-6
5-6
5-6
5-7
5-7
5-7
5-7
5-8

5-8
5-12
5-12
5-12
5-12
5-12
5-12
5-12
5-12
5-13

5-14

5-15
5-15

5-15
5-16
5-16
5-16
5-16
5-17
5-17
5-17
5-17

5·18
5·21
5·21
5·21
5·21
5·22

Linkage-Table Entries
Entry-Table Entries

PC-Number-Translation Process
Obtaining the Linkage-Table

Designation
Linkage-Table Lookup
Entry-Table Lookup .
Recognition of Exceptions during

PC-Number Translation
Home Address Space
Access-Registers Introduction

Summary
Access-Register Functions

Access-Register-Specified Address
Spaces

Access-Register Instructions
Access-Register Translation ...

Access-Register-Translation Control
Address-Space-Function Control
Control Register 2
Control Register 5
Control Register 8

Access Registers
Access-Register-Translation Tables

Access-List Designations
Access-List Entries
Extended ASN-Second-Table Entries

Access-Register:. Translation Process
Selecting the Access-List-Entry Token
Obtaining the Primary or Secondary

Segment-Table Designation
Checking the First Byte of the ALET
Obtaining the Effective Access-List

Designation
Access-List Lookup
Locating the ASN-Second-Table Entry
Authorizing the Use of the Access-List

Entry
Obtaining the Segment-Table

Designation from the
ASN-Second-Table Entry

Recognition of Exceptions During
Access-Register Translation

ART -Lookaside Buffer ...
ALB Structure
Formation of ALB Entries
Use of ALB Entries
Modification of ART Tables

Linkage-Stack Introduction
Summary
Linkage-Stack Functions

Transferring Program Control
Branching Using the Linkage Stack
Adding and Retrieving Information
Testing Authorization
Pro gram-Problem Analysis

5-22
5-22
5-23

5-24
5-25
5-25

5-25
5-26
5-26
5-26
5-27

5-27
5-34
5-35
5-35
5-35
5-36
5-36
5-36
5-36
5-37
5-37
5-39
5-40
5-41
5-44

5-44
5-44

5-44
5-44
5-45

5-45

5-46

5-46
5-46
5-46
5-47
5-48
5-48
5-48
5-48
5-49
5-49
5-51
5-51
5-52
5-52

Extended Entry-Table Entries
Linkage-Stack Operations

Linkage-Stack-Operations Control
Control Register 0
Control Register 15

Linkage Stack
Entry Descriptors
Header Entries
Trailer Entries
State Entries

Stacking Process
Locating Space for a New Entry
Fonning the New Entry .. .
Updating the Current Entry .. .
Updating Control Register 15
Recognition of Exceptions During the

Stacking Process
Unstacking Process

Locating the Current Entry and
Processing a Header Entry

Checking for a State Entry
Restoring Information '"
Updating the Preceding Entry
Updating Control Register 15
Recognition of Exceptions during the

Un stacking Process '"
Sequence of Storage References

Conceptual Sequence
Overlapped Operation of Instruction

Execution
Divisible Instruction Execution .. .

Interlocks for Virtual-Storage References
Interlocks Between Instructions
Interlocks Within a Single Instruction

Instruction Fetching
ART-Table and OAT-Table Fetches
Storage-Key Accesses
Storage-Operand References

Storage-Operand Fetch References
Storage-Operand Store References
Storage-Operand Update References

Storage-Operand Consistency
Single-Access References
Multiple-Access References .
Block-Concurrent References
Consistency Specification

Relation between Operand Accesses
Other Storage References

Serialization
CPU Serialization
Channel-Program Serialization

Chapter 6. Interruptions
Interruption Action .

Interruption Code .,

5-52
5-54
5-56
5-56
5-56
5-56
5-56
5-58
5-58
5-59
5-60
5-61
5-62
5-62
5-62

5-62
5-63

5-63
5-64
5-64
5-64
5-65

5-65
5-65
5-65

5-66
5-66
5-66
5-67
5-67
5-69
5-71
5-71
5-72
5-72
5-72
5-72
5-74
5-74
5-74
5-74
5-74
5-75
5-76
5-76
5-76
5-77

6-1
6-2
6-5

Contents ix

Enabling and Disabling
Handling of Floating Interruption

Conditions
Instruction-Length Code

Zero ILC
ILC on Instruction-Fetching Exceptions

Exceptions Associated with the PSW
Early Exception Recognition
Late Exception Recognition

External Interruption
Clock Comparator
CPU Timer
Emergency Signal
External Call ...
Interrupt Key
Malfunction Alert
Service Signal
TOD-Clock Sync Check

I/O Interruption
Machine-Check Interruption
Program Interruption

Exception-Extension Code
Program-Interruption Conditions

Addressing Exception
AFX -Translation Exception
ALEN-Translation Exception
ALE-Sequence Exception ..
ALET -Specification Exception
ASN-Translation-Specification

Exception
ASTE-Sequence Exception
ASTE-Validity Exception
ASX -Translation Exception
Data Exception
Decimal-Divide Exception
Decimal-Overflow Exception
Execute Exception
Exponent-Overflow Exception
Exponent-Underflow Exception
EX-Translation Exception
Extended-Authority Exception
Fixed-Point-Divide Exception
Fixed-Point-Overflow Exception
Floating-Point-Divide Exception
LX -Translation Exception
Monitor Event
Operand Exception
Operation Exception ...
Page-Translation Exception
PC-Translation-Specification Exception
PER Event
Primary-Authority Exception
Privileged-Operation Exception
Protection Exception
Secondary-Authority Exception
Segment-Translation Exception

X ESAj370 Principles o{ Operation

6-6

6-6
6-7
6-7
6-7
6-8
6-8
6-9
6-9

6-10
6-10
6-11
6-11
6-11
6-11
6-12
6-12
6-12
6-13
6-13
6-14
6-14
6-14
6-16
6-16
6-16
6-16

6-16
6-17
6-17
6-17
6-17
6-18
6-18
6-18
6-18
6-19
6-19
6-19
6-19
6-19
6-20
6-20
6-20
6-21
6-21
6-21
6-22
6-22
6-22
6-22
6-23
6-24
6-24

Significance Exception ...
Space-Switch Event
Special-Operation Exception
Specification Exception
Stack-Empty Exception
Stack-Full Exception ..
Stack -Operation Exception
Stack -Specification Exception
Stack-Type Exception
Trace-Table Exception
Translation-Specification Exception
Unnormalized-Operand Exception
Vector-Operation Exception

Collective Program-Interruption Names
Recognition of Access Exceptions ...
Multiple Program-Interruption Conditions

Access Exceptions
ASN -Translation Exceptions
Trace Exceptions ...

Restart Interruption
Supervisor-Call Interruption
Priority of Interruptions

Chapter 7. General Instructions
Data Format
Binary-Integer Representation
Binary Arithmetic

Signed Binary Arithmetic
Addition and Subtraction
Fixed-Point Overflow

Unsigned Binary Arithmetic
Signed and Logical Comparison
Instructions

Add
Add Halfword
Add Logical
AND
Branch and Link
Branch and Save
Branch and Save and Set Mode
Branch and Set Mode
Branch on Condition
Branch on Count
Branch on Index High
Branch on Index Low or Equal
Compare
Compare and Form Codeword
Compare and Swap
Compare Double and Swap
Compare Halfword
Compare Logical
Compare Logical Characters under Mask
Compare Logical Long
Convert to Binary
Convert to Decimal ..

6-24
6-24
6-25
6-26
6-27
6-27
6-27
6-27
6-27
6-28
6-28

, 6-28
6-28
6-29
6-29
6-32
6-34
6-38
6-38
6-38
6-38
6-39

7-1
7-2
7-2
7-3
7-3
7-3
7-3
7-3
7-4
7-4
7-8
7-8
7-9
7-9

7-10
7-11
7-11
7-12
7-12
7-13
7-14
7-14
7-15
7-15
7-19
7-19
7-20
7-21
7-21
7-22
7-24
7-24

Copy Access """""""'"
Divide """""""""'"
Exclusive OR """"""""
Execute """"""""""
Extract Access """"""""
Insert Character """"""'"
Insert Characters under Mask ""'"
Insert Program Mask """"""
wad """""""""'"
wad Access Multiple """"""
wad Address """"""""
wad Address Extended , , , , , , , , , , ,
wad and Test """"""""
wad Complement """""'"
wad Halfword ,,',., , , ,
wad Multiple """"""""
wad Negative """"""""
wad Positive """"""""
Monitor Call "",""""""
Move
Move Inverse """"""""
Move Long, , , , , , , , , , , , , , , , , ,
Move Numerics """"""'"
Move with Offset """""""
Move Zones """""""'"
Multiply """"""""'"
Multiply Halfword ,""""""
OR """""""""""
Pack """""""""""
Set Access """""""""
Set Program Mask , , , , , , , , , , , , , ,
Shlft Left Double """""""
Shlft Left Double wgical ",.,""
Shift Left Single """"""'"
Shlft Left Single Logical ""'".,'
Shlft Right Double """""'"
Shlft Right Double wgical " , , , , , , ,
Shift Right Single ,.,.,......,.,
Shlft Right Single Logical "",.,"
Store """""""""'"
Store Access Multiple "', ... ,.,.,

"'" Store Character,.,.,...".
'Store Characters under Mask "',.,'

Store Clock , , , , , , , , , , , , , , , . . ,
Store Halfword ..,"" , , , , , , , , ,
Store Multiple """"""""
Subtract """',""""""
Subtract Halfword """""""
Subtract Logical """"""'"
Supervisor Call , , , , , , , , , , , , , , , ,
Test and Set """""""',.
Test under Mask "" , , , , , , , , , , ,
Translate "',.,"""""'"
Translate and Test ",.,"""'"
Unpack """,.".,", ... ,'

7-24
7-25
7-25
7-26
7-27
7-27
7-27
7-28
7-28
7-28
7-29
7-29
7-30
7-30
7-30
7-31
7-31
7-31
7-32
7-32
7-33
7-33
7-37
7-37
7-38
7-39
7-39
7-40
7-40
7-41
7-41
7-42
7-42
7-43
7-43
7-43
7-44
7-44
7-45
7-45
7-45
7-46
7-46
7-46
7-47
7-47
7-48
7-48
7-48
7-49
7-49
7-50
7-50
7-51
7-52

Update Tree 7-52

Chapter 8. Decimal Instructions ,.,",' 8-1
Decimal-Number Formats . , , .. , . , .. , 8-1

Zoned Format ."..,....".,., 8-1
Packed Format ..,.......,',.. 8-1
Decimal Codes .,....,.".".,. 8-2

Decimal Operations """""',., 8-2
Decimal-Arithmetic Instructions ,."., 8-2
Editing Instructions """""'" 8-3
Execution of Decimal Instructions 8-3
Other Instructions for Decimal Operands 8-3

Instructions """",.".,',.,. 8-3
Add Decimal """""""',. 8-5
Compare Decimal ,......... 8-5
Divide Decimal .".,........,. 8-6
Edit ,.......... 8-6
Edit and Mark,...,.,.. 8-10
Multiply Decimal,..,.. 8-10
Shift and Round Decimal ..,...... 8-11
Subtract Decimal"....... 8-12
Zero and Add'.,..,... 8-12

Chapter 9. Floating-Point Instructions 9-1
Floating-Point Number Representation 9-1
Normalization , .. ,.,.... 9-2
Floating-Point-Data Format ,., , 9-2
Instructions ,,"""',""",.. 9-4

Add Normalized """"""',. 9-7
Add Unnormalized ,.,""'.,'.. 9-8
Compare "',...,',..."..., 9-9
Divide ,.".,"',.," ... ,... 9-9
Halve ... ".,."., .. ,.,"" 9-11
wad ,.,"", .. ".,',.,'" 9-12
wad and Test ",..,"",.,.,. 9-12
wad Complement ... ,'.,.".,. 9-12
Load Negative ,.",,""',.,' 9-13
Load Positive ..,..,',..,',.,' 9-13
wad Rounded "..,.,..."..., 9-14
Multiply ",.,............., 9-14
Store , ,",.,"',., 9-16
Subtract Normalized .,""',",. 9-16
Subtract Unnormalized ,..,""'" 9-17

Chapter 10. Control Instructions ""'" 10-1
Branch and Stack "",.,',.,',. 1 0-5
Diagnose .,.,',.,.,.,""',. 1 0-7
Extract Primary ASN .,""",.,' 1 0-7
Extract Secondary ASN "',.,",. 10-8
Extract Stacked Registers "',.,.," 1 0-8
Extract Stacked State ","""" 1 0-1 0
Insert Address Space Control """ 1 0-12
Insert PSW Key "",....,.," 1 0-12
Insert Storage Key Extended "",., 1 0-13
Insert Virtual Storage Key .".,'" 1 0-13
Invalidate Page Table Entry ",.,., 10-14

Contents xi

Load Address Space Parameters
Load Control
Load PSW
Load Real Address
Load Using Real Address
Modify Stacked State
Move to Primary
Move to Secondary
Move with Destination Key
Move with Key
Move with Source Key
Program Call
Program Return
Program Transfer
Purge ALB
Purge TLB
Reset Reference Bit Extended
Set Address Space Control
Set Clock
Set Clock Comparator
Set CPU Timer
Set Prefix
Set PSW Key from Address
Set Secondary ASN
Set Storage Key Extended
Set System Mask
Signal Processor
Store Clock Comparator
Store Control
Store CPU Address
Store CPU ID
Store CPU Timer
Store Prefix
Store Then AND System Mask
Store Then OR System Mask
Store Using Real Address
Test Access "
Test Block
Test Protection
Trace

Chapter 11. Machine-Check Handling
Machine-Check Detection
Correction of Machine Malfunctions

Error Checking and Correction
CPU Retry

Effects of CPU Retry
Checkpoint Synchronization
Handling of Machine Checks during

Checkpoint Synchronization
Checkpoint-Synchronization Operations
Checkpoint-Synchronization Action ..

Channel-Subsystem Recovery
Unit Deletion

Handling of Machine Checks

xii ESAj370 Principles of Operation

10-16
10-24
10-24
10-25
10-27
10-27
10-29
10-29
10-30
10-31
10-32
10-34
10-44
10-47
10-53
10-53
10-53
10-54
10-55
10-56
10-56
10-56
10-57
10-58
10-61
10-61
10-61
10-63
10-63
10-63
10-64
10-64
10-65
10-65
10-65
10-66
10-66
10-69
10-71
10-73

11-1
11-2
11-2
11-2
11-2
11-3
11-3

11-3
11-3
11-4
11-4
11-4
11-4

Validation 11-5
Invalid CBC in Storage 11-6

Programmed Validation of Storage . . . 11-6
Invalid CBC in Storage Keys 11-7
Invalid CBC in Registers 11-10

Check-Stop State 11-11
System Check Stop 11-11

Machine-Check Interruption 11-11
Exigent Conditions 11-11
Repressible Conditions 11-12
Interruption Action 11-12
Point of Interruption 11-14

Machine-Check-Interruption Code 11-14
Subclass 11-15

System Damage 11-15
Instruction-Processing Damage 11-16
System Recovery 11-16
Timing-Facility Damage 11-16
External Damage 11-16
Vector-Facility Failure 11-17
Degradation 11-17
Warning 11-17
Channel Report Pending 11-17
Service-Processor Damage 11-17
Channel-Subsystem Damage 11-17

Subclass Modifiers 11-18
Vector-Facility Source 11-18
Backed Up 11-18
Delayed Access Exception 11-18

Synchronous
Machine-Check -Interruption Conditions

Processing Backup
Processing Damage

Storage Errors
Storage Error Uncorrected
Storage Error Corrected
Storage-Key Error Uncorrected
Storage Degradation
Indirect Storage Error

Machine-Check Interruption-Code
Validity Bits

PSW -MWP Validity
PSW Mask and Key Validity
PSW Program-Mask and

Condition-Code Validity
PSW-Instruction-Address Validity ..
Failing-Storage-Address Validity
External-Damage-Code Validity
Floating-Point-Register Validity
General-Register Validity
Contro1-Register Validity
Storage Logical Validity
Access-Register Validity
CPU-Timer Validity
Clock-Comparator Validity

11-18
11-18
11-19
11-19
11-19
11-19
11-19
11-19
11-20

11-20
11-20
11-20

11-21
11-21
11-21
11-21
11-21
11-21
11-21
11-21
11-21
11-21
11-21

Machine-Check Extended Interruption
Infonnation

Register-Save Areas
External-Damage Code
Failing-Storage Address

Handling of Machine-Check Conditions
Floating Interruption Conditions

Floating Machine-Check -Interruption
Conditions

Floating I/O Interruptions
Machine-Check Masking

Channel-Report-Pending Subclass
Mask

Recovery Subclass Mask
Degradation Subclass Mask
External-Damage Subclass Mask .
Waming Subclass Mask

Machine-Check Logout
Summary of Machine-Check Masking .

Chapter 12. Operator Facilities
Manual Operation
Basic Operator Facilities .,.

Address-Compare Controls
Alter-and-Display Controls
Architectural-Mode Indicator
Architectural-Mode-Selection Controls .
Check-Stop Indicator .
IML Controls
Interrupt Key
Load Indicator
Load-Clear Key
Load-Nonnal Key
Load-Unit-Address Controls .
Manual Indicator
Power Controls
Rate Control
Restart Key
Start Key
Stop Key
Store-Status Key
System-Reset-Clear Key
System-Reset-Nonnal Key
Test Indicator
TO D-Clock Control
Wait Indicator

Multiprocessing Configurations

Chapter 13. 1/0 Overview
Comparison among ESA/370, 370-XA, and

System/370
The Channel Subsystem

Subchannels
Attachment of Input/Output Devices

Channel Paths
Control Units

11-22
11-22
11-22
11-22
11-23
11-23

11-23
11-23
11-23

11-24
11-24
11-24
11-24
11-24
11-24
11-24

12-1
12-1
12-1
12-1
12-2
12-2
12-2
12-2
12-2
12-3
12-3
12-3
12-3
12-3
12-3
12-3
12-3
12-4
12-4
12-4
12-4
12-4
12-5
12-5
12-5
12-5
12-5

13-1

13-1
13-2
13-2
13-3
13-3
13-4

I/O Devices
I/O Addressing

Channel-Path Identifier
Subchannel Number
Device Number
Device Identifier

Execution of I/O Operations
Start-Function Initiation
Path Management
Channel-Program Execution
Conclusion of I/O Operations
I/O Interruptions

Chapter 14. 1/0 Instructions
I/O-Instruction Fonnats ...
1/0-Instruction Execution

Serialization
Operand Access
Condition Code
Program Exceptions

Instructions
Clear Subchannel
Halt Subchannel
Modify Subchannel
Reset Channel Path
Resume Subchannel
Set Address Limit
Set Channel Monitor
Start Subchannel . . .
Store Channel Path Status
Store Channel Report Word
Store Subchannel
Test Pending Interruption
Test Subchannel

Chapter 15. Basic 1/0 Functions
Control of Basic I/O Functions

Subchannel-Information Block
Path-Management-Control Word
Subchannel-Status Word
Model-Dependent Area
Summary of Modifiable Fields

Channel-Path Allegiance
Working Allegiance
Active Allegiance
Dedicated Allegiance
Channel-Path Availability
Control-Unit Type

Clear Function
Clear-Function Path Management
Clear-Function Subchannel Modification
Clear-Function Signaling and Completion

Halt Function
Halt-Function Path Management
Halt-Function Signaling and Completion

13-4
13-5
13-5
13-5
13-5
13-5
13-6
13-6
13-7
13-7
13-8
13-9

14-1
14-1
14-1
14-1
14-1
14-2
14-2
14-2
14-4
14-4
14-6
14-7
14-8

14-10
14-10
14-12
14-14
14-14
14-15
14-16
14-17

15-1
15-1
15-1
15-2
15-7
15-7
15-7

15-10
15-11
15-11
15-11
15-12
15-12
15-13
15-13
15-13
15-14
15-14
15-15
15-15

Contents xiii

Start Function and Resume Function ... 15-17
Start-Function and Resume-Function

Path Management
Execution of I/O Operations

Blocking of Data
Operation-Request Block
Channel-Command Wprd
Command Code:....
Designation of Storage Area
Chaining

Data Chaining
Command Chaining

Skipping'
Program -Controlled Interruption
CCW Indirect Data Addressing
Suspension of Channel-Program

Execution
Commands

Write
Read
Read Backward
Control
Sense
Sense ID
Transfer in Channel

Command Retry
Concluding I/O Operations During

Initiation
Immediate Conclusion of I/O Operations .
Concluding I/O Operations During Data

Transfer
Channel-Path-Reset Function

Channel-Path -Reset-Function Signaling
Channel-Path-Reset

Function-Completion Signaling

15-18
15-19
15-21
15-21
15-23
15-24
15-25
15-26
15-28
15-29
15-30
15-30
15-31

15-32
15-34
15-35
15-35
15-36
15-36
15-37
15-39
15-40
15-41

15-41
15-42

15-42
15-43
15-43

15-44

Chapter 16. 1/0 Interruptions 16-1
Interruption Conditions 16-2

Intermediate Interruption Condition 16-4
Primary Interruption Condition 16-4
Secondary Interruption Condition 16-4
Alert Interruption Condition 16-4

Priority of Interruptions 16-5
Interruption Action 16-5
Interruption-Response Block 16-6
Subchannel-Status Word 16-6

Subchannel Key 16-8
Suspend Control (S) 16-8
Extended-Status-Word Format (L) 16-8
Deferred Condition Code (CC) 16-8
Format (F) 16-10
Prefetch (P) 16-11
Initial-Status-Interruption Control (I) 16-11
Address-Limit-Checking Control (A) 16-11
Suppress-Suspended Interruption (U) 16-11

Subchannel-Control Field 16-11

xiv ESA/370 Principles of Operation

Zero Condition Code (Z)
Extended Control (E)
Path Not Operational (N)
Function Control (FC)
Activity Control (AC)
Status Control (SC)

CCW -Address Field
Device-Status Field

Attention
Status Modifier
Control-Unit End
Busy ... "
Channel End
Device End
Unit Check
Unit Exception

Subchannel-Status Field
Program-Controlled Interruption .. .
Incorrect Length
Program Check
Protection Check
Channel-Data Check
Channel-Control Check
Interface-Control Check
Chaining Check.

Count Field
Extended-Status Word

Extended-Status Format 0
Subchannel Logout
Extended-Report Word
Failing-Storage Address

Extended-Status Format I
Extended-Status Format 2
Extended-Status Format 3

Extended-Control Word.

16-11
16-11
16-12
16-12
16-13
16-16
16-18
16-23
16-23
16-23
16-24
16-25
16-25
16-26
16-26
16-27
16-28
16-28
16-28
16-29
16-30
16-30
16-31
16-32
16-33
16-33
16-36
16-36
16-36
16-40
16-40
16-40
16-41
16-42
16-43

Chapter 17. 1/0 Support Functions 17-1
Channel-Subsystem Monitoring 17-1

Channel-Subsystem Timing 17-1
Channel-Subsystem Timer 17-2

Measurement-Block Update 17-2
Measurement Block 17-2
Time-Interval-Measurement Accuracy 17-4

Device-Connect-Time Measurement 17-5
Signals and Resets 17-5

Signals 17-5
Halt Signal 17 -5
Clear Signal 17-5
Reset Signal 17-6

Resets 17-6
Channel-Path Reset 17-6
I/O-System Reset 17-6

Externally Initiated Functions 17-10
Initial Program Loading 17-10
Reconfiguration of the I/O System 17-12

Status Verification 17 -12
Address-Limit Checking 17 -12
Configuration Alert 17 -13
Incorrect-Length-Indication Suppression 17 -13
Channel-Subsystem Recovery 17-13

Channel Report 17-14
Channel-Report Word 17-15

Appendix A. Number Representation and
Instruction-Use Examples A-I

Number Representation A -2
Binary Integers A-2

Signed Binary Integers ... ,. A -2
Unsigned Binary Integers A-4

Decimal Integers A-5
Floating-Point Numbers A-5
Conversion Example A-7

Instruction-Use Examples A-7
Machine Format A-7
Assembler-Language Format A-7

Addressing Mode in Examples A-8
General Instructions A -8

Add Halfword (AH) A-8
AND (N, NC, NI, NR) A-8

NI Example A-8
Linkage Instructions (BAL, BALR, BAS,

BASR, BASSM, BSM) A-8
Other BALR and BASR Examples A-10

Branch and Stack (BAKR) ... ~ A-10
BAKR Example 1 A-ll
BAKR Example 2 A-ll
BAKR Example 3 A-12

Branch on Condition (BC, BCR) A-12
Branch on Count (BCT, BCTR) A-12
Branch on Index High (BXH) A -13

BXH Example 1 A-13
BXH Example 2 A-13

Branch on Index Low or Equal (BXLE) A-14
BXLE Example 1 A -14
BXLE Example 2 A-14

Compare Halfword (CH) A-15
Compare Logical (CL, CLC, CLI, CLR) A-15

CLC Example A -15
CLI Example A -16
CLR Example A-16

Compare Logical Characters under Mask
(CLM) A-16

Compare Logical Long (CLCL) A-17
Convert to Binary (CVB) A-18
Convert to Decimal (CVD) A-18
Divide (D, DR) A-19
Exclusive OR (X, XC, XI, XR) A-19

XC Example A-19
XI Example A-20

Execute (EX) A-21

Insert Characters under Mask (lCM)
Load (L, LR)
Load Address (LA)
Load Halfword (LH)
Move (MVC, MVI)

MVC Example
MVI Example

Move Inverse (MVCIN)
Move Long (MVCL)
Move Numerics (MVN)
Move with Offset (MVO)
Move Zones (MVZ)
Multiply (M, MR)
Multiply Halfword (MH)
OR (0, OC, 01, OR)

01 Example
Pack (PACK)
Shift Left Double (SLDA)
Shift Left Single (SLA)
Store Characters under Mask (STCM) .
Store Multiple (STM)
Test under Mask (TM)
Translate (TR)
Translate and Test (TR T)
Unpack (UNPK)

Decimal Instructions
Add Decimal (AP)
Compare Decimal (CP)
Divide Decimal (DP)
Edit (ED)
Edit and Mark (EDMK)
Multiply Decimal (MP)
Shift and Round Decimal (SRP)

Decimal Left Shift
Decimal Right Shift
Decimal Right Shift and Round
Multiplying by a Variable Power of 10

Zero and Add (ZAP)
Floating-Point Instructions

Add Normalized (AD, ADR, AE, AER,
AXR)

Add Unnormalized (AU, AUR, AW,
AWR)

Compare (CD, CDR, CE, CER)
Divide (DO, DDR, DE, DER)
Halve (HDR, HER)
Multiply (MD, MDR, ME, MER, MXD,

MXDR, MXR)
Floating-Point-Number Conversion

Fixed Point to Floating Point
Floating Point to Fixed Point

Multiprogramming and Multiprocessing
Examples

Example of a Program Failure Using OR
ItrUllediate

A-21
A-22
A-22
A-23
A-23
A-23
A-24
A-24
A-25
A-25
A-26
A-26
A-27
A-27
A-28
A-28
A-28
A-28
A-29
A-29
A-30
A-30
A-30
A-31
A-33
A-33
A-33
A-33
A-34
A-34
A-35
A-36
A-36
A-36
A-37
A-37
A-37
A-38
A-38

A-38

A-39
A-39
A-40
A-40

A-40
A-41
A-41
A-41

A-42

A-42

Contents XV

Conditional Swapping Instructions (CS,
CDS)

Setting a Single Bit
Updating Counters

Bypassing Post and Wait
Bypass Post Routine
Bypass Wait Routine

Lock/Unlock
Lock/Unlock with LIFO Queuing for

Contentions
Lock/Unlock with FIFO Queuing for

Contentions
Free-Pool Manipulation

Appendix B. I.,ists of Instructions

Appendix C. Condition-Code Settings ...

Appendix D. Comparison Between 370-XA
and ESA/370

New Facilities in ESA/370 . . .
Access Registers ...
Home Address Space
Linkage Stack
Load and Store Using Real Address
Move with Source or Destination Key ..
Private Space

Comparison of Facilities
Summary of Changes

New Instructions Provided
Comparison of PSW Formats .. .
New Control-Register Assignments ...
New Assigned Storage Locations
New Exceptions
Change to Secondary-Space Mode
Changes to ASN-Second-Table Entry and

ASN Translation
Changes to Entry-Table Entry and

PC-Number Translation
Changes to PROGRAM CALL .. .
Changes to SET ADDRESS SPACE

CONTROL

xvi ESAj370 Principles of nl~:~ration

A-43
A-43
A-44
A-44
A-44
A-4S
A-4S

A-4S

A-46
A-47

B-1

C-I

D-I
D-I
D-I
D-I
D-I
D-2
D-2
D-2
D-2
D-2
D-2
D-3
D-3
D-3
D-3
D-4

D-4

D-4
D-4

D-4

Effects in New Translation Modes
Effects on Interlocks for Virtual-Storage

References
Effect on INSERT ADDRESS SPACE

CONTROL
Effect on LOAD REAL ADDRESS .. .
Effect on TEST PENDING

INTERRUPTION
Effect on TEST PROTECTION

Appendix E. Comparison Between
System/370 and 370-XA

New Facilities'in 370-XA
Bimodal Addressing
31-Bit Logical Addressing
31-Bit Real and Absolute Addressing .. .
Page Protection
'rracing
Incorrect-Length -Indication' Suppression
Status Verification

Comparison of Facilities
Summary of Changes

Changes in Instructions Provided
Input/Output Comparison
Comparison of PSW Formats
Changes in Control-Register Assignments
Changes in Assigned Storage Locations
SIGNAL PROCESSOR Changes
Machine-Check Changes
Changes to Addressing Wraparound
Changes to LOAD REAL ADDRESS ..
Changes to 31-Bit Real Operand Addresses

Appendix F. Table of Powers of 2

Appendix G. Hexadecimal Tables

Appendix H. EBCDIC Chart . . .

Index

D-4

D-5

D-5
D-5

D-5
D-5

E-I
E-I
E-I
E-I
E-I
E-I
E-2
E-2
E-2
E-2
E-3
E-3
E-4
E-5
E-6
E-6
E-7
E-7
E-8
E-8
E-8

F-I

G-I

H-I

X-I

Chapter 1. Introduction

Highlights of ESA/370
Advanced Address-Space Facilities
The 370-XA Base

System Program
Compatibility

Compatibility among ESA/370 Systems

1-1
1-1
1-2
1-3
1-3
1-3

This publication provides, for reference purposes, a
detailed Enterprise Systems Architecture/370
(ESA/370) description.

The architecture of a system defmes its attributes as
seen by the programmer, that is, the conceptual
structure and functional behavior of the machine,
as distinct from the organization of the data flow,
the logical design, the physical design, and the per­
formance of any particular implementation.
Several dissimilar machine implementations may
conform to a single architecture. When the exe­
cution of a set of programs on different machine
implementations produces the results that are
dermed by a single architecture, the implementa­
tions are considered to be compatible for those pro­
grams.

Highlights of ESA/370
ESA/370 is the next step in the evolution from the
System/360 to the System/370 to the System/370
extended architecture (370-XA). ESA/370 includes all
of the facilities of 370-XA and offers major new facil­
ities. These new facilities add to the virtual storage
and 31-bit addressing of 370-XA by further
increasing the amount of apparent main storage
that is readily available for use.

ESA/370 allows the program to operate on data con­
currently and efficiently in the instruction address
space and other address spaces. ESA/370 also pro­
vides increased functions for transferring control
between programs, and it includes means for
improving the efficiency of the control program.

The new facilities of ESA/370 are referred to collec­
tively as the advanced address-space facilities.

A detailed comparison of the differences among
ESA/370, 370-XA, and System/370 appears in Appen­
dixes D and E.

Compatibility among ESA/370, 370-XA,
and System/ 3 70

Control-Program Compatibility
Problem-State Compatibility

Availability

Advanced Address-Space Facilities

1-4
1-4
1-4
1-4

The most significant characteristic of the ESA/370

advanced address-space facilities is the improved
capability, compared to that of 370-XA, to have pro­
grams and data reside in different address spaces.
In addition, data can be accessed in multiple
address spaces concurrently, which increases the
amount of data that can be processed concurrently;
and unprivileged instructions can be used to select
the address spaces to be accessed, which increases
the amount of data that can be processed without
control-program intervention.

The following is a summary of the new facilities of
ESA/370.

• Sixteen access registers permit the program to
have immediate access to storage operands in
up to 16 2G-byte address spaces, including the
address space in which the program resides. In
a dynamic-address-translation mode called
access-register mode, the instruction B field, or
for certain instructions the R field, designates
both a general register and an access register,
and the contents of the access register, along
with the contents of protected tables, specify
the operand address space to be accessed. By
changing the contents of the access registers,
the program, under the control of an authori­
zation mechanism, can have fast access to hun­
dreds of different operand address spaces.

Instructions are provided for changing between
the access-register mode and other translation
modes and for loading and storing the contents
of the access registers.

For address spaces not containing programs,
the number of possible address spaces is not
limited to 65,536, as it is in 370-XA.

• A linkage stack is used in a functionally
expanded mechanism for passing control

Chapter 1. Introduction 1-1

between programs in either the same or dif­
ferent address spaces. This mechanism makes
use also of the previously existing PROGRAM
CALL instruction, an extended entry-table entry,
and a new PROGRAM RETURN instruction.
The mechanism saves various elements of
status, including access-register and general­
register contents, during a calling linkage, pro­
vides for changing the current status during the
calling linkage, and restores the original status
during the returning linkage. A significant
benefit is that each program in a sequence of
calling and called programs can have degrees of
privilege and authority that are arbitrarily dif­
ferent from those of programs before or after it
in the sequence, including the authority to
access address spaces by means of access regis­
ters. ·The linkage stack can also be used to save
and restore access-register and general-register
contents during a branch-type linkage per­
formed by the new instruction BRANCH AND
STACK.

Instructions are provided for examining the
contents of the linkage stack, for changing
those contents in a limited way, and for testing
the authorization of a calling program.

• A translation mode called home-space mode
provides an efficient means for the control
program to obtain control in the address space,
called the home address space, in which the
principal control blocks for a dispatchable unit
(a task or process) are kept. The space-switch
event is extended to allow indication of a
transfer of control to or from the home address
space.

• The semiprivileged MOVE WITH SOURCE KEY
and MOVE WITH DESTINATION KEY instructions
allow bidirectional movement of data between
storage areas having different storage keys,
without the need to change the psw key.

• The privileged LOAD USING REAL ADDRESS
and STORE USING REAL ADDRESS instructions
allow the control program to access data in real
storage more efficiently. A program-event­
recording store-using-real-address event pro­
vides serviceability.

• The private-space facility provides a bit, the
private-space-controlbit, in the segment-table
designation. This bit, when one, causes the
address space dermed by the segment-table des­
ignation not to contain any common segments
and causes low-address protection and fetch-

1-2 ESA/370 Principles of Operation

protection override not to apply to the address
space.

In order to use access registers to access different
address spaces, the program must be coded to
manage the contents of the access registers. Pro­
grams containing the existing PROGRAM CALL
instruction can make use of the linkage stack
without any change to the programs, although effi­
ciency will be improved if existing saving and
restoring functions of the programs are eliminated.

The 370-XA Base

ESA/370 includes the complete set of facilities of
370-XA as its base. This section briefly outlines
most of the facilities that were added to System/370
to form 370-XA. The cPu-related facilities are as
follows.

• Bimodal addressing provides two modes of
operation: .a 24-bit addressing mode for the
execution of old programs and a 3 I-bit
addressing mode.

• 31-bit logical addressing extends the virtual
address space from the 16M bytes addressable
with 24-bit addresses to 2G bytes
(2,147,483,648 bytes).

• 31-bit real and absolute addressing provides
addressability for up to 2G bytes of main
storage.

• The 370-XA protection facilities include key­
controlled protection on only 4K-byte blocks,
page protection, and, as in System/370, low­
address protection for addresses below 512.
Fetch-protection override eliminates fetch pro­
tection for locations 0-2047.

• The tracing facility assists in the determination
of system problems by providing an ongoing
record in storage of significant events.

• The COMPARE AND FORM CODEWORD and
UPDATE TREE instructions facilitate sorting
applications.

The I/o-related differences between 370-XA and
System/370 result from the 370-XA channel sub­
system, which includes:

• Path-independent addressing of I/O devices,
which permits the initiation of I/O operations
without regard to which CPU is executing the
I/O instruction or how the I/O device is attached
to the channel subsystem. Any I/O interruption
can be handled by any CPU enabled for it.

• Path management, whereby the channel sub­
system determines which paths are available for
selection, chooses a path, and manages any
busy conditions encountered while attempting
to initiate I/0 processing with the associated
devices.

• Dynamic reconnection, which pennits any I/0
device using this capability to reconnect to any
available channel path to which it has access in
order to continue execution of a chain of com­
mands.

• Programmable interruption subclasses, which
pennit the programmed assignment of I/o-inter­
ruption requests from individual I/O devices to
anyone of eight maskable interruption queues.

• An additional CCW format for the direct use of
31-bit addresses in channel programs. The new
ccw format, called format 1, is provided in
addition to the System/370 ccw format, now
called format O.

• Address-limit checking, which provides an addi­
tional storage-protection facility to prevent data
access to storage locations above or below a
specified absolute address.

• Monitoring facilities, which can be invoked by
the program to cause the channel subsystem to
measure and accumulate key I/o-resource usage
parameters.

• Status-verification facility, which reports inap­
propriate combinations of device-status bits
presented by a device.

• A set of 13 I/O instructions, with associated
control blocks, which are provided for the
control of the channel subsystem.

The facilities appearing in System/370 but not pro­
vided in 370-XA are described in Appendix E.

System Program
ESA/370 is designed to be used with a control
program that coordinates the use of system
resources and executes all I/O instructions, handles
exceptional conditions, and supervises scheduling
and execution of multiple programs.

Compatibility

Compatibility among ESA/370
Systems

Although systems operating as dermed by ESA/370

may differ in implementation and physical capabili­
ties, logically they are upward and downward com­
patible. Compatibility provides for simplicity in
education, availability of system backup, and ease
in system growth. Specifically, any program
written for ESA/370 gives identical results on any
ESA/370 implementation, provided that the program:

1. Is not time-dependent.

2. Does not depend on system facilities (such as
storage capacity, I/O equipment, or optional

. facilities) being present when the facilities are
not included in the configuration.

3. Does not depend on system facilities being
absent when the facilities are included in the
configuration. For example, the program must
not depend on interruptions caused by the use
of operation codes or command. codes that are
not installed in some models. Also, it must not
use or depend on fields associated with
uninstalled facilities. For example, data should
not be placed in an area used by another model
for fixed-logout information. Similarly, the
program must not use or depend on unassigned
fields in machine formats (control registers,
instruction formats, etc.) that are not explicitly
made available for program use.

4. Does not depend on results or functions that
are defined to be unpredictable or model­
dependent or are identified as undefined. This
includes the requirement that the program
should not depend on the assignment of device
numbers and CPU addresses.

5. Does not depend on results or functions that
are dermed in the functional-characteristics
publication for a particular model to be devi­
ations from the architecture.

6. Takes into account any changes made to the
architecture that are identified as affecting com­
patibility.

Chapter 1. Introduction 1-3

Compatibility among ESA/370,
370-XA, and System/370

Control-Program Compatibility
Control programs written for 370-XA can be directly
transferred to systems operating as defmed by
FSA/370. Almost all of the new functions of FSA/370

are enabled only when a control-register bit
assigned only in FSA/370 is set to one. When this
bit is zero, the machine operates essentially as spec­
ified for 370-XA; the most significant exceptions are
(I) instructions that load and store the contents of
the access registers can be executed successfully,
and (2) certain previously unassigned real and
absolute storage locations below address 512 are
stored in during the store-status operation, certain
program interruptions, and the machine-check
interruption. When the new control-register bit is
zero, no unprivileged or semiprivileged instruction
can place the CPU in the access-register mode, and
so the access registers cannot be used to specify
address spaces.

Control programs written for System/ 3 70 cannot be
directly transferred to systems operating as defmed
by FSA/370. This is because in the 370-XA base of
FSA/370 the basic-control mode is not present and
the facilities for I/O and dynamic address translation
are changed. (See Appendixes D and E for a
detailed comparison among FSA/370, 370-XA, and
System/370.)

Problem-State Compatibility
A high degree of cOlnpatibility exists at the
problem-state level in going forward from 370-XA or
System/370 to FSA/370. Because the majority of a
user's applications are written for the problem state,
this problem-state compatibility is useful in many
installations.

A problem-state program written for 370-XA or
System/370 operates with FSA/370, provided that the
program:

1. Complies with the limitations described in the
section "Compatibility among ESA/370

Systems" in this chapter.

2. Is not dependent on control-program facilities
which are unavailable on the system.

3. Takes into account other changes made to the
System/370 architectural defmition that affect
compatibility between System/370 and the
370-XA base of FSA/370. These changes are
described in Appendix E.

1-4 ESA/370 Principles of Operation

Programming Notes:

1. This publication assigns meanings to various
operation codes, to bit positions in instructions,
channel-command words, registers, and table
entries, and· to fixed locations in the low 512
bytes of storage. Unless specifically noted, the
remaining operation codes, bit positions, and
low-storage locations are reserved for future
assignment to new facilities and other exten­
sions of the architecture.

To ensure that existing programs operate if and
when such new facilities are installed, programs
should not depend on an indication of an
exception as a result of invalid values that are
. currently defmed as being checked. If a value
must be placed in unassigned positions that are
not checked, the program should enter zeros.
When the machine provides a code or field, the
program should take into account that new
codes and bits may be assigned in the future.
The program should not use unassigned low­
storage locations for keeping information since
these locations may be assigned in the future in
such a way that the machine causes the con­
tents of the locations to be changed.

2. If a control program is used that does not
support the use of access registers, a problem­
state program under this control program still
is able to load and store the contents of the
access registers, and it might do so simply to
use the access registers for data storage instead
of for addressing. However, the use of access
registers in such circumstances may be unsuc­
cessful because the unsupporting control
program does not save and restore the contents
of the access registers when switching between
dispatchable units. Furthermore, the use of
access registers in such circumstances may con­
stitute a loss of security because the contents of
access registers loaded by one dispatchable unit
will be visible to other dispatchable units. To
avoid the problems referred to here, a program
using access registers must be executed only in
a system with a control program that properly
supports the use of access registers.

c Availability
A vailability is the capability of a system to accept
and successfully process an individual job. Systems
operating in accordance with FSA/370 permit sub­
stantial availability by (1) allowing a large number
and broad range of jobs to be processed concur-

rently, thus making the system readily accessible to
any particular job, and (2) limiting the effect of an
error and identifying more precisely its cause, with
the result that the number of jobs affected by errors
is minimized and the correction of the errors facili­
tated.

Several design aspects make this possible.

• A program is checked for the correctness of
instructions and data as the program is exe­
cuted, and program errors are indicated sepa­
rate from equipment errors. Such checking and
reporting assists in locating failures and iso­
lating effects.

• The protection facilities, in conjunction with
dynamic address translation and the separation
of programs and data in different address
spaces, permit the protection of the contents of
storage from destruction or misuse caused by
erroneous or unauthorized storing or fetching
by a program. This provides increased security
for the user, thus permitting applications with
different security requirements to be processed
concurrently with other applications.

• Dynamic address translation allows isolation of
one application from another, still permitting
them to share common resources. Also, it
permits the implementation of virtual
machines, which may be used in the design and
testing of new versions of operating systems
along with the concurrent processing of appli­
cation programs. Additionally, it provides for
the concurrent operation of incompatible oper­
ating systems.

• The use of access registers to have programs
and data and also different collections of data

reside in different address spaces further reduces
the likelihood that a store using an incorrect
address will produce either erroneous results or
a system-wide failure.

• Multiprocessing and the channel subsystem
permit better use of storage and processing
capabilities, more direct communication
between cpus, and duplication of resources,
thus aiding in the continuation of system oper­
ation in the event of machine failures.

• MONITOR CALL, program-event recording, and
the timing facilities permit the testing and
debugging of programs without manual inter­
vention and with little effect on the concurrent
processing of other programs.

• On most models, error checking and correction
(ECC) in main storage, CPU retry, and
command retry provide for circumventing inter­
mittent equipment malfunctions, thus reducing
the number of equipment failures.

• An enhanced machine-cheek-handling mech­
anism provides model-independent fault iso­
lation, which reduces the number of programs
impacted by uncorrected errors. Additionally,
it provides model-independent recording of
machine-status information. This leads to
greater machine-check -handling compatibility
between models and improves the capability for
loading and operating a program on a different
model when a system failure occurs.

• A small number of manual controls are
required for basic system operation, permitting
most operator-system interaction to take place
via a unit operating as an 1/0 device and thus
reducing the possibility of operator errors.

Chapter 1. Introduction 1-5

Chapter 2. Organization

Main Storage
CPU

PSW
(Jeneral Ftegjsters
Floating-Point Ftegjsters
Control Regjsters

2-2
2-2
2-2
2-3
2-3
2-3

Logjcally, a system consists of main storage, one or
more central processing urnts (cPus), operator facil­
ities, a chartl1el subsystem, artd I/O devices. I/O

devices are attached to the channel subsystem
through control urnts. The connection between the
chal1l1el subsystem artd a control urnt is called a
chal1l1el path. The physical identity of these func­
tions may vary among implementations, called
"models." Figure 2-1 depicts the logjcal structure
of a two-cPU multiprocessing system.

Specific processors may differ in their internal char­
acteristics, the installed facilities, the number of
subchartl1els, chartl1el paths, artd control urnts
which cart be attached to the chartl1el subsystem,
the size of main storage, artd the representation of
the operator facilities. The differences in internal
characteristics are apparent to the observer only as
differences in machine performance.

A system viewed without regard to its I/O devices is
referred to as a configuration. All of the physical
equipment, whether in the configuration or not, is
referred to as the installation. Model-dependent
reconfiguration controls may be provided to chartge
the amount of main storage and the number of
CPUs artd chartl1el paths in the configuration. In
some instartces, the reconfiguration controls may be
used to partition a single configuration into mul­
tiple configurations. Each of the configurations so
reconfigured has the same structure, that is, main
storage, one or more cpus, and one or more sub­
chal1l1els artd chal1l1el paths in the chartl1el sub­
system. Each configuration is isolated in that the
main storage in one configuration is not directly
addressable by the CPUs and the chartl1el subsystem
of artother configuration. It is, however, possible
for one configuration to communicate with another
by means of shared I/O devices or a channel-to­
channel adapter. At arty one time, the storage,
CPus, subchannels, and channel paths connected

Access Ftegjsters
Vector Facility .

I/O
Chal1l1el Subsystem
I/O Devices artd Control Urnts

Operator Facilities

2-3
2-4
2-4
2-6
2-6
2-6

together in a system are referred to as being in the
configuration. Each CPU, sub channel , chal1l1el
path, artd main-storage location Cart be in only one
configuration at a time.

,- CPU

I
~ CPU Main Storage

'-- Channel
Subsystem

1111' "1
Channel Paths

I I
/ / ~------~------/

"-----,-----/

t--r--,--r-/
000

~-~-~------~---/

Figure 2-1. Logical Structure of an ESA/370 System
with Two CPUs

Chapter 2. Organization 2-1
~, 1"'---__ _

Main Storage
Main storage, which is directly addressable, pro­
vides for high-speed processing of data by the CPUs
and the channel subsystem. Both data and pro­
grams must be loaded into main storage from input
devices before they can be processed. The amount
of main storage available on the system depends on
the model, and, depending on the model, the
amount in the configuration may be under control
of model-dependent configuration controls. The
storage is available in multiples of 4K-byte blocks.
At any instant in time, the channel subsystem and
all CPUs in the configuration have access to the
same blocks of storage and refer to a particular
block of main-storage locations by using the same
absolute address.

Main storage may include a faster-access buffer
storage, sometimes called a cache. Each CPU may
have an associated cache. The effects, except on
performance, of the physical construction and the
use of distinct storage media are not observable by
the program.

CPU
The central processing unit (cpu) is the controlling
center of the system. It contains the sequencing
and processing facilities for instruction execution
interruption action, timing functions, initiai
program loading, and other machine-related func­
tions.

The physical implementation of the CPU may differ
arnong models, but the logical function remains the
same. The result of executing an instruction is the
same for each model, providing that the program
complies with the compatibility rules.

The CPU, in executing instructions, can process
binary integers and floating-point numbers of fixed
length, decimal integers of variable length, and
logical information of either fixed or variable
length. Processing may be in parallel or in series;
the width of the processing elements, the multi­
plicity of the shifting paths, and the degree of
simultaneity in performing the different types of
arithmetic differ from one CPU to another without
affecting the logical results.

Instructions which the CPU executes fall into five
classes: general, decimal, floating-point, control,
and I/O instructions. The general instructions are
used in performing binary-integer-arithmetic opera-

2-2 ESA/370 Principles of Operation

tions and logical, branching, and other nonarith­
metic operations. The decimal instructions operate
on data in the decimal format, and the floating­
point instructions on data in the floating-point
format. The privileged control instructions and the
I/O instructions can be executed only when the CPU
is in the supervisor state; the semiprivileged control
instructions can be executed in the problem state
subject to the appropriate authorization mech~
anisms.

To perform its functions, the CPU may use a
certain amount of internal storage. Although this
internal storage may use the same physical storage
medium as main storage, it is not considered part
of main storage and is not addressable by pro­
grams.

The CPU provides registers which are available to
programs but do not have addressable represent­
ations in main storage. They include the current
program-status word (psw), the general registers,
the floating-point registers, the control registers, the
access registers, the prefix register, and the registers
for the clock comparator and the CPU timer. Each
CPU in an installation provides access to a
time-of-day (TaD) clock, which may be local to
that CPU or shared with other CPus in the installa­
tion. The instruction operation code determines
which type of register is to be used in an operation.
See Figure 2-2 on page 2-5 for the format of those
registers.

PSW

The program-status word (psw) includes the
instruction address, condition code, and other infor­
mation used to control instruction sequencing and
to determine the state of the CPU. The active or
controlling psw is called the current psw. It
governs the program currently being executed.

The CPU has an interruption capability, which
permits the CPU to switch rapidly to another
program in response to exceptional conditions and
external stimuli. When an interruption occurs, the
cpu places the current psw in an assigned storage
location, called the old-psw location, for the partic­
ular class of interruption. The CPU fetches a new
psw from a second assigned storage location. This
new psw determines the next program to be exe­
cuted. When it has finished processing the inter­
ruption, the interrupting program may reload the
old psw, making it again the current psw, so that
the interrupted program can continue.

There are six classes of interruption: external, I/O,

machine check, program, restart, and supervisor
call. Each class has a distinct pair of old-psw and
new-psw locations permanently assigned in real
storage.

General Registers

Instructions may designate infonnation in one or
more of 16 general registers. The general registers
may be used as base-address registers and index reg­
isters in address arithmetic and as accumulators in
general arithmetic and logical operations. Each reg­
ister contains 32 bits. The general registers are
identified by the numbers 0-15 and are designated
by a four-bit R field in an instruction. Some
instructions provide for addressing multiple general
registers by having several R fields. For some
instructions, the use of a specific general register is
implied rather than explicitly designated by an R

field of the instruction.

For some operations, two adjacent general registers
are coupled, providing a 64-bit format. In these
operations, the program nlUst designate an even­
numbered register, which contains the leftmost
(high-order) 32 bits. The next higher-numbered
register contains the rightmost (low-order) 32 bits.

In addition to their use as accumulators in general
arithmetic and logical operations, 15 of the 16
general registers are also used as base-address and
index registers in address generation. In these
cases, the registers are designated by a four-bit B

field or X field in an instruction. A value of zero in
the B or X field specifies that no base or index is to
be applied, and, thus, general register 0 cannot be
designated as containing a base address or index.

Floating-Point Registers

Four floating-point registers are available for
floating-point operations. They are identified by
the numbers 0, 2, 4, and 6 and are designated by a
four-bit R field in floating-point instructions. Each
floating-point register is 64 bits long and can
contain either a short (32-bit) or a long (64-bit)
floating-point operand. A short operand occupies
the leftmost bit positions of a floating-point reg­
ister. The rightmost portion of the register is
ignored in operations that use short operands and
remains unchanged in operations that produce
short results. Two pairs of adjacent floating-point
registers can be. used for extended operands: regis­
ters 0 and 2, and registers 4 and 6. Each of these

pairs, identified by the numbers 0 and 4, provides
for a 128-bit format.

Control Registers

The CPU has 16 control registers, each having 32
bit positions. The bit positions in the registers are
assigned to particular facilities in the system, such
as program-event recording, and are used either to
specify that an operation can take place or to
furnish special information required by the facility.

The control registers are identified by the numbers
0-15 and are designated by four-bit R fields in the
instructions LOAD CONTROL and STORE CONTROL.

Multiple control registers can be addressed by these
instructions.

Access Registers

ESA/370 introduces 16 access registers numbered
0-15. An access register consists of 32 bit positions
containing an indirect specification (not described
here in detail) of a segtnent-table designation. A
segment-table designation is a parameter used by
the dynamic-address-translation (DAT) mechanism
to translate references to a corresponding address
space. When the CPU is in a mode called the
access-register mode (controlled by bits in the psw),
an instruction B field, used to specify a logical
address for a storage-operand reference, designates
an access register, and the segment-table desig­
nation specified by the access register is used by
OAT for the reference being made. For some
instructions, an R field is used instead of a B field.
Instructions are provided for loading and storing
the contents of the access registers and for moving
the contents of one access register to another.

Each of access registers 1-15 can designate any
address space, including the current instruction
space (the primary address space). Access register 0
always designates the current instruction space.
When one of access registers 1-15 is used to desig­
nate an address space, the CPU determines which
address space is designated by translating the con­
tents of the access register. When access register 0
is used to designate an address space, the CPU treats
the access register as designating the current instruc­
tion space, and it does not examine the actual con­
tents of the access register. Therefore, the 16 access
registers can designate, at anyone time, the current
instruction space and a maximum of 15 other
spaces.

Chapter 2. Qrganization 2-3

Vector Facility

Depending on the model, a vector facility may be
provided as an extension of the Cpu. When the
vector facility is provided on a CPU, it functions as
an integral part of that cpu. The functions of the
vector facility· and its registers are described in the
publication Enterprise Systems Architecture/370 and
System/370 Vector Operations, SA22-7125.

2-4 ESAj370 Principles of Operation

1/0
Input/output (I/O) operations involve the transfer
of information between main storage and an I/O
device. I/O devices and their control units attach to
the channel subsystem, which controls this data
transfer.

R Field Control Access General Floating-Point
and Registers Registers Registers Registers

Register
1+-32 bi ts 1 1+-32 bits"" 1 1+-32 bits"" 1 1~64 bf ts------' 1 Number

eaee a I I]
[I

eae1 1 I I] I

ea1e 2 I I
[I

I I eOll 3 I

elee 4 I I I [II
ele1 5 I I I I I
eue 6 I I

[I
eUl 7 I I I

10ea 8 I I
[I

1ee1 9 I I I
Note: The brackets

lela Ie I I
[I

indicate that the two
registers may be coupled
as a double-register

I I I J
pair, designated by

1911 11 specifying the lower-
numbered register in
the R field. For ex-

I I
[I

ample, the general-
uee 12 register pair 14 and

15 is designated by
111e binary in the R

I I I
field.

1191 13

I 1U9 14 I
[I

I I I lUI 15

Figure 2-2. Control, Access, General, and Floating-Point Registers

Chapter 2. Organization 2-5

Channel Subsystem

The channel subsystem directs the flow of informa­
tion between I/O devices and main storage. It
relieves CPus of the task of communicating directly
with I/O devices and permits data processing to
proceed concurrently with I/O processing. The
channel subsystem uses one or more channel paths
as the communication link in managing the flow of
infonnation to or from I/O devices. As part of I/O
processing, the channel subsystem also performs
the path-management function of testing for
channel-path availability, selecting an available
channel path, and initiating execution of the opera­
tion with the I/O device. Within the channel sub­
system are subchannels.

One subchannel is provided for and dedicated to
each I/O device accessible to the channel subsystem.
Each subchannel contains storage for information
concerning the associated I/O device and its attach­
ment to the channel subsystem. The subchannel
also provides storage for information concerning I/O
operations and other functions involving the associ­
ated I/O device. Information contained in the sub­
channel can be accessed by CPus using I/O
instructions as well as by the channel subsystem
and serves as the means of communication between
any CPU and the channel subsystem concerning the
associated I/O device. The actual number of sub­
channels provided depends on the model and the
configuration; the maximum number of subchan­
nels is 65,536.

I/O devices are attached through control units to the
channel subsystem via channel paths. Control
units may be attached to the channel subsystem via
more than one channel path, and an I/O device may
be attached to more than one control unit. In all,

2-6 ESAj370 Principles of Operation

an individual I/O device may be accessible to the
channel subsystem by as many as eight different
channel paths, depending on the model and the
configuration. The total number of channel paths
provided by a channel subsystem depends on the
model and the configuration; the maximum
number of channel paths is 256.

1/0 Devices and Control Units

I/O devices include such equipment as card readers
and punches, magnetic-tape units, direct-access
storage, displays, keyboards, printers, teleprocessing
devices, communications controllers, and sensor­
based equipment. Many I/O devices function with
an external medium, such as punched cards or
magnetic tape. Some I/O devices handle only elec­
trical signals, such as those found in sensor-based
networks. In either case, I/o-device operation is
regulated by a control unit. In all cases, the
control-unit function provides the logical and buf­
fering capabilities necessary to operate the associ­
ated I/0 device. From the programming point of
view, most control-unit functions merge with
I/o-device functions. The control-unit function
may be housed with the I/O device or in the CPU,
or a separate control unit may be used.

Operator Facilities
The operator facilities provide the functions neces­
sary for operator control of the machine. Associ­
ated with the operator facilities may be an
operator-console device, which may also be used as
an I/O device for communicating with the program.

The main functions provided by the operator facili­
ties include resetting, clearing, initial program
loading, start, stop, alter, and display.

Chapter 3. Storage

Storage Addressing
Information Formats
Integral Boundaries

Address Types and Formats
Address Types

Absolute Address
Real Address
Virtual Address
Primary Virtual Address
Secondary Virtual Address
AR -Specified Virtual Address
Home Virtual Address
Logical Address ..
Instruction Address
Effective Address

Address Size and Wraparound
Address Wraparound

Storage Key
Protection

Key-Controlled Protection
Fetch-Protection-Override Control

Page Protection
Low-Address Protection

Reference Recording
Change Recording
Prefixing
Address Spaces

Changing to Different Address Spaces
Address-Space Number

ASN Translation
ASN-Translation Controls

Control Register 14
Control Register 0

ASN-Translation Tables
ASN-First-Table Entries
ASN-Second-Table Entries

ASN-Translation Process ...
ASN -First-Table Lookup
ASN-Second-Table Lookup

3-2
3-2
3-3
3-3
3-3
3-4
3-4
3-4
3-4
3-4
3-4
3-4
3-4
3-5
3-5
3-5
3-5
3-7
3-8
3-8
3-9
3-9

3-10
3-10
3-11
3-11
3-13
3-13
3-13
3-14
3-15
3-15
3-15
3-15
3-15
3-16
3-17
3-18
3-19

This chapter discusses the representation of infor­
mation in main storage, as well as addressing, pro­
tection, and reference and change recording. The
aspects of addressing which are covered include the
format of addresses, the concept of address spaces,
the various types of addresses, and the manner in
which one type of address is translated to another
type of address. A list of permanently assigned
storage locations appears at the end of the chapter.

Recognition of Exceptions during AS N
Translation

ASN Authorization
ASN -Authorization Controls

Control Register 4
ASN-Second-Table Entry
Authority-Table Entries

ASN -Authorization Process
Authority-Table Lookup
Recognition of Exceptions during ASN

Authorization
Dynamic Address Translation

Translation Control
Translation Modes
Control Register 0
Control Register 1
Control Register 7
Control Register 13

Translation Tables . .
Segment-Table Entries
Page-Table Entries ..
Summary of Segment-Table and

Page-Table Sizes
Translation Process

Effective Segment-Table Designation
Inspection of Control Register 0
Segment-Table Lookup
Page-Table Lookup
Formation of the Real Address
Recognition of Exceptions during

Translation
Translation-Lookaside Buffer

TLB Structure
Formation of TLB Entries
Use of TLB Entries
Modification of Translation Tables

Address Summary
Addresses Translated
Handling of Addresses

Assigned Storage Locations

3-19
3-19
3-19
3-20
3-20
3-20
3-20
3-22

3-22
3-22
3-24
3-24
3-24
3-24
3-25
3-25
3-26
3-26
3-27

3-27
3-27
3-28
3-30
3-30
3-30
3-31

3-31
3-31
3-31
3-32
3-32
3-33
3-35
3-35
3-36
3-39

Main storage provides the system with directly
addressable fast-access storage of data. Both data
and programs must be loaded into main storage
(from input devices) before they can be processed.

Main storage may include one or more smaller
faster-access buffer storages, sometimes called
caches. A cache is usually physically associated

Chapter 3. Storage 3-1

with a CPU or an I/O processor. The effects, except
on performance, of the physical construction and
use of distinct storage media are not observable by
the program.

Fetching and storing of data by a CPU are not
affected by any concurrent channel-subsystem
activity or by a concurrent reference to the same
storage location by another CPU. When concurrent
requests to a main-storage location occur, access
normally is granted in a sequence that assigns
highest priority to references by the channel sub­
system, the priority being rotated among CPUs. If a
reference changes the contents of the location, any
subsequent.storage fetches obtain the new contents.

Main storage may be volatile or nonvolatile. If it is
volatile, the contents of main storage are not pre­
served when power is turned off. If it is nonvola­
tile, turning power off and then back on does not
affect the contents of main storage, provided all
CPUs are in the stopped state and no references are
made to main storage when power is being turned
off. In both types of main storage, the contents of
the storage key are not necessarily preserved when
the power for main storage is turned off.

Note: Because most references in this publication
apply to virtual storage, the abbreviated term
"storage" is often used in place of "virtual storage."
The term "storage" may also be used in place of
"main storage," "absolute storage," or "real
storage" when the meaning is clear. The terms
"main storage" and "absolute storage" are used to
describe storage which is addressable by means of
an absolute address. The tenus describe fast-access
storage, as opposed to auxiliary storage, such as
provided by direct-access storage devices. "Real
storage" is synonymous with "absolute storage"
except for the effects of prefixing.

Storage Addressing
Storage is viewed as a long horizontal string of bits.
For most operations, accesses to storage proceed in
a left-to-right sequence. The string of bits is subdi­
vided into units of eight bits. An eight-bit unit is
called a byte, which is the basic building block of
all information formats.

Each byte location in storage is identified by a
unique nonnegative integer, which is the address of
that byte location or, simply, the byte address.
Adjacent byte locations have consecutive addresses,
starting with 0 on the left and proceeding in a left-

3-2 ESAj370 Principles of Operation

to-right sequence. Addresses are either 24-bit or
31-bit unsigned binary integers and are described in
the section "Address Size and Wraparound" in this
chapter.

Information Formats

Information is transmitted between storage and a
CPU or the channel subsystem one byte, or a group
of bytes, at a time. Unless otherwise specified, a
group of bytes in storage is addressed by the left­
most byte of the group. The number of bytes in
the group is either implied or explicitly specified by
the operation to be performed. When used in a
CPU operation, a group of bytes is called a field.

Within each group of bytes, bits are numbered in a
left-to-right sequence. The leftmost bits are some­
times referred to as the "high-order" bits and the
rightmost bits as the "low-order" bits. Bit numbers
are not storage addresses, however. Only bytes can
be addressed. To operate on individual bits of a
byte in storage, it is necessary to access the entire
byte.

The bits in a byte are numbered 0 through 7, from
left to right.

The bits in an address are numbered 8 through 31
for 24-bit addresses and I through 31 for 31-bit
addresses. Within any other fixed-length format of
multiple bytes, the bits making up the format are
consecutively numbered starting from O.

For purposes of error detection, and in some
models for correction, one or more check bits may
be transmitted with each byte or with a group of
bytes. Such check bits are generated automatically
by the machine and cannot be directly controlled
by the program. References in this publication to
the length of data fields and registers exclude
mention of the associated check bits. All storage
capacities are expressed in number of bytes.

When the length of a storage-operand field is
implied by the operation code of an instruction, the
field is said to have a fixed length, which can be
one, two, four, or eight bytes. Larger fields may be
implied for some instructions.

When the length of a storage-operand field is not
implied but is stated explicitly, the field is said to
have a variable length. Variable-length operands
can vary in length by increments of one byte.

When infonnation is placed in storage, the contents
of only those byte locations are replaced that are
included in the designated field, even though the
width of the physical path to storage may be
greater than the length of the field being stored.

Integral Boundaries

Certain units of infonnation must be on an integral
boundary in storage. A boundary is called integral
for a unit of infonnation when its storage address is
a multiple of the length of the unit in bytes.
Special names are given to fields of two, four, and
eight bytes on an integral boundary. A halfword is
a group of two consecutive bytes on a two-byte
boundary and is the basic building block of
instructions. A word is a group of four consecutive
bytes on a four-byte boundary. A doubleword is a
group of eight consecutive bytes on an eight-byte
boundary. (See Figure 3-1.)

When storage addresses designate halfwords, words,
and doublewords, the binary representation of the
address contains one, two, or three rightmost zero
bits, respectively.

Instructions must be on two-byte integral bounda­
ries, and ccws, IDAWS, and the storage operands of
certain instructions must be on other integral
boundaries. The storage operands of most
instructions do not have boundary-alignment
requirements.

--.... Storage Addresses

Bytes
I ell I 2 I 3 I 4 I 5 I 6 I 7 I B I

Doublewords Ie: : : : : : : I B :

Figure 3-1. Integral Boundaries with Storage
Addresses

Programming Note: For fixed-field-length opera­
tions with field lengths that are a power of 2, signif­
icant perfonnance degradation is possible when
storage operands are not positioned at addresses
that are integral multiples of the operand length.
To improve perfonnance, frequently used storage
operands should be aligned on integral boundaries.

. Address Types and Formats

Address Types

For purposes of addressing main storage, three
basic types of addresses are recognized: absolute,
real, and virtual. The addresses are distinguished
on the basis of the transfonnations that are applied
to the address during a storage access. Address
translation converts virtual to real, and prefixing
converts real to absolute. In addition to the three
basic address types, additional types are defined
which are treated as one or another of the three
basic types, depending on the instruction and the
current mode.

Chapter 3. Storage 3-3

Absolute Address
An absolute address is the address assigned to a
main-storage location. An absolute address is used
for a storage access without any transformations
performed on it.

The channel subsystem and all CPus in the config­
uration refer to a shared main -storage location by
using the same absolute address. Available main
storage is usually assigned contiguous absolute
addresses starting at 0, and the addresses are always
assigned in complete 4K-byte blocks on integral
boundaries. An exception is recognized when an
attempt is made to use an absolute address in a
block which has not been assigned to physical
locations. On some models, storage­
reconfiguration controls may be provided which
permit the operator to change the correspondence
between absolute addresses and physical locations.
However, at anyone time, a physical location is
not associated with more than one absolute
address.

Storage consisting of byte locations sequenced
according to their absolute addresses is referred to
as absolute storage.

Real Address
A real address identifies a location in real storage.
When a real address is used for an access to main
storage, it is converted, by means of prefixing, to an
absolute address.

At any instant there is one real-address to. absolute­
address mapping for each CPU in the configuration.
When a real address is used by a CPU to access
main storage, it is converted to an absolute address
by prefixing. The particular transformation is
defined by the value in the prefix register for the
CPU.

Storage consisting of byte locations sequenced
according to their real addresses is referred to as
real storage.

Virtual Address
A virtual address identifies a location in virtual
storage. When a virtual address is used for an
access to main storage, it is translated by means of
dynamic address translation to a r~al address, which
is then further converted by prefixing to an abso­
lute address.

3-4 ESA/370 Principles of Operation

Primary Virtual Address
A primary virtual address is a virtual address which
is to be translated by means of the primary
segment-table designation. Logical addresses are
treated as primary virtual addresses when in the
primary-space mode. Instruction addresses are
treated as primary virtual addresses when in the
primary-space mode, secondary-space mode, or
access-register mode. The first-operand address of
MOVE TO PRIMARY and the second-operand address
of MOVE TO SECONDARY are always treated as
primary virtual addresses.

Secondary Virtual Address
A secondary virtual address is a virtual address
which is to be translated by means of the secondary
segment-table designation. Logical addresses are
treated as secondary virtual addresses when in the
secondary-space mode. The second-operand
address of MOVE TO PRIMARY and the frrst-operand
address of MOVE TO SECONDARY are always treated
as secondary virtual addresses.

AR-Specified Virtual Address
An AR-specified virtual address is a virtual address
which is to be translated by means of an access­
register-specified segment-table designation.
Logical addresses are treated as AR-specified
addresses when in the access-register mode.

Home Virtual Address
A home virtual address is a virtual address which is
to be translated by means of the home segment­
table designation. Logical addresses and instruction
addresses are treated as home virtual addresses
when in the home-space mode.

Logical Address
Except where otherwise specified, the storage­
operand addresses for most instructions are logical
addresses. Logical addresses are treated as real
addresses in the real mode, as primary virtual
addresses in the primary-space mode, as secondary
virtual addresses in the secondary-space mode, as
AR -specified virtual addresses in the access~register
mode, and as home virtual addresses in the home­
space mode. Some instructions have storage­
operand addresses or storage accesses associated
with the instruction which do not follow the rules
for logical addresses. In all such cases, the instruc­
tion defmition contains a defmition of the type of
address.

Instruction Address
Addresses used to fetch instructions from storage
are called instruction addresses. Instruction
addresses are treated as real addresses in the real
mode, as primary virtual addresses in the primary­
space mode, secondary-space mode, or access­
register mode, and as home virtual addresses in the
home-space mode. The instruction address in the
current psw and the target address of EXECUTE are
instruction addresses.

Effective Address
In some situations, it is convenient to use the term
"effective address." An effective address is the
address which results from address arithmetic,
before address translation, if any, is performed.
Address arithmetic is the addition of the base and
displacement or of the base, index, and displace­
ment.

Address Size and Wraparound

Two sizes of addresses are provided: 24-bit and
31-bit. A 24-bit address can accommodate a
maximum of 16,777,216 (16M) bytes; with a 3l-bit
address, 2,147,483,648 (2G) bytes of storage can be
addressed.

The bits of the address are numbered 8-31 and
1-31, respectively, corresponding to the numbering
of base-address and index bits in a general register:

24-bit Address

o 8 31

II 31-Bit Address

o 1 31

A 24-bit virtual address is expanded to 31 bits by
appending seven zeros on the left before it is trans­
lated by means of the "DAT process, and a 24-bit
real address is similarly expanded to 31 bits before
it is transformed by prefixing. A 24-bit absolute
address is expanded to 31 bits before main storage
is accessed. Thus, the 24-bit address always desig­
nates the frrst 16M-byte block of the 2G-byte
storage addressable by a 3l-bit address.

Unless specifically stated to the contrary, the fol­
lowing defmition applies in this publication: when­
ever the machine generates and provides to the
program an address, a 31-bit value imbedded in a
32-bit field is made available (placed in storage or

loaded into a register). For "24-bit addresses, bits
0-7 are set to zeros, and the address appears in bit
positions 8-31; for 31-bit addresses, bit 0 is set to
zero, and the address appears in bit positions 1-31.

The size of effective addresses is controlled by bit
32 of the PSW, the addressing-mode bit. When the
bit is zero, the CPU is in the 24-bit addressing
mode, and 24-bit operand and instruction effective
addresses are specified. When the bit is one, the
CPU is in the 31-bit addressing mode, and 31-bit
operand and instruction effective addresses are spec­
ified (see the section "Address Generation" in
Chapter 5, "Program Execution").

The size of the real addresses yielded by the
AS N -translation, pc-number-translation,
ASN-authorization, and tracing processes, and the
real (or absolute) addresses yielded by the DAT
process, is always 31 bits.

The size of the data address in a ccw is under
control of the format-control bit in the operation­
request block designated by a START SUBCHANNEL
instruction. The CCws with 24-bit and 31-bit
addresses are called format-O and format-l ccws,
respectively. Format-O and format-l CCWs are
described in Chapter 15, "Basic I/O Functions."

Address Wraparound
The CPU performs address generation when it
forms an operand or instruction address or when it
generates the address of a table entry from the
appropriate table origin and index. It also performs
address generation when it increments an address to
access successive bytes of a field. Similarly, the
channel subsystem performs address generation
when it increments an address (1) to fetch a CCW,
(2) to fetch an IDAW, (3) to transfer data, or (4) to
compute the address of an 110 measurement block.

When, during the generation of the address, an
address is obtained that exceeds the value allowed
for the address size (224 - 1 or 231

- 1), one of the
following two actions is taken:

1. The carry out of the high-order bit position of
the address is ignored. This handling of an
address of excessive size is called wraparound.

2. An interruption condition is recognized.

The effect of wraparound is to make an address
space appear circular; that is, address 0 appears to
follow the maximum allowable address. Address
arithmetic and wraparound occur before transfor­
mation, if any, of the address by DAT or prefixing.

Chapter 3. Storage 3-5

Addresses generated by the CPU always wrap,
except for addresses generated for OAT-table entries.
For DAT-table entries, it is unpredictable whether
the address wraps or whether an addressing excep­
tion is recognized. Wraparound also occurs when
the linkage-stack-entry address in control register 15
is decremented below 0 by PROGRAM RETURN.

Address Generation for

Instructions and operands when AM is zero

Successive bytes of instructions and operands
when AM is zero

Instructions and operands when AM is one

Successive bytes of instructions and operands
when AM is one

OAT-table entries when used for implicit
translation

OAT-table entries when used for LRA

ASN-first-table, ASN-second-table, authoriza­
tion-table, linkage-table, entry-table, and
access-list entries, and dispatchable-unit
and primary-space access-list designations

Linkage-stack entry

I/O measurement block

For a channel program with format-0 CCWs:

Successive CCWs

Success i ve IDAWs

Successive bytes of I/O data (without IDAWs)

Successive bytes of I/O data (with IDAWs)

Figure 3-2 (Part 1 of 2). Address Wraparound

3-6 ESA/370 Principles of Operation

For channel-program execution, when the gener­
ated address exceeds the value for the address size
(or, for the read-backward command is decre­
mented below 0), an 1/0 program-check condition
is recognized.

Figure 3-2 identifies what limit values apply to the
generation of different addresses and how addresses
are handled when they exceed the allowed value.

Handling When
Address Address Would

Type Wrap

L,I,R,V W24

I,L,Vl W24

L,I,R,V W31

I,L,Vl W31

A or R2 X31

A or R2 X31

R W31

v W31

A P31

A P24

A P24

A P24

A P31

Address Generation for

For a channel program with format-l CCWs:

Successive CCWs

Successive IDAWs

Successive bytes of I/O data (without IDAWs)

Successive bytes of I/O data (with IDAWs)

Explanation:

Handling When
Address Address Would

Type Wrap

A P31

A P31

A P31

A P31

1 Real addresses do not apply in this case since the instructions
which designate operands by means of real addresses cannot des­
ignate operands that cross boundaries 224 and 231.

2 It is unpredictable whether the address is absolute or real.
A Absolute address.
AM Addressing-mode bit in the PSW.
I Instruction address.
L Logical address.
P24 An I/O program-check condition is recognized when the address

exceeds 224 - 1 or is decremented below zero.
P31 An I/O program-check condition is recognized when the address

exceeds 231 - 1 or is decremented below zero.
R Real address.
V Virtual address.
W24 Wrap to location 0 after location 224 - 1 and vice versa.
W31 Wrap to location 0 after location 231 - 1 and vice versa.
X31 When the address exceeds 231 - 1, it is unpredictable whether

the address wraps to location 0 after location 231 - 1 or
whether an addressing exception is recognized.

Figure 3-2 (Part 2 of 2). Address Wraparound

Storage Key
A storage key is associated with each 4K-byte
block of storage that is available in the configura­
tion. The storage key has the following format:

o 4 6

The bit positions in the storage key are allocated as
follows:

Access-Control Bits (ACC): If a reference is
subject to key-controlled protection, the four
access-control bits, bits 0-3, are matched with the
four-bit access key when information is stored, or

when information is fetched from a location that is
protected against fetching.

Fetch-Protection Bit (F): If a reference is subject
to key-controlled protection, the fetch-protection
bit, bit 4, controls whether key-controlled pro­
tection applies to fetch-type references: a zero indi­
cates that only store-type references are monitored
and that fetching with any access key is permitted;
a one indicates that key -controlled protection
applies to both fetching and storing. No distinction
is made between the fetching of instructions and of
operands.

Reference Bit (R): The reference bit, bit 5,
normally is set to one each time a location in the
corresponding storage block is referred to either for
storing or for fetching of information.

Chapter 3. Storage 3-7

Change Bit (C): The change bit, bit 6, is set to
one each time information is stored at a location in
the corresponding storage block.

Storage keys are not part of addressable storage.
The entire storage key is set by SET STORAGE KEY

EXTENDED and inspected by INSERT STORAGE KEY

EXTENDED. Additionally, the instruction RESET

REFERENCE BIT EXTENDED provides a means of
inspecting the reference and change bits and of
setting the reference bit to zero. Bits 0-4 of the
storage key are inspected by the INSERT VIRTUAL

STORAGE KEY instruction. The contents of the
storage key are unpredictable during and after the
execution of the usability test of the TEST BLOCK

instruction.

Protection
Three protection facilities are provided to protect
the contents of main storage from destruction or
misuse by programs that contain errors or are
unauthorized: key-controlled protection, page pro­
tection, and low-address protection. The pro­
tection facilities are applied independently; access to
main storage is only permitted when none of the
facilities prohibit the access.

Key -controlled protection affords protection against
improper storing or against both improper storing
and fetching, but not against improper fetching
alone.

Key-Controlled Protection

When key-controlled protection applies to a storage
access, a store is permitted only when the storage
key matches the access key associated with the
request for storage access; a fetch is permitted when
the keys match or when the fetch-protection bit of
the storage key is zero.

The keys are said to match when the four access­
control bits of the storage key are equal to the
access key, or when the access key is zero.

The protection action is summarized in Figure 3-3.

3-8 ESA/370 Principles of Operation

Conditions Is Access to
1---------.------1 Storage Permitted?
Fetch-Protection

Bit of
Storage Key Key Relation Fetch Store

e Match Yes Yes
e Mismatch Yes No
1 Match Yes Yes
1 Mismatch No No

Explanation:

Match The four access-control bits of the
storage key are equal to the access
key, or the access key is zero.

Yes Access is permitted.

No Access is not permitted. On fetching,
the information is not made available
to the program; on storing, the con­
tents of the storage location are not
changed.

Figure 3-3. Summary of Protection Action

When the access to storage is initiated by the CPU

and key-controlled protection applies, the psw key
is the access key, except that, for the second
operand of MOVE WITH KEY and MOVE TO

PRIMARY and the frrst operand of MOVE TO SEC­

ONDARY, the access key is specified in a general
register. The psw key occupies bit positions 8-11
of the current psw.

When the access to storage is for the purpose of
channel-program execution, the subchannel key
associated with that channel program is the access
key. The subchannel key for a channel program is
specified in the operation-request block (ORB).

When, for purposes of channel-subsystem moni­
toring, an access to the measurement block is
made, the measurement-block key is the access key.
The measurement-block key is specified by the SET

CHANNEL MONITOR instruction.

When a CPU access is prohibited because of key­
controlled protection, the unit of operation is sup­
pressed or the instruction is terminated, and a
program interruption for a protection exception
takes place. When a channel-program access is
prohibited, the start function is ended, and the
protection-check condition is indicated in the asso­
ciated interruption-response block (IRB). When a
measurement-block access is prohibited, the I/O

measurement-block protection-check condition is
indicated.

When a store access is prohibited because of key­
controlled protection, the contents of the protected
location remain unchanged. When a fetch access is
prohibited, the protected information is not loaded
into a register, moved to another storage location,
or provided to an I/O device. For a prohibited
instruction fetch, the instruction is suppressed, and
an arbitrary instruction-length code is indicated.

Key-controlled protection is independent of
whether the CPU is in the problem or the super­
visor state and, except as described below, does not
depend on the type of CPU instruction or channel­
command word being executed.

Except where otherwise specified, all accesses to
storage locations that are explicitly designated by
the program and that are used by the CPU to store
or fetch information are subject to key-controlled
protection.

Accesses to the second operand of TEST BLOCK are
not subject to key -controlled protection.

All storage accesses by the channel subsystem to
access the I/O measurement block, or by a channel
program to fetch a ccw or IDAW or to access a
data area designated during the execution of a ccw,
are subject to key-controlled protection. However,
if a CCW, an IDAW, or output data is prefetched, a
protection check is not indicated until the ccw or
IDA W is due to take control or until the data is due
to be written.

Key-controlled protection is not applied to accesses
that are implicitly made for any of such sequences
as:

• An interruption
• CPU logout
• Fetching of table entries for dynamic-address

translation, pc-number translation, ASN trans­
lation, or ASN authorization

• Tracing
• A store-status function
• Storing in real locations 184-191 when TEST

PENDING INTERRUPTION has an operand
address of zero

• Initial program loading

Similarly, protection does not apply to accesses ini­
tiated via the operator facilities for altering or dis­
playing information. However, when the program
explicitly designates these locations, they are subject
to protection.

Fetch-Protection-Override Control
Bit 6 of control register 0 is the fetch-protection­
override control. When the bit is one, fetch pro­
tection is ignored for locations at effective addresses
0-2047. However, fetch protection is not ignored if
the effective address is subject to dynamic address
translation and the private-space control, bit 23, is
one in the segment-table designation used in the
translation. The function of the private-space
control is available if the private-space facility is
installed.

Fetch-protection override applies to instruction
fetch and to the fetch accesses of instructions whose
operand addresses are logical, virtual, or real. It
does not apply to fetch accesses made for the
purpose of channel-program execution or for the
purpose of channel-subsystem monitoring. When
this bit is set to zero, fetch protection of locations
at effective addresses 0-2047 is determined by the
state of the fetch-protection bit of the storage key
associated with those locations.

Fetch-protection override has no effect on accesses
which are not subject to key-controlled protection.

Page Protection

The page-protection facility controls access to
virtual storage by using the page-protection bit in
each page-table entry. It provides protection
against improper storing.

The page-protection bit, bit 22 of the page-table
entry, controls whether storing is allowed into the
corresponding 4K-byte page. When the bit is zero,
both fetching and storing are permitted; when the
bit is one, only fetching is permitted. When an
attempt is made to store into a protected page, a
program interruption for protection takes place.
The contents of the protected location remain
unchanged.

Page protection applies to all store-type references
that use a virtual address.

Chapter 3. Storage 3-9

Low-Address Protection

The low-address-protection facility provides pro­
tection against the destruction of main-storage
information used by the CPU during interruption
processing. This is accomplished by prohibiting
instructions from storing with effective addresses in
the range 0 through 511. The range criterion is
applied before address transformation, if any, of the
address by dynamic address translation or prefixing.
However, the range criterion is not applied, with
the result that low-address protection does not
apply, if the effective address is subject to dynamic
address translation and the private-space control,
bit 23, is one in the segment-table designation used
in the translation. The function of the private­
space control is available if the private-space facility
is installed.

Low-address protection is under control of bit 3 of
control register 0, the low-address-protection­
control bit. When the bit is zero, low-address pro­
tection is off; when the bit is one, low-address pro­
tection is on.

If an access is prohibited because of low-address
protection, the contents of the protected location
remain unchanged, a program interruption for a
protection exception takes place, and the unit of
operation is suppressed or the instruction termi­
nated.

Any attempt by the program to store by using
effective addresses in the range 0 through 511 is
subject to low-address protection. Low-address
protection is applied to the store accesses of
instructions whose operand addresses are logical,
virtual, or real. Low-address protection is also
applied to the trace table.

Low-address protection is not applied to accesses
made by the CPU or the channel subsystem for
such sequences as interruptions, CPU logout, the
storing of the I/o-interruption code in reallocations
184-191 by TEST PENDING INTERRUPTION, and the
initial-pro gram-loading and store-status functions,
nor is it applied to data stores during I/O data
transfer. However, explicit stores by a program at
any of these locations are subject to low-address
protection.

3-10 ESAj370 Principles of Operation

Programming Notes:

1. Low-address protection and key-controlled pro­
tection apply to the same store accesses, except
that:

• Low-address protection does not apply to
storing perfonned by the channel sub­
system, whereas key-controlled protection
does.

• Key-controlled protection does not apply
to tracing, the second operand of TEST
BLOCK, or instructions that operate specif­
ically on the linkage stack, whereas low­
address protection does.

2. Because fetch-protection override and low­
address protection do not apply to an address
space for which the private-space control is one
in the segment-table designation, locations
0-2047 in the· address space are usable the same
as the other locations in the space.

Reference Recording
Reference recording provides information for use in
selecting pages for replacement. Reference
recording uses the reference bit, bit 5 of the storage
key. The reference· bit is set to one each time a
location in the corresponding storage block is
referred to either for fetching or storing informa­
tion, regardless of whether DAT is on or off.

Reference recording is always active and takes p~ace
for all storage accesses, including those made by
any CPU, any operator facility, or the channel sub­
system. It takes place for implicit accesses made by
the machine, such as those which are part of inter­
ruptions and I/o-instruction execution.

Reference recording does not occur for operand
accesses of the following instructions since they
directly refer to a storage key without accessing a
storage location:

• INSERT STORAGE KEY EXTENDED
• RESET REFERENCE BIT EXTENDED (reference

bit is set to zero)
• SET STORAGE KEY EXTENDED (reference bit is

set to a specified value)

The record provided by the reference bit is substan­
tiallyaccurate. The reference bit may be set to one
by fetching data or instructions that are neither des­
ignated nor used by the program, and, under
certain conditions, a reference may be made
without the reference bit being set to one. Under

certain unusual circumstances, a reference bit may
be set to zero by other than explicit program
action.

Change Recording
Change recording provides information as to which
pages have to be saved in auxiliary storage when
they are replaced in main storage. Change
recording uses the change bit, bit 6 of the storage
key.

The change bit is set to one each time a store
access causes the contents in the corresponding
storage block to be changed. A store access that
does not change the contents of storage mayor
may not set the change bit to one.

The change bit is not set to one for an attempt to
store if the access is prohibited. In particular:

1. For the cPU, a store access is prohibited when­
ever an access exception exists for that access,
or whenever an exception exists which is of
higher priority than the priority of an access
exception for that access.

2. For the channel subsystem, a store access is
prohibited whenever a key-controlled-
protection violation exists for that access.

Change recording is always active and takes place
for all store accesses to storage, including those
made by any CPU, any operator facility, or the
channel subsystem. It takes place for implicit refer­
ences made by the machine, such as those which
are part of interruptions.

Change recording does not take place for the oper­
ands of the following instructions since they directly
modify a storage key without modifying a storage
location:

• RESET REFERENCE BIT EXTENDED
• SET STORAGE KEY EXTENDED (change bit is set

to a specified value)

Change bits which have been changed from zeros
to ones are not necessarily restored to zeros on CPU
retry (see the section "CPU Retry" in Chapter 11,
"Machine-Check Handling"). See the section
"Exceptions to Nu1li:fication and Suppression" in
Chapter 5, "Program Execution," for a description
of the handling of the change bit in certain unusual
situations.

Prefixing
Prefixing provides the ability to assign the range of
real addresses 0-4095 (the prefix area) to a different
block in absolute storage for each CPU, thus per­
mitting more than one CPU sharing main storage to
operate concurrently with a minimum of interfer­
ence, especially in the processing of interruptions.

Prefixing causes real addresses in the range 0-4095
to correspond to the block of 4K-byte absolute
addresses identified by the value in the prefix r~g­
ister for the CPU, and the block of real addresses
identified by the value in the prefix register to cor­
respond to absolute addresses 0-4095. The
remaining real addresses are the same as the corre­
sponding absolute addresses. This transformation
allows each CPU to access all of main storage,
including the frrst 4K bytes and the locations desig­
nated by the prefix registers of other CPUs.

The relationship between real and absolute
addresses is graphically depicted in Figure 3-4 on
page 3-12.

The prefix is a 19-bit quantity contained in bit
positions 1-19 of the prefix register. The register
has the following format:

Prefix 1/11/11 /II /II I
o 1 20 31

The contents of the register can be set and
inspected by the privileged instructions SET PREFIX
and STORE PREFIX, respectively. On setting, bits
corresponding to bit positions 0 and 20-31 of the
prefix register are ignored. On storing, zeros are
provided for these bit positions. When the con­
tents of the prefix register are changed, the change
is effective for the next sequential instruction.

When prefixing is applied, the real address is trans­
formed into an absolute address by using one of the
following rules, depending on bits 1-19 of the real
address:

1. Bits 1-19 of the address, if all zeros, are
replaced with bits 1-19 of the prefix.

2. Bits 1-19 of the address, if equal to bits 1-19 of
the prefix, are replaced with zeros.

3. Bits 1-19 of the address, if not all zeros and not
equal to bits 1-19 of the prefix, remain
unchanged.

Chapter 3. Storage 3-11

In all cases, bits 20-31 of the address remain
unchanged.

Only the address presented to storage is translated
by prefixing. The contents of the source of the
address remain unchanged.

The distinction between real and absolute addresses
is made even when the prefix register contains all
zeros, in which case a real address and its corre­
sponding absolute address are identical.

Prefixing
r- - - - - - - --l I
I I
I I

I NOChange---L-
1
--I

I
I
I

I
I
I
I

~---+-No Change ___ ~---_+_---

I ~ I

~="' I ~I
:.--Add~ess L __________ I

Address I
4096

<Jf----.l.-I --J

~ Add~eSS L ________ -.J

...-Address
4096

..-Address
o

Real Addresses Absolute Real Addresses
for CPU A Addresses for CPU B

(1) Real addresses in which bits 1-19 are equal to the prefix for this\ CPU (A or
B).

(2) Absolute addresses of the block that contains for this CPU (A or B) the real
locations 0-4095.

Figure 3-4. Relationship between Real and Absolute Addresses

3-12 ESAj370 Principles of Operation

Address Spaces
An address space is a consecutive sequence of
integer numbers (virtual addresses), together with
the specific transformation parameters which allow
each number to be associated with a byte location
in storage. The sequence starts at zero and pro­
ceeds left to right.

When a virtual address is used by a CPU to access
main storage, it is first converted, by means of
dynamic address translation (OAT), to a real
address, and then, by means of prefixing, to an
absolute address. OAT uses two levels of tables
(segment tables and page tables) as transformation
parameters. The designation (origin and length) of
a segment table is found for use by OAT in a
control register or as specified by an access register.

OAT uses, at different times, the segment-table des­
ignations in different control registers or specified
by the access registers. The choice is determined
by the translation mode specified· in the current
psw. Four translation modes are available:
primary-space mode, secondary-space mode,
access-register mode, and home-space mode. Dif­
ferent address spaces are addressable depending on
the translation mode.

At any instant when the CPU is in the primary­
space mode or secondary-space mode, the CPU can
translate virtual addresses belonging to two address
spaces -- the primary address space and the sec­
ondary address space. At any instant when the
CPU is in the access-register mode, it can translate
virtual addresses of up to 16 address spaces -- the
primary address space and up to 15 AR-specified
address spaces. At any instant when the CPU is in
the home-space mode, it can translate virtual
addresses of the home address space.

The primary address space is identified as such
because it consists of primary virtual addresses,
which are translated by means of the primary
segment-table designation. Similarly, the secondary
address space consists of secondary virtual addresses
translated by means of the secondary segment-table
designation, the AR -specified address spaces consist
of AR -specified virtual addresses translated by
means of AR-specified segment-table designations,
and the home address space consists of home
virtual addresses translated by means of the home
segment-table designation. The primary and sec-

ondary segment-table designations are in control
registers 1 and 7, respectively. The AR-specified
segment-table designations are in control registers I
and 7 and in table entries called ASN-second-table
entries. The home segment-table designation is in
control register 13.

Changing to Different Address Spaces
A program can cause different address spaces to be
addressable by using the semiprivileged SET
ADDRESS SPACE CONTROL instruction to change
the translation mode to the primary-space mode,
secondary-space mode, access-register mode, or
home-space mode. However, SET ADDRESS SPACE
CONTROL can set the home-space mode only in the
supervisor state. The program can cause still other
address spaces to be addressable by using other
semiprivileged instructions to change the segment­
table designations in control registers 1 and 7 and
by using unprivileged instructions to change the
contents of the access registers. Only the privileged
LOAD CONTROL instruction is available for
changing the home segment-table designation in
control register 13.

AddreSS-Space Number
An address space may be assigned an address-space
number (ASN) by the control program. The ASN
designates, within a two-level table structure in
main storage, an ASN-second-table entry containing
information about the address space. If the
ASN-second-table entry is marked as valid, it con­
tains the segment-table designation that defmes the
address space.

Under certain circumstances, the semiprivileged
instructions which place a new segment-table desig­
nation in control register 1 or 7 fetch this segment­
table designation from an ASN-second-table entry.
Some of these instructions use an ASN -translation
mechanism which, given an ASN, can locate the
designated ASN-second-table entry.

The l6-bit unsigned binary format of the ASN
permits 64K unique ASNS.

The ASNS for the primary and secondary address
spaces are assigned positions in control registers.
The ASN for the primary address space, called the
primary ASN, is assigned bits 16-31 of control reg­
ister 4, and that for the secondary address space,
called the secondary ASN, is assigned bits 16-31 of
control register 3. The registers have the following
formats:

Chapter 3. Storage 3-13

Control Register 4

PASN

16 31

Control Register 3

SASN

16 31

An instruction that uses ASN translation and loads
the primary or secondary segment-table designation
into the appropriate control register also loads the
corresponding ASN into the appropriate control reg­
ister.

The ASN for the home address space is not assigned
a position in a control register.

An access register containing the value 0 or I speci­
fies the primary or secondary address space, respec­
tively; and the segment-table designation specified
by the access register is in control register 1 or 7,
respectively. An access register containing any
other value designates an entry in a table called an
access list. The designated access-list entry contains
the real address of an ASN-second-table entry for
the address space specified by the access register.
The segment-table designation specified by the
access register is in the ASN -second-table entry.
Translating the contents of an access register to
obtain a segment-table designation for use by DAT
does not involve the use of an ASN.

Note: Virtual storage consisting of byte locations
ordered according to their virtual addresses in an
address space is usually referred to as "storage."

Programming Note: Because an ASN-second-table
entry is located from an access-list entry by means
of its address instead of by means of its ASN, the
ASN-second-table entries designated by access-list
entries can be "pseudo" ASN-second-table entries,
that is, entries which are not in the two-level struc­
ture able to be indexed by means of the ASN-trans­
lation' process. The number of unique pseudo
ASN-second-table entries can be greater than the
number of unique ASNS and is limited only by the
amount of storage available to be occupied by the
ASN-second-table entries. Thus, in a sense, there is
no limit on the number of possible address spaces.

3-14 ESA/370 Principles of Operation

ASN Translation
ASN translation is the process of translating the
16-bit ASN to locate the address-space-control
parameters. ASN translation may be perfonned as
part of PROGRAM CALL with space switching
(pc-ss), it is perfonned as part of PROGRAM
TRANSFER with space switching (PT-SS) and SET
SECONDARY ASN with space switching (SSAR-SS),
and it may be perfonned as part of LOAD ADDRESS
SPACE PARAMETERS. For pc-ss and PT-SS, the ASN
which is translated replaces the primary ASN in
control register 4. For SSAR-SS, the ASN which is
translated replaces the secondary ASN in control
register 3. These two translation processes are
called primary ASN translation and secondary ASN
translation, respectively, and both can occur for
LOAD ADDRESS SPACE PARAMETERS. The
ASN-translation process is the same for both
primary and secondary ASN translation; only the
uses of the results of the process are different.

ASN translation may also be perfonned as part of
PROGRAM RETURN. Primary ASN translation is
perfonned as part of PROGRAM RETURN with space
switching (PR-SS). Secondary ASN translation is
perfonned if the secondary ASN restored by
PROGRAM RETURN (PR-SS or PROGRAM RETURN
to current primary) does not equal the primary ASN
restored by PROGRAM RETURN.

The ASN-translation process uses two tables, the
ASN frrst table and the ASN second table. They are
used to locate the address-space-control parameters
and a third table, the authority table, which is used
when ASN authorization is performed.

For the purposes of this translation, the 16-bit ASN
is considered to consist of two parts: the ASN-frrst­
table index (AFX) is the leftmost 10 bits of the ASN,
and the ASN-second-table index (ASX) is the six
rightmost bits. The ASN has the following format:

ASN

AFX ASX

10 15

The AFX is used to select an entry from the AS N
frrst table. The origin of the ASN frrst table is desig­
nated by the ASN-first-table origin in control reg­
ister 14. The ASN-frrst-table entry contains the
origin of the ASN second table. The ASX is used to
select an entry from the ASN second table. This

entry contains the address-space-control parame­
ters.

ASN-Translation Controls

ASN translation is controlled by the
ASN-translation-control bit and the ASN-frrst-table
origin, both of which reside in control register 14.
It is also controlled by the address-space-function­
control bit in control register O.

Control Register 14

ITI AFTO

12 31

ASN· Translation Control (T): Bit 12 of control
register 14 is the ASN-translation-control bit. This
bit provides a mechanism whereby the control
program can indicate whether ASN translation can
occur while a particular program is being executed.
Bit 12 must be one to allow completion of these
instructions:

• LOAD ADDRESS SPACE PARAMETERS
• PROGRAM CALL with space switching
• PROGRAM RETURN with space switching or

when the restored SASN does not equal the
restored PAS N

• PROGRAM TRANSFER with space switching
• SET SECONDARY ASN

Otherwise, a special-operation exception is recog­
nized. The ASN -translation-control bit is examined
in both the problem and the supervisor states.

When the address-space-function-control bit in
control register 0 is one, PROGRAM CALL with
space switching (pc-ss) may omit performing ASN
translation and instead obtain the address of an
ASN-second-table entry directly from an entry-table
entry. The ASN-translation control must be one
whether or not pC-ss perfonns ASN translation; oth­
erwise, a special-operation exception is recognized.

ASN·First·Table Origin (AFTO): Bits 13-31 of
control register 14, with 12 zeros appended on the
right, fonn a 31-bit real address that designates the
beginning of the ASN frrst table.

Control Register 0
Bit 15 of control register 0 is the address-space­
function (ASF) control. When the ASF control is
zero, the ASN-second table begins on a 16-byte
boundary, an ASN-second-table entry has a length
of 16 bytes, and PROGRAM CALL with space
switching (pc-ss) always performs ASN translation.
When the ASF control is one, the ASN-second table
begins on a 64-byte boundary, an ASN-second-table
entry has a length of 64 bytes, and pC-ss may
obtain an ASN-second-table-entry address from an
entry-table entry instead of by performing ASN
translation.

The ASF control has other effects also. A complete
description of the effects of the ASF control is in the
section "Address-Space-Function Control" in
Chapter 5, "Program Execution."

ASN-Translation Tables

The ASN-translation process consists in a two-level
lookup using two tables: an ASN first table and an
ASN second table. These tables reside in real
storage.

ASN-First-Table Entries
When the ASF control, bit 15 of control register 0,
is zero, an entry in the ASN first table has the fol­
lowing fonnat:

ASTO

o 1 28 31

When the ASF control is one, an entry has the fol­
lowing format:

ASTO

o 1 26 31

The fields in the entry are allocated as follows:

AFX·lnvalid Bit (I): Bit 0 controls whether the
ASN second table associated with the ASN-frrst-table
entry is available. When bit 0 is zero, ASN trans­
lation proceeds by using the designated ASN second
table. When the bit is one, the ASN translation
cannot continue.

ASN·Second-Table Origin (ASTO): Bits 1-27,
with four zeros appended on the right, or bits 1-25,
with six zeros appended on the right, are used to

Chapter 3. Storage 3-15

form a 31-bit real address that designates the begin­
ning of the ASN second table.

Bits 28-31 of the AFT entry, or bits 26-31, must be
zeros; otherwise, an ASN-translation-specification
exception is recognized as part of the execution of
the instruction using that entry for ASN translation.

ASN-Second-Table Entries
When the ASF control in control register 0 is zero,
the ASN-second-table entry has a length of 16 bytes.
When the ASF control is one, the entry has a length
of 64 bytes. The fonnat of the 16-byte
ASN-second-table entry is identical to that of the
first 16 bytes of the 64-byte entry. Only the frrst 16
bytes of the ASN-second-table entry (16-byte entry
or 64-byte entry) are used in or as a result of ASN
translation. The 16-byte ASN-second-table entry is
described below. The 64-byte entry is described in
the section "Extended ASN-Second-Table Entries"
in Chapter 5, "Program Execution."

The 16-byte ASN-second-table entry has the fol­
lowing format:

ATO

o 1 31

The fields in the entry are allocated as follows:

ASX-Invalid Bit (I): Bit 0 controls whether the
address space associated with the ASN-second-table
entry is available. When bit 0 is zero, ASN trans-

3-16 ESAj370 Principles of Operation

lation proceeds. When the bit 1S one, the ASN
translation cannot continue.

Authority-Table Origin (ATO): Bits 1-29, with two
zeros appended on the right, are used to form a
31-bit real address that designates the beginning of
the authority table.

Authorization Index (AX): Bits 32-47 are used as a
result of primary ASN translation by PROGRAM
CALL, PROGRAM RETURN, and PROGRAM
TRANSFER and may be used by LOAD ADDRESS
SPACE PARAMETERS. The AX field is ignored for
secondary ASN translation.

Authority-Table Length (ATL): Bits 48-59 specify
the length of the authority table in units of four
bytes, thus making the authority table variable in
multiples of 16 entries. The length of the authority
table, in units of four bytes, is one more than the
A TL value. The contents of the ATL field are used
to establish whether the entry designated by a par­
ticular AX falls within the authority table.

Segment-Table Designation (STD): Bits 64-95 are
used as a result of ASN translation to replace the
primary-segment-table designation (PSTD) or the
secondary-segment-table designation (SSTD). For
SET SECONDARY ASN, the STD field replaces the
SSTD, bits 0-31 of control register 7. For
PROGRAM CALL, the STD field replaces the PSTD,
bits 0-31 of control register 1. Each of these
actions may occur independently for LOAD
ADDRESS SPACE PARAMETERS. For PROGRAM
TRANSFER, the STD field replaces both the PSTD
and the SSTD, bits 0-31 of control registers 1 and 7,
respectively. For PROGRAM REf URN, as a result of
primary ASN translation, the STD field replaces the
PSTD, and, as a result of secondary ASN translation,
the STD field replaces the SSTD. The contents of
the entire STD field are placed in the appropriate
control registers without being inspected for
validity. The private-space control (p) (bit 87, or
bit 23 of the STD field) is an extension provided by
the private-space facility.

Space-Switch-Event Control (X): Bit 0 of the
segment-table designation is the space-switch-event­
control bit. When, in Pc-ss, PR-SS, or PT-SS, this bit
is one in control register 1 either before or after the
execution of the instruction, a program interruption
for a space-switch event occurs after the execution
of the instruction is completed. A space-switch­
event program interruption also occurs after the
completion of a SEf ADDRESS SPACE CONTROL

instruction that changes the translation mode either
to or from the home-space mode when this bit is
one in either control register I or cDntrDI register
13. When, in LOAD ADDRESS SPACE PARAMETERS,
this bit is one during primary ASN translatiDn, this
fact is indicated by the condition code.

Linkage-Table Designation (LTD): Bits 96-127
may be used as a result Df primary ASN translatiDn
and they are used in pc-number translation. The
linkage-table-designatiDn field cDntains the
subsystem-linkage-cDntrDI bit (v) (bit 96), the
linkage-table Drigin (LTO) (bits 97-120), and the
linkage-table length (LTL) (bits 121-127). When the
ASF contrDI is zero, the contents of the LTD field
are placed in cDntrDI register 5 as a result Df

primary ASN translatiDn, and the pc-number­
translation process obtains the LTD from cDntrol
register 5. When the ASF cDntrDI is Dne, cDntrDI
register 5 contains the Drigin of an ASN-second­
table entry called the primary AST entry. The
primary-AsT-entry origin is replaced in cDntrol reg­
ister 5 as a result Df primary ASN translatiDn, and
pc-number translation obtains the LTD frDm the
LTD field in the primary AST entry. pc-number
translation is described in Chapter 5, "Program
Execution. "

Bits 30,· 31, and 60-63 Df the. AST entry must be
zeros; otherwise, an ASN-translatiDn-specification
exception is recDgnized as part Df the execution Df

the instruction using that entry for ASN translation.

Certain fields of the AST entry may be used in the
access-register-translatiori process. Due to. ones in
bit positiDns 30, 31, and 60-63 of the entry, an
ASN-translation-specification exception may be
recognized during access-register translation.

Programming Note: The unused portion of the
STD field, bits 84-86 and 88 of the AST entry, which
corresponds to bits 20-22 and 24 of the STD, should
be set to. zeros. These bits are reserved for future
expansiDn, and pro. grams which place nonzero.

values in these bit positions may not operate
compatibly on future machines.

ASN-Translation Process

This section describes the ASN-translatiDn prDcess
as it is perfDrmed during the execution Df the space­
switching forms of PROGRAM CALL, PROGRAM
RETURN, PROGRAM TRANSFER, and SET SEC­
ONDARY ASN, and alSo. in PROGRAM RETURN
when the restored secondary ASN does not equal
the restored primary ASN. ASN translatiDn for
LOAD ADDRESS SPACE PARAMETERS is the same,
except that AFx-translation and Asx-translation
exceptiDns do not occur; such situations are instead
indicated by the cDndition code. TranslatiDn Df an
ASN is performed by means of two tables, an ASN
frrst table and an ASN second table, both of which
reside in main storage.

The ASN frrst index is used to select an entry from
the ASN first table. This entry designates the ASN
secDnd table to be used.

The ASN second index is used to select an entry
from the ASN second table. This entry contains the
address-space-control parameters. When the ASF
cDntrol is one, the ASN second table begins on a
64-byte boundary, and its entries are each 64 bytes
in length; otherwise, the table begins on a l6-byte
boundary, and the entries are 16 bytes in length.

If the I bit is one in either the ASN-frrst-table entry
or ASN-second-table entry, the entry is invalid, and
the ASN-translation process cannot be completed.
An AFx-translation exception or Asx-translation
exception is recognized.

Whenever access to main storage is made during
the ASN-translation process for the purpose of
fetching an entry from an ASN frrst table or ASN
secDnd table, key-controlled protection does not
apply.

The ASN translation process is shown in FigUre 3-5
Dn page 3-18.

Chapter 3. Storage 3-17

ASN

CR14

(x4096) (x4) (xN)

~ ASN First Table

R I ASTO

(xN)

~ ASN Second Table

R ATO STD LTD *

N: 16 if ASF control, bit 15 of control register 0, is zero; 64 if ASF
control is one

R: Address is real
*. ASTE is 64 bytes if ASF control is one; last 48 bytes are not shown

Figure 3-5. ASN Translation

ASN-Flrst-Table Lookup
The AFX portion of the ASN, in conjunction with
the ASN-frrst-table origin, is used to select an entry
from the ASN second table.

The 31-bit real address of the ASN-first-table entry
is obtained by appending 12 zeros on the right to
the AFf origin contained in bit positions 13-31 of
control register 14 and adding the AFX portion with
two rightmost and 19 leftmost zeros appended.
This addition cannot cause a carry into bit position

3-18 ESA/370 Principles of Operation

O. All 31 bits of the address are used, regardless of
whether the current psw specifies the 24-bit or
31-bit addressing mode.

All four bytes of the ASN-frrst-table entry appear to
be fetched concurrently as observed by other CPUs.
The fetch access is not subject to protection.
When the storage address which is generated for
fetching the ASN-frrst-table entry designates a
location which is not available in the configuration,
an addressing exception is recognized, and the oper­
ation is suppressed.

Bit 0 of the four-byte AFf entry specifies whether
the corresponding AST is available. If this bit is
one, an AFx-translation exception is recognized.
When the AST-entry size is 16 bytes and bit posi­
tions 28-31 of the AFf entry do not contain zeros,
or when the AST-entry size is 64 bytes and bit posi­
tions 26-31 of the AFT entry do not contain zeros,
an ASN-translation-specification exception is recog­
nized. When no exceptions are recognized, the
entry fetched from the AFT is used to access the
AST.

ASN-Second-Table Lookup
The ASX portion of the ASN, in conjunction with
the ASN-second-tab1e origin contained in the
ASN-first-table entry, is used to select an entry from
the ASN second table.

When the address-space-function (ASF) control, bit
15 of control register 0, is zero, the ASN second
table begins on a 16-byte boundary, and its entries
are each 16 bytes in length. When the ASF control
is one, the ASN second table begins· on a 64-byte
boundary, and its entries are 64 bytes in length.

The 31-bit real address of the ASN-second-table
entry is obtained as follows. When the AST-entry
size is 16 bytes, the address is obtained by
appending four zeros on the right to bits 1-27 of
the ASN -frrst-tab1e entry and adding the ASX with
four rightmost and 21 leftmost zeros appended.
When the AST-entry size is 64 bytes, the· address is
obtained by appending six zeros on the right to bits
1-25 of the ASN-frrst-table entry and adding the ASX
with six rightmost and 19 leftmost zeros appended.
In both of these cases, a carry, if any, into bit posi­
tion 0 is ignored. All 31 bits of the address are
used, regardless of whether the current psw speci­
fies the 24-bit or 31-bit addressing mode.

The fetch of the 16 or 64 bytes of the ASN -second­
table entry appears to be word-concurrent as
observed by other cpus, with the leftmost word
fetched flfst. The order in which the remaining 3
or 15 words are fetched is unpredictable. The fetch
access is not subject· to protection. When the
storage address which is generated for fetching the
ASN-second-table entry designates a location which
is not available in the configuration, an addressing
exception is recognized, and the operation is sup­
pressed.

Bit 0 of the l6-byte or 64-byte ASN-second-table
entry specifies whether the address space is acces­
sible. If this bit is one, an ASX -translation excep-

tion is recognized. If bit positions 30, 31, and
60-63 of the ASN-second-table entry do not contain
zeros, an ASN-translation-specification exception is
recognized.

Recognition of Exceptions during ASN
Translation
The exceptions which can be encountered during
the ASN-translation process are collectively referred
to as ASN-translation exceptions. A list of these
exceptions and their priorities is given in Chapter 6,
"Interruptions.' ,

ASN Authorization
ASN authorization is the process of testing whether
the program associated with the current authori­
zation index is permitted to establish a particular
address space. The AS N authorization is performed
as part of PROGRAM TRANSFER with space
switching (PT-SS) and SET SECONDARY ASN with
space switching (SSAR-SS) and may be performed as
part of LOAD ADDRESS SPACE PARAMETERS. ASN
authorization is performed after the ASN-translation
process for these instructions.

ASN authorization is also performed as part of
PROGRAM RETURN when the restored secondary
ASN does not equal the restored primary ASN. ASN
authorization of the restored secondary ASN is per­
formed after ASN translation of the restored sec­
ondary ASN.

When performed as part of PT-SS, the ASN authori­
zation tests whether the ASN can be established as
the primary ASN and is called primary-ASN authori­
zation. When performed as part of LOAD ADDRESS
SPACE PARAMETERS, PROGRAM RETURN, or
SSAR-SS, the ASN authorization tests whether the
ASN can be established as the secondary ASN and is
called secondary-AsN authorization.

The ASN authorization is performed by means of
an authority table in real storage which is desig­
nated by the authority-table-origin and authority­
table-length fields in the ASN-second-table entry.

ASN-Authorization Controls

ASN authorization uses the authority-table ongm
and the authority-table length from the
ASN-second-table entry, together with an authori­
zation index.

Chapter 3. Storage 3-19

Control Register 4
For PT-SS and SSAR-SS, the current contents of
control register 4 include the authorization index.
For LOAD ADDRESS SPACE PARAMETERS and
PROGRAM RETURN, the value which will become
the new contents of control register 4 is used. The
register has the following format:

AX

o 15

Authorization Index (AX): Bits 0-15 of control
register 4 are used as an index to locate the
authority bits in the authority table.

ASN-Second-Table Entry
The ASN-second-table entry which is fetched as part
of the ASN translation process contains information
which is used to designate the authority table. An
entry in the ASN second table has the following
format:

II ATO

e 1 31

ATl lee0el
32 48 60 64

Authority-Table Origin (ATO): Bits 1-29, with two
zeros appended on the right, are used to form a
3l-bit real address that designates the beginning of
the authority table.

Authority-Table Length (ATL): Bits 48-59 specify
the length of the authority table in units of four
bytes, thus making the authority table variable in
multiples of 16 entries. The length of the authority
table, in units of four bytes, is equal to one more
than the ATL value. The contents of the length
field are used to establish whether the entry desig­
nated by the authorization index falls within the
authority table.

Authority-Table Entries
The authority table consists of entries of two bits
each; accordingly, each byte of the authority table
contains four entries in the following format:

e 7

3-20 ESAj370 Principles of Operation

The fields are allocated as follows:

Primary Authority (P): The left bit of an
authority-table entry controls whether the program
with the authorization index corresponding to the
entry is permitted to establish the address space as
a primary address space. If the P bit is one, the
establishment is permitted. If the P bit is zero, the
establishment is not permitted.

Secondary Authority (S): The right bit of an
authority-table entry controls whether the program
with the corresponding authorization index is per­
mitted to establish the address space as a secondary
address space. If the S bit is one, the establishment
is permitted. If the S bit is zero, the establishment
is not permitted.

The authority table is also used in the extended­
authorization process, as part of access-register
translation. Extended authorization is described in
the section "Authorizing the Use of the Access-List
Entry" in Chapter 5, "Program Execution."

ASN-Authorization Process

This section describes the ASN-authorization
process as it is performed during the execution of
PROGRAM TRANSFER with space switching and SET
SECONDARY ASN with space switching. For these
two instructions, the ASN-authorization process is
performed by using the authorization index cur­
rently in control register 4. Secondary authori­
zation for PROGRAM RETURN, when the restored
secondary ASN does not equal the restored primary
ASN, and for LOAD ADDRESS SPACE PARAMETERS
is the same, except that the value which will
become the new contents of control register 4 is
used for the authorization index. Also, for LOAD
ADDRESS SPACE PARAMETERS, a secondary­
authority exception does not occur. Instead, such a
situation is indicated by the condition code.

The ASN-authorization process is performed by
using the authorization index, in conjunction with
the authority-table origin and length from the AST
entry, to select an authority-table entry. The entry
is fetched, and either the primary- or secondary­
authority bit is examined, depending on whether
the primary- or secondary-AsN-authorization
process is being performed. The ASN -authorization
process is shown in Figure 3-6 on page 3-21.

CR4 I AX I I
(xl/4)

ASN Second Table

ASN-Second-Table Entry

ATO lei AX I ATL lei STD

(x4)

,

--+- + -
For primary ASN authorization (PT-ss only):

Primary-authority exception if P bit
zero or table length exceeded.

I

t
Authority Table

R ~ For secondary ASN authorization (SSAR-ss only):
~ Secondary-authority exception if S bit

zero or table length exceeded.

For secondary ASN authorlzatlon (LASP only).
Set condition code 2 if S bit zero or
table length exceeded.

R: Address is real

LTD *

*: ASTE is 64 bytes if ASF control is one; last 48 bytes are not shown

Figure 3-6. ASN Authorization

Chapter 3. Storage 3-21

Authority-Table Lookup
The authorization index, in conjunction with the
authority-table origin contained in the ASN-second­
table entry, is used to select an entry from the
authority table.

The authorization index is contained in bit posi­
tions 0-15 of control register 4.

Bit positions 1-31 of the AST entry contain the
31-bit real address of the authority table (ATO), and
bit positions 48-59 contain the length of the
authority table (ATL).

The 31-bit real address of a byte in the authority
table is obtained by appending two zeros on the
right to the authority-table origin and adding the 14
leftmost bits of the authorization index with 17
zeros appended on the left. A carry, if any, into bit
position 0 is ignored. All 31 bits· of the address are
used, regardless of whether the current psw specifies
the 24-bit or 31-bit addressing mode.

As part of the authority-table-entry-Iookup process,
bits 0-11 of the authorization index are compared
against the authority-table length. If the compared
portion is greater than the authority-table length, a
primary-authority exception or secondary-authority
exception is recognized for PT-ss or SSAR-SS, respec­
tively. For LOAD ADDRESS SPACE PARAMETERS,
when the authority-table length is exceeded, condi­
tion code 2 is set.

The fetch access to the byte in the authority table is
not subject to protection. When the storage
address which is generated for fetching the byte des­
ignates la location which is not available in the con­
figuration, an addressing exception is recognized,
and the operation is suppressed.

The byte contains four authority-table entries of
two bits each. The rightmost two bits of the
authorization index, bits 14 and 15 of control reg­
ister 4, are used to select one of the four entries.
The left or right bit of the entry is then tested,
depending on whether the authorization test is for a
primary ASN or a secondary ASN. The following
table shows the bit which is selected from the byte
as a function of bits 14 and 15 of the authorization
index and the instruction PT-SS, SSAR-ss, PROGRAM
RETURN, or LOAD ADDRESS SPACE PARAMETERS.

3-22 ESAj370 Principles of Operation

Bit Selected from
Authority-Table Byte

for Test
Authorization-

Index Bits S Bit
PBit (SSAR-ss,

14 15 (PT-ss) PR, or LASP)

0 0 0 1

0 1 2 3

1 0 4 5

1 1 6 7

If the selected bit is one, the ASN is authorized, and
the appropriate address-space-control parameters
from the AST entry are loaded into the appropriate
control registers. If the selected bit is zero, the ASN
is not authorized, and a primary-authority excep­
tion is recognized for PT-ss or a secondary­
authority exception is recognized for SSAR-ss or
PROGRAM RETURN. For LOAD ADDRESS SPACE
PARAMETERS, when the ASN is not authorized,
condition code 2 is set.

Recognition of Exceptions during ASN
Authorization
The exceptions which can be encountered during
the primary- and secondary-AsN-authorization
processes and their priorities are described in the
defmitions of the instructions in which ASN authori­
zation is performed.

Programming Note: The primary- and secondary­
authority exceptions cause nullification in order to
permit dynamic modification of the authority table.
Thus, when an address space is created or
"swapped in," the authority table can frrst be set to
all zeros and the appropriate authority bits set to
one only when required.

Dynamic Address Translation
Dynamic address translation (DAT) provides the
ability to interrupt the execution of a program at an
arbitrary moment, record it and its data in auxiliary
storage, such as a direct-access storage device, and
at a later time return the program and the data to
different main-storage locations for resumption of
execution. The transfer of the program and its data
between main and auxiliary storage may be per­
formed piecemeal, and the return of the informa­
tion to main storage may take place in response to

an attempt by the CPU to access it at th~ time it is
needed for execution. These functions may be per­
formed without change or inspection of the
program and its data, do not require any explicit
programming convention for the relocated
program, and do not disturb the execution of the
program except for the time delay involved.

With appropriate support by an operating system,
the dynamic-address-translation facility may be
used to provide to a user a system wherein storage
appears to be larger than the main storage which is
available in the configuration. This apparent main
storage is referred to as virtual storage, and the
addresses used to designate locations in the virtual
storage are referred to as virtual addresses. The
virtual storage of a user may far exceed the size of
the main storage which is available in the config­
uration and normally is maintained in auxiliary
storage. The virtual storage is considered to be
composed of blocks of addresses, called pages.
Only the most recently referred-to pages of the
virtual storage are assigned to occupy blocks of
physical main storage. As the user refers to pages
of virtual storage that do not appear in main
storage, they are brought in to replace pages in
main storage that are less likely to be needed. The
swapping of pages of storage may be performed by
the operating system without the user's knowledge.

The sequence of virtual addresses associated with a
virtual storage is called an address space. With
appropriate support by an operating system, the
dynamic-address-translation facility may be used to
provide a number of address spaces. These address
spaces may be used to provide degrees of isolation
between users. Such support can consist of a com­
pletely different address space for each user, thus
providing complete isolation, or a shared area may
be provided by mapping a portion of each address
space to a single common storage area. Also,
instructions are provided which permit a semiprivi­
leged program to access more than one such
address space. Dynamic address translation pro­
vides for the translation of virtual addresses from
multiple different address spaces without requiring
that the translation parameters in the control regis­
ters be changed. These address spaces are called
the primary address space, secondary address space,
and AR-specified address spaces. A privileged
program can access also the home address space.

In the process of replacing blocks of main storage
by new information from an external medium, it
must be determined which block to replace and
whether the block being replaced should be

recorded and preserved in auxiliary storage. To aid
in this decision process, a reference bit and a
change bit are associated with the storage key.

Dynamic address translation may be specified for
instruction and data addresses generated by the CPU

but is not available for the addressing of data and
of ccws and IDAWS in I/O operations. The
ccw-indirect-data-addressing facility is provided to
aid I/O operations in a virtual-storage environment.

Address computation can be carried out in either
the 24-bit or 31-bit addressing mode. When
address computation is performed in the 24-bit
addressing mode, seven zeros are appended on the
left to form a 3 I-bit address. Therefore, the
resultant logical address is always 31 bits in length.
All real and absolute addresses are 31 bits in length.

Dynamic address translation is the process of trans­
lating a virtual address during a storage reference
into the corresponding real address. The virtual
address may be a primary virtual address, secondary
virtual address, AR-specified virtual address, or
home virtual address. These addresses are trans­
lated by means of the primary, the secondary, an
AR-specified, or the home segment-table desig­
nation, respectively. Mter selection of the appro­
priate segment-table designation, the translation
process is the same for all of the four types of
virtual address.

In the process of translation, two types of units of
information are recognized -- segments and pages.
A segment is a block of sequential virtual addresses
span.rung 1 M bytes and beginning at aIM-byte
boundary. A page is a block of sequential virtual
addresses spanning 4 K bytes and beginning at a
4K-byte boundary.

The virtual address, accordingly, is divided into
three fields. Bits 1-11 are called the segment index
(sx), bits 12-19 are called the page index (px), and
bits 20-31 are called the byte index (BX). The
virtual address has the following format:

III sx PX BX

o 1 12 20 31

Virtual addresses are translated into real addresses
by means of two translation tables: a segment
table and a page table. These reflect the current
assignment of real storage. The assignment of real
storage occurs in units of pages, the real locations

Chapter 3. Storage 3-23

being assigned contiguously within a page. The
pages need not be adjacent in real storage even
though assigned to a set of sequential virtual
addresses.

Translation Control

Address translation is controlled by three bits in the
psw and by a set of bits referred to as the trans­
lation parameters. The translation parameters are
in control registers 0, 1, 7, and 13. Additional con­
trols are located in the translation tables.

Additional controls are provided as described in
Chapter 5, "Program Execution." These controls
detennine whether the contents of each access reg­
ister can be used to obtain a segment-table~esig­
nation for use by DAT.

Translation Modes
The three bits in the psw that control dynamic
address translation are bit 5, the OAT-mode bit, and
bits 16 and 17, the address-space-control bits.
When the OAT-mode bit is zerq., then OAT is off,
and the CPU is in the real mode. When the
OAT-mode bit is one, then OAT is on, and the CPU
is in the translation mode designated by the
address-space-control bits: 00 designates the
primary-space mode, 01 designates the access­
register mode, 10 designates the secondary-space
mode, and 11 designates the home-space mode.
The various modes are shown in Figure 3-7, along
with the handling of addresses in each mode.

--
Handling of Addresses

PSW Bit
Instruction Logical

5 16 17 OAT Mode Addresses Addresses
--r-

0 0 o Off Real mode Real Real
0 0 1 Off Real mode Real Real
0 1 o Off Real mode Real Real
0 1 1 Off Real mode Real Real
1 0 o On Primary-space mode Primary Primary

virtual virtual
1 0 1 On Access-register mode Primary AR-speci-

virtual fied
virtual

1 1 o On Secondary-space mode Primary Secondary
virtual virtual

1 1 1 On Home-space mode Home Home
virtual virtual

Figure 3-7. Translation Modes

3-24 ESAj370 Principles of Operation

Control Register 0
Six bits are provided in control register 0 for use in
controlling dynamic address translation. The bits
are assigned as follows:

5 8 13

Secondary-Space Control (D): Bit 5 of control
register 0 is the secondary-space-control bit. When
this bit is zero and execution of MOVE TO
PRIMARY, MOVE TO SECONDARY, or SET ADORESS
SPACE CONTROL is attempted, a special-operation
exception is recognized. When this bit is one, it
indicates that the secondary segment table is
attached when the CPU is in the primary-space
mode.

Translation Format (TF): Bits 8-12 of control reg­
ister 0 specify the translation format, with only one
combination of the five control bits valid; all other
combinations are invalid.

The control bits are encoded as follows:

Bits of Control Register 0

8 I 9 I 10 I 111 12 Valid

1 0 1 1 0 Yes

All others No

When an invalid bit combination is detected in bit
positions 8-12, a translation-specification exception
is recognized as part of the execution of an instruc­
tion using address translation.

Control Register 1
Control register I contains the primary segment­
table designation (PSTD). The register has the fol­
lowing format:

Primary Segment-
X Table Origin P PSTL

o 1 20 23 25 31

Primary Space-Switch-Event-Control Bit (X):
When bit 0 of control register I is one:

• A space-switch -event program interruption
occUrs when execution of the space-switching

form of PROGRAM CALL (PC-SS), PROGRAM

RETURN (PR-SS), or PROGRAM TRANSFER

(PT-ss) is completed. The interruption occurs if
bit 0 is one either before or after the operation.

• A space-switch-event program interruption
occurs upon completion of a SET ADDRESS

SPACE CONTROL instruction that changes the
address space from which instructions are
fetched either to or from the home address
space; that is, when instructions are fetched
from the home address space either before or
after the operation but not both before and
after the operation.

• Condition code 3 is set by LOAD ADDRESS

SPACE PARAMETERS.

Primary Segment-Table Origin (PSTO): Bits 1-19
of control register 1, with 12 zeros appended on the
right, form an address that designates the beginning
of the primary segment table. It is unpredictable
whether the address is real or absolute. This table
is called the primary segment table since it is used
to translate virtual addresses in the primary address
space.

Primary Private-Space-Control Bit (P): If the
private-space facility is installed and bit 23 of
control register 1 is one, then (1) a one value of the
common-segment bit in a translation-lookaside­
buffer (TLB) segment-table entry prevents the entry
and the TLB page-table copy it designates from
being used when translating references to the
primary address space, even with a match of
segment-table origins; (2) low-address protection
and fetch-protection override do not apply to the
primary address space; and (3) a translation­
specification exception is recognized if a reference
to the primary address space is translated by means
of a segment-table entry in storage and the
common-segment bit is one in the entry.

Primary Segment-Table Length (PSTL): Bits
25-31 of control register 1 specify the length of the
primary segment table in units of 64 bytes, thus
making the length of the segment table variable in
multiples of 16 entries. The length of the primary
segment table, in units of 64 bytes, is one more
than the PSTL value. The contents of the length
field are used to establish whether the entry desig­
nated by the segment-index portion of a primary
virtual address falls within the primary segment
table.

Bits 20-22 and 24 of control register 1 are not
assigned and are ignored. Bit 23 is ignored if the
private-space facility is not installed.

Control Register 7
Control register 7 contains the secondary segment­
table designation (SSTD). The register has the fol­
lowing format:

Secondary Segment-
Table Origin P SSTL

o 1 20 23 25 31

The secondary segment-table origin, secondary
private-space-control bit (p), and secondary
segment-table length (SSTL) in control register 7 are
defmed the same as the fields in the same bit posi­
tions in control register 1, except that control reg­
ister 7 applies to the secondary address space.

Bits 0, 20-22, and 24 of control register 7 are not
assigned and are ignored. Bit 23 is ignored if the
private-space facility is not installed.

Control Register 13
Control register 13 contains the home segment­
table designation (HSTD). The register has the fol­
lowing format:

Home Segment-
X Table Origin P HSTL

o 1 20 23 25 31

Home Space-Switch-Event-Control Bit (X): When
bit 0 of control register 13 is one, a space-switch­
event program interruption occurs upon com­
pletion of a SET ADDRESS SPACE CONTROL instruc­
tion that changes the address space from which
instructions are fetched either to or from the home
address ~pace; that is, when instructions are fetched
from the home address space either before or after
the operation but not both before and after the
operation.

The ,home segment-table ongm, home private­
spac~fcontrol bit (p), and home segment-table
length (HSTL) in control register 13 are defmed the
same as the fields in the same bit positions in
control register 1, except that control register 13
applies to the home address space.

Chapter 3. Storage 3-25

Bits 20-22 and 24 of control register 13 are not
assigned and are ignored. Bit 23 is ignored if the
private-space facility is not installed.

Programming Notes:

1. The validity of the infonnation loaded into a
control re~ster, including that pertaining to
dynamic address translation, is not checked at
the time the register is loaded. This informa­
tion is checked and the program exception, if
any, is indicated at the time the information is
used.

2. The information pertaining to dynamic address
translation is considered to be used when an
instruction is executed with DAT on or when
INVALIDATE PAGE TABLE ENTRY or LOAD

REAL ADD RESS is executed. The information is
not considered to be used when the psw speci­
fies translation but an I/o,extemal, restart, or
machine-check interruption occurs before an
instruction is executed, or when the psw speci­
fies the wait state.

Translation Tables

The translation process consists in a two-level
lookup using two tables: a segment table and a
page table. These tables reside in real or absolute
storage.

Segment-Table Entries
The entry fetched from the segment table has the
following format:

Page-Table Origin

o 1 26 28 31

The fields in the segment-table entry are allocated
as follows:

Page-Table Origin (PTO): Bits 1-25, with six zeros
appended on the right, form the address that desig­
nates the beginning of a page table. It is unpredict­
able whether the address is real or absolute.

3-26 ESA/370 Principles of Operation

Segment-Invalid Bit (I): Bit 26 controls whether
the segment associated with the segment-table entry
is available. When the bit is zero, address trans­
lation· proceeds by using the segment-table entry.
When the bit is one, the segment-table entry
cannot be used for translation.

Common-Segment Bit (C): Bit 27 controls the use
of the translation-Iookaside-buffer (TLB) copies of
the segment-table entry and of the page table which
it designates. A zero identifies a private segment; in
this case, the segment-table entry and the page
table it designates may be used only in association
with the segment-table origin that designates the
segment table in which the segment-table entry
resides. A one identifies a common segment; in
this case, the segment-table entry and the page
table it designates may continue to be used for
translating addresses corresponding to the segment
index, even though a different segment table is
specified. However, TLB copies of the segment­
table entry and page table for a common segment
are not usable if the private-space control, bit 23, is
one in the segment-table designation used in the
translation. The common-segment bit must be
zero if the segment-table entry is fetched from
storage during a translation when the private-space
control is one in the segment-table designation
being used; otherwise, a translation-specification
~exception is recognized. The function of the
private-space control is available if the private-space
facility is installed.

Page-Table Length (PTL): Bits 28-31 specify the
length of the page table in units of 64 bytes (16
entries). The length of the page table, in units of
64 bytes, is one more than the PTL value. The
contents of the length field are used to establish
whether the entry designated by the page-index
portion of the virtual address falls within the page
table.

Bit 0 of the segment-table entry must be zero; if it
is not zero, a translation-specification exception is
recognized as part of the execution of an instruc­
tion using that entry for address translation.

Page-Table Entries
The entry fetched from the page table entry has the
following format:

PFRA

o 1 28 24 31

The fields in the page-table entry are allocated as
follows:

Page-Frame Real Address (PFRA): Bits 1-19
provide the leftmost bits of a real storage address.
When these bits are concatenated with the 12-bit
byte-index field of the virtual address on the right, a
31-bit real address is obtained.

Page-Invalid Bit (I): Bit 21 controls whether the
page associated with the page-table entry is avail­
able. When the bit is zero, address translation pro­
ceeds by using the page-table entry. When the bit
is one, the page-table entry cannot be used for
translation.

Page-Protection Bit (P): Bit 22 controls whether
store accesses can be made in the page. This pro­
tection mechanism is in addition to the key­
controlled-protection and low-address-protection
mechanisms. The bit has no effect on fetch
accesses. If the bit is zero, stores are permitted to
the page, subject to the other protection mech­
anisms. If the bit is one, stores are disallowed. An
attempt to store when the page-protection bit is
one causes a protection exception to be recognized.

Bit positions 0, 20, and 23 of the entry must
contain zeros; otherwise, a translation-specification
exception is recognized as part of the execution of
an instruction using that entry for address trans­
lation. Bit positions 24-31 are unassigned and are
not checked for zeros.

Summary of Segment-Table and
Page-Table Sizes
The sizes of segment tables and page tables are
summarized in Figure 3-8.

Segment-Table Parameters

Corresponding
Virtual Segment Table Segment-
Address Number of Table
Size Addressable ~1aximum Usable Increment

(Bits) Segments Size (Bytes) Length Code (Bytes)

241 16 64 9 --
31 2,948 8,192 127 64

Page-Table Parameters2

Corresponding
Page Table Page-

Number of Table
Pages Maximum Usable Increment

in Segment Size (Bytes) Length Code (Bytes)

256 1,924 15 64

Explanation:

A virtual address specified by the program in the 24-bit
addressing mode consists of a 24-bit value embedded in a
31-bit address.

2 The page-table size is independent of the virtual address
size.

Figure 3-8. Sizes of Segment Tables and Page Tables

Translation Process

This section describes the translation process as it is
performed implicitly before a virtual address is used
to access main storage. Explicit translation, which
is the process of translating the operand address of
LOAD REAL ADDRESS and TEST PROTECTION, is the
same, except that segment-translation and page­
translation exceptions do not occur; such situations
are instead indicated by the condition code. Trans­
lation of the operand address of LOAD REAL
ADDRESS also differs in that the CPU may be in the
real mode and the translation-Iookaside buffer is
not used.

Translation of a virtual address is performed by
means of a segment table and a page table, both of
which reside in real· or absolute storage. It is con­
trolled by the OAT-mode bit and the address-space­
control bits, all in the psw. The translation tables
are designated by fields in control registers 1, 7, and
13 and as specified by the access registers.

Chapter 3. Storage 3-27

Effective Segment-Table Designation
The segment-table designation used for a particular
address translation is called the effective segment­
table designation. Accordingly, when a primary
virtual address is translated, the contents of control
register I are used as the effective segment-table
designation. Similarly, for a secondary virtual
address, the contents of control register 7 are used;
for an AR-specified virtual address, the segment­
table designation specified by the access register is
used; and for a home virtual address, the contents
of control register 13 are used.

The segment-index portion of the virtual address is
used to select an entry from the segment table, the
starting address and length of which are specified by
the effective segment-table designation. This entry
designates the page table to be used.

The page-index portion of the virtual address is
used to select an entry from the page table. This
entry contains the leftmost bits of the real address
that represents the translation of the virtual address
and provides the page-protection bit.

The byte-index field of the virtual address is used
unchanged as the rightmost bit positions of the real
address.

If the I bit is one in either the segment-table entry
or the page-table entry, the entry is invalid, and the
translation process cannot be completed for this
virtual address. A segment-translation or a page­
translation exception is recognized.

In order to eliminate the delay associated with ref­
erences to translation tables in real or absolute
storage, the information fetched from the tables
normally is also placed in a special buffer, the
translation-Iookaside buffer (TLB), and subsequent
translations involving the same table entries may be
performed by using the information recorded in the
TLB. The operation of the TLB is described in the
section "Translation-Lookaside Buffer" in this
chapter.

Whenever access to real or absolute storage is made
during the address-translation process for the
purpose of fetching an entry from a segment table
or page table, key-controlled protection does not
apply.

The translation process, including the effect of the
TLB, is shown graphically in Figure 3-9.

~ Control register 1 provides the primary segment-table designation for
translation of a primary virtual address, control register 7 provides
the secondary segment-table designation for translation of a secondary
virtual address, and control register 13 provides the home segment-table
designation for translation of a home virtual address. An ASN-second­
table entry provides an AR-specified (access-register-specified) segment­
table designation for translation of an AR-specified virtual address.

~ Information, which may include portions of the virtual address and the
effective segment-table origin, is used to search the TLB.

~ If a match exists, the page-frame real address from the TLB is used in
forming the real address.

~ If no match exists, table entries in real or absolute storage are fetched.
The resulting fetched entries, in conjunction with the search information~­
are used to translate the address and may be used to form an entry in the
TLB.

Figure 3-9 (Part 1 of 2). Translation Process

3-28 ESA/370 Principles of Operation

Control Register
1, 7, or 13

ASN-Second Table
Entry Virtual Address

r-------------r--.-.+---~

Effective STD

~ Segment Table

RIA PTO PTL

(x64)

1
~ Page Table

RIA PFRA

Translation
Lookaside
Buffer (TLB)

~-------------..~.---------------------------. .. ~

RIA: Address is either real or absolue

Figure 3-9 (Part 2 of 2). Translation Process

•
Real Address

Chapter 3. Storage 3-29

Inspection of Control Register 0
The interpretation of the virtual address for trans­
lation purposes requires that there be a valid trans­
lation format specified by bits 8-12 of control reg­
ister O. If bits 8-12 contain an invalid code, a
translation-specification exception is recognized.

Segment-Table Lookup
The segment-index portion of the virtual address, in
conjunction with the segment-table origin con­
tained in the effective segment-table designation, is
used to select an entry from the segment table.

The 31-bit address of the segment-table entry in
real or absolute storage is obtained by appending
12 zeros to the right of bits 1-19 of the effective
segment-table designation and adding the segment
index with two rightmost and 18 leftmost zeros
appended. When a carry into bit position 0 occurs
during the addition, an addressing exception may
be recognized, or the carry may be ignored, causing
the table to wrap from 231

- 1 to zero. All 31 bits
of the address are used, regardless of whether the
current psw specifies the 24-bit or 31-bit addressing
mode.

As part of the segment-table-lookup process, bits
1-7 of the virtual address are compared against the
segment-table length, bit positions 25-31 of the
effective segment-table designation, to establish
whether the addressed entry is within the segment
table. If the value in the segment-table-length field
is less than the value in the corresponding bit posi­
tions of the virtual address, a segment-translation
exception is recognized.

All four bytes of the segment-table entry appear to
be fetched concurrently as observed by other cpus.
The fetch access is not subject to protection.
When the storage address generated for fetching the
segment-table entry designates a location which is
not available in the configuration, an addressing
exception is recognized, and the unit of operation is
suppressed.

Bit 26 of the entry fetched from the segment table
specifies whether the corresponding segment is
available. This bit is inspected, and, if it is one, a
segment-translation exception is recognized. If bit
o of the entry is one, a translation-specification
exception is recognized. A translation-specification
exception is also recognized if (1) the private-space
facility is installed, (2) the private-space control, bit
23, in the effective segment-table designation is one,

3-30 ESA/370 Principles of Operation

and (3) the common-segment bit, bit 27, in the
entry fetched from the segment table is one.

When no exceptions are recognized in the process
of segment-table lookup, the entry fetched from the
segment table designates the beginning and specifies
the length of the corresponding page table.

The common-segment bit in the entry fetched from
the segment table is further used only for the
purpose of forming a TLB entry (see the section
"Use of the Translation-Lookaside Buffer" later in
this chapter).

Page-Table Lookup
The page-index portion of the virtual address, in
conjunction with the page-table origin contained in
the segment-table entry, is used to select an entry
from the page table.

The 31-bit address of the page-table entry in real or
absolute storage is obtained by appending six zeros
to the right of the page-table origin and adding the
page index, with two rightmost and 21 leftmost
zeros appended. A carry into bit position 0 may
cause an addressing exception to be recognized, or
the carry may be ignored, causing the page table to
wrap from 231

- 1 to zero. All 31 bits of the
address are used, regardless of whether the current
psw specifies the 24-bit or 31-bit addressing mode.

As part of the page-table-lookup process, the four
leftmost bits of the page index are compared
against the page-table length, bits 28-31 of the
segment-table entry, to establish whether the
addressed entry is within the table. If the value in
the page-table-length field is less than the value in
the four leftmost bit positions of the page-index
field, a page-translation exception is recognized.

All four bytes of the page-table entry appear to be
fetched concurrently as observed by other cPus.
The fetch access is not subject to protection.
When the storage address generated for fetching the
page-table entry designates a location which is not
available in the configuration, an addressing excep­
tion is recognized, and the unit of operation is sup­
pressed.

The entry fetched from the page table indicates the
availability of the page and contains the leftmost
bits of the page-frame real address. The page­
invalid bit is inspected to establish whether the cor­
responding page is available. If this bit is one, a
page-translation exception is recognized. If bit

position 0, 20, or 23 contains a one, a translation­
specification exception is recognized.

Formation of the Real Address
When no exceptions in the translation process are
encountered, the page-frame real address obtained
from the page-table entry and the byte-index
portion of the virtual address are concatenated,
with the page-frame real address forming the left­
most part. The result is the real storage address
which corresponds to the virtual address. All 31
bits of the address are used, regardless of whether
the current PS W specifies the 24-bit or 31-bit
addressing mode.

Recognition of Exceptions during
Translation
Invalid addresses and invalid formats can cause
exceptions to be recognized during the translation
process. Exceptions are recognized when informa­
tion contained in control registers or table entries is
used for translation and is found to be incorrect.

The information pertaining to D AT is considered to
be used when an instruction is executed with OAT
on or when INVALIDATE PAGE TABLE ENTRY or
LOAD REAL ADDRESS is executed. The information
is not considered to be used when the psw specifies
OAT on but an I/O, external, restart, or machine­
check interruption occurs before an instruction is
executed, or when the psw specifies the wait state.
Only that information required in order to translate
a virtual address is considered to be in use during
the translation of that address, and, in particular,
addressing exceptions that would be caused by the
use of a segment-table designation are not recog­
nized when that segment-table designation is not
the one actually used in the translation.

A list of translation exceptions, with the action
taken for each exception and the priority in which
the exceptions are recognized when more than one
is applicable, is provided in the section "Recogni­
tion of Access Exceptions" in Chapter 6,
"Interruptions. "

Translation-Lookaside Buffer

To enhance performance, the dynamic-address­
translation mechanism normally is implemented
such that some of the information specified in the
segment and page tables is maintained in a special
buffer, referred to as the translation-Iookaside buffer
(TLB). The CPU necessarily refers to a OAT-table
entry in real or absolute storage only for the initial

access to that entry. This information may be
placed in the TLB, and subsequent translations may
be perfonned by using the information in the TLB.
The presence of the TLB affects the translation
process to the extent that a modification of the
contents of a table entry in real or absolute storage
does not necessarily have an immediate effect, if
any, on the translation. In a multiple-cpu config­
uration, each CPU has its own TLB.

Entries within the TLB are not explicitly addressable
by the program.

Information is not necessarily retained in the TLB
under all conditions for which such retention is per­
missible. Furthermore, information in the TLB may
be cleared under conditions additional to those for
which clearing is mandatory.

TLB Structure
The description of the logical structure of the TLB
covers the implementation by all systems operating
as defined by ESA/370. The TLB entries arc consid­
ered as being of two types: TLB segment-table
entries and TLB page-table entries. A TLB entry is
considered as containing within it both the infor­
mation obtained from the table entry in real or
absolute storage and the attributes used to fetch the
entry from storage, as follows:

TLB STE:

ISTO SX IPTO IPTL C

STO The segment-table origin in effect when the
entry was formed

sx The segment index used to select the entry

PTO The page-table origin fetched from the
segment-table entry in real or absolute
storage

PTL The page-table length fetched from the
segment-table entry in real or absolute
storage

c The common-segment bit fetched from the
segment-table entry in real or absolute
storage

TLB PTE:

Chapter 3. Storage 3-31

PTO The page-table ongm in effect when the
entry was formed

PX The page index used to select the entry

PFRA The page-frame real address fetched from the
page-table entry in real or absolute storage.

P The page-protection bit fetched from the
page-table entry in real or absolute storage

Note: The following sections describe the condi­
tions under which information may be placed in
the TLB, the conditions under which information
from the TLB maybe used for address translation,
and how changes to the translation tables affect the
translation process.

. Formation of TLB Entries
The formation of TLB entries and the effect of any
manipulation of the contents of a table entry in real
or absolute storage by the program depend on
whether the entry is is attached to a particular CPU

and on whether the entry is valid.

The attached state of a table entry denotes that the
CPU to which it is attached can attempt to use the
table entry for implicit address translation. The
table entry may be attached to more than one CPU

at a time.

The valid state of a table entry denotes that the
segment or page associated with the table entry is
available. An entry is valid when the segment­
invalid bit or page-invalid bit in the entry is zero.

A segment-table entry or a page-table entry may be
placed in the TLB whenever the entry is attached
and valid and would not cause a translation­
specification exception if used for translation.

A segment-table entry is attached when all of the
following conditions are met:

1. The current psw specifies OAT on.

2. The current psw contains no errors which
would cause an early exception to be recog­
nized.

3. The current translation format, bits 8-12 in
control register 0, is valid.

4. The entry meets the requirements in a, b, c, or
d below.

a. The entry is within the segment table desig­
nated by the primary segment-table desig­
nation in control register .1, and the CPU is
not in the home-space mode.

3-32 ESA/370 Principles of Operation

b. The entry is within the segment table desig­
nated by the secondary segment-table des­
ignation in control register 7 and either of
the following requirements is met:

• The CPU is in the secondary-space
mode.

• The CPU is in the primary-space mode,
and the secondary-space control, bit 5
of control register 0, is one.

c. The entry is within a segment table for
which the designation is in either an ALB
ASN-second-table entry or an ASN-second­
table entry which can be placed in the ALB,
and the CPU is in the access-register mode.
See the section "ART-Lookaside Buffer" in
Chapter 5, "Program Execution," for the
meaning of the terminology used here.

d. The entry is within the segment table speci­
fied by the home segment-table designation
in control register 13, and the CPU is not in
the secondary-space mode.

A page-table entry is attached when it is within the
page table designated by either a usable TLB
segment-table entry or by an attached and valid
segment-table entry which would not cause a
translation-specification exception if used for trans­
lation. A usable TLB segment-table entry is
explained in the next section.

Use of TLB Entries

The usable state of a TLB entry denotes that the
CPU can attempt to use the TLB entry for implicit
address translation. Also, the usable state of a TLB
segment-table entry is a factor in determining
whether a page-table entry is attached.

A TLB segment-table entry is in the usable state
when all of the following conditions are met:

1. The current psw specifies OAT on.

2. The current psw contains no errors which
would cause an early exception to be recog­
nized.

3. The current translation format, bits 8-12 in
control register 0, is valid.

4. The TLB segment-table entry meets at least one
of the following requirements:

a. The common-segment bit is one in the TLB
entry.

b. The segment-table-origin field in the TLB

entry is the same as the current PSTO, and
the CPU is not in the home-space mode.

c. The segment-table-origin field in the TLB

entry is the same as the current SSTO, and
either of the following requirements is met:

• The CPU is in the secondary-space
mode.

• The CPU is in the primary-space mode,
and the secondary-space control, bit 5

. of control register 0, is one.

d. The segment-table-origin field in the TLB

entry is the same as one that can be
obtained by applying the access-register­
translation process to the contents of an
access register, and the CPU is in the access­
register mode.

e. The segment-table-origin field in the TLB

entry is the same as the current HSTO, and
the CPU is not in the secondary-space
mode.

A TLB segment-table entry may be used for implicit
address translation only when the entry is in the
usable state, the segment index of the entry
matches the segment index of the virtual address to
be translated, and either the common-segment bit is
one in the TLB entry or the segment-table-origin
field in the TLB entry matches the segment-table
origin used to select it. However, a TLB segmen~­
table entry is not used if the common-segment bit
is one in the entry and the private-space-control bit
is one in the segment-table designation used to
select the entry, even if the segment-table-origin
fields in the entry and the designation match.

A TLB page-table entry is in the usable state when
all of the following conditions are met:

1. The TLB page-table entry is selected by a usable
TLB segment-table entry or by an attached and
valid segment-table entry which would not
cause a translation -specification exception if
used for translation.

2. The page-table-origin field in the TLB page­
table entry matches the page-table-origin field
in the segment-table entry which selects it.

3. The page-index field in the TLB page-table
entry is within the range permitted by the page­
table-length field in the segment-table entry
which selects it.

A TLB page-table entry may be used for implicit
address translation only when the TLB entry is in
the usable state as selected by the segment-table
entry being used and only when the page index of
the TLB page-table entry matches the page index of
the virtual address being translated.

The operand address of LOAD REAL AD DRESS is
translated without the use of the TLB contents.
Translation in this case is performed by the use of
the designated tables in real or absolute storage.

Programming Notes:

1. Although a table entry may be copied into the
TLB only when the table entry is both valid and
attached, the copy may remain in the TLB even
when the table entry itself is no longer valid or
attached.

2. No entries can be copied into the TLB when
DAT is off because the table entries at this time
are not attached. In particular, translation of
the operand address of LOAD REAL ADDRESS,

with DAT off, does not cause entries to be
placed in the TLB.

Conversely, when DAT is on, information may
be copied into the TLB from all translation­
table entries that could be used for address
translation, given the current translation param­
eters, the setting of the address-space-control
bits, the setting of the secondary-space-control
bit and the contents of the access registers.
The loading of the TLB does not depend on
whether the entry is used for translation as part
of the execution of the current instruction, and
such loading can occur when the wait state is
specified.

3. More than one copy of a table entry may exist
in the TLB. For example, some implementa­
tions may cause a copy of a valid table entry to
be placed in the TLB for each segment-table
origin by which the entry becomes attached.

Modification of Translation Tables
When an attached and invalid table entry is made
valid and no usable entry for the associated virtual
address is in the TLR, the change takes effect no
later than the end of the current unit of operation.
Similarly, when an unattached and valid table entry
is made attached and no usable entry for the· associ­
ated virtual address is in the TLB, the change takes
effect no later than the end of the current unit of
operation.

Chapter 3. Storage 3-33

When a valid and attached table entry is changed,
and when, before the TLB is cleared of entries which
qualify for substitution for that entry, an attempt is
made to refer to storage by using a virtual address
requiring that entry for translation, unpredictable
results may occur, to the following extent. The use
of the new value may begin between instructions or
during the execution of an instruction, including
the instruction that caused the change. Moreover,
until the TLB is cleared of entries which qualify for
substitution for that entry, the TLB may contain
both the old and the new values, and it is unpre­
dictable whether the old or new value is selected for
a particular access. If both old and new values of a
segment-table entry are present in the TLB, a page­
table entry may be fetched by using one value and
placed in the TLB associated with the other value.
If the new value of the entry is a value which
would cause an exception, the exception mayor
may not cause an interruption to occur. If an
interruption does occur, the result fields of the
instruction may be changed even though the excep­
tion would normally cause suppression or
nullification.

Entries are cleared from the TLB in accordance with
.' the following rules:

1. All entries are cleared from the TLB by the exe­
cution of PURGE TLB and SET PREFIX and by
CPU reset.

2. Selected entries are cleared from all TLBs in the
configuration by the execution of INVALIDATE
PAGE TABLE ENTRY by any of the CPus in the
configuration.

3. Some or all TLB entries may be cleared at times
other than those required by PURGE TLB, SET
PREFIX, CPU reset, and INVALIDATE PAGE
TABLE ENTRY.

Programming Notes:

1. Entries in the TLB may continue to be used for
translation after the table entries from which
they have been formed have become unat­
tached or invalid. These TLB entries are not
necessarily removed unless explicitly cleared
from the TLB.

A change made to an attached and valid entry
or a change made to a table entry that causes
the entry to become attached and valid is
reflected in the translation process for the next
instruction, or earlier ihan the next instruction,
unless a TLB entry qualifies for substitution for
that table entry. However, a change made to a

3-34 ESAj370 Principles of Operation

table entry that causes the entry to become
unattached or invalid is not necessarily reflected
in the translation process until the TLB is
cleared of entries which qualify for substitution
for that table entry.

2. Exceptions associated with dynamic address
translation may be established by a pretest for
operand accessibility that is performed as part
of the initiation of instruction execution. Con­
sequently, a segment-translation or page­
translation exception may be indicated when a
table entry is invalid at the start of execution
even if the instruction would have validated the
table entry it uses and the table entry would
have appeared valid if the instruction was con­
sidered to process the operands one byte at a
time.

3. A change made to an attached table entry,
except to set the I bit to zero or to alter the
rightmost byte of a page-table entry, may
produce unpredictable results if that entry is
used for translation before the TLB is cleared of
all copies of that entry. The use of the new
value may begin between instructions or during
the execution of an instruction, including the
instruction that caused the change. When an
instruction, such as MOVE (MVC), makes a
change to an attached table entry, including a
change that makes the entry invalid, and subse­
quently uses the entry for translation, a
changed entry is being used without a prior
clearing of the entry from the TLB, and the
associated unpredictability of result values and
of exception recognition applies.

Manipulation of attached table entries may
cause spurious table-entry values to be recorded
in a TLB. For example, if changes are made
piecemeal, modification of a valid attached
entry may cause a partially updated entry to be
recorded, or, if an intermediate value is intro­
duced in the process of the change, a suppos­
edly invalid entry may temporarily appear valid
and may be recQrded in the TLB. Such an
intermediate value may be introduced if the
change is made by an I/O operation that is
retried, or if an intermediate value is introduced
during the execution of a single instruction.

As another example, if a segment-table entry is
changed to designate a different page table and
used without clearing the TLB, then the new
page-table entries may be fetched and associ­
ated with the old page-table origin. In such a
case, execution of INVALIDATE PAGE TABLE

ENTRY designating the new page-table origin
will not necessarily clear the page-table entries
fetched from the new page table.

4. To facilitate the manipulation of translation
tables, INVALIDATE PAGE TABLE ENTRY is pro­
vided which sets the I bit in a page-table entry , . .
to one and clears all TLBS In the configuratIon
of entries formed from that table entry.

INVALIDATE PAGE TABLE ENTRY is useful for
setting the I bit to one in a page-table entry and
causing TLB copies of the entry to be cleared
from the TLB of each CPU in the configuration.
The following aspects of the TLB operation
should be considered when using INVALIDATE

PAGE TABLE ENTRY. (See also the program­
ming notes following INVALIDATE PAGE TABLE

ENTRY.)

a. INVALIDATE PAGE TABLE ENTRY should be
executed before making any change to a
page-table entry other than changing the
rightmost byte; otherwise, the selective
clearing portion of INVALIDATE PAGE

TABLE ENTRY may not clear the TLB copies
of the entry.

b. Invalidation of all the page-table entries
within a page table by means of INV ALI­

DATE PAGE TABLE ENTRY does not neces­
sarily clear the TLB of the copies, if any, of
the segment-table entry designating the
page table. When it is desired to invalidate
and clear the TLB of a segment-table entry,
the rules in note 5 below must be followed.

c. When a large number of page-table entries
are to be invalidated at a single time, the
overhead involved in using PURGE TLB and
in following the rules in note 5 below may
be less than in issuing INVALIDATE PAGE

TABLE ENTRY for each page-table entry.

5. Manipulation of table entries should be in
accordance with the following rules. If these
rules are complied with, translation is per­
formed as if the table entries from real storage
were always used in the translation process.

a. A valid table entry must not be changed
while it is attached to any CPU except
either to invalidate the entry, by using
INVALIDATE PAGE TABLE ENTRY or to
alter bits 24-31 of a page-table entry.

b. When any change is made to a table entry
other than a change to bits 24-31 of a
page-table entry, each CPU which may have

a TLB entry formed from that entry must
execute PURGE TLB or SET PREFIX or
perform CPU reset, after the change occurs
and prior to the use of that entry for
implicit translation by that CPU, except
that the purge is unnecessary if the change
was made by using INVALIDATE PAGE

TABLE ENTRY.

c. When any change is made to an invalid
table entry in such a way as to allow inter­
mediate valid values to appear in the entry,
each CPU to which the entry is attached
must execute PURGE TLB or SET PREFIX or
perform CPU reset, after the change occurs
and prior to the use of the entry for
implicit address translation by that CPU.

d. When any change is made to a segment­
table or page-table length, each CPU to
which that table has been attached must
execute PTLB after the length has been
changed but before that table becomes
attached again to the cpu.

Note that when an invalid page-table entry is
made valid without introducing intermediate
valid values, the TLB need not be cleared in a
cpu which does not have any usable TLB

copies for that entry. Similarly, when an
invalid segment-table entry is made valid
without introducing intermediate valid values,
the TLB need not be cleared in a CPU which
does not have any usable TLB copies for that
segment-table entry and which does not have
any usable TLB copies for the page-table entries
attached by it.

The execution of PURGE TLB and SET PREFIX

may have an· adverse effect on the performance
of some models. Use of these instructions
should, therefore, be minimized in conformity
with the above rules.

Address Summary

Addresses Translated

Most addresses that are explicitly specified by the
program and are used by the CPU to refer. to
storage for an instruction or an operand are lOgIcal
addresses and are subject to implicit translation
when OAT is on. Analogously, the corresponding
addresses indicated to the program on an inter­
ruption or as the result of executing an instruction
are logical. The operand address of LOAD REAL

Chapter 3. Storage 3-35

AD DRESS is explicitly translated, regardless of
whether the psw specifies DAT on or off.

Translation is not applied to quantities that are
formed from the values specified in the B and D

fields of an instruction but that are not used to
address storage. This includes operand addresses in
LOAD ADDRESS, MONITOR CALL, and the shifting
instructions. This also includes the addresses in
control registers 10 and 11 designating the starting
and ending locations for PER.

With the exception of INSERT VIRTUAL STORAGE

KEY and TEST PROTECTION, the addresses explicitly
designating storage keys (operand addresses in SET

STORAGE KEY EXTENDED, INSERT STORAGE KEY

EXTENDED, and RESET REFERENCE BIT EXTENDED)

are real addresses. Similarly, the addresses implic­
itly used by the CPU for such sequences as inter­
ruptions are real addresses.

3-36 ESA/370 Principles 'of Operation

The addresses used by chfUUlel programs to transfer
data and to refer to ccws or IDA ws are absolute
addresses.

The handling of storage addresses associated with
DIAGNOSE is model-dependent.

The processing of addresses, including dynamic
address translation and prefixing, is discussed in the
section "Address Types" in this chapter. Prefixing,
when provided, is applied after the address has been
translated by means of the dynamic-address­
translation facility. For a description of prefixing,
see the section "Prefixing" in this chapter.

Handling of Addresses

The handling of addresses is summarized in
Figure 3-10 on page 3-37. This figure lists all
addresses that are encountered by the program and
specifies the address type.

Virtual Addresses

• Address of storage operand for INSERT VIRTUAL STORAGE KEY
• Operand address in LOAD REAL ADDRESS
• Addresses of storage operands for MOVE TO PRIMARY and MOVE TO

SECONDARY
• Address stored in the word at real location 144 on a program inter-

ruption for page-translation or segment-translation exception
• Linkage-stack-entry address in control register 15
• Backward stack-entry address in linkage-stack header entry
• Forward-section-header address in linkage-stack trailer entry

Instruction Addresses

Instruction address in PSW
• Branch address
• Target of EXECUTE
• Address stored in the word at real location 152 on a program inter­

ruption for PER
• Address placed in general register by BRANCH AND LINK, BRANCH AND

SAVE, BRANCH AND SAVE AND SET MODE, and PROGRAM CALL

Logical Addresses

• Addresses of storage operands for instructions not otherwise
specified

• Address placed in general register 1 by EDIT AND MARK and TRANSLATE
AND TEST

• Addresses in general registers updated by MOVE LONG and COMPARE
LOGICAL LONG

• Addresses in general registers updated by COMPARE AND FORM CODEWORD
and UPDATE TREE

• Address for TEST PENDING INTERRUPTION when the second-operand ad­
dress is nonzero

Real Addresses

• Address of storage key for INSERT STORAGE KEY EXTENDED, RESET
REFERENCE BIT EXTENDED, and SET STORAGE KEY EXTENDED

• Address of storage operand for TEST BLOCK
• The translated address generated by LOAD REAL ADDRESS
• Page-table origin in INVALIDATE PAGE TABLE ENTRY
• Page-frame real address in page-table entry
• Trace-entry address in control register 12
• ASN-first-table origin in control register 14
• ASN-second-table origin in ASN-first-table entry
• Authority-table origin in ASN-second-table entry
• Linkage-table origin in control register 5 or primary ASN-second-

table entryl
• Entry-table origin in linkage-table entry
• Dispatchable-unit-control-table origin in control register 2
• Primary-ASN-second-table-entry origin in control register 51
• D1spatchable-unit-access-list origin in dispatchable-unit control

table

Figure 3-10 (Part 1 of 2). Handling of Addresses

Chapter 3. Storage 3-37

Real Addresses (Continued)

• Primary-space-access-list origin in primary ASN-second-table entry
• ASN-second-table-entry address in entry-table entry and access-list

entry

Permanently Assigned Real Addresses

• Address of the doubleword into which TEST PENDING INTERRUPTION
stores when the second-operand address is zero

• Addresses of PSWs, interruption codes, and the associated informa­
tion used during interruption

• Addresses used for machine-check logout and save areas

Addresses Which Are Unpredictably Real or Absolute

• Segment-table origin in control registers 1 and 7
• Page-table origin in segment-table entry
• Address of segment-table entry or page-table entry provided by LOAD

REAL ADDRESS

Absolute Addresses

• Prefix value
• Channel-program address in ORB
• Data address in CCW
• IDAW address in a CCW specifying indirect data addressing
• CCW address in a CCW specifying transfer in channel
• Data address in IDAW
• Measurement-block origin specified in SET CHANNEL MONITOR
• Address ljmit specified in SET ADDRESS LIMIT
• Addresses used by the store-status-at-address SIGNAL PROCESSOR order
• Failing-storage address stored in the word at real location 248
• CCW address in SCSW

Permanently Assigned Absolute Addresses

• Addresses used for the store-status function
• Addresses of PSW and first two CCWs used for initial program loading

Addresses Not Used to Reference Storage

• PER starting address in control register 10
• PER ending address in control register 11
• Address stored in the word at real location 156 for a monitor event
• Address in shift instructions and other instructions specified not

to use the address to reference storage

Explanation:

1 When the address-space-function (ASF) contr~l, bit 15 of control
register 0, is zero, control' register 5 contains the linkage-table
origin. When the ASF control is one, control register 5 contains
the primary-ASN-second-table-entry origin, and the linkage-table
origin is in the primary ASN-second-table entry.

Figure 3-10 (Part 2 of 2). Handling of Addresses

3-38 ESA/370 Principles of Operation

Ass,igned Storage Locations
Figure 3-11 on page 3-44 shows the fonnat and
extent of· the assigned locations in storage. The
locations are used as follows.

0-7

0-7

8-15

8-15

(Absolute Address)

Initial-Program-Loading PSW: The frrst
eight bytes read during the initial­
program-loading (IPL) initial-read opera­
tion are stored at locations 0-7. The con­
tents of these locations are used as the
new psw at the completion of the IPL

operation. These. locations may also be
used for temporary storage at the initi­
ation of the IPL operation.

(Real Address)

Restart New PSW: The new psw is
fetched from locations 0-7 during a restart
interruption.

(Absolute Address)

I nitial-Program-Loading CCW 1: Bytes
8-15 read during the initial-pro gram­
loading (IPL) initial-read operation are
stored at locations 8-15. The contents of
these locations are ordinarily used as the
next ccw in an IPL ccw chain after com­
pletion of the IPL initial-read operation.

(Real Address)

Restart Old PSW: The current psw is
stored as the old psw at locations 8-15
during a restart interruption.

16-23 (Absolute Address)

Initial-Program-Loading CCW2: Bytes
16-23 read during the initial-program
loading (IPL) initial-read operation are
stored at locations 16-23. The contents
of these locations may be used as another
ccw in the IPL ccw chain to follow IPL

CCWl.

24-31 (Real Address)

External Old PSW: The current psw is
stored as the old psw at locations 24-31
during an external interruption.

32-39 (Real Address)

Supervisor-Call Old PSW: The current
psw is stored as the old psw at locations
32-39 during a supervisor-call inter­
ruption.

40-47

48-55

(Real Address)

Program Old PSW: The current psw is
stored as the old psw at locations 40-47
during a program interruption.

(Real Address)

Machine-Check Old PSW: The current
psw is stored as the old psw at locations
48-55 during a machine-check inter­
ruption.

56-63 (Real Address)

Input/Output Old PSW: The current psw
is stored as the old psw at locations 56-63
during an I/O interruption.

88-95 (Real Address)

External New PSW: The new psw is
fetched from locations 88-95 during an
external interruption.

96-103 (Real Address)

Supervisor-Call New PSW: The new psw
is fetched from locations 96-103 during a
supervisor-call interruption.

104-111 (Real Address)

Program New PSW: The new psw is
fetched from locations 104-111 during a
program interruption.

112-119 (Real Address)

Machine-Check New PSW: The new psw
is fetched from locations 112-119 during a
machine-check interruption.

120-127 (Real Address)

Input/Output New PSW: The new psw is
fetched from locations 120-127 during an
I/O interruption.

128-131 (Real Address)

External-Interruption Parameter: During
an external interruption due to service
signal, the parameter associated with the
interruption is stored at locations
128-131.

132-133 (Real Address)

CPU Address: During an external inter­
ruption due to malfunction alert, emer­
gency signal, or external call, the CPU

address associated with the source of the
interruption is stored at locations
132-133. For all other external-

Chapter 3. Storage 3-39

interruption conditions, zeros are stored
at locations 132-133.

134-135 (Real Address)

External-Interruption Code: During an
external interruption, the interruption
code is stored at locations 134-135.

136-139 (Real Address)

Supervisor-Call-Interruption Identification:
During a supervisor-call interruption, the
instruction-length code is stored in bit
positions 5 and 6 of location 137, and the
interruption code is stored at locations
138-139. Zeros are stored at location 136
and in the remaining bit positions of
location 137.

140-143 (Real Address)

Program-Interruption Identification:
During a program interruption, the
instruction-length code is stored in bit
positions 5 and 6 of location 141, and the
interruption code is stored at locations
142-143. Zeros are stored at location 140
and in the remaining bit positions of
location 141.

144-147 (Real Address)

Translation-Exception Identification:
During a program interruption due to a
segment-translation exception or a page­
translation exception, the segment-index
and page-index portion of the virtual
address causing the exception is stored at
locations 144-147. This address is some­
times referred to as the translation­
exception address. Bits 20-29 of the
address are unpredictable. Bits 30-31 of
the address are set to identify the
segment-table designation (STD) used in
the translation, as follows:

3-40 ESA/370 Principles of Operation

Bit Bit
30 31 Meaning
o 0 Primary STD was used.
o I CPU was in the access-register

mode, and either the access
was an instruction fetch or it
was a storage-operand refer­
ence that used an AR-specified
STD (the access was not an
implicit reference to the
linkage stack). The exception
access id, real location 160,
can be examined to determine
the STD used. However, if the
primary, secondary, or home
STD was used, bits 30 and 31
may be set to 00, 10, or 11,
respectively, instead of to 01.

1 0 Secondary STD was used.
1 1 Home STD was used (includes

the case of an implicit refer­
ence to the linkage stack).

The CPU may avoid setting bits 30 and 31
to 01 by recognizing that the access was
an instruction fetch, that access-list-entry
token 00000000 or 00000001 hex was
used, or that the access-list-entry token
designated, through an access-list entry,
an· ASN-second-table entry containing an
STD equal to the primary STD, secondary
STD, or home STD.

Bit 0 of location 144 is set to one if the
CPU was in either the primary-space
mode or the secondary-space mode and
the secondary STD was used; otherwise,
bit 0 is set to zero.

During a program interruption due to an
AFx-translation, Asx-translation, primary­
authority, or secondary -authority excep­
tion, the ASN being translated is stored at
locations 146-147. Zeros are stored at
locations 144-145.

During a program interruption for a
space-switch event, an identification of
the old instruction space is stored at
locations 146-147, and the old
instruction-space space-switch -event-
control bit is placed in bit position 0 and
zeros are placed in bit positions 1-15 of
locations 144-145. The identification and
bit stored are as follows:

• If the CPu was in the primary-space,
secondary-space, or access-register
mode before the operation, the old
PASN, bits 16-31 of control register 4
before the operation, is stored at
locations 146-147, and the old
primary space-switch-event-control
bit, bit 0 of control register 1 before
the operation, is placed in bit position
o of locations 144-145.

• If the cpu was in the home-space
mode before the operation, zeros are
stored at locations 146-147, and the
home space-switch-event-control bit,
bit 0 of control register 13, is placed
in bit position 0 of locations 144-145.

During a program interruption due to an
Lx-translation or Ex-translation excep­
tion, the pc number is stored in bit posi­
tions 12-31 of the word at locations
144-147. Bits 0-11 are set to zeros.

148-149 (Real Address)

Monitor-Class Number. During a
program interruption due to a monitor
event, the monitor-class number is stored
at location 149, and zeros are stored at
location 148.

150-151 (Real Address)

PER Code: During a program inter­
ruption due to a PER event, the PER code
is stored in bit positions 0-3 of location
150. Zeros are stored in bit positions 4-7
of location 150 and bit positions 0-7 of
location 151.

152-155 (Real Address)

PER Address: During a program inter­
ruption due to a program event, the PER
address is stored at locations 152-155. Bit
o of location 152 is set to zero.

156-159 (Real Address)

Monitor Code: During a program inter­
ruption due to a monitor event, the
monitor code is stored at locations
156-159.

160 (Real Address)

Exception A ccess Identification: During a
program interruption due to a segment­
translation exception or a page-translation

161

exception, an indication of the address
space to which the exception applies may
be stored at location 160. If the cpu was
in the access-register mode and the access
was an instruction fetch, including a fetch
of the target of an EXECUTE instruction,
zeros are stored at location 160. If the
cpu was in the access-register mode and
the access was a storage-operand reference
that used an AR-specified segment-table
designation, the number of the access reg­
ister used is stored in bit positions 4-7 of
location 160, and zeros are stored in bit
positions 0-3. (In either of the two cases
described so far, storing at location 160
occurs regardless of the value stored in bit
positions 30 and 31 of real locations
144-147.) If the cpu was in the access­
register mode but the access was an
implicit reference to the linkage stack, or
if the cpu was not in the access-register
mode, the contents of location 160 are
unpredictable.

During a program interruption due to an
ALEN-translation, ALE-sequence,
ASTE-validity, ASTE-sequence, or
extended-authority exception, the number
of the access register used is stored in bit
positions 4-7 of location 160, and zeros
are stored in bit positions 0-3.

(Real Address)

PER A ccess Identification: During a
program interruption due to a PER
storage-alteration event, an indication of
the address space to which the event
applies may be stored at location 161. If
the access used an AR-specified segment­
table designation, the number of the
access register used is stored in bit posi­
tions 4-7· of location 161, and zeros are
stored in bit positions 0-3. However, the
contents of location 161 are unpredictable
if the instruction that caused the event
turned DAT off. The contents of location
161 are also unpredictable if (1) the cpu
was in the access-register mode but the
access was an implicit reference to the
linkage stack, (2) the cpu was not in the
access-register mode, or (3) bit 2 of the
PER code is one but indicates a store­
using-real-address event instead of a
storage-alteration event.

Chapter 3. Storage 3-41

184-187 (Real Address)

Subsystem-Identification Word: During
an I/O interruption, the subsystem­
identification word is stored at locations
184-187. \

188-191 (Real Address)

I/O-Interruption Parameter: During an
I/O interruption, the interruption param­
eter from the associated subchannel is
stored at locations 188-191.

216-223 (Absolute Address)

Store-Status CPU-Timer Save Area:
During the execution· of the store-status
operation, the contents of the CPU timer
are stored at locations 216-223.

216-223 (Real Address)

Machine-Check CPU-Timer Save Area:
During a machine-check interruption, the
contents of the CPU timer are stored at
locations 216-223.

224-231 (Absolute Address)

Store-Status Clock-Comparator Save
Area: During the execution of the store­
status operation, the contents of the clock
comparator are stored at locations
224-231.

224-231 (Real Address)

Machine-Check Clock-Comparator Save
Area: During a machine-check inter­
ruption, the contents of the clock
comparator are stored at locations
224-231.

232-239 (Real Address)

M achine-Check-Interruption Code:
During a machine-check interruption, the
machine-check -interruption code is stored
at locations 232-239.

244-247 (Real Address)

External-Damage Code: During a
machine-check interruption due to certain
external-damage conditions, depending on
the model, an external-damage code may
be stored at locations 244-247.

248-251 (Real Address)

Failing-Storage Address: During a
machine-check interruption, a failing-

3-42 ESA/370 Principles of Operation

storage address may be stored at locations
248-251. Bit 0 of location 248 is set to
zero.

256-263 (Absolute Address)

Store-Status PSW Save Area: During the
execution of the store-status operation,
the contents of the current ps w are stored
at locations 256-263.

256-271 (Real Address)

Fixed-Logout Area: Depending on the
model, logout information may be stored
at locations 256-271 during a machine­
check interruption.

264-267 (Absolute Address)

Store-Status PreflX Save Area: During
the execution of the store-status opera­
tion, the contents of the prefix register are
stored at locations 264-267.

288-351 (Absolute Address)

Store-Status Access-Register Save Area:
During the execution of the store-status
operation, the contents of the access reg­
isters are stored at locations 288-351.

288-351 (Real Address)

Machine-Check Access-Register Save
Area: During a machine-check inter­
ruption, the contents of the access regis­
ters are stored at locations 288-351.

352-383 (Absolute Address)

Store-Status Floating-Point-Register Save
Area: During the execution of the store­
status operation, the contents of the
floating-point registers are stored at
locations 352-383.

352-383 (Real Address)

Machine-Check Floating-Point-Register
Save Area: During a machine-check
interruption, the contents of the floating­
point registers are stored at locations
352-383.

384-447 (Absolute Address)

Store-Status General-Register Save Area:
During the execution of the store-status
operation, the contents of the general reg­
isters are stored at locations 384-447.

384-447 (Real Address)

Machine-Check General-Register Save'
Area: During a machine-check inter­
ruption, the contents of the general regis­
ters are stored at locations 384-447.

448-511 (Absolute Address)

Store-Status Control-Register Save Area:,
During the execution of the store-status
operation, the contents of the control reg­
isters are stored at locations 448-511.

448-511 (Real Address)

Machine-Check Control-Register Save
Area: During a machine-check inter­
ruption, the contents of the control regis- .
ters are stored at locations 448-511.

Programming Notes:

• 1. When the epu is in the access-register mode,
some instructions, such as MVCL, which
address operands in more than one address
space, may cause a storage-alteration PER event
in one address space concurrently with a
segment-translation exception or a page­
translation exception in another address sp3;ce',
The access registers used to cause these condi­
tions in such a case are different. In order to
identify both access registers, two access. iden­
tifications, namely the exception access identifi­
cation and the PER access identification, are
provided,

2. STORE THEN AND SYSTEM MASK can cause a
PER storage-alteration event and turn DAT off,
in which case the PER access, identification at
reallocation 161 is unpredictable. '

Chapter 3. Storage 3-43

Hex Dec

a a Initial-Program-Loading PSWj or Restart New PSW

4 4

8 8 Initial-Program-Loading CCW1; or Restart Old PSW

C 12

la 16 Initial-Program Loading CCW2

14 2a

18 24 External Old PSW

lC 28

2a 32 Supervisor-Call Old PSW

24 36

28 4a Program Old PSW

2C 44

3a 48 Machine-Check Old PSW

34 52

38 56 Input/Output Old PSW

3C 6a

4a 64

44 68

48 72

4C 76

5a 8a
I

54 84

58 88 External New PSW

5C 92

6a 96 Supervisor-Call New PSW

64 lea

68 1e4 Program New PSW

6C 1e8

7a 112 Machine-Check New PSW

74 116

78 12a Input/Output New PSW

7C 124

Figure 3-11 (Part 1 of 4). Assigned Storage Locations

3-44 ESAj370 Principles of Operation

Hex Dec

89 128 External-Interruption Parameter

84 132 CPU Address External-Interruption Code

88 136 a a a a a a a a a a a a a ILC a SVC-Interruption Code

8C 14a a a a a a a a a a a a a a ILC a Program-Interruption Code

99 144 Translation-Exception Identification

94 148 Monitor-Class Number PER cdela a a a a a a a a a a a

98 152 PER Address

9C 156 Monitor Code

AS 16a Exc. Access 10 I PER Access 10

A4 164

A8 168

AC 172

Ba 176

B4 18a

B8 184 Subsystem-Identification Word

BC 188 I/O-Interruption Parameter

ca 192

C4 196

C8 2aa

CC 2a4

Da 2a8

04 212

08 216 Store-Status CPU-Timer Save Area; or Machine-Check CPU-Timer
Save Area

DC 22a

Ea 224 Store-Status Clock-Comparator Save Area; or Machine-Check
Clock-Comparator Save Area

E4 228

E8 232 Machine-Check Interruption Code

EC 236

Fa 24a

F4 244 External-Damage Code

F8 248 Failing-Storage Address

FC 252

Figure. 3-11 (Part 2 of 4). Assigned Storage Locations

Chapter 3. Storage 3-45

Hex Dec

lee 256 Store-Status PSW Save ~rea; or Fixed-logout Area (Part 1)
.;

1e4 26e

1e8 264 Store-Status Prefix Save Area; or Fixed-logout Area (Part 2)

1eC 268. Fixed-logout Area (Part 3)

11e 272

I I

11C 284

12e 288 Store-Status Access-Register Save Area; or Machine-Check
Access-Register Save Area

124 292

128 296

12C 3ee

I I

154 34e

158 344

~5C 348

16e 352 Store-Status Floating-Paint-Register Save Area; err Machine-
Check Floating-Point-Register Save Area

164 356 .
168 36e

16C 364

17e 368

174 372

178 376

17C 38e

18e 384 Store-Status General-Register Save Area; or'Machine-Check
General-Register Save Area

184 388

188 392

18C 396

I I

184 436

188 44e

1BC 444

Figure 3-11 (Part 3 of 4). Assigned Storage Locations

3-46 ESA/370 Principles of Operation

Hex Dec

lC9 448 Store-Status Control-Register Save Area; or Machine-Check
Control-Register Save Area

lC4 452

lC8 456

iCC 469

lF4 sea' ~/
lF8 594

1FC 598 I ________________ .

Figure 3-11 (Part 4 of 4). Assigned Storage Locations

Chapter 3. Storage 3-47

Chapter 4. Control

Stopped, Operating, Load, and Check-Stop
States

Stopped State
Operating State
Load State
Check -Stop State

Program-Status Word
Program-Status-Word Format .

Control Registers
Tracing

Control-Register Allocation
Trace Entries
Operation

Program -Event Recording ..
Control-Register Allocation
Operation

Identification of Cause
Priority of Indication

Storage-Area Designation
PER Events

Successful Branching
Instruction Fetching
Storage Alteration
General-Register Alteration .
Store Using Real Address .,

Indication of PER Events Concurrently
with Other Interruption Conditions .

4-1
4-2
4-2
4-2
4-2
4-3
4-5
4-6
4-9
4-9

4-10
4-12
4-12
4-13
4-14
4-14
4-15
4-16
4-16
4-16
4-17
4-17
4-17
4-18

4-18

This chapter describes in detail the facilities for
controlling, measuring, and recording the operation
of one or more cpus.

Stopped, Operating, Load, and
Check-Stop States
The stopped, operating, load, and check-stop states
are four mutually exclusive states of the CPU.

When the CPU is in the stopped state, instructions
and interruptions, other than the restart inter­
ruption, are not executed. In the operating state,
the CPU executes instructions and takes inter­
ruptions, subject to the control of the program­
status word (psw) and control registers, and in the
manner specified by the setting of the operator­
facility rate control. The CPU is in the load state

Timing
Time-of-Day Clock

Format
States
Changes in Clock State
Setting and Inspecting the Clock

TOO-Clock Synchronization
Clock Comparator
CPU Timer

Externally Initiated Functions
Resets

CPU Reset
Initial CPU Reset
Subsystem Reset
Clear Reset
Power-On Reset

Initial Program Loading
Store Status

Multiprocessing
Shared Main Storage
CPU -Address Identification

CPU Signaling and Response
Signal-Processor Orders ..
Conditions Determining Response

Conditions Precluding Interpretation of

4-21
4-21
4-21
4-22
4-23
4-23
4-24
4-25
4-26
4-27
4-27
4-30
4-31
4-31
4-31
4-32
4-32
4-33
4-33
4-34
4-34
4-34
4-34
4-36

the Order Code 4-36
Status Bits 4-37

during the initial-program-Ioading operation. The
CPU enters the check -stop state only as the result of
machine malfunctions.

A change between these four CPU states can be
effected by use of the operator facilities or by
acceptance of certain SIGNAL PROCESSOR orders
addressed to that CPU. The states are not con­
trolled or identified by bits in the psw. The
stopped, load, and check-stop states are indicated
to the operator by means of the manual indicator,
load indicator, and check-stop indicator, respec­
tively. These three indicators are off when the CPU

is in the operating state.

The CPU timer is updated when the CPU is in the
operating state or the load state. The TOO clock is
not affected by the state of any CPU.

Chapter 4. Control 4-1

Stopped State

The CPU changes from the operating state to the
stopped state by means of the stop function. The
stop function is performed when:

• The stop key is activated while the CPU is in
the operating state.

• The CPU accepts a stop or stop-and-store­
status order specified by a SIGNAL PROCESSOR

instruction addressed to this CPU while it is in
the operating state.

• The CPU has fInished the execution of a unit of
operation initiated by performing the start
function with the rate control set to the
instruction-step position.

When the stop function is performed, the transition
from the operating to the stopped state occurs at
the end of the current unit of operation. When the
wait-state bit of the psw is one, the transition takes
place immediately, provided no interruptions are
pending for which the CPU is enabled. In the case
of interruptible instructions, the amount of data
processed in a unit of operation depends on the
particular instruction and may depend on the
model.

Before entering the stopped state by means of the
stop function, all pending allowed interruptions
occur while the CPU is still in the operating state.
They cause the old psw to be stored and the new
psw to be fetched before the stopped state is
entered. While the CPU is in the stopped state,
interruption conditions remain pending.

The CPU is also placed in the stopped state when:

• The CPU reset is completed. However, when
the reset operation is performed as part of
initial program loading for this CPU, then the
CPU is placed in the load state and does not
necessarily enter the stopped state.

• An address comparison indicates equality and
stopping on the match is specified.

The execution of resets is described in the section
"Resets" in this chapter, and address comparison is
described in the section "Address-Compare
Controls" in Chapter 12, "Operator Facilities."

If the CPU is in the stopped state when an INV ALI­

DATE PAGE TABLE ENTRY instruction is executed
on another CPU in the configuration, the invali-

4-2 ESAj370 Principles of Operation

dation may be performed immediately or may be
delayed until the CPU leaves the stopped state.

Operating State

The CPU changes from the stopped state to the
operating state by means of the start function or
when a restart interruption (see Chapter 6) occurs.

The start function is performed if the CPU is in the
,stopped state and (1) the start key associated with
that CPU is activated or (2) that CPU accepts the
start order specified by a SIGNAL PROCESSOR

instruction addressed to that CPU. The effect of
performing the start function is unpredictable when
the stopped state has been entered by means of a
reset.

When the rate control is set to the process position
and the start function is. performed, the CPU starts
operating at normal speed. When the rate control
is set to the instruction-step position and the wait­
state bit is zero, one instruction or, for interruptible
instructions, one unit of operation is executed, and
all pending allowed interruptions occur before the
CPU returns to the stopped state. When the rate
control is set to the instruction-step position and
the wait-state bit is one, the start function does not
cause an instruction to be executed, but all pending
allowed interruptions occur before the CPU returns
to the stopped state.

Load State

The CPU enters the load state when the load­
normal or load-clear key is activated. (See the
section "Initial Program Loading" in this chapter.
See also the section "Initial Program Loading" in
Chapter 17, "1/0 Support Functions.") If the initial­
program-loading operation is completed success­
fully, the CPU changes from the load state to the
operating state, provided the rate control is set to
the process position; if the rate control is set to the
instruction-step position, the CPU changes' from the
load state to the stopped state.

Check-Stop State

The check-stop state, which the CPU enters on
certain types of machine malfunction, is described
in Chapter 11, "Machine-Check Handling." The
CPU leaves the check-stop state when CPU reset is
performed.

Programming Notes:

1. Except for the relationship between execution
time and real time, the execution of a program
is not affected by stopping the Cpu.

2. When, because of a machine malfunction, the
CPU is unable to end the execution of an
instruction, the stop function is ineffective, and
a reset function has to be invoked instead. A
similar situation occurs when an unending
string of interruptions results from a psw with
a psw-fonnat error of the type that is recog- .
nized early, or from a persistent interruption
condition, such as one due to the CPU timer.

3. Pending 1/0 operations may be initiated, and
active 1/0 ·operations continue to suspension or
completion, after the CPU enters the stopped
state. The interruption conditions due to sus­
pension or completion of 1/0 operations remain
pending when the CPU is in the stopped state.

Program-Status Word
The current program-status word (psw) in the CPU
contains infonnation required for the execution of
the currently active program. The psw is 64 bits in
length and includes the instruction address, condi­
tion code, and other control fields. In general, the
psw is used to control instruction sequencing and
to hold and indicate much of the status of the CPU

in relation to the program currently being executed.
Additional control and status information is con­
tained in control registers and permanently assigned
storage locatipns.

The status of the CPU can be changed by loading a
new psw or part of a psw.

Control is switched' during an interruption of the
CPU by storing the current PSW, so as to· preserve
the status of the CPU, and then loading a new psw.

Execution of LOAD PSW, or the successful conclu­
sion of the initial-pro gram-loading sequence, intro­
duces a new psw. The instruction address is
updated by sequential instruction execution and
replaced by successful branches. Other instructions
are provided which operate on a portion of the
psw. Figure 4-1 on page 4-4 summarizes these
instructions.

A new or ID.odified psw becomes active (that is, the
information introduced into the current psw
assumes control over the cpu) when the inter­
ruption or the execution of an instruction that
changes the psw is completed. The interruption for
PER associated with an instruction that changes the
psw occurs under control of the PER mask that is
effective at the beginning of the operation.

Bits 0-7 of the psw are collectively referred to as
the system mask.

Chapter 4. Control 4-3

System Mask
(PSW Bits

8-7)

PSW Key
(PSW Bits

8-11)

Problem
State
(PSW

Bit 15)

Condition
Address- Code and
Space

Control
(PSW Bits

16-17)

Program
Mask

(PSW Bits
18-23)

Addressing
Mode
(PSW

Bit 32)

Instruction Saved Set Saved Set Saved Set Saved Set Saved Set Saved Set

BRANCH AND LI NK
BRANCH AND SAVE
BRANCH AND SAVE AND SET

MODE

No No
No No
No No

No No No No No No AM No
No No No No No No No No
No No No No No No No No

AM No
Yes No
Yes Yes 1

BRANCH AND SET MODE
BRANCH AND STACK

No No
Yes No

No No No No No No No No
Yes No Yes No Yes No Yes No

Yes 1 Yes 1

Yes 1 No

INSERT PROGRAM MASK
INSERT PSW KEY
INSERT ADDRESS SPACE

No No No No No No No No Yes No No No
No No Yes No No No No No No No No No
No No No No No No Yes No No No No No

CONTROL
Basic PROGRAM CALL
Stacking PROGRAM CALL

No No
Yes No

No No Yes Yes No No No No
Yes PKC Yes Yes Yes Yes Yes No

Yes Yes
Yes Yes

PROGRAM RETURN No
PROGRAM TRANSFER No
SET ADDRESS SPACE CONTROL No
SET PROGRAM MASK No
SET PSW KEY FROM ADDRESS No

SET SYSTEM MASK No
STORE THEN AND SYSTEM MASK Yes
STORE THEN OR SYSTEM MASK Yes

Explanation:

Yes 2 No
No No
No No
No No
No No

Yes No
ANDs No
ORs No

Yes No
No No
No No
No No
Yes No

No
No
No

No
No
No

Yes No
Yes 4 No
No No
No No
No No

No
No
No

No
No
No

Yes No
No No
Yes No
No No
No No

No
No
No

No
No
No

Yes 3 No
. No No

No No
Yes No
No No

No
No
No

No
No
No

1 The action takes place only if the associated R field in the instruction is nonzero.

2 PROGRAM RETURN does not change the PER mask.

3 The condition code set by PROGRAM RETURN is unpredictable.

4 PROGRAM TRANSFER does not change the problem-state bit from one to zero.

AM The action depends on the addressing mode, bit 32 of the current PSW. In the 24-bit
addressing mode, the condition code and program mask are saved in the leftmost byte of
the general register. In the 31-bit addressing mode, the addressing mode, along with
bits 1-7 of the 31-bit address, replace the leftmost byte of the register.

ANDs The logical AND of the immediate field in the instruction and the current system mask
replaces the current system mask.

ORs The logical OR of the immediate field in the instruction and the current system mask
replaces the current system mask.

Yes
Yes
No
No
No

No
No
No

PKC When the PSW-key-control bit, bit 131 of the 32-byte entry~table entry, is zero, the PSW
key remains unchanged. When the PSW-key-control bit is one, the PSW key is set with the
entry key, bits 136-139 of the entry-table entry.

Figure 4-1. Operations on PSW Fields

4-4 ESA/370 . Principles of Operation

Programming Note: A summary of the operations
which save or set the problem state, addressing
mode, and instruction address is contained in the
section "Subroutine Linkage without the Linkage
Stack" in Chapter 5, "Program Execution."

Program-Status-Word Format

e Bee e B e B

B 5 8 12 16 18 29 24 31

Instruction Address

32 63

Figure 4-2. PSW Format

The following is a summary of the functions of the
psw fields. (See Figure 4-2.)

PER Mask (R): Bit 1 controls whether the CPU is
enabled for interruptions associated with program­
event recording (PER). When the bit is zero, no
PER event can cause an interruption. When the bit
is one, interruptions are permitted, subject to the
PER -event-mask bits in control register 9.

OAT Mode (T): Bit 5 controls whether implicit
dynamic address translation of logical and instruc­
tion addresses used to access storage takes place.
When the bit is zero, DAT is off, and logical and
instruction addresses are treated as real addresses.
When the bit is one, DAT is on, and the dynamic­
address-translation mechanism is invoked.

110 Mask (10): Bit 6 controls whether the CPU is
enabled for I/O interruptions. When the bit is zero,
an I/O interruption cannot occur. When the bit is
one, I/O interruptions are subject to the I/o-inter­
ruption subclass-mask bits in control register 6.
When an I/o-interruption subclass-mask bit is zero,
an I/O interruption for that I/o-interruption subclass
cannot occur; when the I/o-interruption subclass­
mask bit is one, an I/O interruption for that
I/o-interruption subclass can occur.

External Mask (EX): Bit 7 controls whether the
CPU is enabled for interruption by conditions
included in the external class. When the bit is zero,
an external interruption cannot occur. When the
bit is one, an external interruption is subject to the
corresponding external subclass-mask bits in
control register 0; when the subclass-mask bit is
zero, conditions associated with the subclass cannot

cause an interruption; when the subclass-mask bit
is one, an interruption in that subclass can occur.

PSW Key: Bits 8-11 form the access key for
storage references by the CPU. If the reference is
subject to key-controlled protection, the psw key is
matched with a storage key when information is
stored or when information is fetched from a
location that is protected against fetching.
However, for accesses to the second operand of
MOVE TO PRIMARY and MOVE WITH KEY, the third
operand is used instead of the psw key. The third
operand is also used instead of the psw key for
accesses to the frrst operand of MOVE TO SEC­
ONDARY.

Machine-Check Mask (M): Bit 13 controls
whether the CPU is enabled for interruption by
machine-check conditions. When the bit is zero, a
machine-check interruption cannot occur. When
the bit is one, machine-check interruptions due to
system damage and instruction-processing damage
are permitted, but interruptions due to other
machine-check-subclass conditions are subject to
the subclass-mask bits in control register 14.

Wait State (W): When bit 14 is one, the CPU is
waiting; that is, no instructions are processed by the
CPU, but interruptions may take place. When bit
14 is zero, instruction fetching and e~ecution occur
in the normal manner. The wait indicator is on
when the bit is one.

Problem State (P): When bit 15 is one, the CPU is
in the problem state. When bit 15 is zero, the CPU
is in the supervisor state. In the supervisor state,
all instructions are valid. In the problem state,
only those instructions are valid that provide mean­
ingful information to the problem program and
that cannot affect system integrity; such instructions
are called unprivileged instructions. The
instructions that are never valid in the pro blem
state are called privileged instructions. When a CPU
in the problem state attempts to execute a privi­
leged instruction, a privileged -operation exception is
recognized. Another group of instructions, called
semiprivileged instructions, are executed by a CPU
in the problem state only if specific authority tests
are met; otherwise, a privileged-operation exception
or a special-operation exception is recognized.

Address-Space Control (AS): Bits 16 and 17, in
conjunction with psw bit 5, control the translation
mode. See the section "Translation Modes" under
"Translation Control" in Chapter 3, "Storage."

Chapter 4. Control 4-5

Condition Code (CC): Bits 18 and 19 are the two
bits of the condition code. The condition code is
set to 0, 1, 2, or 3, depending on the result
obtained in executing certain instructions. Most
arithmetic and logical operations, as well as some
other operations, set the condition code. The
instruction BRANCH ON CONDITION can specify
any selection of the condition-code values as a cri­
terion for branching. A table in Appendix C sum­
marizes the condition-code values that may be set
for all instructions which set the condition code of
the psw.

Program Mask: Bits 20-23 are the four program­
mask bits. Each bit is associated with a program
exception, as follows:

Program-
Mask Bit Program Exception

20 Fixed-point overflow
21 Decimal overflow
22 Exponent underflow
23 Si gni fi cance

When the mask bit is one, the exception results in
an interruption. When the mask bit is zero, no
interruption occurs. The setting of the exponent­
underflow-mask bit or the significance-mask bit
also determines the manner in which the operation
is completed when the corresponding exception
occurs.

Addressing Mode (A): Bit 32 controls the size of
effective addresses and effective-address generation.
When the bit is zero, 24-bit addressing is specified.
When the bit is one, 31-bit addressing is specified.
The addressing mode does not control the size of
PER addresses or of addresses used to access OAT,

ASN, dispatchable-unit-control, linkage, entry, and
trace tables or access lists or the linkage stack.· See
the section "Address Generation" in Chapter 5,
"Program Execution," and the section "Address
Size and Wraparound" in Chapter 3, "Storage."

Instruction Address: Bits 33-63 form the instruc­
tion address. This address designates the location
of the leftmost byte of the next instruction to be
executed, unless the CPU is in the wait state (bit 14
of the psw is one).

4-6 ESAj370 Principles of Operation

Bit positions 0, 2-4, 17, and 24-31 are unassigned
and must contain zeros. A specification exception
is recognized when these bit positions do not
contain zeros. When bit 32 of the psw specifies the
24-bit addressing mode, bits 33-39 of the instruc­
tion address must be zeros; otherwise, a specifica­
tion exception is recognized. A specification excep­
tion is also recognized when bit position 12 does
not contain a one.

Control Registers
The control registers provide for maintaining and
manipulating control information outside the psw.
There are sixteen 32-bit control registers.

All control-register bit positions in all 16 control
registers are installed, regardless of whether the bit"
position is assigned to a facility. One or more spe­
cific bit positions in control registers are assigned to
each facility requiring such register space.

The LOAD CONTROL instruction causes all control­
register positions within those registers designated
by the instruction to be loaded from storage. The
instructions LOAD ADDRESS SPACE PARAMETERS,

SET SECONDARY ASN, BRANCH AND STACK,

PROGRAM CALL, PROGRAM RETURN, and
PROGRAM TRANSFER provide specialized functions
to place information into certain control-register
positions.

Information loaded into the control registers
becomes active (that is, assumes control over the
system) at the completion of the instruction causing
the information to be loaded.

At the time the registers are loaded, the information
is not checked . for exceptions, such as invalid
translation-format code or an address designating
an unavailable or a protected location. The validity
of the information is checked and the exceptions, if
any, are indicated at the time the information is
used.

The STORE CONTROL instruction causes all control­
register positions, within those registers designated
by the instruction, to be placed in storage. The
instructions EXTRACT PRIMARY ASN, EXTRACT SEC­

ONDARY ASN, and PROGRAM CALL provide special­
ized functions to obtain information from certain
control-register positions.

Only the general structure of the control registers is
described here; the defmition of a particular
control-register position appears in the description
of the facility with which the register position is
associated. Figure 4-3 shows the control-register
positions which are assigned and the initial value of
the field upon execution of initial CPU reset. All
control-register positions not listed in the figure are
initialized to zero.

Ctrl
Reg Bits Name of Field

0 1 SSM-suppression control
0 2 TOD-clock-sync control
0 3 Low-address-protection control
0 4 Extraction-authority control
0 5 Secondary-space control
0 6 Fetch-protection override
0 8-12 Translation format
0 14 Vector control 1

0 15 Address-space-function control
0 16 Malfunction-alert subclass mask
0 17 Emergency-signal subclass mask
0 18 External-call subclass mask
0 19 TOO-clock sync-check subclass mask
0 20 Clock-comparator subclass mask
0 21 CPU-timer subclass mask
0 22 Service-signal subclass mask
0 24 Unused 2

0 25 Interrupt-key subclass mask
0 26 Unused 2

1 0 Primary space-switch-event control
1 1-19 Primary segment-table origin
1 23 Primary private-space control
1 25-31 Primary segment-table length

2 1-25 Dispatchable-unit-control-table
origin

3 0-15 PSW-key mask
3 16-31 Secondary ASN

4 0-15 Authorization index
4 16-31 Primary ASN

Programming Notes:

1. The detailed definition of a particular control­
register bit position can be located by referring
to the entry "control-register assignment" in
the Index.

2. To ensure that existing programs operate cor­
rectly if and when new facilities using addi­
tional control-register positions are installed,
the program should load zeros in unassigned
control-register positions.

Initial
Associated with Value

SET SYSTEM MASK 0
TOO clock 0
Low-address protection 0
Instruction authorization 0
Instruction authorization 0
Key-controlled protection 0
Dynamic address translation 0
Vector operations 0
Instruction authorization 0
External interruptions 0
External interruptions 0
External interruptions 0
External interruptions 0
External interruptions 0
External interruptions 0
External interruptions 0

1
External interruptions 1

1

Program interruptions 0
Dynamic address translation 0
Dynamic address translation 0
Dynamic address translation 0

--

Access-register translation 0

Instruction authorization 0
Address spaces 0

Instruction authorization 0
Address spaces 0

Figure 4-3 (Part 1 of 3). Assignment of Control-Register Fields

Chapter 4. Control 4-7

Ctrl
Reg Bits Name of Field

5 0 Subsystem-linkage contro1 3

5 1-24 Linkage-table origin 3

5 25-31 Linkage-table length 3

5 1-25 Primary-ASN-second-table-entry
origin4

6 0-7 I/O-interruption subclass mask

7 1-19 Secondary segment-table origin
7 23 Secondary private-space control
7 25-31 Secondary segment-table length

8 0-15 Extended authorization index
8 16-31 Monitor masks

9
9
9
9
9
9

. 10

11

12
12
12
12

13
13
13
13

14
14
14

0 Successful-branching-event mask
1 Instruction-fetching-event mask
2 Storage-alteration-event mask
3 GR-alteration-event mask
4 Store-using-real-address-event mask

16-31 PER general-register masks

1-31 PER starting address

1-31 PER ending address

0 Branch-trace control
1-29 Trace-entry address
30 ASN-trace control
31 Explicit-trace control

0 Home space-switch-event control
1-19 Home segment-table origin
23 Home private-space control

25-31 Home segment-table length

o Unused 2

1 Unused 2

3 Channel-report-pending subclass
mask ,

14 4 Recovery subclass mask
14 5 Degradation subclass mask
14 6 External-damage subclass mask
14 7 Warning subclass mask
14 12 ASN-translation control
14 13-31 ASN-first-table origin

15 1-28 Linkage-stack-entry address

Associated with

Instruction authorization
PC-number translation
PC-number translation
Access-register translation

I/O interruptions

Dynamic address translation
Dynamic address translation
Dynamic address translation

Access-register translation
MONITOR CALL

Program-event recording
Program-event recording
Program-event recording
Program-event recording
Program-event recording
Program-event recording

Program-event recording

Program-event recording

Tracing
Tracing
Tracing
Tracing

Program interruptions
Dynamic address translation
Dynamic address translation
Dynamic address translation

I/O machine-check handling

Machine-check handling
Machine-check handling
Machine-check handling
Machine-check handling
Instruction authorization
ASN translation

Linkage-stack operations

Figure 4-3 (Part 2 of 3). Assignment of Control-Register Fields

4-8 ESA/370 Principles of Operation

Initial
Value

o
o
o
o

o

o
o
o

o
e

e
o
o
o
e
o

o

o

e
o
o
e

e
o
o
o

1
1
e

e
e
1
o
o
e

o

Explanation:

The fields not listed are unassigned. The initial value for all unlisted
control-register positions is zero.

1 Bit 14 of control register 0, the vector-control bit, is described in the
publ i cati on Enterprise Syst.ems Archi tecture /37e and System/37e Vector
Operations, SA22-7125.

2 This bit is not used but is initialized to one for consistency with the
System/370 definition.

3 When the address-space-function control in control register 0 is zero,
LOAD ADDRESS SPACE PARAMETERS, PROGRAM CALL, and PROGRAM TRANSFER treat
control register 5 as containing the linkage-table designation (LTD)
(subsystem-linkage control, linkage-table origin, and linkage-table length).

4 When the address-space-function control is one, control register 5 is
treated as containing the primary-ASN-second-table-entry (PASTE) origin,
and PROGRAM CALL obtains the LTD from the PASTE.

Figure 4-3 (Part 3 of 3). Assignment of Control-Register Fields

Tracing
Tracing assists in the determination of system prob­
lems by providing an ongoing record in storage of
significant events. Tracing consists of three sepa­
rately controllable functions which cause entries to
be made in a trace table: branch tracing, ASN

tracing, and explicit tracing. Branch tracing and
ASN traCing together are referred to as implicit
tracing.

When branch tracing is on, an entry is made in the
trace table for each execution of certain branch
instructions when they cause branching. The
branch address is placed in the trace entry. The
trace entry also indicates the addressing mode in
effect after branching. The branch instructions that
are traced are:

• BRANCH AND LINK (BALR only) when the R2

field is not zero
• BRANCH AND SAVE (BASR only) when the R2

field is not zero
• BRANCH AND SAVE AND SET MODE when the

R2 field is not zero
• BRANCH AND STACK when the R2 field is not

zero

When ASN tracing is on, an entry is made in the
trace table for each execution of the following
instructions:

• PROGRAM CALL

• PROGRAM RETURN

• PROGRAM TRANSFER

• SET SECONDARY ASN

However, the entry for PROGRAM RETURN is made
only when PROGRAM RETURN un stacks a linkage­
stack state entry that was formed by PROGRAM

CALL, not when PROGRAM RETURN un stacks an
entry formed by BRANCH AND STACK.

When explicit tracing is on, execution of TRACE

causes an entry to be made in the trace table. This
entry includes bits 16-63 from the TOO clock, the
second operand of the TRACE instruction, and the
contents of a range of general registers.

Control-Register Allocation

The information to control tracing is contained in
control register 12 and has the following format:

Trace-Entry Address

o 1 30 31

Branch-Trace-Control Bit (8): Bit 0 of control
register 12 controls whether branch tracing is
turned on or off. If the bit is zero, branch tracing
is off; if the bit is one, branch tracing is on.

Trace-Entry Address: Bits 1-29 of control register
12, with two zero bits appended on the right, form
the real address of the next trace entry to be made.

Chapter 4. Control 4-9

ASN-Trace-Control Bit (A): Bit 30 of control reg­
ister 12 controls whether ASN tracing is turned on
or off. If the bit is zero, ASN tracing is off; if the
bit is one, ASN tracing is on.

Explicit-Trace-Control Bit (E): Bit 31 of control
register 12 controls whether explicit tracing is
turned on or off. If the bit is zero, explicit tracing
is off, which causes the TRACE instruction to be
executed as a no-operation; if the bit is one, the

31-Bit Branch

111 Branch Address

e 1 31

24-Bit Branch

leeaeeeeel Branch Address

e 8 31

SET SECONDARY ASN

e 8 16 31

PROGRAM CALL

PSW

execution of the TRACE instruction creates an entry
in the trace table, except that no entry is made
when bit 0 of the second operand of the TRACE

instruction is one.

Trace Entries

Trace entries are of seven types, as shown in
Figure 4-4.

eeleeeel Key PC Number A Return Address P

8 12 32 63

PROGRAM RETURN

PSW
eeneele Key eeee New PASN A Return Address P

8 12 16 32 63

A Updated Instruction Address

64 95

Figure 4-4 (Part 1 of 2). Trace-Entry Formats

4-10 ESA/370 Principles of Operation

PROGRAM TRANSFER

PSW
ee11eee1 Key eeee New PASN R2 Before

8 12 16 32 63

TRACE

TOO-Clock Bits 16-63

63

~------------------------~-----------/'----------~
TRACE Operand (Rl) - (R3)

L-________________________ ~ ___________ /----------~

64 96

Figure 4-4 (Part 2 of 2). Trace-Entry Formats

Branch Address: The branch address is the
address of the next instruction· to be executed when
the branch is taken. When the 31-bit addressing
mode is in effect after branching, bit positions 1-31
of the trace entry for a branch instruction contain
the branch address. When the 24-bit addressing
mode is in effect after branching, bit positions 8-31
contain the branch address.

New SASN: Bit positions 16-31 of the trace entry
for SET SECONDARY ASN contain the ASN value
loaded into control register 3 by the instruction.

PSW Key: Bit positions 8-11 of the trace entries
made on execution of PROGRAM CALL, PROGRAM

RETURN, and PROGRAM TRANSFER contain the
psw key from the current psw.

PC Number: Bit positions 12-31 of the trace entry
made on execution of PROGRAM CALL contain the
value of the rightmost 20 bits of the second­
operand address.

Addressing-Mode Bit (A): Bit position 32 of the
trace entry made on execution of PROGRAM CALL

contains the addressing-mode bit from the current
psw. Bit position 32 of the trace entry made on
execution of PROGRAM RETURN contains the
addressing-mode bit that replaces bit 32 of the PSW,

and bit position 64 of the trace entry contains bit
32 from the psw before bit 32 is replaced.

Return Address: Bit positions 33-62 of the trace
entry made on execution of PROGRAM CALL

contain bits 1-30 of the updated instruction address
in the psw before that address is replaced from the
entry-table entry. Bit positions 33-62 of the trace

95 + 32(N+l)

entry made on execution of PROGRAM RETURN

contain bits 1-30 of the instruction address that
replaces bits 33-63 of the psw.

Problem-State Bit (P): Bit position 63 of the trace
entry made on execution of PROGRAM CALL cOQ.­
tains the problem-state bit from the current psw.
Bit position 63 of the trace entry made on exe­
cution of PROGRAM RETURN contains the problem­
state bit that replaces bit 15 of the psw.

Updated Instruction Address: Bit positions 65-95
of the trace entry made on execution of PROGRAM

RETURN contain bits 1-31 of the updated instruc­
tion address in the psw before that address is
replaced from the linkage-stack state entry.

New PASN: Bit positions 16-31 of the trace entry
made on execution of PROGRAM RETURN contain
the new PASN that is restored from the linkage­
stack state entry. Bit positions 16-31 of the trace
entry made on execlltion of PROGRAM TRANSFER

contain the new PASN (which may be zero) speci­
fied in bit positions 16-31 of general register Rl;

R2 Before: Bit positions 32-63 of the trace entry
made on execution of PROGRAM TRANSFER

contain the contents of the general register desig­
nated by the R2 field of the instruction. Bits 0-30
of the general register designated by the R2 field
replace bits 32-62 of the psw. Bit 31 of the same
general register replaces the problem-state bit of the
psw.

Number of Registers (N): Bits 4-7 of the trace
entry for TRACE contain a value which is one less
than the number of general registers which have

Chapter 4. Control 4-11

been provided in the trace entry. The value of N

ranges from zero, meaning the contents of one
general register are provided in the trace entry, to
15, meaning the contents of all 16 general registers
are provided.

TOO-Clock Bits 16-63: Bits 16-63 of the trace
entry for TRACE are obtained from bit positions
16-63 of the TO D clock, as would be provided by a
STO RE CLOCK instruction executed at the time the
TRACE instruction was executed.

TRACE Operand: Bits 64-95 of the trace entry for
TRACE contain a copy of the 32 bits of the second
operand of the TRACE instruction for which the
entry is made.

(Rl)-(R3): The four-byte fields starting with bit 96
of the trace entry for TRACE contain the contents of
the general registers whose range is specified by the
Rl and RJ fields of the TRACE instruction. The
general registers are stored in ascending order of
register numbers, starting with general register Rl

and continuing up to and including general register
R3, with general register 0 following general register
15.

Programming Note: The size of the trace entry for
TRACE in units of words is 3 + (N + 1). The
maximum size of an entry is 19 words, or 76 bytes.

Operation

When an instruction which is subject to tracing is
executed, and the corresponding tracing function is
turned on, a trace entry of the appropriate format is
made. The real address of the trace entry is formed
by appending two zero bits on the right- to the
value in bit positions 1-29 of control register 12.
The address in control register 12 is subsequently
increased by the size of the entry created.

No trace entry is stored if the incrementing of the
address in control register 12 would cause a carry to
be propagated into bit position 19 (that is, the
trace-entry address would be in the next 4K-byte
block). If this would be the case for the entry to be
made, a trace-table exception is recognized. For
the purpose of recognizing the trace-table exception
in the case of a TRACE instruction, the maximum
length of 76 bytes is used instead of the actual
length.

The storing of a trace entry is not subject to key­
controlled protection (nor, since the trace-entry

4-12 ESA/370 Principles of Operation

address is real, is it subject to page protection), but
it is subject to low-address protection; that is, if the
address of the trace entry due to be created is in the
range 0-511 and bit 3 of control register 0 is one, a
protection exception is recognized, and instruction
execution is suppressed. If the address of a trace
entry is invalid, an addressing exception is recog­
nized, and instruction execution is suppressed.

The three exceptions associated with storing a trace
entry (addressing, protection, and trace table) are
collectively referred to as trace exceptions.

If a program interruption takes place for a condi­
tion which is not a trace-exception condition and
for which execution of an instruction is not com­
pleted' it is unpredictable whether part or all of any
trace entry due to be made for such an interrupted
instruction is stored in the trace table. Thus, for a
condition which would ordinarily cause
nullification or suppression of instruction exe­
cution, storage locations may have been altered
beginning at the location designated by control reg­
ister 12 and extending up to the length of the entry
that would have been created.

When PROGRAM RETURN un stacks a linkage-stack
state entry that was formed by BRANCH AND

STACK and ASN tracing is on, trace exceptions may
be recognized, even though a trace entry is not
made and no part of a trace entry is stored.

The order in which information is placed in a trace
entry is unpredictable. Furthermore, as observed
by other cpus and by channel programs, the con­
tents of a byte of a trace entry may appear to
change more than once before completion of the
instruction for which the entry is made.

The trace-entry address in control register 12 is
updated only on completion of execution of an
instruction for which a trace entry is made.

A serialization and checkpoint-synchronization
function is performed before the operation begins
and again after the operation is completed.

Program-Event Recording
The program-event-recording (PER) facility is pro­
vided to assi~t in debugging programs. It permits
the program to be alerted to the following types· of
events:

• Execution of a successful branch instruction.

• F etching of an instruction from the designated
storage area.

• Alteration of the contents of the designated
storage area.

• Alteration of the contents of designated general
registers.

• Execution of the STORE USING REAL ADDRESS
instruction.

The program can selectively specify that one or
more of the above types of events be recognized,
except that the event for STORE USING REAL
AD DRESS can be specified only along with the
storage-alteration event. The information con­
cerning a PER event is provided to the program by
means of a program interruption, with the cause of
the interruption being identified in the interruption
code.

Control-Register Allocation

The information for controlling PER resides in
control registers 9, 10, and 11 and has the following
format:

Control Register 9

EM IGen.-Reg• Masks

a 5 16 31

Control Register 10

II
Starting Address

a 1 31

Control Register 11

I I Ending Address

a 1 31

PER-Event Masks (EM): Bits 0-4 of control reg­
ister 9 specify which types of events are recognized.
The bits are assigned as follows:

Bit 0: Successful-branching event
Bit 1: Instruction-fetching event

Bit 2: Storage-alteration event
Bit 3: General-register-alteration event
Bit 4: Store-using-real-address event (bit 2 must

be one also)

Bits 0-4, when ones, specify that the corresponding
types of events be recognized. However, bit 4 is
effective for this purpose only when bit 2 is also
one. When bit 2 is one, the storage-alteration
event is recognized. When bits 2 and 4 are ones,
both the storage-alteration event and the store­
using-real-address event are recognized. When a bit
is zero, the corresponding type of event is not
recognized. When bit 2 is zero, both the storage­
alteration event and the store-using-real-address
event are not recognized.

PER General-Register Masks: Bits 16-31 of
control register 9 specify which general registers are
designated for recognition of the alteration of their
contents. The 16 bits, in the sequence of ascending
bit numbers, correspond one for one with the 16
registers, in the sequence of ascending register
numbers. When a bit is one, the alteration of the
associated register is recognized; when it is zero, the
alteration of the register is not recognized.

PER Starting Address: Bits 1-31 of control reg­
ister 10 are the address of the beginning of the des­
ignated storage area.

PER Ending Address: Bits 1-31 of control register
11 are the address of the end of the designated
storage area.

Programming Notes:

1. Models may operate at reduced performance
while the CPU is enabled for PER events. In
order to ensure that CPU performance is not
degraded because of the operation of the PER
facility, programs that do not use it should
disable the CPU for PER events by setting either
the PER mask in the psw to zero or the
pER-event masks in control register 9 to zero,
or both. No degradation due to PER occurs
when either of these fields is zero.

2. Some degradation may be experienced on some
models every time control registers 9, 10, and
11 are loaded, even when the CPU is disabled
for PER events (see the programming note
under "Storage-Area Designation").

Chapter 4. Control 4-13

Operation

PER is under control of bit 1 of the PSW, the PER
mask. When the PER mask, a particular PER-event
mask bit, and, for general-register-alteration events,
a particular general-register mask bit are all ones,
the CPU is enabled for the corresponding type of
event; otherwise, it is disabled. However, the CPU
is enabled for the store-using-real-address event
only when the storage-alteration mask bit and the
store-using-real-address mask bit are both ones.

An interruption due to a PER event normally
occurs after the execution of the instruction respon­
sible for the event. The occurrence of the event
does not affect the execution of the instruction,
which may be either completed, partially com­
pleted, terminated, suppressed, or nullified.

When the CPU is disabled for a particular PER event
. at the time it occurs, either by the PER mask in the

psw or by the masks in control register 9, the event
is not recognized.

A change to the PER mask in the psw or to the PER
control fields in control registers 9, 10, and 11
affects PER starting with the execution of the imme­
diately following instruction. If a PER event occurs
during the execution of an instruction which
changes the CPU from being enabled to being disa­
bled for that type of event, that PER event is· recog­
nized.

PER events may be recognized in a trial execution
of an instruction, and subsequently the instruction,
DAT-table entries, and operands may be ref etched
for the actual execution. If any ref etched field was
modified by another CPU or by a channel program
betwe~n the trial execution and the actual exe­
cution, it is unpredictable· whether the PER events
indicated are for the trial or the actual execution.

For special-purpose instructions that are not
described in this publication, the operation of PER
may not be exactly as described in this section.

Identification of Cause
A program interruption for PER sets bit 8 of the
interruption code to one and places identifying
information in real storage locations 150-155, and
in location 161 if the PER event is a storage­
alteration event. The information stored has the
following format:

4-14 ESA/370 Principles of Operation

Locations 150-151:

0. 4 15

Locations 152-155:

o 1

Location 161:

leeeelpA10I

o 4 7

PER Address

31

PER Code (PERC): The occurrence of PER events
is indicated by ones in bit positions 0-3 of real
location 150, the PER code. The bit position in the
PER code for a particular type of event is the same
as the bit position for that event in the PER-event­
mask field in control register 9, except that when
bits 2 and 4 in control register 9 are both ones, a
one in bit position 2 of location 150 indicates the
occurrence of either a storage-alteration event or a
store-using-real-address event. When a program
interruption occurs, more than one type of PER
event can be concurrently indicated. Additionally,
if another program-interruption condition exists,
the interruption code for the program interruption
may indicate both the PER events and the other
condition. Zeros are stored in bit positions 4-7 of
location 150 and in bit positions 0-7 of location
151.

PER Address: The PER address at locations
152-155 contains the instruction address used to
fetch the instruction in execution when one or
more PER events ,were recognized. When the
instruction is the target of EXECUTE, the instruction
address used to fetch the EXECUTE instruction is
placed in the PER-address field. A zero is stored in
bit position 0 of reallocation 152.

PER Access Identification (PAID): If a storage­
alteration event is indicated in the PER code, an
indication of the address space to which the event
applies may be stored at location 161. If the access
used an AR-specified segment-table designation, the
number of the access register used is stored in bit
positions 4-7 of location 161, and zeros are stored

in bit positions 0-3. However, the contents of
location 161 are unpredictable if the instruction
that caused the event turned DAT off. The contents
of location 161 are also unpredictable if (1) the
CPU was in the access-register mode but the access
was an implicit reference to the linkage stack,
(2) the CPU was not in the access-register mode, or
(3) bit 2 of the PER code is one but indicates a
store-using-real-address event instead of a storage­
alteration event. If bit 2 of the PER code is zero,
location 161 remains unchanged.

Instruction Address: The instruction address in
the program old psw is the address of the instruc­
tion which would have been executed next, unless
another program condition is also indicated, in
which case the instruction address is that deter­
mined by the instruction ending due to that condi­
tion.

ILC: The ILC indicates the length of the instruc­
tion designated by the PER address, except when a
concurrent "specification exception" for the psw
introduced by LOAD PSW or a supervisor-call inter­
ruption sets an ILC of O.

Priority of Indication
When a program interruption occurs and more
than one PER event has been recognized, all recog­
nized PER events are concurrently indicated in the
PER code. Additionally, if another program­
interruption condition concurrently exists, the inter­
ruption code for the program interruption indicates
both the PER condition and the other condition.

In the case of an instruction-fetching event for
SUPERVISOR CALL, the program interruption occurs
immediately after the supervisor-call interruption.

If a PER event is recognized during the execution of
an instruction which also introduces a new psw
with the type of psw-format error which is recog­
nized early (see the section "Exceptions Associated
with the PSW" in Chapter 6, "Interruptions"), both
the specification exception and PER are indicated
concurrently in the interruption code of the
program interruption. However, for a psw-format
error of the type which is recognized late, only PER

is indicated in the interruption code. In both cases,
the invalid" psw is stored as the program old psw.

Recognition of a PER event does not normally
affect the ending of instruction execution.
However, in the following cases, execution of an
interruptible instruction is not completed normally:

1. When the instruction is due to be interrupted
for an asynchronous condition (I/O, external,
restart, or repressible machine-check condition),
a program interruption for the PER event
occurs frrst, and the other interruptions occur
subsequently (subject to the mask bits in the
new psw) in the normal priority order.

2. When the stop function is performed, a
program interruption indicating the PER event
occurs before the CPU enters the stopped state.

3. When any program exception is recognized,
PER events recognized for that instruction exe­
cution are indicated concurrently.

4. Depending on the model, in certain situations,
recognition of a PER event may appear to cause
the instruction to be interrupted prematurely
without concurrent indication of a program
exception, without an" interruption for any
asynchronous condition, or without the CPU

entering the stopped state.

Programming Notes:

1. In the following cases, an instruction can both
cause a program interruption for a PER event
and change the value of masks controlling an
interruption for PER events. The original mask
values determine whether a program inter­
ruption takes place for the PER event.

a. The instructions LOAD PSW, SET SYSTEM

MASK, STORE THEN AND SYSTEM MASK,

and SUPERVISOR CALL can cause an
instruction-fetching event and disable the
CPU for PER interruptions. Additionally,
STORE THEN AND SYSTEM MASK can cause
a storage-alteration event to be indicated.
In all these cases, the program old psw
associated with the program interruption
for the PER event may indicate that the
CPU was disabled for PER events.

b. An instruction-fetching event may be
recognized during execution of a LOAD

CONTROL instruction that changes the
value of the PER -event masks in control
register 9 or the addresses in control regis­
ters 10 and 11 controlling indication of
instruction-fetching events.

2. No instruction can both change the values of
general-register-alteration masks and cause a
general-register-alteration event to be recog­
nized.

Chapter 4. Control 4-15

3. When a PER interruption occurs during the
execution of an interruptible instruction, the
ILC indicates the length of that instruction or
EXECUTE, as appropriate. When a PER inter­
ruption occurs as a result of LOAD PSW or
SUPERVISOR CALL, the ILC indicates the length
of these instructions or EXECUTE, as appro­
priate, unless a concurrent specification excep­
tion on LOAD PSW calls for an ILC of O.

4. When a PER interruption is caused by
branching, the PER address identifies the branch
instruction (or EXECUTE, as appropriate),
whereas the old psw points to the next instruc­
tion to be executed. When the interruption
occurs during the execution of an interruptible
instruction, the PER address and the instruction
address in the old psw are the same.

Storage-Area Designation

Two types of PER events -- instruction fetching and
storage alteration -- involve the designation of an
area in storage. The storage area starts at the
location designated by the starting address in
control register 10 and extends up to and including
the location designated by the ending address in
control register 11. The area extends to the right of
the starting address.

An instruction-fetching event occurs whenever the
frrst byte of an instruction or the ftrst byte of the
target of an EXECUTE instruction is fetched from
the designated area. A storage-alteration event
occurs when a store access is made to the desig­
nated area by using an operand address that is
defmed to be a logical or a virtual address. A
storage-alteration event does not occur for a store
access made with an operand address defmed to be
a real address.

The set of addresses designated for instruction­
fetching and storage-alteration events wraps around
at address 2,147,483,647; that is, add~ess 0 is con­
sidered to follow address 2,147,483,647. When the
starting address is less than the ending address, the
area is contiguous. When the starting address is
greater than the ending address, the set of locations
designated includes the area from the starting
address to address 2,147,483,647 and the area from
address 0 to, and including, the ending address.
When the starting address is equal to the ending
address, only that one location is designated.

4-16 ESA/370 Principles of Operation

Address comparison for instruction-fetching and
storage-alteration events is always performed using
31-bit addresses. This is accomplished in the 24-bit
addressing mode by extending the virtual, logical,
or instruction address on the left with seven zero
bits before comparing it with the starting and
ending addresses.

Programming Note: In some models, performance
of address-range checking is assisted by means of an
extension to each page-table entry in the TLB. In
such an implementation, changing the contents of
control registers 10 and 11 when the instruction­
fetching or storage-alteration-event mask is one, or
setting either of these PER -event masks to one, may
cause the TLB to be cleared of entries. This degra­
dation may be experienced even when the CPU is
disabled for PER events. Thus, when possible, the
program should avoid loading control registers 9,
10, or II.

PER Events

Successful Branching
A successful-branching event occurs whenever one
of the following instructions causes branching:

• BRANCH AND LINK (BAL, BALR)

• BRANCH AND SAVE (BAS, BASR)

• BRANCH AND SAVE AND SET MODE (BASSM)

• BRANCH AND SET MODE (BSM)

• BRANCH AND STACK (BAKR)

• BRANCH ON CONDITION (BC, BCR)

• BRANCH ON COUNT (BCT, BCTR)

• BRANCH ON INDEX HIGH (BXH)

• BRANCH ON INDEX LOW OR EQUAL (BXLE)

A successful-branching event also occurs whenever
one of the following instructions is completed:

• PROGRAM CALL (PC)

• PROGRAM RETURN (PR)

• PROGRAM TRANSFER (PT)

For PROGRAM CALL, PROGRAM RETURN, and
PROGRAM TRANSFER, the branch target address is
considered to be the new instruction address that is
placed in the psw by the instruction.

A successful-branching event causes a PER

successful-branching event to be recognized if bit 0
of the PER -event masks is one and the PER mask in
the psw is one.

A PER successful-branching event is indicated by
setting bit 0 of the PER code to one.

Instruction Fetching
An instruction-fetching event occurs if the fust byte
of the instruction is fetched from the storage area
designated by control registers 10 and 11. An
instruction -fetching event also occurs if the fust
byte of the target of EXECUTE is within the desig­
nated storage area.

An instruction-fetching event causes a PER
instruction-fetching event to be recognized if bit 1
of the pER-event masks is one and the PER mask in
the psw is one.

The PER instruction-fetching event is indicated by
setting bit 1 of the PER code to one.

Storage Alteration
A storage-alteration event occurs whenever a CPU,
by using a logical or virtual address, makes a store
access without an access exception to the storage
area designated by control registers 10 and 11.

The contents of storage are considered to have been
altered whenever the CPU executes an instruction
that causes all or part of an operand to be s;tored
within the designated storage area. Alteration is
considered to take place whenever storing is consid­
ered to· take place for purposes of indicating pro­
tection exceptions, except that recognition does not
occur for the storing of data by a channel program.
(See the section "Recognition of Access
Exceptions" in Chapter 6, "Interruptions.") Storing
constitutes alteration for PER purposes even if the
value stored is the same as the original value.

Implied locations that are referred to by the CPU in
the process of performing an interruption are not
monitored. Such locations include psw and
interruption-code locations. These locations,
however, are monitored when information is stored
there explicitly by an instruction. Similarly, moni­
toring does not apply to the storing of data by a
channel program. Implied locations in the linkage
stack, which are stored in by instructions that
operate on the linkage stack, are monitored.

The I/O instructions are considered to alter the
second-operand location only when storing actually
occurs.

When an interruptible vector instruction which per­
forms storing is interrupted, and PER storage alter­
ation applies to storage locations corresponding to
elements due to be changed beyond the point of
interruption, PER storage alteration is indicated if

any such store actually occurred and may be indi­
cated even if such a store did not occur. PER
storage alteration is reported for such locations only
if no access exception exists at the time that the
instruction is executed.

Storage alteration does not apply to instructions
whose operands are specified to be real addresses.
Thus; storage alteration does not apply to INV ALI­
DATE PAGE TABLE ENTRY, RESET REFERENCE BIT
EXTENDED, SET STORAGE KEY EXTENDED, STORE
USING REAL ADDRESS, TEST BLOCK, and TEST
PENDING INTERRUPTION (when the effective
address is zero).

A storage-alteration event causes a PER storage­
alteration event to be recognized if bit 2 of the
PER-event masks is one and the PER mask in the
psw is one. Bit 4 of the PER-event masks is
ignored when determining whether a PER storage­
alteration event is to be recognized.

A PER storage-alteration event is indicated by
setting bit 2 of the PER code to one. However,
when bit 2 of the PER code and bit 4 of the
PER-event masks are both ones, a store-using-real­
address event, instead of a storage-alteration event,
may have occurred.

General-Register Alteration
A general-register-alteration event occurs whenever
the contents of a general register are replaced.

The contents of a general register are considered to
have been altered whenever a new value is placed in
the register. Recognition of the event is not contin­
gent on the new value being different from the pre­
vious one. The execution of an RR-format arith­
metic, logical, or movement instruction is
considered to fetch the contents of the register,
perform the indicated operation, if any, and then
replace the value in the register. A register can be
designated by an RR, RRE, RS, or RX instruction or
implicitly, such as in TRANSLATE AND TEST and
EDIT AND MARK.

The instructions MOVE LONG and COMPARE
LOGICAL LONG are always considered to alter the
contents of the four registers specifying the two
operands, including the cases where the padding
byte is used, when both operands have zero length.
However, when condition code 3 is set for MOVE
LO N G, the general registers containing the operand
lengths mayor may not be considered as having
been altered.

Chapter 4. Control 4-17

The instruction INSERT CHARACTERS UNDER MASK
is not considered to alter the general register when
the mask is zero.

The instructions COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP are considered to
alter the general register, or general-register pair,
designated by R 1, only when the contents are actu­
ally replaced, that is, when the frrst and second
operands are not equal.

It is unpredictable whether general-register­
alteration events are indicated for instructions of
the vector facility.

A general-register-alteration event causes a PER
general-register-alteration event to be recognized if
bit 3 of the PER -event masks is one, the PER mask
in the psw is one, and the corresponding bit in the
PER general-register mask is one.

The PER general-register-alteration event is indi­
cated by setting bit 3 of the PER code to one.

Programming Note: The following are some
examples of general-register alteration:

1. Register-to-register load instructions are consid­
ered to alter the register contents even when
both operand addresses designate the same reg~
ister.

2. Addition or subtraction of zero and multipli­
cation or division by one are considered to
constitute alteration.

3. Logical and fixed-point shift operations are
considered to alter the register contents even for
shift amounts of zero.

4. The branching instructions BRANCH ON INDEX
HIGH and BRANCH ON INDEX LOW OR EQUAL
are considered to alter the frrst operand even
when zero is added to its value.

Store Using Real Address
A store-using-real-address event occurs whenever
the STORE USING REAL ADDRESS instruction is exe­
cuted ..

There is no relationship between the store-using­
real-address event and the designated storage area.

A store-using-real-address event causes a PER store­
using-real-address event to be recognized if bits 2
and 4 of the PER-event mask are ones and the PER
mask in the psw is one.

4-t 8 ESAj370 Principles of Operation

A PER store-using-real-address event is indicated by
setting bit 2 of the PER code to one. However,
when bit 2 of the PER code is one, a storage­
alteration event, instead of a store-using-real­
address event, may have occurred.

Indication of PER Events
Concurrently with Other Interruption
Conditions

The following rules govern the indication of PER
events caused by an instruction that also causes a
program exception, a monitor event, a space-switch
event, or a supervisor-call interruption.

1. The indication of an instruction-fetching event
does not depend on whether the execution of
the instruction was completed, terminated, sup­
pressed, or nullified. The event, however, is
not indicated when an access exception pro­
hibits access to the frrst halfword of the instruc­
tion. When the frrst halfword of the instruction
is accessible but an access exception applies to
the second or third halfword of the instruction,
it is unpredictable whether the instruction­
fetching event is indicated. Similarly, when an
access exception prohibits access to all or a
portion of the target of EXECUTE, it is unpre­
dictable whether the instruction-fetching events
for EXECUTE and the target are indicated.

2. When the operation is completed or partially
completed, the event is indicated, regardless of
whether any program exception, space-switch
event, or monitor event is also recognized.

3. Successful branching, storage alteration,
general-register alteration, and store using ~eal
address are not indicated for an operation or, in
case the instruction is interruptible, for a unit
of operation that is suppressed or nullified.

4. When the execution of the instruction is termi­
nated, general-register or storage alteration is
indicated whenever the event has occurred, and
a model may. indicate the event if the event
would have occurred had the execution of the
instruction been completed, even if altering the
contents of the result field is contingent on
operand values. For purposes of this defi­
nition, the occurrence of those exceptions
which permit termination (addressing, pro­
tection, and data) is considered to cause termi­
nation, even if no result area is changed.

5. When LOAD PSW, PROGRAM RETURN, SET
SYSTEM MASK, STORE THEN OR SYSTEM MASK,

or SUPERVISOR CALL causes a PER condition
and at the same time introduces a new psw
with the type of psw-fonnat error that is recog­
nized immediately after the psw becomes
active, the interruption code identifies both the
PER condition and the specification exception.
When LOAD PSW, PROGRAM RETURN, or
SUPERVISOR CALL introduces a psw-fonnat

error of the type that is recognized as part of
the execution of the following instruction, the
psw is stored as the old psw without the spec­
ification exception being recognized.

The indication of PER events concurrently with
other program-interruption conditions is suinma­
rized in Figure 4-5 on page 4-20.

Chapter 4. Control 4-19

PER Event
Type
of Instr Storage GR

Concurrent Condition Ending Branch Fetch Alter. Alter. STURA

Specification
Odd instruction address S No No No No No

in the PSW
Instruction access

First halfword N or S No No No No No
Second, third halfwords N or S No U No No No

Specification
EXECUTE target address odd S No U No No -

EXECUTE target access N or S No U No No -
Other nullifying N No Yes Nol Nol -
Other suppressing S No Yes NOI NOI No
All terminating T No Yes Yes 2 Yes 2 -
All compl et i ng C Yes Yes Yes Yes -

EXElanation:

- The condition does not apply.

1 Although PER events of this type are not indicated for the cur­
rent unit of operation of an interruptible instruction, PER
events of this type that were recognized on completed units of
operation of the interruptible instruction are indicated.

2 This event may be indicated, depending on the model, if the
event has not occurred but would have been indicated if execu­
tion had been completed.

C The operation or, in the case of the interruptible instructions,
the unit of operation is completed.

N The operation or, in the case of the interruptible instructions,
the unit of operation is nullified.

S The operation or, in the case of the interruptible instructions,
the unit of operation is suppressed.

T The execution of the instruction is terminated.

Yes The PER event is indicated with the other program-interruption
condition if the event has occurred; that is, the contents of
the designated storage location or general register were al­
tered, or an attempt was made to execution an instruction whose
first byte is located in the designated storage area.

No The PER event is not indicated.

U It is unpredictable whether the PER event is indicated.

Figure 4-5. Indication of PER Events with Other Concurrent Conditions

4-20 ESA/370 Principles of Operation

Programming Notes:

1. The execution of the interruptible instructions
MOVE LONG, TEST BLOCK, and COMPARE

LOGICAL LONG can cause events for general­
register alteration and instruction fetching.
Additionally, MOVE LONG can cause the
storage-alteration event.

Interruption of such an instruction may cause a
PER event to be indicated more than once. It
may be necessary, therefore, for a program to
remove the redundant event indications from
the PER data. The following rules govern the
indication of the applicable events during exe­
cution of these instructions:

a. The instruction-fetching event is indicated
whenever the instruction is fetched for exe­
cution, regardless of whether it is the initial
execution or a resumption.

b. The general-register-alteration event is indi­
cated on the initial execution and on each
resumption and does not depend on
whether or not the register actually is
changed.

c. The storage-alteration event is indicated
only when data has been stored in the des­
ignated storage area by the portion of the
operation starting with the last initiation
and ending with the last byte transferred
before the interruption. No special indi­
cation is provided on premature inter­
ruptions as to whether the event will occur
again upon the resumption of the opera­
tion. When the designated storage area is a
single byte location, a storage-alteration
event can be recognized only once in the
execution of MOVE LONG.

2. The following is an outline of the general
action a program must take to delete multiple
entries in the PER data for an interruptible
instruction so that only one entry for each
complete execution of the instruction is
obtained:

a. Check to see if the PER address is equal to
the instruction address in the old psw and
if the last instruction executed was inter­
ruptible.

b. If both conditions are met, delete
instruction-fetching and register-alteration
events.

c. If both conditions are met and the event is
storage alteration, delete the event if some

part of the remaining destination operand
is within the designated storage area.

Timing
The timing facilities include three facilities for
measuring time: the TOD clock, the clock
comparator, and the CPU timer.

In a multiprocessing configuration, a single TOD

clock may be shared by more than one CPU, or
each CPU may have a separate TOD clock.
However, each CPU has a separate clock
comparator and CPU timer.

Time-or-Day Clock

The time-of-day (TOO) clock provides a high­
resolution measure of real time suitable for the
indication of date and time of day. The cycle of
the clock is approximately 143 years.

In an installation with more than one CPU, each
CPU may have a separate TOD clock, or more than
one CPU may share a clock, depending on the
model. In all cases, each CPU has access to a single
clock.

Format
The TOD clock is a binary counter with the format
shown in the following illustration. The bit posi­
tions of the clock are numbered 0 to 63, corre­
sponding to the bit positions of a 64-bit unsigned
binary integer.

1 microsecond~

II
0 51 63

In the basic form, the TOD clock is incremented by
adding a one in bit position 51 every microsecond.
In models having a higher or lower resolution, a
different bit position is incremented at such a fre­
quency that the rate of advancing the clock is the
same as if a one were added in bit position 51 every
microsecond. The resolution of the TOD clock is
such that the incrementing rate is comparable to
the instruction-execution rate of the model.

A TO D clock is said to be in a particular multiproc­
essing configuration if at least one of the cpus
which shares that clock is in the configuration.
Thus, it is possible for a single TOD clock to be in

Chapter 4. Control 4-21

more than one configuration. Conversely, if all
CPus having access to a particular TOO clock have
been removed from a particular configuration, then
the TO 0 clock is no longer considered to be in that
configuration.

When more than one TOO clock exists in the con­
figuration, the stepping rates are synchronized such
that all TOO clocks in the configuration are incre­
mented at exactly the same rate.

When incrementing of the clock causes a carry to
be propagated out of bit position 0, the carry is
ignored, and counting continues from zero .. The
program is not alerted, and no interruption condi­
tion is generated as a result of the overflow.

The operation of the clock is not affected by any
normal activity or event in the system. Incre­
menting of the clock does not depend. on whether
the wait-state bit of the psw is one or whether. the
CPU is in the operating, load, stopped, or check­
stop state. Its operation is not affected by CPU,
initial-cpu, or clear resets or by initial program
loading. Operation of the clock is also not affected
by the setting of the rate control or by an initial­
microprogram-loading operation. Depending on
the model and the configuration, a TOO clock may
or may not be powered independent of a CPU that
accesses it.

States
The following states are distinguished for the TOO
clock: set, not set, stopped, error, and not opera­
tional. The state determines the condition code set
by execution of STORE CLOCK. The clock is incre­
mented, and is said to be running, when it is in
either the set state or the not-set state.

Not-Set State: When the power for the clock is
turned on, the clock is set to zero, and the clock
enters the not-set state. The clock is incremented
when in the not-set state.

When the clock is in the not-set state,execution of
STO RE CLOCK causes condition code I to be set and
the current value of the running clock to be stored.

Stopped State: The clock enters the stopped state
when SET. CLOCK is executed on a CPU accessing
that clock and the clock is set. This occurs when
SET CLOCK is executed· without encountering any
exceptions and any manual Too-clock control in

4-22 ESAj370 Principles of Operation

the configuration is set to the enable-set position~ .
The clock can be placed in the stopped state from
the set, not-set, and error states. The clock is not
incremented while m the stopped state.

When the clock is in the stopped state, execution of
STORE CLOCK on a CPU accessing that clock causes
condition code 3 to be set and the value of the
stopped clock to be stored.

Set State: The clock enters the set state only from
the stopped state. The change of state is under
control of the TOD-clock-sync-control bit, bit 2 of
control register 0, in the CPU which most recently
caused that clock to enter the stopped state. If the
bit is zero, the clock enters the set state at the com­
pletion of execution of SET CLOCK. If the bit is
one, the clock remains in the stopped state until the
bit is set to zero on that CPU, until another CPU
executes a SET CLOCK instruction affecting the
clock, or until any other clock in the configuration
is incremented to a value of all zeros in bit posi­
tions 32-63. If any clock is set to a value of all
zeros in bit positions 32-63 and enters the set state
as· the result of a signal from another clock, the
updating of bits 32-63 of the two clocks is in syn­
chronism.

Incrementing of the clock begins with the frrst step­
ping pulse after the clock enters the set state.

When the· clock is in the set state, execution of
STORE CLOCK causes condition code ° to be set and
the current value of the running clock to be stored.

Error State: The clock enters the error state when
a malfunction is detected that is likely to have
affected the validity of the clock value. A timing­
facility -damage machine-check -interruption condi­
tion is generated on each CPU which has access to
that clock whenever it enters the error state.

When STORE CLOCK is executed and· the clock
accessed is in the error state, condition code 2 is
set, and the value stored is zero.

Not-Operational State: The clock is in the not­
operational state when its power is off or when it is
disabled for maintenance. It depends on the model
if the clock can be placed in this state. Whenever
the clock enters the not-operational state, a timing­
facility -damage machine-check -interruption condi­
tion is generated on each CPU that has access to
that clock.

When the clock is in the not-operational state, exe­
cution of STO RE CLOCK causes condition code' 3 to
be set, and zero is stored.

Changes In Clock State
When the TOD clock accessed by a CPU changes
value because of the execution of SET CLOCK or
changes state, interruption conditions pending for
the clock comparator, CPU timer, and TOD-clock­
sync check mayor may not be recognized for up to
1.048576 seconds (220 microseconds) after the
change.

The results of channel-subsystem-monitoring­
facility operations may be unpredictable as a result
of changes to the TO D clock.

Setting and Inspecting the Clock
The clock can be set to a specific value by exe­
cution of SET CLOCK if the manual TOD-clock
control of any CPU in the configuration is in the
enable-set position. Setting the clock replaces the
values in all bit positions from bit position 0
through the rightmost position that is incremented
when the clock is running. However, on some
models, the rightmost bits starting at or to the right
of bit 52 of the specified value are ignored, and
zeros are placed in the corresponding positions of
the clock. The TO D clock can be inspected by exe­
cuting STORE CLOCK, which causes a 64-bit value
to be stored. Two executions of STORE CLOCK,
possibly on different cpus in the same configura­
tion, always store different values if the clock is
running or, if separate clocks are accessed, both
clocks are running and are synchronized.

The'values stored for a running clock always cor­
rectly imply the sequence of execution of STO RE
CLOCK on one or more CPus for all cases where the
sequence can _be established by means of the
program. Zeros are stored in positions to the right
of the bit position that is incremented. In a config­
uration with more than one CPU, however, when
the value of a running clock is stored, nonzero
values may be stored in positions to the right of the
rightmost position that is incremented. This

. ensures that a unique value is stored.

In a configuration where more than one CPU
accesses the same clock, SET CLOCK is interlocked
such that the entire contents appear to be updated
concurrently; that is, if SET CLOCK instructions are

executed simultaneously by two CPus, the fmal
result is either one or the other value. If SET
CLOCK is executed on one CPU and STORE CLOCK
on the other, the result obtained by STORE CLOCK
is either the entire old value or the entire new
value. When SET CLOCK is executed by one CPU, a
STORE CLOCK executed on another CPU may fmd
the clock in the stopped state even when the
TOD-clock-sync-control bit is zero in each CPU.
The TOD-clock-sync-control bit is bit 2 of control
register O. Since the clock enters the set state
before incrementing, the first STORE CLOCK exe­
cuted after the clock enters the set state may still
fmd the original value introduced by SET CLOCK.

Programming Notes:

1. Bit position 31 of the clock is incremented
every 1.048576 seconds; for some applications,
reference to the leftmost 32 bits of the clock
may provide sufficient resolution.

2. Communication between systems is facilitated
by establishing a standard time origin, or
standard epoch, which is the calendar date and
time to which a clock value of zero corre­
sponds. January 1, 1900, 0 a.m. Greenwich
Mean Time (GMT) is recommended as the
standard epoch for the clock.

3. A program using the clock value as a
time-of-day and calendar indication must be
consistent with the programming support under
which the program is to be executed. If the
programming support uses the standard epoch,
bit 0 of the clock remains one through the
years 1972-2041. (Bit 0 turned on at
11:56:53.685248 (GMT) May 11, 1971.) Ordi­
narily, testing bit 0 for a one is sufficient to
detennine if the clock value is in the standard
epoch.

4. Because of the limited accuracy of manually
setting the clock value, the rightmost bit posi­
tions of the clock, expressing fractions of a
second, are normally not valid as indications of
the time of day. However, they permit elapsed­
time measurements of high resolution .

5. The following chart shows the time interval
between instants at which various bit positions
of the TOD clock are stepped. This time value
may also be considered as the weighted time
value that the bit, when one, represen.ts.

Chapter 4. Control 4-23

TOD- Stepping Interval
Clock

DayslHOUrslMin.1 Seconds Bit

51 e.eee eel
47 e.eee e16
43 e.eee 256

39 e.ee4 e96
35 e.e65 536
31 1.e48 576

27 16.777 216
23 4 28.435 456
19 1 11 34.967 296

15 19 5 19.476 736
11 12 17 25 11.627 776
7 2e3 14 43 6.e44 416
3 3257 19 29 36.71e 656

6. The following chart shows the clock setting at
the start. of various years. The clock settings,
expressed in hexadecimal notation, correspond
to 0 a.m. Greenwich Mean Time on January 1
of each year.

Year Clock Setting (Hex)

1gee eeee eeee eeee eeee
1976 8853 BAFe B4ee eeee
198e 8F8e 9FD3 22ee eeee
1984 96AD 84B5 geee eeee
1988 9DDA 6997 FEee eeee
1992 A5e7 4E7A 6cee eeee
1996 AC34 335C DAee eeee
2eee B361 183F 48ee eeee

7. The stepping value of TOD-clock bit position
63, if implemented, is 2-12 microseconds, or
approximately 244 picoseconds. This value is
called a clock unit.

The following chart shows various time inter­
vals in clock units expressed in hexadecimal
notation.

4-24 ESA/370 Principles of Operation

Interval

1 microsecond
1 millisecond
1 second
1 minute
1 hour
1 day
365 days
366 days
1,461 days*·

Clock Units (Hex)

1eee
3E 8eee

F424 eeee
39 387e eeee

069 3A4e eeee
1 4100 76ee eeee

1CA E8C1 3Eee eeee
1CC 2A9E B4ee eeee
72C E4E2 6Eee eeee

* Number of days in four years,
includin~ a leap year. Note
that the year 1gee was not a
leap year. Thus, the four­
year span starting in 1gee
has oDly 1,46e days.

8. In a multiprocessing configuration, after the
TOD clock. is set and begins running, the
program should delay activity for 220 microsec­
onds (1.048576 seconds) to ensure that the
cpu-timer, clock-comparator, and TOD-clock­
sync-check mterruption conditions are recog­
nized by the cpu.

TOO-Clock Synchronization

In an installation with more than one CPU, each.
cpu may have a separate TOO clock, or more than
one cpu may share a TOD clock, depending on the
model. In all cases, each cpu has access to a single
clock.

The Too-clock-synchronization facility, in conjunc­
tion with a clock-synchronization program, makes
it possible to provide the effect of all CPUs in a
multiprocessing configuration sharing a single TOD
clock. The result is such that, to all programs
storing the TOD-clock value, it appears that all CPus
in the configuration read the same TOD clock. The
TOD-clock-synchronization facility provides these
functions in such a way that even though the
number of CPUs sharing a TOD clock is model­
dependent, a single model-independent clock­
synchronization routine can be written. The fol­
lowing functions are provided:

• Synchronizing the. stepping rates for all TOD
clocks in the configuration. Thus, if all clocks
are set to the same value, they stay in synchro­
nism.

• Comparing the rightmost 32 bits -of each clock
in the configuration. An unequal condition is

signaled by an external interruption with the
interruption code 1003 hex, indicating the
TO D-clock -sync-check condition.

• Setting a TOO clock to the stopped state.

• Causing a stopped clock, with the TOD-clock­
sync-control bit set to one, to start incre­
menting when bits 32-63 of any running clock
in the configuration are incremented to zero.
This permits the program to synchronize all
clocks to any particular clock without requiring
special operator action to select a "master
clock" as the source of the clock­
synchronization pulses.

Programming Notes:

1. TO D-clock synchronization provides for
checking and synchronizing only the rightmost
bits of the TOO clock. The program must
check for synchronization of the leftmost bits
and must communicate the leftmost-bit values
from one CPU to another in order to correctly
set the Too-clock contents.

2. The Too-clock-sync-check external interruption
can be used tQ determine the number of TOD
clocks in the configuration.

Clock Comparator

The clock comparator provides a means of causing
an interruption when the TOD-clock value exceeds a
value specified by the program.

In a configuration with more than one CPU, each
CPU has a separate clock comparator.

The clock comparator has the. same format as the
TOO clock.' In the basic form, the clock
comparator consists of bits 0 .. 47, which are com­
pared with the corresponding bits of the TO 0 clock.
In some models, higher resolution is obtained by
providing more than 48 bits. The bits in positions
provided in the clock comparator are compared
with the corresponding bits of the clock. When the
resolution of the clock is less than that of the clock
comparator, the contents of the clock .comparator
are compared with the clock value as this value
would be stored by executing STORE CLOCK.

The clock comparator causes an external inter­
ruption with the interruption code 1004 hex. A

request for a clock-comparator interruption exists
whenever either of the following conditions exists:

1. The TO D clock is running and the value of the
clock comparator is less than the value in the
compared portion of the clock, both values
being considered unsigned binary integers.
Comparison follows the rules of unsigned
binary arithmetic.

2. The TOD clock is in the error state or the not-
operational state.

A request for a clock -comparator interruption does
not remain pending when the value of the clock
comparator is made equal to or greater than that of
the TOO clock or when the value of the TOD clock
is made less than the clock-comparator value. The
latter may occur as a result of the TOD clock either
being set or wrapping to zero.

The clock comparator can be inspected by exe­
cuting the instruction STORE CLOCK COMPARATOR
and can be set to a specific value by executing the
SET CLOCK COMPARATOR instruction.

The contents of the clock comparator are initialized
to zero by initial CPU reset.

Programming Notes:

1. An interruption request for the clock
comparator persists as long as the clock­
comparator value is less than that of the TO D
clock or as long as the TO D clock is in the error
state or the not-operational state. Therefore,
one of the following actions must be taken
after an external interruption for the clock
. comparator has occurred and before the CPU is
again enabled for external interruptions: the
value of the clock comparator has to be
replaced, the TOD clock has to be set, the TOD
clock has to wrap to zero, or the clock­
comparator-subclass mask has to be set to
zero. Otherwise, loops of external interruptions
are formed.

2. The instruction STORE CLOCK may store a'
value which is greater than that in the clock
comparator, even though the CPU is enabled
for the clock -comparator interruption. This is
because the TOD clock may be incremented one
or more times between when instruction exe­
cution is begun and when the clock value is
accessed. In this situation, the interruption
occurs when the execution of STORE CLOCK is
completed.

Chapter 4. Control 4-25

CPU Timer

The CPU timer provides a means for measuring
elapsed CPU time and for causing an interruption
when a specified amount of time has elapsed.

In a configuration with more than one CPU, each
CPU has a separate CPU timer.

The CPU timer is a binary counter with a format
which is the same as that of the TOO clock, except
that bit 0 is considered a sign. . In the basic form,
the CPU timer is decremented by subtracting a one
in bit position 51 every microsecond. In models
having a higher or lower resolution, a different bit
position is decremented at such a frequency that
the rate of decrementing the CPU timer is the same
as if a one were subtracted in bit position 51 every
microsecond. The resolution of the CPU timer is
such that the stepping rate is comparable to the
instruction -execution rate of the model.

The CPU timer requests an external interruption
with the interruption code 1005 hex whenever the
cpu-timer value is negative (bit 0 of the CPU timer
is one). The request does not remain pending
when the cpu-timer value is changed to a nonnega­
tive value.

When both the CPU timer and the TOO clock are
running, the stepping rates are synchronized such
that both are stepped at the same rate. Normally,
decrementing the CPU timer is not affected by con­
current I/O activity. However, in some models the
CPU timer may stop during extreme I/O activity and
other similar interference situations. In these cases,
the time recorded by the CPU timer provides a
more accurate measure of the CPU time used by the
program than would have been recorded had the
CPU timer continued to step;

The CPU timer is decremented when the CPU is in
the operating state or the load state. When the
manual rate control is set to instruction step, the
CPU timer is decremented only during the time in
which the CPU is actually performing a unit of
operation. However, depending on the model, the
CPU timer mayor may not be decremented when
the TOO clock is in the error, stopped, or not­
operational state.

Depending on the model, the CPU timer mayor
may not be decremented when the CPU is in the
check-stop state.

4-26 ESA/370 Principles of Operation

The CPU timer can be inspected by executing the
instruction STORE CPU TIMER and can be set to a
specific value by executing the SET CPU TIMER

instruction.

The CPU timer is set to zero by initial CPU reset.

Programming Notes:

1. The CPU timer in association with a program
may be used both to measure CPU -execution
time and to signal the end of a time interval on
the CPU.

2. The time measured for the execution of a
sequence of instructions may depend on the
effects of such things as I/O interference, the
availability of pages, and instruction retry.
Hence, repeated measurements of the same
sequence on the same installation may differ.

3. The fact that a cpu-timer interruption does not
remain pending when the CPU timer is set to a
positive value eliminates the problem of an
undesired interruption. This would occur if,
between the time when the old value is stored
and a new value is set, the CPU is disabled for
cpu-timer interruptions and the CPU timer
value goes from positive to negative.

4. The fact that cpu-timer interruptions are
requested whenever the cpu timer is negative
(rather than just when the cpu timer goes from
positive to negative) eliminates the requirement
for testing a value to ensure that it is positive
before setting the CPU timer to that value.

As an example, assume that a program being
timed by the CPU timer is interrupted for a
cause other than the CPU timer, external inter­
ruptions are disallowed by the new PSW, and
the cpu-timer value is then saved by STORE

CPU TIMER. This value could be negative if the
CPU timer went from positive to negative since
the interruption. Subsequently, when the
program being timed is to continue, the CPU

timer may be set to the saved value by SET CPU

TIMER. A cpu-timer interruption occurs
immediately after external interruptions are
again enabled if the saved value was negative.

The persistence of the cpu-timer-interruption
request means, however, that after an external
interruption for the CPU timer has occurred,
the value of the cpu timer has to be replaced,
the value in the cpu timer has to wrap to a
positive value, or the cpu-timer-subclass mask
has to be set to zero before the CPU is again

enabled for external interruptions. Otherwise,
loops of external interruptions are formed.

5. The instruction STORE CPU TIMER may store a
negative value even though the CPU is enabled
for the interruption. This is because the
cpu-timer value may be decremented one or
more times between when instruction execution
is begun and when the CPU timer is accessed.
In this situation, the interruption occurs when
the execution of STORE CPU TIMER is com­
pleted.

Externally Initiated Functions

Resets

Five reset functions are provided:

• CPU reset
• Initial CPU reset
• Subsystem reset
• Clear reset
• Power-on reset

CPU reset provides a means of clearing equipment­
check indications and any resultant unpredictability
in the CPU state with the least amount of informa­
tion destroyed. In particular, it is used to clear
check conditions when the CPU state is to be pre­
served for analysis or resumption of the operation.

Initial CPU reset provides the functions of CPU reset
together with initialization of the current PSW, CPU

timer, clock comparator, prefix, and control regis­
ters.

Subsystem reset provides a means for clearing
floating interruption conditions as well as for
invoking I/o-system reset.

Clear reset causes initial CPU reset and subsystem
reset to be performed and, additionally, clears or
initializes all storage locations and registers in all
CPus in the configuration, with the exception of the
TOD clock. Such clearing is useful in debugging
programs and in ensuring user privacy. Clearing
does not affect external storage, such as direct­
access storage devices used by the control program
to hold the contents of unaddressable pages.

The power-on-reset sequences for the TOD clock . '
mam storage, and the channel subsystem may be
included as part of the CPU power-on sequence, or
the power-on sequence for these units may be initi­
ated separately.

CPU reset, initial CPU reset, subsystem reset, and
clear reset may be initiated manually by using the
operator facilities (see Chapter 12, "Operator
Facilities"). Initial CPU reset is part of the initial­
program-loading function. Figure 4-6 on
page 4-28 summarizes how these four resets are
manually initiated. Power-on reset is performed as
part of turning power on. The reset actions are
tabulated in Figure 4-7 on page 4-29. For infor­
mation concerning what resets can be performed by
the SIGNAL PROCESSOR instruction, see the section
"Signal-Processor Orders" in this chapter.

Chapter 4. Control 4-27

Function Performed on 1

CPU on Which Key Other CPUs Remainder of
Key Activated Was Activated in Config Configuration

System-reset-normal CPU reset
key

CPU reset Subsystem reset

System-reset-clear Clear reset 2

key
Clear reset 2 Clear reset 3

Load-normal key Initial CPU reset, CPU reset
followed by IPL

Subsystem reset

Load-clear key Clear reset 2 ,

fo 11 owed by I PL
Clear reset 2 Clear reset 3

Explanation:

1 Activation of a system-reset or load key may change the config­
uration, including the connection with I/O, storage units, and
other CPUs.

2 Only the CPU elements of this reset apply.

3 Only the non-CPU elements of this reset apply.

Figure 4-6. Manual Initiation of Resets

4-28 ESA/370 Principles of Operation

Reset Function

Sub- Initial Power
system CPU CPU Clear -On

Area Affected Reset Reset Reset Reset Reset

CPU U S Sl Sl S
PSW U U/V C*l C*l C*
Prefix U U/V C C C
CPU timer U U/V C C C
Clock comparator U U/V C C C
Control registers U U/V I I I
Access registers U U/V U/V C C
General registers U U/V U/V C C
Floating-point registers U U/V U/V C C
Vector-facility registers U U/V U/V C C
Storage keys U U U C C2
Volatile main storage U U U C C2
Nonvolatile main storage U U U C U
Expanded storage U3 U3 U3 U3 C2
TOO clock U4 U4 U4 U4 P
Floating interruption C U U C C2

conditions
I/O system R U U R R5

EXElanation:

* Clearing the contents of the PSW to zero causes the PSW
to be invalid.

1 When the IPL sequence follows the reset function on that
CPU, the CPU does not necessarily enter the stopped
state, and the PSW is not necessarily cleared to zeros.

2 When these units are separately powered, the action is
performed only when the power for the unit is turned on.

3 Access to change expanded storage at the time a reset
funct ion is performed may cause the contents"of the 4K­
byte block in expanded storage to be unpredictable.
Access to examine expanded storage does not affect the
contents of the expanded storage.

4 Access to the TOO clock by means of STORE CLOCK at the
time a reset function is performed does not cause the
value of the TOO clock to be affected.

5 When the channel subsystem is separately powered or con­
sists of multiple elements which are separately powered,
the reset action is applied only to those subchannels,
channel paths, and I/O control units and devices on those
paths associated with the element which is being powered
on.

Figure 4-7 (Part 1 of 2). Summary of Reset Actions

Chapter 4. Control 4-29

Explanation (Continued):

C The condition or contents are cleared. If the ~rea
affected is a field, the contents are set to zero with
valid checking-biock code.

I The state or contents are initialized. If the area af­
fected is a field, the contents are set to the initial
value with valid checking-block code.

R I/O-system reset is performed in the channel subsystem.
As part of this reset, system reset is signaled to all
I/O control units and devices attached to the channel
subsystem.

S The CPU is reset; current operations, if any, are term­
inated; the ALB and TLB are cleared of entries; inter­
ruption conditions in the CPU are cleared; and the CPU
is placed in the stopped state. The effect of perform­
ing the start function is unpredictable when th~ stopped
state has been entered by means of a reset.

T The TOO clock is initialized to zero and validated; it
enters the not-set state.

U The state, condition, or contents of the field remain
unchanged. However, the result is unpredictable if an
operation is in progress that changes the state, con­
dition, or contents of the field at the time of reset.

U/V The contents remain unchanged, provided the field is not
being changed at the time the reset function is per­
formed. However, on some models the checking-block code
of the contents may be made valid. The result is un­
predictable if an operation is in progress that changes
the contents of the field at the time of reset.

Figure 4-7 (Part 2 of 2). Summary of Reset Actions

CPU Reset
CPU reset causes the following actions:

1. The execution of the current instruction or
other processing sequence, such as an inter­
ruption, is terminated, and all program­
interruption and supervisor-call-interruption
conditions are cleared.

2. Any pending external-interruption conditions
which are local to the CPU are cleared.
Floating external-interruption conditions are
not cleared.

3. Any pending machine-cheek-interruption con­
ditions and error indications which are local to
the CPU and any check-stop states are cleared.
Floating machine-check -interruption conditions

4-30 ESA/370 Principles of Operation

are not cleared. Any machine-check condition
which is reported to all cpus in the configura­
tion and which has been made pending to a
CPU is said to be local to the CPU.

4. All copies of prefetched instructions or oper­
ands are cleared. Additionally, any results to
be stored because of the execution of
instructions in the current checkpoint interval
are cleared.

5. The ART-lookaside buffer and translation­
lookaside buffer are cleared of entries.

6. The CPU is placed in the stopped state after
actions 1-5 have been completed. When the
IPL sequence follows the reset function on that
CPU, the CPU enters the load state at the com­
pletion of the reset function and does not nec-

essarily enter the stopped state during the exe­
cution of the reset operation.

Registers, storage contents, and the state of condi­
tions external to the CPU remain unchanged by CPU
reset. However, the subsequent contents of the
register, location, or state are unpredictable if an
operation is in progress that changes the contents at
the time of the reset.

When the reset function in the CPU is initiated at
the time the CPU is executing an I/O instruction or
is performing an I/O interruption, the current opera­
tion between the CPU and the channel subsystem
mayor may not be completed, and the resultant
state of the associated channel-subsystem facility
may be unpredictable.

Programming Note: Most operations which would
change a state, a condition, or the contents of a
field cannot occur when the CPU is in the stopped
state. However, some signal-processor functions
and some operator functions may change these
fields. To eliminate the possibility of losing a field
when CPU reset is issued, the CPU should be
stopped, and no operator functions should be in
progress.

Initial CPU Reset
Initial CPU reset combines the CPU reset functions
with the following clearing and initializing func­
tions:

1. The contents of the current PSW, prefix, CPU
timer, and clock comparator are set to zero.
When the IPL sequence follows the reset func­
tion on that CPU, the contents of the psw are
not necessarily set to zero.

2. The contents of control registers are set to their
initial value.

These clearing and initializing functions include val­
idation.

Setting the current psw to zero causes the psw to
be invalid, since psw bit 12 must be one. Thus, if
the CPU is placed in the operating state after a reset
without fITst introducing a new PSW, a specification
exception is recognized.

Subsystem Reset
Subsystem reset operates only on those elements in
the configuration which are not CPUs. It performs
the following actions:

1. I/o-system reset is performed by the channel
subsystem (see the section "I/o-System Reset"
in Chapter 17, "I/O Support Functions").

2. All floating interruption conditions in the con-
figuration are cleared.

As part of I/o-system reset, pending I/o-interruption
conditions are cleared, and system reset is signaled
to all control units and devices attached to the
channel subsystem (see the section "I/o-System
Reset" in Chapter 17, "I/O Support Functions").
The effect of system reset on I/O control units and
devices and the resultant control-unit and device
state are described in the appropriate System
Library publication for the control unit or device.
A system reset, in general, resets only those func­
tions in a shared control unit or device that are
associated with the particular channel path sig­
naling the reset.

Clear Reset
Clear reset combines the initial-cPu-reset function
with an initializing function which causes the fol­
lowing actions:

1. The access, general, and floating-point registers
of/those CPUs which are in the configuration
are set to zero.

2. The registers (vector-status register, vector­
mask register, vector-activity count, and all
vector registers) of those vector facilities, if any,
which are in the configuration are cleared to
zero with valid checking-block code.

3. The contents of the main storage in the config­
uration and the associated storage keys are set
to zero with valid checking-block code.

4. A subsystem reset is performed.

Validation is included in setting registers and in
clearing storage and storage keys.

Programming Notes:

1. For the CPU -reset operation not to affect the
contents of fields that are to be left unchanged,
the CPU must not be executing instructions and
must be disabled for all interruptions at the
time of the reset. Except for the operation of
the CPU timer and for the possibility of a
machine-check interruption occurring, all CPU
activity can be stopped by placing the CPU in

Chapter 4. Control 4-31

the wait state and by disabling it for I/O and
external interruptions. To avoid the possibility
of causing a reset at the time that the CPU
timer is being updated or a machine-check
interruption occurs, the CPU must be in the
stopped state.

2. CPU reset, initial CPU reset, subsystem reset,
and clear reset do not affect the value and state
of the TOD clock.

3. The conditions under which the CPU enters the
check-stop state are model-dependent and
include malfunctions that preclude the com­
pletion of the current operation. Hence, if CPU
reset or initial CPU reset is executed while the
CPU is in the check-stop state, the contents of
the PSW, registers, and storage locations,
including the storage keys and the storage
location accessed at the time of the error, may
have unpredictable values, and, in some cases,
the contents may still be in error after the
check-stop state is cleared by these resets. In
this situation, a clear reset is required to clear
the error.

Power-On Reset
The power-on-reset function for a component of
the machine is performed as part· of the power-on
sequence for that component.

The power-on sequences for the TOD clock, vector
facility, main storage, expanded storage, and
channel subsystem may be included as part of the
CPU power-on sequence, or the power-on sequence
for these units may be initiated separately. The fol­
lowing sections describe the power-on resets for the
CPU, TO D clock, vector facility, main storage,
expanded storage, and channel subsystem. See also
Chapter 17, "I/O Support Functions," -and the
appropriate System Library publication for the
channel subsystem, control units'jand I/O devices.

CPU Power-On Reset: The power-on reset causes
initial CPU reset to be perfonned and mayor may
not cause I/o-system reset to be performed in .the
channel subsystem. The contents of general regis­
ters and floating-point registers are cleared to zeros
with valid checking-block code.

TOO-Clock Power-On Reset: The power-on reset
causes the value of the TO D clock to be set to zero
and causes the clock to enter the not-set state.

Vector-Facility Power-On Reset: The power-on
reset causes the registers of the vector facility
(vector-status register, vector-mask register, vector-

4-32 ESAj370 Principles of Operation

activity count, and all vector registers) to be cleared
to zeros with valid checking-block code. '

Main-Storage Power-On Reset: For volatile main
storage (one that does not preserve its contents
when power is oft) and for storage keys, power-on
reset causes zeros with valid checking-block code to
be placed in these fields. The contents of nonvola­
tile main storage, including the checking-block
code, remain unchanged.

Expanded-Storage Power-On Reset: The con­
tents of the expanded storage are cleared to zeros
with valid checking-block code.

Channel-Subsystem Power-On Reset: The
channel-subsystem power-on reset causes
I/o-system reset to be performed in the channel
subsystem. (See the section "I/O-System Reset" in
Chapter 17, "1/0 Support Functions.")

Initial Program Loading

Initial program loading (IPL) provides a manual
means for causing a program to be read from a des­
ignated device and for initiating execution of that
program.

Some models may provide additional controls and
indications relating to IPL; this additional informa­
tion is specified in the System Library publication
for the model.

IPL is initiated manually by setting the load-unit­
address controls to a four-digit number to designate
an input device and by subsequently activating the
load-clear or load-normal key for a particular CPU.
In the description which follows, the term "this
CPU" refers to the CPU in the configuration for
which the load-clear or load-normal key was acti­
vated.

Activating the load-clear key causes a clear reset to
be performed on the configuration.

Activating the load-normal key causes an initial
CPU reset to be performed on this CPU, CPU reset
to be propagated to all other CPUs in the configura­
tion, and a subsystem reset to be performed on the
remainder of the configuration.

In the loading part of the operation, after the resets
have been performed, this CPU then enters the load
state. This CPU does not necessarily enter the
stopped state during the execution of the reset

operations. The load indicator is on while the CPU
is in the load state.

Subsequently, a channel program read operation is
initiated from the I/O device designated by the load­
unit-address controls. The effect of executing the
channel program is as if a fonnat-O ccw in absolute
storage location 0 specified a read command with
the modifier bits zeros, a data address of zero, a
byte count of 24, the chain-command and SLI flags
ones, and all other flags zeros.

The details of the channel-subsystem portion of the
IPL operation are defmed in the section "Initial
Program Loading" in Chapter 17, "I/O Support
Functions. "

When the IPL I/O operation is completed success­
fully, the subsystem-identification word of the IPL
device is stored in absolute storage locations
184-187, zeros are stored in absolute storage
locations 188-191, and a new psw is loaded from
absolute storage locations 0-7; If the psw loading
is successful and if no machine malfunctions are
detected, this CPU leaves the load state, and the
load indicator is turned off. If the rate control is
set to the process position, the CPU enters the oper­
ating state, and the CPU operation proceeds under
control of the new psw. If the rate control is set to
the instruction-step position, the CPU enters the
stopped state, with the manual indicator on, after
the new psw is loaded.

If the IPL I/O operation or the psw loading is not
completed successfully, the CPU remains in the load
state, and the load indicator remains on. The con­
tents of absolute storage locations 0-7 are unpre­
dictable.

Store Status

The store-status operation places the contents of
the CPU registers, except for the TOO clock, in
assigned storage locations.

Figure 4-8 lists the fields that are stored, their
length, and their location in main storage.

Length Absolute
Field in Bytes Address

CPU timer 8 216
Clock comparator 8 224
Current PSW 8 256
Prefix 4 264
Access registers 0-15 64 288
Fl-pt registers 0-6 32 352
General registers 0-15 64 384
Control registers 0-15 64 448

Figure 4-8. Assigned Storage Locations for Store
Status

The contents of the registers are not changed. If an
error is encountered during the operation, the CPU
enters the check-stop state.

The store-status operation can be initiated manu­
ally by use of the store-status key (see Chapter 12,
"Operator Facilities"). The store-status operation
can also be initiated at the addressed CPU by exe­
cuting SIGNAL PROCESSOR, specifying the stop-and­
store-status order. Execution of SIGNAL
PROCESSOR specifying the store-status-at-address
order permits the same status information to be
stored at a designated address (see "Signal
Processor Orders" in this chapter).

Multiprocessing
The multiprocessing facility provides for the inter­
connection of CPus, via a common main storage, in
order to enhance system availability and to share
data and resources. The multiprocessing facility
includes the following facilities:

• Shared main storage
• cpu-to-cpu interconnection
• Too-clock synchronization

Associated with these· facilities are two external­
interruption conditions (Too-clock-sync check and
malfunction alert), which are described in Chapter
6, "Interruptions"; and control-register positions for
the TOD-clock-sync-control bit and for the masks
for the external-interruption conditions, which are
listed in the section "Control Registers" in this
chapter.

The channel subsystem, including all subchannels,
in a multiprocessing configuration can be accessed
by all CPUs in the configuration. I/o-interruption

Chapter 4. Control 4-33

conditions are floating and can be accepted by any
CPU in the configuration.

Shared Main Storage

The shared-main-storage facility permits more than
one CPU to have access to common main-storage
locations. All cpus having access to a common
main-storage location have access to the entire
4 K -byte block containing that location and to the
associated storage key. The channel subsystem and
all cpus in the configuration refer to a shared
main-storage location using the same absolute
address.

CPU-Address Identification

Each CPU has a number assigned, called its CPU
address. A CPU address uniquely identifies one CPU
within a configuration. The CPU is designated by
specifying this address in the CPU -address field of
SIGNAL PROCESSOR. The CPU signaling a malfunc­
tion alert, emergency signal, or external call is iden­
tified by storing this address in the CPU -address
field with the interruption. The CPU address is
assigned during system installation and is not
changed as a result of reconfiguration changes. The
program can determine the address of the CPU by
using STORE CPU ADDRESS.

CPU Signaling and Response
The cpu-signaling-and-response facility consists of
SIGNAL PROCESSOR and a mechanism to interpret
and act· on several order codes. The facility pro­
vides for communications among CPus, including
transmitting, receiving, and decoding a set of
assigned order codes; initiating the specified opera­
tion; and responding to the signaling CPU. A CPU
can address SIGNAL PROCESSOR to itself. SIGNAL
PROCESSOR is described in Chapter 10, "Control
Instructions. "

Signal-Processor Orders

The signal-processor orders are specified in bit posi­
tions 24-31 of the second-operand address of
SIGNAL PROCESSOR and are encoded as shown in
Figure 4-9.

4-34 ESAj370 Principles of Operation

Code Order

00 ~nassigned

01 Sense
02 External call
03 Emergency signal
04 Start
05 Stop
06 Restart
07 Unassigned
0a Unassigned
09 Stop and store status
0A Unassigned
0B Initial CPU reset
0C CPU reset
0D Set prefix
0E Store status at address

0F-FF Unassigned

Figure 4-9. Encoding of Orders

The orders are dermed as follows:

, Sense: The addressed CPU presents its status to
the issuing CPU (see the section "Status Bits" in
this chapter for a definition of the bits). No other
action is caused at the addressed CPU. The status,
if not all zeros, is stored in the general register des­
ignated by the Rl field of the SIGNAL PROCESSOR
instruction, and condition code 1 is set; if all status
bits are zeros, condition code 0 is set.

External Call: An external-call external­
interruption condition is generated at the addressed
CPU. The interruption condition becomes pending
during the execution of SIGNAL PROCESSOR. The
associated interruption occurs when the CPU is
enabled for that condition and does not necessarily
occur during the execution of SIGNAL PROCESSOR.
The address of the CPU sending the signal is pro­
vided with the interruption code when the inter­
ruption occurs. Only one external-call condition
can be kept pending in a CPU at a time. The order
is effective only when the addressed CPU is in the
stopped or the operating state.

Emergency Signal: An emergency-signal external­
interruption condition is generated at the addressed
CPU. The interruption condition becomes pending
during the execution of SIGNAL PROCESSOR. The
associated interruption occurs when the CPU is
enabled for that condition and does not necessarily
occur during the execution of SIGNAL PROCESSOR.
The address of the CPU sending the signal is pro­
vided with the interruption code when the inter-

ruption occurs. At anyone time the receiving CPU
can keep pending one emergency-signal condition
for each CPU in the configuration, including the
receiving CPU itse1f. The order is effective only
when the addressed CPU is in the stopped or the
operating state.

Start: The addressed CPU performs the start func­
tion (see the section "Stopped, Operating, Load,
and Check-Stop States" in this chapter). The CPU
does not necessarily enter the operating state during
the execution of SIGNAL PROCESSOR. The order is
effective only when the addressed CPU is in tp.e
stopped state. The effect of performing the start
function is unpredictable when the stopped state
has been entered by reset.

Stop: The addressed CPU performs the stop func­
tion (see the section "Stopped, Operating, Load,
and Check-Stop States" in this chapter). The CPU
does not necessarily enter the stopped state during
the execution of SIGNAL PROCESSOR. The order is
effective only when the CPU is in the operating
state.

Restart: The addressed CPU performs the restart
operation (see the section "Restart Interruption" in
Chapter 6, "Interruptions"). The CPU does not
necessarily perform the operation during the exe­
cution of SIGNAL PROCESSOR. The order is effec­
tive only when the addressed CPU is in the stopped
or the operating state.

Stop and Store Status: The addressed CPU per­
forms the stop function, followed by the store­
status function (see the section "Store Status" in
this chapter). The CPU does not necessarily com­
plete the operation, or even enter the stopped state,
during the execution of SIGNAL PROCESSOR. The
order is effective only when the addressed CPU is in
the stopped or the operating state.

Initial CPU Reset: The addressed CPU performs
initial CPU reset (see the section "Resets" in this
chapter). The execution of the reset does not affect
other CPUs and does not cause I/O to be reset. The
reset operation is not necessarily completed during
the execution of SIGNAL PROCESSOR.

CPU Reset: The addressed CPU performs CPU
reset (see the section "Resets" in this chapter). The
execution of the reset does not affect other CPus
and does not cause I/O to be· reset. The reset oper­
ation is not necessarily completed during the exe­
cution of SIGNAL PROCESSOR.

Set Prefix: The contents of bit positions 1-19 of
the parameter register of the SIGNAL PROCESSOR
instruction are treated as a prefix value, which
replaces the contents of the prefix register of the
addressed cpu. Bit 0 and bits 20-31 of the param­
eter register are ignored. The order is accepted only
if the addressed CPU is in the stopped state, the
value to be placed in the prefix register designates a
location which is available in the configuration, and
no other condition precludes accepting the order.
Verification of the stopped state of the addressed
CPU and of the availability of the designated storage
is performed during execution of SIGNAL
PROCESSOR. If accepted, the order is not neces­
sarily completed during the execution of SIGNAL
PROCESSOR.

The parameter register has the following format:

III Prefix Value 1///1/111111111

o 1 20 31

The set-prefix order is completed as follows:

• If the addressed CPU is not in the stopped state,
the order is not accepted. Instead, bit 22
(incorrect state) of the general register desig­
nated by the Rl field of the SIGNAL PROCESSOR
instruction is set to one, and condition code 1
is set.

• The value to be placed in the prefix register of
the addressed CPU is tested for availability. The
absolute address of a 4K-bytearea of storage is
formed by appending 12 zeros to the right of
bits 1-19 of the parameter value. This address
is treated as a 3l-bit absolute address regardless
of whether the sending and receiving CPUs are
in the 24-bit or 3l-bit addressing mode. The
4K-byte block of storage at this address is
accessed. The access is not subject to pro­
tection, and the associated reference bit mayor
may not be set to one. If the block is not
available in the configuration, the order is not
accepted by the addressed CPU, bit 23 (invalid
parameter) of the general register designated by
the Rl field of the SIGNAL PROCESSOR instruc­
tion is set to one, and condition code 1 is set.

• The value is placed in the prefix register of the
addressed cpu.

• The ALB and TLB of the addressed CPU are
cleared of their contents.

Chapter 4. Control 4-35

• A serializing and checkpoint-synchronizing
function is performed on the addressed CPU
following insertion of the new prefix value.

Store Status at Address: The contents of bit
positions 1-22 of the parameter register of the
SIGNAL PROCESSOR instruction are used as the
origin of a 512-byte area into which the status of
the addressed CPU is stored. Bit 0 and bits 23-31 of
the parameter register are ignored.

The order is accepted only if the addressed CPU is
in the stopped state, the status-area origin desig­
nates a location which is available in the configura­
tion, and no other condition precludes accepting
the order. Verification of the stopped state of the
addressed CPU and of the availability of the desig­
nated storage is performed during execution of
SIGNAL PROCESSOR. If accepted, the order is not
necessarily completed during the execution of
SIGNAL PROCESSOR.

The parameter register has the following format:

III Status-Area Origin I111111111I

e 1 23 31

The store-status-at-address order is completed as
follows:

• If the addressed CPU is not in the stopped state,
the order is not accepted. Instead, bit 22
(incorrect state) of the general register desig­
nated by the Rl field of the SIGNAL PROCESSOR
instruction is set to one, and condition code 1
is set.

• The address of the area into which status is to
be stored is tested for availability. The abso­
lute address of a 512-byte area of storage is
formed by appending nine zeros to the right of
bits 1-22 of the parameter value. This address
is treated as a 31-bit absolute address regardless
of whether the sending and receiving CPUs are
in the 24-bit or 31-bit addressing mode. The
512-byte block of storage at this address is
accessed. The access is not subject to pro­
tection, and the associated reference bit mayor
may not be set to one. If the block is not
available in the configuration, the order is not
accepted by the addressed CPU~ bit 23 (invalid
parameter) of the general register designated by
the Rl field of the SIGNAL PROCESSOR instruc­
tion is set to one, and condition code 1 is set .

. 4-36 ESA/370 Principles of Operation

• The status of the addressed CPU is placed in the
designated area. The information stored, and
the format of the area receiving the informa­
tion' are the same as for the stop-and-store­
status order, except that each field, rather than
being stored at an offset from the beginning of
absolute storage, is stored in the designated
area at an offset that is the same as that for the
absolute area. Bytes 0-215, 232-255, and
·268-287 of the designated area remain
unchanged. (See the section "Store Status" in
this chapter).

• A serialization and checkpoint-synchronization
function is performed on the addressed CPU
following storing of the status.

Programming Note: For a discussion on the rela­
tive performance of the SIGNAL PROCESSOR orders,
see the programming note following the instruction
SIGNAL PROCESSOR in Chapter 10, "Control
Instructions. "

Conditions Determining Response

Conditions Precluding Interpretation of
the Order Code
The following situations preclude the initiation of
the order. The sequence in which the situations are
listed is the order of priority for indicating concur­
rently existing situations:

1. The access path to the addressed CPU is busy
because a concurrently executed SIGNAL
PROCESSOR is using the cpu-signaling-and­
response facility. The CPU which is concur­
rently executing the instruction can be any CPU
in the configuration other than this CPU, and
the CPU address can be any address, including
that of this CPU or an invalid address. The
order is rejected. Condition code 2 is set.

2. The addressed CPU is not operational; that is, it
is not provided in the installation, it is not in
the configuration, it is in any of certain
customer-engineer test modes, or its power is
off. The order is rejected. Condition code 3 is
set. This condition cannot arise as a result of a
SIGNAL PROCESSOR by a CPU addressing itself.

3. One of the following conditions exists at the
addressed CPU:

a. A previously issued start, stop, restart,
stop-and-store-status, set-prefix, or store­
status-at-address order has been accepted
by the addressed CPU, and execution of the

function requested by the order has not yet
been completed.

b. A manual start, stop, restart, or store-status
function has been initiated at the addressed
CPU, and the function has not yet been
completed. This condition cannot arise as
a result of a SIGNAL PROCESSOR by a CPU
addressing itself.

If the currently specified order is sense, external
call, emergency signal, start, stop, restart, stop
and store status, set prefix, or store status at
address, then the order is rejected, and condi­
tion code 2 is set. If the currently specified
order is one of the reset orders, or an unas­
signed or not-implemented order, the order
code is interpreted as described in the section
"Status Bits" in this chapter.

4. One of the following conditions exists at the
addressed CPU:

a. A previously issued initial-cpu -reset or
cPu-reset order has been accepted by the
addressed CPU, and execution of the func­
tion requested by the order has not yet
been completed.

b. A manual-reset function has been initiated
at the addressed CPU, and the function has
not yet been completed. This condition
cannot arise as a result of a SIGNAL
PROCESSOR by a CPU addressing itself.

If the currently specified order is sense, external
call, emergency signal, start, stop, restart, stop
and store status, set prefix, or store status at
address, then the order is rejected, and condi­
tion code 2 is set. . If the currently specified
order is one of the reset orders, or an unas­
signed or not-implemented order, either the
order is rejected and condition code 2 is set or
the order code is interpreted as described in the
section "Status Bits" in this chapter.

When any of the conditions described in items 3
and 4 exists, the addressed CPU is referred to as
"busy." Busy is not indicated if the addressed cpu
is in the check-stop state or when the operator­
intervening condition exists. A cpu-busy condition
is normally of short duration; however, the condi­
tions described in item 3 may last indefmitely
because of a string of interruptions. In this situ­
ation, however, the cpu does not appear busy to
any of the reset orders.

When the conditions described in items 1 and 2
above do not apply and operator-intervening and

receiver-check status conditions do not exist at the
addressed CPU, reset orders may be accepted
regardless of whether the addressed cpu has com­
pleted a previously accepted order. This may cause
the previous order to be lost when it is only par­
tially completed, making unpredictable whether the
results defmed for the lost order are obtained.

Status Bits
Various status conditions are defmed whereby the
issuing and addressed CPus can indicate their
responses to the specified order; The status condi­
tions and their bit positions in the general register
designated by the R 1 field of the S I G N AL
PROCESSOR instruction are shown in Figure 4-10.

Bit
Position Status Condition

0 Equipment check
1-21 Unassigned; zeros stored
22 Incorrect state
23 Invalid parameter
24 External-call pending
25 Stopped
26 Operator intervening
27 Check stop
28 Unassigned; zero stored
29 Inoperative
30 Invalid order
31 Receiver check

Figure 4-10. Status Conditions

The status condition assigned to bit position 0 is
generated by the CPU executing SIGNAL
PROCESSOR. The remaining status conditions are
generated by the addressed CPU.

When the equipment-check condition exists, bit 0
of the general register designated by the R 1 field of
the SIGNAL PROCESSOR instruction is set to one,
unassigned bits of the status register are set to
zeros, and the contents of other status bits are
unpredictable. In this casr, condition code 1 is set
independent of whether the access path to the
addressed cpu is busy and independent of whether
the addressed CPU is not operational, is busy, or
has presented zero status.

When the access path to the addressed cpu is not
busy and the addressed cpu is operational and does
not indicate busy to the currently specified order,
the addressed CPU presents its status to the issuing
CPU. These status bits are of two types:

Chapter 4. Control 4-37

1. Status bits 22-27 and 29 indicate the presence
of the corresponding conditions in the
addressed CPU at the time the order code is
received. Except in response to the sense
order, e.ach condition is', indicated only when
the condition precludes the successful execution
of the specified order, although invalid param­
eter is not necessarily indicated when any other
precluding condition exists. In the case of
sense, all existing status conditions are indi­
cated; the operator-intervening condition is
indicated if it precludes the execution of any
installed order.

2. Status bits 30 and 31 indicate that the corre­
sponding conditions were detected by the
addressed CPU during reception of the order.

If the presented status is all zeros, the addressed
CPU has accepted the order, and condition code 0 is
set at the issuing cpu; if the presented status is not
all zeros, the order has been rejected, the status is
stored at the issuing CPU in the general register des­
ignated by the Rl field of the SIGNAL PROCESSOR

instruction, zeros are stored in the unassigned bit
positions of the register, and condition code 1 is
set.

The status conditions are defmed as follows:

Equipment Check: This condition exists when the
CPU executing the instruction detects equipment
malfunctioning that has affected only the execution
of this instruction and the associated order. The
order code mayor may not have been . transmitted
and mayor may not have been accepted, and the
status bits provided by the addressed CPU may be
in error.

Incorrect State: A set-prefix or store-status-at­
address order has been rejected because the
addressed CPU is not stopped. When applicable,
this status is generated during execution of SIQNAL

PROCESSOR and is indicated concurrently with
other indications of conditions which preclude exe­
cution of the order.

Invalid Parameter: The parameter value supplied
with a set-prefix or store-status-at-address order
designates a storage location" which is not available
in the configuration. When applicable, this status
is generated during execution of SIGNAL

PROCESSOR, except that it is not necessarily gener­
ated when another condition precluding execution
of the order also exists.

4-38 ESA/370 Principles of Operation

External Call Pending: This condition exists when
an external-call interruption condition is pending in
the addressed CPU because of a previously issued
SIGNAL PROCESSOR order. The condition exists
from the time an external-call order is accepted
until the resultant external interruption has been
completed or a CPU reset occurs. The condition
may be due to the issuing CPU or another CPU.

The condition, when present, is indicated only in
response to sense and to external call.

Stopped: This condition exists when the addressed
CPU is in the stopped state. The condition, when
present, is indicated only in response to sense. This
condition cannot be reported as a result of a
SIGNAL PROCESSOR by a CPU addressing itself.

Operator Intervening: This condition exists when
the addressed CPU is executing certain operations
initiated from local or remote operator facilities.
The particular manually initiated operations that
cause this condition to be present depend on the
model and on the order specified. The operator­
intervening condition may exist when the addressed
CPU uses reloadable control storage to perform an
order and the required microprogram is not loaded.
The operator-intervening condition, when present,
can be indicated in response to all orders. Operator
intervening is indicated in response to sense if the
condition is present and precludes the acceptance of
any of the installed orders. The condition may also
be indicated in response to unassigned or
uninstalled orders. This condition cannot arise as a
result of a SIGNAL PROCESSOR by a CPU addressing
itself.

Check Stop: This condition exists when the
addressed CPU is in the check-stop state. The con­
dition, when present, is indicated only in response
to sense, external call, emergency signal, start, stop,
restart, set prefix, store status at address, and stop
and store status. The condition may also be indi­
cated in response to unassigned or uninstalled
orders. This condition cannot be reported as a
result of a SIGNAL PROCESSOR by a CPU addressing
itself.

Inoperative: This condition indicates that the exe­
cution of the operation specified by the order code
requires the use of a service processor which is
'inoperative. The failure of the service processor
may . have been previously reported by a service­
processor-damage machine-check condition. The
inoperative condition cannot occur for the sense,
external-call, or emergency-signal order code.

Invalid Order: This condition exists during the
communications associated with the execution of
SIGNAL PROCESSOR when an unassigned or
uninstalled order code is decoded.

Receiver Check: This condition exists when the
addressed CPU detects malfunctioning of equipment
during the communications associated with the exe­
cution of SIGNAL PROCESSOR. When this condi­
tion is indicated, the order has not been initiated,
and, since the malfunction may have affected the
generation of the remaining receiver status bits,
these bits are not necessarily valid. A machine­
check condition mayor may not have been gener­
ated at the addressed CPU.

The following chart summarizes which status con­
ditions are presented to the issuing CPU in response
to each order code.

Status Condition

31 Recei ver checkr -----------,
3e Invalid order ---------,
29 Inoperative ----------,
27 Check stop ---------,
26 Operator intervening# ---,
25 Stopped ----------,
24 External call pending
23 Invalid parameter
22 Incorrect state l
Order

Sense e e X X X X e e X
External call e e X e X X e e X
Emergency signal e e e e X X e e X
Start e e e e X X X e X
Stop e e e e X X X e X
Restart e e e e X X X e X
Stop and store status e e e e X X X e X
Initial CPU reset e e e e X e X (:) X
CPU reset (:) (:) (:) (:) X (:) X (:) X
Set prefix X X (:) (:) X X x· (:) X
Store status at addr. X X (:) (:) X X X (:) X
Unassigned order (:) (:) (:) (:) X E X 1 X

Explanation:

The current state of the operator-intervening
condition may depend on the order code that
is being interpreted.

=1= If a one is presented in the receiver-check bit
position, the values presented in the other bit
positions are not necessarily valid.

o A zero is presented in this bit position regard­
less of the current state of this condition.

A one is presented in this bit position.

X A zero ora one is presented in this bit posi­
tion, reflecting the current state of the corre­
sponding condition.

E Either a zero or the current state of the corre-
sponding condition is indicated.

If the presented status bits are all zeros, the order
has been accepted, and the issuing CPU sets condi­
tion code O. If one or more ones are presented, the
order has been rejected, and the issuing CPU stores
the status in the general register designated by the
Rl field of the SIGNAL PROCESSOR instruction and
sets condition code 1.

Programming Notes:

1. All SIGNAL PROCESSOR orders can be addressed
to this same CPU. The following are examples
of functions obtained by a CPU addressing
SIGNAL PROCESSOR to itself:

a. Sense indicates whether an external-call
condition is pending.

b. External call and emergency signal cause
the corresponding interruption conditions
to be generated. External call can be
rejected because of a previously generated
external-call condition.

c. Start sets condition code 0 and has no
other effect.

d. Stop causes the CPU to set condition code
0, take pending interruptions for which it is
enabled, and enter the stopped state.

e. Restart provides a means to store the
current PS w.

f. Stop and store status causes the machine to
stop and store all current status.

2. Two CPus can simultaneously execute SIGNAL
PROCESSOR, with each CPU addressing the
other. When this occurs, one CPU, but not
both, can find the access path busy because of
the transmission of the order code or status bits
associated with SIGNAL PROCESSOR that is
being executed by the other CPU. Alterna­
tively, both CPus can fmd the access path avail­
able and transmit the order codes to each
other. In particular, two CPus can simultane­
ously stop, restart, or reset each other.

Chapter 4. Control 4-39

3. To obtain status from another CPU which is in
the check-stop state by means of the store­
status-at-address order, a CPU reset operation
should fust be used to bring the CPU to the
stopped state. This reset order does not alter

4-40 ESA/370 Principles of Operation

the status, and, depending on the nature of the
malfunction, provides the best chance of estab­
lishing conditions in the addressed CPU which
allow status to be obtained.

Chapter 5. Program Execution

Instructions
Operands
Instruction Formats

Register Operands
Immediate Operands
Storage Operands

Address Generation
Bimodal Addressing "
Sequential Instruction-Address Generation
Operand-Address Generation

Formation of the Intermediate Value
Formation of the Address

Branch-Address Generation
Formation of the Branch Address

Instruction Execution and Sequencing
Decision Making
Loop Control
Subroutine Linkage without the Linkage

Stack
Interruptions
Types of Instruction Ending

Completion
Suppression
Nullification
Termination

Interruptible Instructions
Point of Interruption ;
Execution of Interruptible Instructions

Exceptions to Nullification and
Suppression

Storage Change and Restoration for
DA T -Associated Access Exceptions

Modification of DA T -Table Entries
Trial Execution for Editing Instructions

and Translate Instruction
Authorization Mechanisms

Mode Requirements
Extraction-Authority Control
PSW -Key Mask
Secondary-Space Control
Subsystem-Linkage Control
ASN -Translation Control .
Authorization Index
Access-Register and Linkage-Stack

Mechanisms
pc-Number Translation

PC-Number Translation Control
Control Register 0
Control Register 5

PC-Number Translation Tables
Linkage-Table Entries
Entry-Table Entries

5-2
5-2
5-3
5-4
5-5
5-5
5-5
5-5
5-5
5-6
5-6
5-6
5-7
5-7
5-7
5-7
5-8

5-8
5-12
5-12
5-12
5-12
5-12
5-12
5-12
5-12
5-13

5-14

5-15
5-15

5-15
5-16
5-16
5-16
5-16
5-17
5-17
5-17
5-17

5-18
5-21
5-21
5-21
5-21
5-22
5-22
5-22

PC-Number-Translation Process
Obtaining the Linkage-Table

Designation
Linkage-Table Lookup
Entry-Table Lookup
Recognition of Exceptions during

PC-Number Translation
Home Address Space
Access-Registers Introduction

Summary
Access-Register Functions

Access-Register-Specified Address
Spaces

Access-Register Instructions
Access-Register Translation ...

Access-Register-Translation Control
Address-Space-Function Control
Control Register 2
Control Register 5
Control Register 8

Access Registers
Access-Register-Translation Tables

Access-List Designations
Access-List Entries
Extended ASN-Second-Table Entries

Access-Register-Translation Process
Selecting the Access-List-Entry Token
Obtaining the Primary or Secondary

Segment-Table Designation
Checking the First Byte of the ALET
Obtaining the Effective Access-List

Designation
Access-List Lookup
Locating the ASN-Second-Table Entry
Authorizing the Use of the Access-List

Entry
Obtaining the Segment-Table

Designation from the
ASN-Second-Table Entry

Recognition of Exceptions During
Access-Register Translation

ART -Lookaside Buffer '"
ALB Structure
Formation of ALB Entries
Use of ALB Entries
Modification of ART Tables

Linkage-Stack Introduction
Summary
Linkage-Stack Functions

Transferring Program Control
Branching Using the Linkage Stack
Adding and Retrieving Information

5-23

5-24
5-25
5-25

5-25
5-26
5-26
5-26
5-27

5-27
5-34
5-35
5-35
5-35
5-36
5-36
5-36
5-36
5-37
5-37
5-39
5-40
5-41
5-44

5-44
5-44

5-44
5-44
5-45

5-45

5-46

5-46
5-46
5-46
5-47
5-48
5-48
5-48
5-48
5-49
5-49
5-51
5-51

Chapter 5. Program Execution 5-1

Testing Authorization
Pro gram-Problem Analysis

Extended Entry-Table Entries .. .
Linkage-Stack Operations

Linkage-Stack -Operations Control
Control Register 0
Control Register 15

Linkage Stack
Entry Descriptors
Header Entries
Trailer Entries
State Entries

Stacking Process
Locating Space for a New Entry
Forming the New Entry .. .
Updating the Current Entry .. .
Updating Control Register 15
Recognition of Exceptions During the

Stacking Process
Unstacking Process

Locating the Current Entry and
Processing a Header Entry

Checking for a State Entry
Restoring Information ...
Updating the Preceding Entry
Updating Control Register 15

5-52
5-52
5-52
5-54
5-56
5-56
5-56
5-56
5-56
5-58
5-58
5-59
5-60
5-61
5-62
5-62
5-62

5-62
5-63

5-63
5-64
5-64
5-64
5-65

Normally, operation of the CPU is controlled by
instructions in storage that are executed sequen­
tially, one at a time, left to right in an ascending
sequence of storage addresses. A change in the
sequential operation may be caused by branching,
LOAD psw, interruptions, SIGNAL PROCESSOR

orders, or manual intervention.

Instructions
Each instruction consists of two major parts:

• An operation code (op code), which specifies
the operation to be performed

• The designation of the operands that partic­
ipate

Operands

Operands can be grouped in three classes: oper­
ands located in registers, immediate operands, and
operands in storage. Operands may be either
explicitly or implicitly designated.

Register operands can be located in . general,

5-2 ESAj370 Principles of Operation

Recognition of EJ(:ceptions during the
Unstacking Process ...

Sequence of Storage References
Conceptual Sequence
Overlapped Operation of Instruction

Execution
Divisible Instruction Execution .. .

Interlocks for Virtual-Storage References
Interlocks .Between Instructions
Interlocks Within a Single Instruction

Instruction Fetching
ART -Table and DA T -Table Fetches
Storage-Key Accesses
Storage-Operand References

Storage-Operand Fetch References
Storage-Operand Store References
Storage-Operand Update References

Storage-Operand Consistency
Single-Access References
Multiple-Access References ..
Block -Concurrent References
Consistency Specification

Relation between Operand Accesses
Other Storage References

Serialization
CPU Serialization
Channel-Program Serialization

5-65
5-65
5-65

5-66
5-66
5-66
5-67
5-67
5-69
5-71
5-71
5-72
5-72
5-72
5-72
5-74
5-74
5-74
5-74
5-74
5-75
5-76
5-76
5-76
5-77

floating-point, access, or control registers, with the
type of register identified by the op code. The reg­
ister containing the operand is specified by identi­
fying the register in a four-bit field, called the R

field, in the instruction. For some instructions, an
operand is located in an implicitly designated reg­
ister, the register being implied by the op code.

Immediate operands are contained within the
instruction, and the eight-bit field containing the
immediate operand is called the I field.

Operands in storage may . have an implied length;
be specified by a bit mask; be specified by a
four-bit or eight-bit length specification, called the
L field, in the instruction; or have a length specified
by the contents of a general register. The addresses
of operands in storage are specified by means of a
format that uses the contents of a general register as
part of the address. This makes it possible to:

1. Specify a complete address by using an abbrevi­
ated notation

2. Perform address manipulation using
instructions which employ general registers for
operands

3. Modify addresses by program means without
alteration of the instruction stream

4. Operate independent of the location of data
areas by directly using addresses received from
other programs

The address used to refer to storage either is con­
tained in a register designated by the R field in the
instruction or is calculated from a base address,
index, and displacement, specified by the B, X, and
D fields, respectively, in the instruction.

When the CPU is in the access-register mode, a B or
R field may designate an access register in addition
to being used to specify an address.

To describe the execution of instructions, operands
are designated as first and second operands and, in
some cases, third operands.

In general, two operands participate in an instruc­
tion execution, and the result replaces the frrst
operand. However, CONVERT TO DECIMAL, TEST

BLOCK, and instructions with "store" in the instruc­
tion name (other than STORE THEN AND SYSTEM

MASK and STORE THEN OR SYSTEM MASK) use the
second-operand address to designate a location in
which to store. TEST AND SET, COMPARE AND

SWAP, and COMPARE DOUBLE AND SWAP may
perform an update on the second operand. Except
when otherwise stated, the contents of all registers
and storage locations participating in the addressing
or execution part of an operation remain
unchanged.

Instruction Formats

An instruction is one, two, or three halfwords in
length and must be located in storage on a
halfword boundary. Each instruction is in one of
nine basic formats: E, RR, RRE, RX, RS, SI, S, SSE,

and SS, with two variations of SS. (See Figure 5-1.)

E Format

Op Code

0 15

RR Format

I Op Code I Rl R2

0 8 12 15

RRE Format

Op Code 1/11/////1 Rl R2

0 16 24 28 31

RX Format

I Op cOdel Rl X2 B2 02

0 8 12 16 20 31

RS Format

I Op cOdel Rl R3 B2 02

0 8 12 16 20 31

SI Format

I Op cOdel 12 Bl 01

0 8 16 20 31

S Format

Op Code B2 02

0 16 20 31

Figure 5-1 (Part 1 of 2). Basic Instruction Formats

Chapter 5. Program Execution 5-3

SS Format

IbHb~ I Op cOdel L B1
I I

0 8 16 20 32 36 47

IbHb~ I Op cOdel L, L2 I B,
I I

0 8 12 16 20 32 36 47

I Op cOdel R, I R, I B, I bHb~
I /

0 8 12 16 20 32 36 47

SSE Format

~ ___ O_P_c_o_de ____ ~B_1_1~~H~~
o 16 20 32 36 47

Figure 5-1 (Part 2 of 2). Basic Instruction Formats

Some instructions contain fields that vary slightly
from the basic format, and in some instructions the
operation performed does not follow the general
rules stated in this section. All of these exceptions
are explicitly identified in the individual instruction
descriptions.

Those instruction formats which are unique to
instructions associated with the vector facility are
described in the publication Enterprise Systems
Architecture/370 and System/370 Vector Operations,
SA22-7125.

The format names indicate, in general terms, the
classes of operands which participate in the opera­
tion:

• E denotes an operation using implied operands
and having an extended op-code field.

• RR denotes a register-and-register operation.
• RRE denotes a register-and-register operation

having an extended op-code field.
• RX denotes a register-and-indexed-storage oper-

ation.
• RS denotes a register-and-storage operation.
• SI denotes a storage-and-immediate operation.
• S denotes an operation using an implied

operand and storage.
• ss denotes a storage-and-storage operation.
• SSE denotes a storage-and-storage operation

having an extended op-code field.

5-4 ESAj370 Principles of Operation

The frrst byte or, in the E, RRE, S, and SSE formats,
the frrst two bytes of an instruction contain the op
code. For some instructions in the S format, all or
a portion of the second byte is ignored.

The frrst two bits of the frrst or only byte of the op
code specify the length and format of the instruc­
tion, as follows:

Bit Instruction
Positions Length (in Instruction

0-1 Halfwords) Format

00 One E/RR
01 Two RX
10 Two RRE/RS/RX/S/SI
11 Three SS/SSE

In the format illustration for each individual
instruction description, the op-code field shows the
op code as hexadecimal digits within single quotes.
The hexadecimal representation uses 0-9 for the
binary codes 0000-1001 and A-F for the binary
codes 1010-1111.

The remaining fields in the format illustration for
each instruction are designated by code names, con­
sisting of a letter and possibly a subscript number.
The subscript number denotes the operand to
which the field applies.

Register Operands
In the RR, RRE, RX, and RS formats, the contents
of the register designated by the R 1 field are called
the frrst operand. The register containing the frrst
operand is sometimes referred to as the "frrst­
operand location," and sometimes as "register R 1. "

In the RR and RRE formats, the R2 field designates
the register containing the second operand, and the
R2 field may designate the same register as R1: In
the RS format, the use of the R3 field depends on
the instruction.

The R field designates a general or access register in
the general instructions, a general register in the
control instructions, and a floating-point register in
the floating-point instructions. However, in the
instructions EXTRACT ST ACKED REGISTERS and
LOAD ADDRESS EXTENDED, the R field designates
both a general register and an access register. In
the instructions LOAD CONTROL and STORE

CONTROL, the R field designates a control register.
(This paragraph refers only to register operands,
not to the use of access registers in addressing
storage operands.)

Unless otherwise indicated in the individual instruc­
tion description, the register operand is one register
in length (32 bits for a general, access, or control
register and 64 bits for a floating-point register),
and the second operand is the same length as the
frrst.

Immediate Operands
In the SI fonnat, the contents of the eight-bit
immediate-data field, the 12 field of the instruction,
are used directly as the second operand. The Bl

and D 1 fields specify the frrst operand, which is one
byte in length.

Storage Operands
The use of B and R fields to designate access regis­
ters to refer to storage operands is described in the
section "Access-Register-Specified Address Spaces"
in this chapter.

In the SI, SSE, and ss fonnats, the contents of the
general register designated by the B 1 field are added
to the contents of the D 1 field to fonn the frrst­
operand address. In the s, RS, SSE, and ss fonnats,
the contents of the general register designated by
the B 2 field are added to the contents of the D 2

field to fonn the second-operand address. In the
RX fonnat, the contents of the general registers des­
ignated by the X 2 and B 2 fields are added to the
contents of the D 2 field to fonn the second-operand
address.

In the ss fonnat with a single, eight-bit length field,
L specifies the number of additional operand bytes
to the right of the byte designated by the frrst­
operand address. Therefore, the length in bytes of
the frrst operand is 1-256, corresponding to a length
code in L of 0-255. Storage results replace the frrst
operand and are never stored outside the field spec­
ified by the address and length. In this fonnat, the
second operand has the same length as the frrst
operand, except for the following instructions:
EDIT, EDIT AND MARK, TRANSLATE, and TRANS­

LATE AND TEST.

In the ss fonnat, with two length fields given, Ll

specifies the number of additional operand bytes to
the right of the byte designated by the frrst-operand
address. Therefore, the length in bytes of the frrst
operand is 1-16, corresponding to a length code in
Ll of 0-15. Similarly, L2 specifies the number of
additional operand bytes to the right of the location
designated by the second-operand address. Results
replace the frrst operand and are never stored

outside the field specified by the address and length.
If the frrst operand is longer than the second, the
second operand is extended on the left with zeros
up to the length of the frrst operand. This exten­
sion does not modify the second operand in
storage.

In the ss fonnat with two R fields, the contents of
the general register specified by the R 1 field are a
32-bit unsigned value called the true length. The
operands are of the same length, called the effective
length. The effective length is equal to the true
length or 256, whichever is less. The instructions
using this fonnat, which are MOVE TO PRIMARY,

MOVE TO SECONDARY, and MOVE WITH KEY, set
the condition code to facilitate programming a loop
to move the total number of bytes specified by the
true length.

Address Generation

Bimodal Addressing

Bit 32 of the current psw is the addressing-mode
bit. This bit controls the size of the . effective
address produced by address generation. When bit
32 of the current psw is zero, the CPU is in the
24-bit addressing mode, and 24-bit instruction and
operand effective addresses are generated. When bit
32 of the current psw is one, the CPU is in the
31-bit addressing mode, and 31-bit instruction and
operand effective addresses are generated.

Execution of instructions by the CPU involves gen­
eration of the addresses of instructions and oper­
ands. This section describes address generation as
it applies to most instructions. In some
instructions, the operation perfonned does not
follow the general rules stated in this section. All
of these exceptions are explicitly identified in the
individual instruction descriptions.

Sequential Instruction-Address
Generation

When an instruction is fetched from the location
designated by the current PSW, the instruction
address is increased by the number of bytes in the
instruction, and the instruction is executed. The
san;:te steps are then repeated by using the new
value of the instruction address to fetch the next
instruction in the sequence.

Chapter 5. Program Execution 5-5

In the 24-bit addressing mode, instruction addresses
wrap . around, with the halfword at instruction
address·224 - 2 being followed by the halfword at
instruction address o. Thus, in the· 24-bit
addressing mode, any carry out of psw bit position
40, as a result of updating the instruction address, is
lost.

In the 31-bit addressing mode, instruction addresses
wrap around, with the . halfword at instruction
address 231

- 2 being followed by the halfword at
instruction address O. Thus, in the 31-bit
addressing mode, any carry out of psw bit position
33, as a result of updating the instruction address, is
lost.

Operand-Address Generation

Formation of the Intermediate Value
An operand address that refers to storage is derived
from an intermediate value, which either is con­
tained in a register designated by an R field in the
instruction or is calculated from the sum of three
binary numbers: base address, index, and displace­
ment.

The base address (B) is a 32-bit number contained
in a general register specified by the program in a
four-bit field, called the B field, in the instruction.
Base addresses can be used as a means of independ­
ently addressing each program and data area. In
array-type calculations, it can designate the location
of an array, and, in record-type processing, it can
identify the record. The base address provides for
addressing the entire storage. The base address
may also be used for indexing.

The index (x) is a 32-bit number contained in a
general register designated by the program in a
four-bit field, called the X field, in the instruction.
It is included only in the address specified by the
Rx-format instructions. The Rx-format
instructions pennit double indexing; that is, the
index can be used to provide the address of an
element within an array.

The displacement (D) is a 12-bit number contained
in a field, called the D field, in the instruction. The
displacement provides for relative addressing of up
to 4,095 bytes beyond the location designated by
the base address. In array-type calculations, the
displacement can be used to specify one of many
items associated with an element. In the processing
of records, the displacement can be used to identify
items within a record.

5-6 ESA/370 Principles of Operation

In forming the intermediate sum, the base address
and index are treated as 32-bit binary integers. The
displacement is similarly treated as a 12-bit
unsigned binary integer, and 20 zeros are appended
on the left. The three are added as 32-bit binary
numbers, ignoring overflow. The sum is always 32
bits long and is used as an intermediate value to
form the generated address. The bits of the inter­
mediate value are numbered 0-31.

A zero in any of the B 1, B 2, or X 2 fields indicates
the absence of the corresponding address compo­
nent. For the absent component, a zero is used in
forming the intermediate sum, regardless of the
contents of general register O. A displacement of
zero has no special significance.

When an instruction description specifies that the
contents of a general register designated by an R
field are used to address an operand in storage, the
register contents are used as the 32-bit intermediate
value.

An instruction can designate the same general reg­
ister both for address computation and as the
location of an operand. Address computation is
completed before registers, if any, are changed by
the operation.

Unless otherwise indicated in an individual instruc­
tion defmition, the generated operand address desig­
nates the leftmost byte of an opera.rid in storage.

Formation of the Address
The generated operand address is always 31 bits
long, and the bits are numbered 1-31. In some
portions of this document, the generated address
may be referred to as being 32 bits long, with the
bits numbered 0-31. Bit 0 of the generated address
is always forced to be zero. The manner in which
the generated address is obtained from the interme­
diate value depends on the current addressing
mode. In the 24-bit addressing mode, .. bits 0-7 of
the intermediate value are ignored, bits 0-7 of the
generated address are forced to be zeros, and bits
8-31 of the intermediate value become bits 8-31 of
the generated address. In the 31-bit addressing
mode, bit 0 of the intermediate value is ignored, bit
o of the generated address is forced, to be zero, and
bits 1-31 of the intermediate value become bits 1-31
of the generated address.

Programming Note: Negative values may be used
in index and base-address registers. Bit 0 of these
values is always ignored, and, in the 24-bit

addressing mode, bits 1-7 of these values are also
ignored.

Branch-Address Generation

For branch instructions, the address of the next
instruction to be executed when the branch is taken
is called the branch address. Depending on the
branch instruction, the instruction format may be
RR, RS, or RX.

In the RS and RX formats, the branch address is
specified by a base address, a displacement, and, for
RX, an index. In the RS and RX formats, the
branch-address generation follows the normal rules
for operand-address generation.

In the RR format, the contents of the general reg­
ister designated by the R2 field are used as the inter­
mediate value from which the branch address is
formed. General register 0 cannot be designated as
containing a branch address. A value of zero in the
R2 field causes the instruction to be executed
without branching.

Formation of the Branch Address
The branch address is always 31 bits long, with the
bits numbered 1-31. The branch address replaces
bits 33-63 of the current psw. The manner in
which the branch address is obtained from the
intermediate value depends on the addressing mode.
For those branch instructions which change the
addressing mode, the new addressing mode is used.
In the 24-bit addressing mode, bits 1-7 of the inter­
mediate value are ignored, bits 1-7 of the branch
address are made zeros, and bits 8-31 of the inter­
mediate value become bits 8-31 of the branch
address. In the 31-bit addressing mode, bit 0 of the
intermediate value is ignored, and bits 1-31 of the
intermediate value become bits 1-31 of the branch
address.

For several branch instructions, branching depends
on satisfying a specified condition. When the con­
dition is not satisfied, the branch is not taken,
normal sequential instruction execution continues,
and the branch address is not used. When a
branch is taken, bits 1-31 of the branch address
replace bits 33-63 of the current psw. The branch
address is not used to access storage as part of the
branch operation.

A specification exception due to an odd branch
address and access exceptions due to fetching of the
instruction at the branch location are not recog­
nized as part of the branch operation but instead
are recognized as exceptions associated with the
execution of the instruction at the branch location.

A branch instruction, such as BRANCH AND LINK,

can designate the same general register for branch­
address computation and as the location of an
operand. Branch-address computation is com­
pleted before the remainder of the operation is per­
formed.

Instruction Execution and
Sequencing
The program-status word (psw), described in
Chapter 4, "Control," contains information
required for proper program execution. The psw is
used to control instruction sequencing and to hold
and indicate the status of the CPU in relation to the
program currently being executed. The active or
controlling psw is called the current psw.

Branch instructions perform the functions of deci­
sion making, loop control, and subroutine linkage.
A branch instruction affects instruction sequencing
by introducing a new instruction address into the
current psw.

Decision Making

Facilities for decision making are provided by
BRANCH ON CONDITION. This instruction inspects
a condition code that reflects the result of a
majority of the arithmetic, logical, and I/O opera­
tions. The condition code, which consists of two
bits, provides for four possible condition-code set­
tings: 0, 1, 2, and 3.

The specific meaning of any setting depends on the
operation that sets the condition code. For
example, the condition code reflects such condi­
tions as zero, nonzero, first operand high, equal,
overflow, and subchannel busy. Once set, the con­
dition code remains unchanged until modified by
an instruction that causes a different condition code
to be set. See Appendix C, "Condition-Code
Settings," for a summary of the instructions which
set the condition code.

Chapter 5. Program Execution 5-7

Loop Control

Loop control can be perfonned by the use of
BRANCH ON CONDITION to test the outcome of
address arithmetic and counting operations. For
some particularly frequent combinations of arith­
metic and tests, BRANCH ON COUNT,' BRANCH ON

INDEX HIGH,' and BRANCH ON INDEX LOW OR

EQUAL are provided. These branches, being spe­
cialized, provide increased perfonnance for these
tasks.

Subroutine Linkage without the
Linkage Stack

This section describes only the methods for subrou­
tine linkage that do not use the linkage stack. For
the linkage extensions provided by the linkage
stack, see the section "Linkage-Stack Introduction"
in this chapter.

Subroutine' linkage is provided by the BRANCH

AND LINK and BRANCH AND SAVE instructions,
which permit not only the introduction of a new
instruction address but also the preservation of the
return address and associated infonnation.
Instructions are also provided which set and save
the addressing-mode bit, psw bit 32. These
instructions provide the facility for subroutine
linkage between programs using the 24-bit and
31-bit addressing modes. Linkage between a
problem-state program and the supervisor or moni­
toring program is provided by means of the SUPER­

VISOR CALL and MONITOR CALL instructions.

The instructions PROGRAM CALL and PROGRAM

TRANSFER provide the facility for linkage between
programs of different authority and in different
address spaces. 'PROGRAM CALL permits linkage'to

5-8 ESA/370 Principles of Operation

a number of preassigned programs that may be in
either the problem or the supervisor state and may
be in either the same address space or an address
space different from that of the caller. In general, it
is used to transfer control to a program of higher
authority. PROGRAM TRANSFER permits a change
of the instruction address, addressing mode, and
address space. PROGRAM TRANSFER also permits a
reduction in psw-key-mask authority and a change
from the supervisor to the problem state. In
general, it is used to transfer control from one
program to another of equal or lower authority.
PROGRAM TRANSFER can be used to return from a
program called by PROGRAM CALL.

The operation of PROGRAM CALL is controlled by
means of an entry-table entry, which is located as
part ofa table-lookup process during the execution
of the instruction. The instruction causes the
primary address space to be changed only when the
ASN in the entry-table entry is nonzero., When the
primary address space is changed, the operation is
called PROGRAM CALL with space switching
(pc-ss). Whyn the primary address space is not
changed, the ~peration is called PROGRAM CALL to
current primary (pc-cp).

PROGRAM TRANSFER specifies the new addressing
mode and the address space which is to become the
new primary address space. When the primary
address space is changed, the operation is called
PROGRAM TRANSFER with space switching (PT-ss).
When the primary address space is not changed, the
operation is called PROGRAM TRANSFER to current
primary (PT-cp).

The linkage instructions provided and the functions
perfonned by each are summarized in Figure 5-2
on page 5-9.

Instruction
Address

PSW Bits 33-63

Addressing
Mode

PSW Bit 32

Problem
State

PSW Bit 15

PASN
CR4

Bits 16-31
PSW-Key
Mask

Changed
Instruction Format Save Set Save Set Save Set Save Set in CR3 Trace

BALR* RR Yes AM

BAL* RX Yes Yes AM

BASR RR Yes Yes

BAS RX Yes Yes Yes

BASSM RR Yes Yes

BSM RR

MC#2 51 Yes Yes Yes Yes Yes Yes

PC-cp S , Yes Yes Yes Yes Yes Yes "OR" EKM Yes

PC-ss S Yes Yes Yes Yes Yes Yes Yes Yes "OR" EKM Yes

PT-cp RRE "AND" Rl Yes

PT-ss RRE Yes "AND" Rl Yes

SVC2 RR Yes Yes Yes Yes Yes Yes

Explanation:

No

* In the 24-bit addressing mode, the instruction-length code, condition code. program mask,
and 24-bit instruction address are saved, and the 24-bit instruction address is set; in

, the 31-bit address'ing mode., the addressing mode and the 31-bit instruction address are
saved, and the 31-bit instruction address is set.

** A change from the supervisor to the problem state is allowed; a privileged-operation excep­
tion is recognized when a change from the problem to the supervisor state is specified.

Monitor-mask bits provide a means of disallowing linkage, or enabling linkage, for selected
classes of events.

1 The action takes place only if the associated R field in the instruction is nonzero.

2 MC and SVC, as part of the interruption, save the entire current PSW and load a new PSW.

AM Saved only if the 31-bit addressing mode is specified.

Figure 5-2. Summary of Linkage Instructions without the Linkage Stack .

Chapter 5. Program Execution 5-9

Programming Note: This section describes the
linkage instructions that were included in 370-XA

and carried forward in ESA/370. To give the reader
a better understanding of· the utility and intended
usage of these linkage instructions, the following
paragraphs in this note describe various program
linkages and conventions and the use of the . linkage
instructions in these situations.

The linkage instructions are provided to pennit
System/370 programs to operate with no modifica­
tion or only slight modification on 370-XA or
ESA/370 systems and also to provide additional
function for those programs which are designed to
take advantage of the 31-bit addressing of 370-XA

and ESA/370. The instructions provide the capa­
bility for both old and new programs to coexist in
storage and to communicate with each other. It is
assumed that old, unmodified programs operate in
the 24-bit addressing mode and call, or directly
communicate with, other programs operating in the
24-bit addressing mode only. Modified programs
normally operate in the 24-bit addressing mode but
may call programs which operate in either the
24-bit or 31-bit addressing mode. New programs
may be written to operate in either the 24-bit or
3 I-bit addressing mode, and in some cases a
program" may be written such that it can be
invoked in either mode.

SUPERVISOR CALL is provided for compatibility
purposes and also because it provides the simplest
mechanism to call a program which operates in the
supervisor state. It has the advantage over
PROGRAM CALL that no general registers are dis­
turbed, that only two bytes in storage are required
in line, and that a complete change of psw status is
provided. The return from a routine called by
SUPERVISOR CALL normally is accomplished by
means of LOAD psw, which is a privileged instruc­
tion.

PROGRAM CALL is provided for fast communi­
cation to a program operating in the supervisor
state or higher-authority problem state, or even to a
program with the same authority. PROGRAM CALL

pennits a program to call a program operating in a
different address space. This would normally be
used in' the situation where the authorization index
associated with the called address space had a
higher level of authority than that of the calling
address space. The advantage of PROGRAM CALL

over SUPERVISOR CALL is in speed, since frrst- and
second-level interruption -handler programs are
avoided. It also provides a possible 220 different
entry points. The authorization key mask in the

5-10 ESA/370 Principles of Operation

entry-table entry. pennits a particular entry point to
be available to a limited subset of the programs in
the system. Thus, some or all of the authority
checking which would otherwise have to be placed
in the called program can be eliminated. Return
from a routine called by PROGRAM CALL is
normally accomplished by means of the PROGRAM

TRANSFER instruction; however, LOAD PSW may be
used if the called routine is in the supervisor state.

PROGRAM TRANSFER is provided as the return
instruction for PROGRAM CALL. It is also useful for
calling or transferring to programs with the . same
authority in another address space. Although
PROGRAM TRANSFER does not save the current
PASN, the instruction EXTRACT PRIMARY ASN may
be used to provide the PASN for return purposes.

BRANCH AND SAVE AND SET MODE (BASSM) is
intended to be the principal calling instruction to
subroutines outside of an assembler/linkage-editor
control section (CSECT), for use by all new pro­
grams. BRANCH AND SET MODE (BSM) is intended
to be the return instruction used after a BASSM. It
is assumed that an extension to the current v-type
address constant (VCON) will be established by the
assembler and linkage editor which consists of a
31-bit entry-point address and a leftmost bit indi­
cating whether the entry is in the 24-bit or 31-bit
addressing mode. This extended VCON is shown
here as "VCONE." This calling sequence would
normally be:

L 15,VCONE
8ASSM 14,15

The return from such a routine would normally be:

8SM O,14

The BRANCH AND LINK (BAL, BALR) instruction is
provided primarily for compatibility reasons. It is
defmed to operate in the 31-bit addressing mode to
increase the probability that an old, straightforward
program can be modified to operate in the 31-bit
addressing mode with minimal or no change. It is
recommended, however, that BRANCH AND SAVE

(BAS and BASR) be used instead and that BRANCH

AND LINK be avoided since it places nonzero infor­
mation in the left part of the general register in the
24-bit addressing mode, which may lead to prob­
lems. Additionally, BRANCH AND LINK is likely to
be slower than BRANCH AND SAVE because
BRANCH AND SAVE always saves the right half of
the I?SW, whereas BRANCH AND LINK must take
additional time to check the addressing mode, and
then even more time, if in the 24-bit addressing
mode, to construct the ILC, condition code, and

program mask to be placed in the leftmost byte of
the link register.

.It is assumed that the normal return from a sub­
routine called by BRANCH AND LINK (BAL or
BALR) will be:

BCR 15,14

However, the standard "return instruction":

BSM O,14

operates correctly for all cases except for a calling
BAL executed in the 24-bit addressing mode. In the
24-bit addressing mode, BAL causes an ILC of 10 to
be placed in the leftmost two bits of the link reg­
ister. Thus, a BSM would return in the 31-bit
addressing mode. Note that an EXECUTE of BALR

in the· 24-bit addressing mode also causes the same
ILC effect.

The BRANCH AND SAVE (BAS, BASR) instruction is
provided to be used for subroutine linkage to any
program either within the same CSECT or known to
be in the same addressing mode. BASR with the R2

field 0 is also useful for obtaining addressability to
the instruction stream by getting a 31-bit address,

Old Program Glue Module

L 15,OLDVCON
BALR 14,15
•
•
•

OLDVCON DC V(GLUE)
GLUE USING *,15

L 15,NEWVCON
BSM 14,15

NEWVCON DC V(NEW)

Figure 5-3. Glue Module

uncluttered by leftmost fields, in the 24-bit
addressing mode. BRANCH AND SAVE (BAS, BASR)

is the fastest linkage instruction since the linkage
information is not addressing-mode sensitive and
since the instruction does not change the addressing
mode.

The return instruction from a routine called by
BRANCH AND SAVE (BAS or BASR) may be either

BCR 15,14

or

BSM O,14

In some cases, it may be desirable to rewrite a
program that is called by an old program which has
not been rewritten. In such a case, the old
program, which operates in the 24-bit addressing
mode, will be given the address of an intermediate
program that will set up the correct entry and
return modes and then call the rewritten program.
Such a program is sometimes referred to as a glue
module. The instruction BRANCH AND SET MODE

(BSM) with a nonzero Rl field provides the function
necessary to perform this operation efficiently.
This is shown in Figure 5-3.

New Program

NEW USING *,15
•
•
•

BSM O,14

Chapter 5. Program Execution 5-11

Note. that the "BSM 14,15" in the glue module
causes the addressing mode to be saved in bit 0 of
general register 14 and that bits 1-31 of general reg­
ister 14 are unchanged. Thus, when "BSM 0,14" is
executed in the new program, control passes
directly back to the old program without passing
through the glue module again.

Interruptions

Interruptions permit the CPU to change state as a
result of conditions external to the system, in sub­
channels or input/output (I/O) devices, in other
cpus, or in the CPU itself. Details are to be found
in Chapter 6, "Interruptions."

Six classes of interruption conditions are provided:
external, I/O, machine check, program, ristart, and
supervisor call. Each class has two relAted PSws,
called old and new, in pennanently as~gned real
storage locations. In all classes, an interruption
involves storing information identifying the cause of
the interruption, storing the current psw at the
old-psw location, and fetching the psw at the
new-Psw location, which becomes the current psw.

The old psw contains CPU -status information nec­
essary for resumption of the interrupted program.
At the conclusion of the program invoked by the
interruption, the instruction LOAD PSW may be
used to restore the current PSW to the value of the
old psw.

Types of Instruction Ending

Instruction execution ends in one of five ways:
completion, nullification, suppression, termination,
and partial completion.

Partial completion of instruction execution occurs
only for interruptible instructions; it is described in
the section "Interruptible Instructions" later in this
chapter.

Completion
Completion of instruction execution provides
results as called for in the defmition of the instruc­
tion. When an interruption occurs after the com­
pletion of the execution. of an instruction, the
instruction address in the old psw designates the
next sequential instruction.

5-12 ESA/370 Principles of Operation

Suppression
Suppression of instruction execution causes the
instruction to be executed as if it specified "no
operation. " The contents of any result fields,
including the condition code, are not changed. The
instruction address in the old psw on an inter­
ruption after suppression designates the next
sequential instruction.

Nullification
Nullification of instruction execution has the same
effect as suppression, except tha{ when an inter­
ruption occurs after the execution of an instruction
has been nullified, the instruction address in the old
psw designates the instruction whose execution was
nullified (or an EXECUTE instruction, as appro­
priate) instead of the next sequential instruction.

Termination
Termination of instruction execution causes the
contents of any fields due to be changed by the
instruction to be unpredictable.. The operation
-may replace all, part, or none of the contents of the
designated result fields and may change the condi­
tion code if such change is called for by the instruc­
tion. Unless the interruption is caused by a
machine-check condition, the validity of the
instruction address in the PSW, the interruption
code, and the ILC are not affected, and the state or
the operation of the machine is not affected in any
other way. The instruction address in the old psw
on an interruption after termination designates the
next sequential instruction.

Programming Note: Although the execution of an
instruction is treated as a no-operation when sup­
pression or nullification occurs, stores may be per­
formed as the result of the implicit tracing action
associated with some instructions. See the section
"Tracing" in Chapter 4, "Control."

Interruptible Instructions

Point of Interruption
For most instructions, the entire execution of an .
instruction is one operation. An interruption is
permitted between operations; that is, an inter­
ruption can occur after the performance of one
operation and before the start of a subsequent
operation.

For the following instructions, referred to as inter­
ruptible instructions, an interruption is permitted
after partial completion of the instruction:

• COMPARE AND FORM CODEWORD

• COMPARE LOGICAL LONG

• MOVE LONG

• TEST BLOCK

• UPDATETREE
• Interruptible instructions of the vector facility

(see the publication Enterprise Systems
Architecture/370 and System/370 Vector Opera­
tions, SA22-7125)

The execution of an interruptible instruction is con­
sidered to consist in the execution of a number of
units of operation, and an interruption is permitted
between units of operation. The amount of data
processed in a unit of operation depends on the
particular instruction and may depend on the
model and on the particular condition that causes
the execution of the instruction to be interrupted.

Whenever points of interruption that include those
occurring within the execution of an interruptible
instruction are discussed, the term "unit of
operation" is used. For a noninterruptible instruc­
tion, the entire execution consists, in effect, in the
execution of one unit of operation.

When an instruction consists of a number of units
of operation and an interruption occurs after some,
but not all, units of operation have been com­
pleted' the instruction is said to be partially com­
pleted. In this case, the type of ending. (co~­
pletion, inhibition, nullification, suppresslOn) IS

associated with the unit of operation. In the case
of termination, the entire instruction is terminated,
not just the unit of operation.

Execution of Interruptible Instructions
The execution of an interruptible instruction is
completed when all units of operation associated
with that instruction are completed. When an
interruption occurs after completion, inhibition,
nullification, or suppression of a unit of operation,
all preceding units of operation have been com­
pleted' and subsequent units of operatio~ ~d
instructions have not been started. The mam dif­
ference between these types of ending is the han­
dling of the current unit of operation and whether
the instruction address stored in the old psw identi­
fies the current instruction or the next sequential
instruction.

At the time of an interruption, changes to register
contents, which are due to be made by an interrup­
tible vector instruction beyond the point of inter­
ruption, have not yet been made. Changes to
storage locations, however, which are due to be
made by an interruptible vector instruction beyond

the point of interruption, may have occurred for
one or more storage locations beyond the location
containing the element identified by the inter­
ruption parameters, but not for any location
beyond the last element specified by the instruction
and not for any locations for which access
exceptions exist. Changes to storage locations or

-register contents which are due to be made by
instructions following the interrupted instruction
have not yet been made at the time of interruption.

Completion: On completion of the last unit of
operation of an interruptible instruction, the
instruction address in the old psw designates the
next sequential instruction. The result location for
the current unit of operation has been updated. It
depends on the particular instruction how the
operand parameters are adjusted. On completion
of a unit of operation other than the last one, the
instruction address in the old psw designates the
interrupted instruction or an EXECUTE instruction,
as appropriate. The result location for the current
unit of operation has been updated. The operand
parameters are adjusted such that the execution of
the interrupted instruction is resumed from the
point of interruption when the old psw stored
during the interruption is made the current psw.

Inhibition: When a unit of operation is inhibited,
the instruction address in the old psw designates
the interrupted instruction or an EXECUTE instruc­
tion, as appropriate. The result location for the
current unit of operation is not changed. The
operand parameters are adjusted such that, if the
instruction is reexecuted, execution of the inter­
rupted instruction is resumed with the next unit of
operation. Inhibition occurs only during interrup­
tible vector instructions and is described in more
detail in the publication Enterprise Systems
Architecture/370 and System/370 Vector Operations,
SA22-7125.

Nullification: When a unit of operation is nulli­
fied, the instruction address in the old psw desig­
nates the interrupted instruction or an EXEC UTE

instruction, as appropriate. The result location for
the current unit of operation remains unchanged.
The operand parameters are adjusted such that, if
the instruction is reexecuted, execution of the inter­
rupted instruction is resumed with the current unit
of operation.

Suppression: When a unit of operation is sup­
pressed, the instruction address in the old psw des­
ignates the next sequential instruction. The

Chapter 5. Program Execution 5-13

operand parameters, however, are adjusted so as to
indicate the extent to which instruction execution
has been completed. If the instruction is reexe­
cuted after the conditions causing the suppression
have been removed, the execution is resumed with
the current unit of operation.

Termination: When an exception which causes
termination occurs as part of a unit of operation of
an interruptible instruction, the entire operation is
terminated, and the contents, in general, of any
fields due to be changed by the instruction are
unpredictable. On such an interruption, the
instruction address in the old psw designates the
next sequential instruction.

The differences among the five types of ending for a
unit of operation are summarized in Figure 5-4.

Unit of Instruction Operand Current Result
Operation Is Address Parameters Location

Completed
Last unit . Next instruc- Depends on Changed
of oper- tion the instruc-
ation tion

Any other Current in- Next unit of Changed
unit of struction operation
operation

Inhibited Current in- Next unit of Unchanged
struction operation

Nullified Current in- Current unit Unchanged
struction of operation

Suppressed Next instruc- Current unit Unchanged
tion of operation

Terminated Next instruc- Unpredictable Unpredictable
tion

Figure 5-4. Types of Ending for a Unit of Operation

Programming Notes:

1. Any interruption, other than supervisor call
and some program interruptions, can occur
after a partial execution of an interruptible
instruction. In particular, interruptions for
external, I/O, machine-check, restart, and
program interruptions for access exceptions and
PER events can occur between units of opera­
tion.

2. The amount of data processed in a unit of
operation of an interruptible instruction
depends on the model and may depend on the
type of condition which causes the execution of
the instruction to be interrupted or stopped.
Thus, when an interruption occurs at the end

5-t 4 ESA/370 Principles of Operation

of the current unit of operation, the length of
the unit of operation may be different for dif­
ferent types of interruptions. Also, when the
stop function is requested during the execution
of an interruptible instruction, the CPU enters
the stopped state at the completion of the exe­
cution of the current unit of operation. Simi­
larly, in the instruction-step mode, only a single
unit of operation is performed, but the unit of
operation for the various cases of stopping may
be different.

Exceptions to Nullification and
SuppreSSion

In certain unusual situations, ·the result fields of an
instruction having a store-type operand are changed
in spite of the occurrence of an exception which
would normally result in nullification or sup­
pression. These situations are exceptions to the
general rule that the operation is treated as a no­
operation when an exception requiring nullification
or suppression is recognized. Each of these situ­
ations may result in the turning on of the change
bit associated with the store-type operand, even
though the fmal result in storage may appear
unchanged. Depending on the particular situatjon,
additional effects may be observable. The extent of
these effects is described along with each of the sit­
uations.

All of these situations are limited to the extent that
a store access does not occur and the change bit is
not set when the store accessis prohibited. For the
CPU, a store access is prohibited whenever an
access exception exists for that access, or whenever
an exception exists which is of higher priority than
the priority of an access exception for that access.

When, in these situations, an interruption for an
exception requiring suppression occurs, the instruc­
tion address in the old psw designates the next
sequential instructi.on. When an interruption for an
exception requiring nullification occurs, the instruc­
tion address in the old psw designates the iristru~­
tion causing the exception even thougli partial
results may have been stored.

Storage Change and Restoration for
OAT-Associated Access Exceptions
In this section, the term. "DAT-associated access
exceptions" is used to refer to those exceptions
which may occur as part of the dynamic-address­
translation process. These exceptions are page
translation, segment translation, translation specifi-

cation, and addressing due to a OAT-table entry
being designated at a location that is not available
in the configuration. The flIst two of these
exceptions normally cause nullification, and the last
two normally cause 'suppression. Protection
exceptions, including those due to page protection,
are not considered to be oAT-associated access
exceptions.

For oAT-associated access exceptions, on some
models, channel programs may observe the effects
on storage as described in the following case.

When for an instruction having a store-type ., .
operand, a OAT-associated access exception IS

recognized for any operand of the instruction, that
portion, if any, of the store-type operand which
would not cause an exception may be changed to
an intermediate value but is then restored to the
original value.

The accesses associated with storage change and
restoration for oAT-associated access exceptions are
only observable by channel programs and are not
observable by other CPus in a multiprocessing con­
figuration. Except for instructions which are
defmed to have multiple-access operands, the inter­
mediate value, if any, is always equal to what
would have been the fmal value if the OAT-associ­
ated access exception had not occurred.

Programming Notes:

1. Storage change and restoration for OAT-associ­
ated access exceptions occur in two main situ­
ations:

a. The exception is recognized for a portion
of a store-type operand which crosses a
page boundary, and the other portion has
no access exception.

b. The exception is recognized for one
operand of an instruction having two
storage operands (for example, an
ss-format instruction or MOVE LONG), and
the other operand, which is a store-type
operand, has no access exception.

2. To avoid letting a channel program observe
intermediate operand values due to storage
change and restoration for OAT-associated
access exceptions (especially when a ccw chain
is modified), the CPU program should do one
of the following:

• Operate on one storage page at a time

• Perform preliminary testing to ensure that
no exceptions occur for any of the required
pages

• Operate with OAT off

Modification of OAT-Table Entries
When a valid and attached OAT-table entry is
changed to a value which would cause an excep­
tion, and when, before the TLB is cleared of entries
which qualify for substitution for that entry, an
attempt is made to refer to storage by using a
virtual address requiring that entry for translation,
the contents of any fields due to be changed by the
instruction are unpredictable. Results, if any, asso­
ciated with the virtual address whose OAT-table
entry was changed may be placed in those real
locations originally associated with the address.
Furthermore, it is unpredictable whether or not an
interruption occurs for an access exception that was
not initially applicable. On some machines, this
situation may be reported by means of an
instruction-processing-damage machine check with
the delayed-access-exception bit also indicated.

Trial Execution for Editing Instructions
and Translate Instruction
For the instructions EDIT, EDIT AND MARK, and
TRANSLATE, the portions of the operands that are
actually used in the operation may be established in
a trial execution for operand accessibility that is
performed before the execution of the instruction is
started. This trial execution consists in an exe­
cution of the instruction in which results are not
stored. If the flIst operand of TRANSLATE or either
operand of EOIT or EDIT AND MARK is changed by
another CPU or by a channel program, after the
initial trial execution but before completion of exe­
cution, the contents of any fields due to be changed
by the instruction are unpredictable. Furthermore,
it is unpredictable whether or not an interruption
occurs for an access exception that was not initially
applicable.

Authorization Mechanisms
The authorization mechanisms which are described
in this section permit the control program to estab­
lish the degree of function which is provided to a
particular semiprivileged program. (A summary of
the authorization mechanisms is given in
Figure 5-5 on page 5-19. The authorization ~ech­
anisms are intended for use by programs conSidered
to be semiprivileged, that is, programs which are
executed in the problem state but which may be

Chapter 5. Program Execution 5-15

authorized to use additional capabilities. With
these authorization controls, a hierarchy of pro­
grams may be established, with programs at a
higher level having a greater degree of privilege or
authority than programs at a lower level. The
range of functions available at each level, and the
ability to transfer control from a lower to a higher
level, are specified in tables which are managed by
the control program. When the linkage stack is
used, a nonhierarchical transfer of control also can
be specified.

A semiprivileged instruction is one which can be
executed in the problem state, but which is subject
to the control of one or lnore of the authorization
mechanisms described in this section. There are 21
semiprivileged instructions and also the privileged
LOAD ADDRESS SPACE PARAMETERS instruction
that are controlled by the authorization mech­
anisms. All semiprivileged and privileged
instructions are described in Chapter 10, "Control
Instructions. "

The instructions controlled by the authorization
mechanisms are listed in Figure 5-5 on page 5-19.
The figure also shows additional authorization
mechanisms that do not control specifically semi­
privileged instructions; they control implicit access­
register translation (access-register translation as
part of an instruction making a storage reference)
and also access-register translation in the LOAD
REAL ADDRESS, TEST ACCESS, and TEST PRO­
TECTION instructions. These additional mech­
anisms (the extended authorization index, ALE
sequence number, and ASTE sequence number) are
described in the section'" Access-Register-Specified
Address Spaces" in this chapter.

Mode Requirements
Most of the semiprivileged instructions can be exe­
cuted only with OAT on. Basic PROGRAM CALL,
and PROGRAM TRANSFER, are valid only in the
primary-space mode. (Basic PROGRAM CALL is the
PROGRAM CALL operation when the linkage stack
is not used. When the linkage stack is used, the
PROG RAM CALL operation is called stacking
PROGRAM CALL). MOVE TO PRIMARY and MOVE
TO SECONDARY are valid only in the primary-space
and secondary-space modes. BRANCH AND STACK,
stacking PROGRAM CALL, and PROGRAM RETURN
are valid only in the primary-space and access­
register modes. EXTRACT STACKED REGISTERS,
EXTRACT STACKED STATE, and MODIFY STACKED
STATE are valid only in the primary-space, access­
register, and home-space modes. When a semipriv­
ileged instruction is executed in an invalid trans-

5-16 ESAj370 Principles of Operation

lation mode, a special-operation exception is
recognized.

PROGRAM TRANSFER specifies a new value for the
problem-state bit in the psw. If a program in the
problem state attempts to execute PROGRAM
TRANSFER and set the supervisor state, a privileged­
operation exception is recognized. A privileged­
operation exception is also recognized on an
attempt to use SET ADDRESS SPACE CONTROL to set
the home-space mode in the problem state.

Extraction-Authority Control
The extraction-authority-control bit is located in bit
position 4 of control register O. In the problem
state, bit 4 must be one to allow completion of
these instructions:

• EXTRACT PRIMARY ASN
• EXTRACT SECONDARY ASN
• INSERT ADDRESS SPACE CONTROL
• INSERT PSW KEY
• INSERT VIRTUAL STORAGE KEY

Otherwise, a· privileged-operation exception is
recognized. The extraction-authority control is not
examined in the supervisor state.

PSW-Key Mask
The psw-key mask consists of bits 0-15 in control
register 3. These bits are used in the problem state
to control which keys and entry points are author­
ized for the program. The psw-key mask is modi­
fied by PROGRAM TRANSFER, is modified or loaded
by PROGRAM CALL, and is loaded by PROGRAM
RETURN and LOAD ADDRESS SPACE PARAMETERS.
The psw-key mask is used in the problem state to
control the following:

• The psw-key values that can be set by means
of the instruction SET psw KEY FROM
ADDRESS.

• The psw-key values that are valid for the five
move instructions that specify a second access
key: MOVE TO PRIMARY, MOVE TO SEC­
ONDARY, MOVE WITH KEY, MOVE WITH
SOURCE KEY, and MOVE WITH DESTINATION
KEY.

• The entry points which can be called by means
of PROGRAM CALL. In this case, the psw-key
mask is ANDed with the authorization key
mask in the entry-table entry, and, if the result
is zero, the program is not authorized.

When an instruction in the problem state attempts
to use a key not authorized by the psw-key mask, a

privileged-operation exception is recognized. The
same action is taken when an instruction in the
problem state attempts to call an entry not author­
ized by the psw-key mask. The psw-key mask is
not examined in the supervisor state, all keys and
entry points being valid.

Secondary-Space Control
Bit 5 of control register 0 is the secondary-space­
control bit. This bit provides a mechanism
whereby the control program can indicate whether
or not the secondary segment table has been estab­
lished. Bit 5 must be one to allow completion of
these instructions:

• MOVE TO PRIMARY
• MOVE TO SECONDARY
• SET ADDRESS SPACE CONTROL

Otherwise, a special-operation exception is recog­
nized. The secondary-space control is examined in .~
both the problem and supervisor states.

Subsystem-Linkage Control
When the address-space-function (ASF) control, bit
15 of control register 0, is zero, bit 0 of control reg­
ister 5 is the subsystem-linkage-control bit. When
the ASF control is one, bit 96 of the primary
ASN-second-table entry is the subsystem-linkage­
control bit. The subsystem-linkage control must be
one to allow completion of these instructions:

• PROGRAM CALL
• PROGRAM TRANSFER

Otherwise, a special-operation exception is recog­
nized. The subsystem-linkage control is examined
in both the problem and supervisor states and con­
troIs both the space-switching and current-primary
versions of the instructions.

ASN· Translation Control
Bit 12 of control register 14 is the ASN-translation­
control bit. This bit· provides a mechanism
whereby the control program can indicate whether
ASN translation may occur while a particular
program is being executed. Bit 12 must be one to
allow completion of these instructions:

• LOAD ADDRESS SPACE PARAMETERS
• SET SECONDARY ASN
• PROGRAM CALL with space switching
• PROGRAM RETURN with space switching and

also J'hen the restored secondary ASN is not
equal to the restored primary ASN

• PROGRAM TRANSFER with space switching

Otherwise, a special-operation exception is recog­
nized. The ASN-translation control is examined in
both the problem and supervisor states. The
ASN-translation control is examined by PROGRAM
CALL even when PROGRAM CALL obtains the
address of the ASN-second-table entry directly from
the entry-table entry, instead of by performing ASN
translation.

Authorization Index
The authorization index is contained in bits 0-15 of
control register 4. The authorization index is asso­
ciated with the primary address space and is loaded
along with the PASN when PROGRAM CALL with
space switching, PROGRAM RETURN with space
switching, PROGRAM TRANSFER with space
switching, or LOAD ADDRESS SPACE PARAMETERS
is executed. The authorization index is used to
determine whether a program is authorized to
establish a particular address space. A program
may be authorized to establi~h the address space as
a secondary-address space, as a primary-address
space, or both. The authorization index is exam­
ined in both the problem and supervisor states.

Associated with each address space is an authority
table. The authorization index is used to select an
entry in the authority table. Each entry contains
two bits, which indicate whether the program with
that authorization index is permitted to establish
the address space as a primary address space, as a
secondary address space, or both.

The instruction SET SECONDARY ASN with space
switching, and the instruction PROGRAM RETURN
when the restored secondary ASN is not equal to
the restored primary ASN, use the authorization
index to test the secondary -authority bit in the
authority-table entry to determine if the address
space can be established as a secondary address
space. The tested bit must be one; otherwise, a
secondary-authority exception is recognized.

The instruction PROGRAM TRANSFER with space
switching uses the authorization index to test the
primary-authority bit in the authority-table entry to
determine if the address space can be established as
a primary address space. The tested bit must be
one; otherwise, a primary-authority exception is
recognized.

The instruction PROG RAM CALL with space
switching causes a new authorization index to be
loaded from the ASN-second-table entry. This
permits the program which is called to be given an

Chapter 5. Program Execution 5-17

authorization index which authorizes it to access
more or different address spaces than those author­
ized for the calling program. The instructions
PROGRAM RETURN with space switching and
PROGRAM TRANSFER with space switching restore
the authorization index that is associated with the
returned-to address space.

The secondary-authority bit in the authority-table
entry may also be used, along with the extended
authorization index, to determine if the program is
authorized to use an access-list entry in access­
register translation. This is described in the section
"Access-Register-Specified Address Spaces" in this
chapter.

Access-Register and Linkage-Stack
Mechanisms
Bit 15 of control register 0 is the address-space­
function (ASF) control bit. Bit 15 must be one to
allow completion of these instructions:

• BRANCH AND STACK
• EXTRACT STACKED REGISTERS
• EXTRACTSTACKEDSTATE
• MODIFY STACKED STATE
• PROGRAM RETURN
• TEST ACCESS

Otherwise, a special-operation exception is recog­
nized. The ASF control is examined in both the

5-18 ESA/370 Principles of Operation

problem and supervisor states and controls both
the space-switching and current-primary forms of
PROGRAM RETURN.

Under certain circumstances when the ASF control
is or has been zero,erroneous entries may exist in
the ART-Iookaside buffer (ALB), and this can cause
erroneous access-register translation. A description
of the circumstances and of how to remove the
erroneous entries from the ALB appears in the
section "Formation of ALB Entries" in this chapter.

The ASF control also controls the setting of the
access-register mode by SET ADDRESS SPACE
CO NTRO L, the availability of the stacking
PROGRAM CALL operation, control-register con­
tents, the sizes of the entry-table entry and
ASN-second-table entry, and other functions. A
complete description of the effects of the ASF
control is in the section "Address-Space-Function
Control" in this chapter.

The use of access registers also involves the
extended authorization index, ALE sequence
number, and ASTE sequence number as authori­
zation mechanisms. These are described in the
section "Access-Register-Specified Address Spaces"
in this chapter.

. ~

Authorization Mechanism
Func- Space
tion Mode PSW- Ext.- Sw.-
or Requirement Sec.- ASN- Extr. Key Auth. Auth. Event
In- Subs. Space Trans. Auth. Mask Index Index ALE ASTE ASF Ctl.
struc- Pro Trans. Link. Ctl. Ctl. Ctl. (3.0- (4.0- (8.0- Seq. Seq. Ctl. (1. 0,
tion Ope Mode Ctl.7 (0.5) (14.12) (0.4) 3.15) 4.15) 8.15) No.8 No.9 (0.15) 13.0)

Implic. A EA ALQ ASQ EALB
AR
trans.

BAKR SO-PA SO
EPAR SO-PSAH Q

EREG SO-PAH SO
ESAR SO-PSAH Q
ESTA SO-PAH SO
lAC SO-PSAH Q
IPK Q

IVSK SO-PSAH Q
LRA P CCA CCA CCA
LASP P SO CC Y CC
MSTA SO-PAH SO
MVCDK Q
MVCP SO-PS SO Q

~ MVCS SO-PS so Q
MVCSK Q
MVCK Q
bPC-cp SO-P SO Q1 Y
sPC-cp SO-PA SO Q1 Z
bPC-ss SO-P SO SO Q1 Y Xl

sPC-ss SO-PA SO SO Q1 Z Xl
PR-cp SO-PA S04 SA6 SO
PR-ss SO-PA SO PASA6 SO Xl
PT-cp Q2 SO-P SO
PT-ss Q2 SO-P SO SO PA Y Xl

SAC Q3 SO-PSAH SO S05 X2
SPKA Q
SSAR-cp SO-PSAH SO
SSAR-ss SO-PSAH SO SA Y
TAR CC CC CC SO
TPROT P CC CC CC

Figure 5-5. Summary of Authorization Mechanisms

Chapter 5. Program Execution 5-19

Explanation for Summary of Authorization Mech­
anisms:

2

3

4

5

6

7

8

9

A

ALQ

ASQ

bpc

CC

CCA

CRX.y

EA

The psw-key mask is ANDed with the
authorization key mask in the entry-table
entry.

The exception is recognized on an
attempt to set the supervisor state when
in the problem state.

The exception is recognized on an
attempt to set the home-space mode
when in the problem state.

ASN translation is performed for the new
SASN, and the exception may be recog­
nized, only when the new SASN is not
equal to the new PASN.

The exception is recognized on an
attempt to set the access-register mode.

Secondary authority is checked for the
new SASN, and the exception may be
recognized, only when the new SASN is
not equal to the new PASN.

Subsystem-linkage control is bit 0 of
control register 5 if the address-space­
function (ASF) control, bit 15 of control
register 0, is zero; or it is bit 96 of the
primary ASN-second-table entry if the ASF
control is one.

ALE sequence number is bits 8-15 of the
access-list-entry token and bits 8-15 of the
access-list entry.

ASTE sequence number is bits 96-127 of
the access-list entry and bits 160-191 of
the ASN-second-table entry.

Access-register translation occurs only in
the access-register mode.

ALE-sequence exception.

ASTE-sequence exception.

Basic (nonstacking) PROGRAM CALL.

Test results in setting a condition code.

Test results in setting a condition code.
The test occurs only in the access-register
mode.

Control register x, bit position y.

Extended-authority exception.

5-20 ESAj370 Principles of Operation

EALB

P

PA

PASA

Q

SA

When bit 15 of control register 0 is or has
been zero,_ erroneous ALB entries may
exist under certain circumstances. See the
section "Formation of ALB Entries" in '
this chapter.

Privileged~operation exception for privi­
leged instruction.

Primary-authority exception.

Primary-authority exception or
secondary -authority exception.

Privileged-operation exception for semi­
privileged instruction. Authority checked

_ only in the problem state.

Secondary-authority exception.

SO Special-operation exception.

sO-P CPU must be in the primary-space mode;
special-operation exception if the CPU is
in the secondary-space, access-register,
home-space, or real mode.

SO-PA CPU must be in the primary-space or
access-register mode; special-operation
exception if the CPU is in the secondary­
space, home-space, or real mode.

SO-PAH CPU must be in the primary-space, access-..;'1IIrIIII
register, or home-space mode; special­
operation exception if the CPU is in the
secondary-space or real mode.

so-ps CPU must be in the primary-space or
secondary-space mode; special-operation
exception if the CPU is in the home-space,
access-register, or real mode.

SO-PSAH CPU must be in the primary-space,
secondary-space, access-register, or home­
space mode; special-operation exception if
the CPU is in the real mode.

sPC

Xl

X2

y

Stacking PROGRAM CALL.

When bit 0 of control register 1 is one, a
space-switch event is recognized. The
operation is completed.

When bit 0 of control register 1 or 13 is
one and the instruction space is changed
to or from the home address space, a
space-switch event is recognized. The
operation is completed.

The bit is tested to determine the size of
the ASTE and/or the ETE.·.. .., ~

z Stacking PROGRAM CALL can occur only
when the ASP control is one.

PC-Number Translation
pc-number translation is the process of translating
the 20-bit PC number to locate an entry-table entry
as part of the execution of the PROGRAM CALL
instruction. To perform this translation, the 20-bit
PC number is divided into two fields. . Bits 12-23
are the linkage index (LX), and bits 24-31 are the
entry index (EX). The effective address, from which
the pc-number is taken, has the following format:

1//1//1 //1//11 LX EX

12 24 31

The translation is performed by means of two
tables: a linkage. table and an entry table. Both of
these tables reside in ·real storage. The linkage-table
designation may reside in control register 5, or it
may reside instead in a third area in storage, called
the primary ASN-second-table entry (primary ASTE),
in which case the origin of the primary ASTE is in
control register 5. The entry table is designated by
means of a linkage-table entry.

PC-Number Translation Control

pc-number translation may be controlled by means
of a linkage-table designation in control register 5,
or it may be controlled by means of controls in
control registers 0 and 5 and a linkage-table desig­
nation·in storage.

Control Register 0
Bit 15 of control register 0 is the address-space­
function (ASP) control bit. When the· ASP control
is zero, the linkage-table designation is in control
register 5, and the entry-table entry has a length of
16 bytes. When the ASF control is one, control
register 5 contains the origin of the primary
ASN-second-table entry, the linkage-table desig­
nation is in the primary ASTE, and the entry-table
entry has a length of 32 bytes.

The ASF control has other effects also. A complete
description of the effects of the ASF control is in the
section "Address-Space-Function Control" in this
chapter.

Control Register 5
When the ASP control in control register 0 is zero,
control register 5 contains the linkage-table desig­
nation. The register has the following format:

Ivl Linkage-Table Origin LTL I
(=) 1 25 31

Subsystem-Linkage Control (V): Bit 0 of control
register 5 is the subsystem-linkage-control bit. Bit
o must be one to allow completion of these
instructions:

• PROGRAM CALL
• PROGRAM TRANSFER

Otherwise, a special-operation exception is recog­
nized. The system-linkage control is examined in
both the problem and the supervisor states and
controls both the space-switching and current­
primary versions of the instructions.

Linkage-Table Origin: Bits 1-24 of control register
5, with seven zeros appended on the right, form a
31-bit real address that designates the beginning of
the linkage table.

Linkage-Table Length (LTL): Bits 25-31 of control
register 5 specify the length of the linkage table in
units of 128 bytes, thus making the length of the
linkage table variable in multiples of 32 four-byte
entries. The length of the linkage table, in units of
128 bytes, is one more than the value in bit posi­
tions 25-31. The linkage-table length is compared
against the leftmost seven bits of the linkage-index
portion of the PC number to determine whether the
linkage index designates an entry within the linkage
table.

When the ASF control is one, control register 5
specifies the location of the primary ASN-second­
table entry. The register has the following format:

I I PASTEO

(=) 1 26 31

Primary-ASTE Origin (PASTEO): Bits 1-25 of
control register 5, with six zeros appended on the
right, form a 31-bit real address that designates the
beginning of the primary ASTE.

When the ASF control is one, the linkage-table des­
ignation is in bytes 12-15 of the primary ASTE.
Thus, the subsystem-linkage control (v) is bit 0 of

Chapter 5. Program Execution 5-21

bytes 12-15 of the primary ASTE, the linkage-table
origin (LTO) is bits 1-24 of bytes 12-15, and the
linkage-table length (LTL) is bits 25-31 of bytes
12-15.

PC-Number Translation Tables

The pc-number translation process consists in a
two-level lookup using two tables: a linkage table
and an entry table. These tables reside in real
storage.

Linkage-Table Entries
The entry fetched from the linkage table has the
following format:

III Entry-Table Origin I ElL I
o 1 26 31

The fields in the linkage-table entry are allocated as
follows:

LX Invalid Bit (I): Bit 0 controls whether the entry
table associated with the linkage-table entry is avail­
able.

When the bit is zero, pc-number translation pro­
ceeds by using the linkage-table entry. When the
bit is one, an Lx-translation exception is recog­
nized.

Entry-Table Origin: Bits 1-25, with six zeros
appended on the right, form a 31-bit real address
that designates the beginning of the entry table.

Entry-Table Length (ETL): When the address­
space-function (ASP) control, bit 15 of control reg­
ister 0, is zero, bits 26-31 specify the length of the
entry table in units of 64 bytes, thus making the
entry table variable in multiples of four 16-byte
entries. When the ASP control is one, bits 26-31
specify the entry-table length in units of 128 bytes,
thus making the table variable in multiples of four
32-byte entries. The length of the entry table, in
units of 64 or 128 bytes, is one more than the value
in bit positions 26-31. The entry-table length is
compared against the leftmost six bits of the entry
index to determine whether the entry index desig­
nates an entry within the entry table.

5-22 ESA/370 Principles of Operation

Entry-Table Entries
When the ASF control in control register 0 is zero,
the entry-table entry has a length of 16 bytes.
When the ASF control is one, the entry has a length
of 32 bytes. The format of the 16-byte entry-table
entry is identical to that of the fIrst 16 bytes of the
32-byte entry. The 32-byte entry-table entry has
the following format:

Auth Key Mask ASN

e 16 31

IAI Entry Instruction Address Ipl

32 63

Entry Parameter

64 95

Entry Key Mask

96 112 127

Linkage-Stack Fields

128 159

II
ASTE Address

160 186 191

192 223

224 255

The fields in the entry-table entry are allocated as
follows:

Authorization Key Mask: Bits 0-15 are used to
verify whether the program issuing the PROGRAM
CALI... instruction, when in the problem state, is
authorized to call this entry point. The authori­
zation key mask and the current psw-key mask in
control· register 3 are ANDed, and the result is
checked for all zeros. If the result is all zeros, a
privileged-operation exception is recognized. The
test is not performed in the supervisor state.

ASN: Bits 16-31 specify whether a pc-ss or pc-cp
is to occur. When bits 16-31 are zeros, a pc-cp is
specified. When bits 16-31 are not all zeros, a
pc-ss is specified, and the bits contain the ASN that
replaces the primary ASN.

Entry Addressing Mode (A): Bit 32 replaces the
addressing-mode bit, bit 32 of the current psw, as
part of the PROGRAM CALL operation. When bit
32 is zero, bits 33-39 must also be zero; otherwise,
a pc-translation-specification exception is recog­
nized.

Entry Instruction Address: Bits 33-62, with a zero
appended on the right, form the instruction address
which replaces the instruction address in the psw as
part of the PROGRAM CALL operation.

Entry Problem State (P): Bit 63 replaces the
problem-state bit, bit 15 of the current psw, as part
of the PROGRAM CALL operation.

Entry Parameter: Bits 64-95 are placed in general
register 4.

Entry Key Mask: Bits 96-111 are oRed into the
psw-key mask in control register 3 as part of the
PROG RAM CALL operation.

AsrE Address: When the address-space-function
(ASF) control is one and bits 16-31 are not all
zeros, bits 161-185, with six zeros appended on the
right, form the real ASN-second-table-entry address
that should result from applying the ASN-trans­
lation process to bits 16-31. When the ASF control
is one, it is unpredictable whether pc-ss uses bits

161-185 or uses ASN translation to obtain the ASTE
address.

Bits 128-159 are used in connection with the
linkage stack and are described in the section
"Extended Entry-Table Entries" in this chapter.

Bits 112-127, 160, and 186-255 are reserved for pos­
sible future extensions and should be zeros.

Programming Note: The entry parameter is
intended to provide the called program with an
address which can be depended upon and used as
the basis of addressability in locating necessary
information which may be environment-dependent.
The parameter may be appropriately changed for
each environment by setting up different entry
tables. The alternative -- obtaining this informa­
tion from the calling program -- may require
extensive validity checking or may present an integ­
rityexposure.

PC-Number-Translation Process

The translation of the PC number is performed by
means of a linkage table and entry table both of
which reside in real storage. The translation may
also require the use of the primary ASN-second­
table entry, which also resides in real storage.

For the purposes of pc-number translation, the
20-bit PC number is divided into two parts: the
leftmost 12 bits are called the linkage index (LX),
and the rightmost eight bits are called the entry
index (EX). The LX is used to select an entry from
the linkage table, the starting address and length of
which are specified by the linkage-table designation
in either control register 5 or the primary ASTE.
This entry designates the entry table to be used.
The EX field of the PC number is then used to
select an entry from the entry table.

When, for the purposes of pc-number translation,
accesses are made to main storage to fetch entries
from the primary ASTE, linkage table, and entry
table, key-controlled protection does not apply.

The pc-number-translation process is shown in
Figure 5-6 on page 5-24.

Chapter 5. Program Execution 5-23

Linkage-Table Designation
in CR5 or Primary ASTE

~ Linkage Table

R I ETO ETL

(x64)

~ Entry Table

R AKM
I

ASN

L.-S. Fields

PC Number

AI IA Ip PARM
I EKM I

ASTE Address

N: 16 if ASF control, bit 15 of control register 0, is zero; 32 if
ASF control is one

R: Address is real

Figure 5-6. PC-Number Translation

Obtaining the Linkage-Table Designation
When the address-space-function (ASF) control, bit
15 of control register 0, is zero, the linkage-table
designation is the contents of control register 5.
When the ASF control is one, the linkage-table des­
ignation is obtained from bytes 12-15 of the
primary ASN-second-table entry, the starting
address of which is specified by the contents of
control register 5.

When the ASF control is one, the 31-bit real address
of the linkage-table designation is obtained by

5-24 ESAj370 Principles of Operation

appending six zeros on the right to the
primary-AsTE origin, bits 1-25 of control register 5,
and adding 12. The addition cannot cause a carry
into bit position O. All 31 bits of the address are
used, regardless of whether the current psw speci­
fies the 24-bit or 31-bit addressing mode.

When the ASF control is one, all four bytes of the
linkage-table designation are fetched concurrently
from the primary ASTE. The fetch access is not
subject to protection. When the storage address
which is generated for fetching the linkage-table

designation designates a location which is not avail­
able in the configuration, an addressing exception is
recognized, and the operation is suppressed.
Besides the linkage-table designation, no other field
in the primary ASTE is examined.

Linkage-Table Lookup
The linkage-index (LX) portion of the PC number,
in conjunction with the linkage-table origin, is used
to select an entry from the linkage table.

The 31-bit real address of the linkage-table entry is
obtained by appending seven zeros on the right to
the contents of bit positions 1-24 of the linkage­
table designation and adding the linkage index, with
two rightmost and 17 leftmost zeros appended. A
carry, if any, into bit position 0 is ignored. All 31
bits of the address are used, regardless of whether
the current psw specifies the 24-bit or 3 I-bit
addressing mode.

As part of the linkage-table-lookup process, the
leftmost seven bits of the linkage index are com­
pared against the linkage-table length, bits 25-31 of
the linkage-table designation, to establish whether
the addressed entry is within the linkage table. If
the value in the linkage-table-length field is less
than the value in the seven leftmost bits of the
linkage index, an Lx-translation exception is recog­
nized.

All four bytes of the linkage-table entry appear to
be fetched concurrently as observed by other CPus.
The fetch access is not subject to protection.
When the storage address which is generated for
fetching' the linkage-table entry designates a
location which is not available in the configuration,
an addressing exception is recognized, and the oper­
ation is suppressed.

Bit 0 of the linkage-table entry specifies whether the
entry table corresponding to the linkage index is
available. This bit is inspected, and, if it is one, an
Lx-translation exception is recognized.

When no exceptions are recognized in the process
of linkage-table lookup, the entry fetched from the
linkage table designates the origin and length of the
corresponding entry table.

Entry-Table Lookup
The entry-index (EX) portion of the PC number, in
conjunction with the entry-table origin contained in
the linkage-table· entry, is used to select an entry
from the entry table.

The 31-bit real address of the entry-table entry is
obtained by appending six zeros on the right to the
entry-table origin and adding: (l) if the ASF
control is zero, the entry index, with four rightmost
and 19 leftmost zeros appended; or (2) if the ASF
control is on~, the entry index, with five rightmost
and 18 leftmost zeros appended. A carry, if any,
into bit position 0 is ignored. All 31 bits of the
address are used, regardless of whether the current
psw specifies the 24-bit or 31-bit addressing mode.

As part of the entry-table-lookup process, the six
leftmost bits of the entry index are compared
against the entry-table length, bits 26-31 of the
linkage-table entry, to establish whether the
addressed entry is within the table. If the value in
the entry-table length field is less than the value in
the six leftmost bits of the entry index, an EX-trans­
lation exception is recognized.

The 16-byte or 32-byte entry-table entry is fetched
by using the real address. The fetch of the entry
appears to be word-concurrent as observed by
other cpus, with the leftmost word fetched frrst.
The order in which the remaining three or seven
words are fetched is unpredictable. The fetch
access is not subject to protection. When the
storage address which is generated for fetching the
entry-table entry designates a location which is not
available in the configuration, an addressing excep­
tion is recognized, and the operation is suppressed.

The use that is made of the information fetched
from the entry-table entry is described in the defi­
nition of the PROGRAM CALL instruction.

Recognition of Exceptions during
PC-Number Translation
The exceptions which can be encountered during
the pc-number-translation process and their priority
are described in the defmition of the PROGRAM
CALL instruction.

Programming Note: The linkage-table designation
is fetched successfully from the primary
ASN-second-table entry regardless of the values of
bit 0, the ASX -invalid bit, and bits 30, 31, and 60-63
in the primary ASTE. A one value of any of these
bits causes an exception to be recognized in other
circumstances.

Chapter S. Program Execution 5-25

Home Address Space
Facilities are provided which a privileged program,
such as the control program, can use to obtain
control in and access the home address space of a
dispatchable unit (for example, a task).

Each dispatchable unit normally has an address
space associated with it in which the control
program keeps the principal control blocks that
represent the dispatchable unit. This address space
is called the home address space of the dispatchable
unit. Different dispatchable units may have the
same or different home address spaces. When the
control program initiates a dispatchable unit, it may
set the primary and secondary address spaces equal
to the home address space of the dispatchable unit.
Thereafter, because of the dispatchable unit's pos­
sible use of the PROGRAM CALL, PROGRAM

RETURN, PROGRAM TRANSFER, or SET SEC­

ONDARY ASN instruction, the control program
normally cannot depend on either the primary
address space or the secondary address space being
the home address space when the home address
space must be accessed, for example, during the
processing by the control program of an inter­
ruption. Therefore, the control program normally
must take some special action to ensure that the
home address space is addressed when it must be
accessed. The home-address-space facilities provide
an efficient means to take this action.

The home-address-space facilities include:

• The home segment-table designation (HSTD) in
control register 13. The HSTD is used by DAT

in the same way as the primary segment-table
designation (PSTD) in control register 1 and the
secondary segment-table designation (SSTD) in
control register 7.

• Home-space mode, which results when DAT is
on and the address-space control, psw bits 16
and 17, has the value 11 binary. When the
CPU is in the home-space mode, instruction
and logical addresses are home virtual addresses
and are translated by DAT by means of the
HSTD.

• The ability of the SET ADDRESS SPACE

CONTROL instruction to set the home-space
mode in the supervisor state, and the ability of
the INSERT ADDRESS SPACE CONTROL instruc­
tion to return an indication of the home-space
mode.

5-26 ESA/370 Principles of Operation

• The home space-switch-event control, bit 0 of
control register 13.

• Recognition of a space-switch event upon com­
pletion of a SET ADDRESS SPACE CONTROL

instruction if the CPU was in the home-space
mode before or after the operation but not
both before and after the operation, if any of
the following is true: (1) the primary space­
switch-event control, bit 0 of control register 1,
is one, (2) the home space-switch-event control
is one, or (3) a PER event is to be indicated.

The space-switch event that may be caused by SET

ADDRESS SPACE CONTROL, along with those that
may be caused by the PROGRAM CALL, PROGRAM

RETURN, and PROGRAM TRANSFER instructions,
can be used to enable or disable PER or tracing
when fetching of instructions begins or ends in par­
ticular address spaces.

Access-Registers Introduction
Many of the functions related to access registers are
described in this section and in the sections
"Access-Register Translation" and "Sequence of
Storage References" in this chapter. Additionally,
Chapter 3, "Storage," describes translation modes;
Chapter 4, "Control," describes the handling of
access registers during resets and during the store­
status operation; Chapter 6, "Interruptions,"
describes interruptions; Chapter 7, "General
Instructions," and 10, "Control Instructions,"
describe the instructions; Chapter 11, "Machine­
Check Handling," describes the handling of access
registers during a machine-check interruption and
the programmed validation of the access registers;
and Chapter 12, "Operator Facilities," describes the
alter-and-display controls for access registers.

Summary

These major functions are provided:

• A maximum of 16 address spaces, including the
instruction space, for imnlediate and simul­
taneous use by a semiprivileged program; the
address spaces are specified by 16 new registers
called access registers.

• Instructions for examining and changing the
contents of the access registers.

In addition, control and authority mechanisms are
incorporated to control these functions.

I.

A~cess registers allow a sequence of instructions, or
even a single instruction such as MOVE (MVC) or
MOVE LONG (MVCL), to operate on storage oper­
ands in multiple address spaces, without the
requirement of changing either the translation mode
or other control information. Thus, a program
residing in one address space can use the complete
instruction set to operate on data in that address
space and in up to 15 other address spaces, and it
can move data between any and all pairs of these
address ,spaces. Furthermore, the progr~ can
change the contents of the access registers m order
to access still other address spaces.

The instructions for examining and changing
access-register contents are unprivileged and are
described in Chapter 7, "General Instructions."
They are:

• COpy ACCESS
• EXTRACT ACCESS
• LOAD ACCESS MULTIPLE
• LOAD ADDRESS EXTENDED
• SET ACCESS
• STORE ACCESS MULTIPLE

The privileged PURGE ALB instruction is used in
connection with access registers and is described in
Chapter 10, "Control Instructions."

Access registers specify address spaces when the
CPU is in the access-register mode. The SET
ADDRESS SPACE CONTROL instruction allows
setting of the access-register mode, and the INSERT
ADDRESS SPACE CONTROL instruction provides an
indication of the access-register mode. These
instructions are described in Chapter 10, "Control
Instructions. "

Access-Register Functions

Access-Register-Specified Address
Spaces
The CPU includes sixteen 32-bit access registers
numbered 0-15. In the access-register mode, which
results when DAT is on and psw bits 16 and 17 are
01 binary, an instruction B or R field that is used to
specify the logical address of a storage operand des­
ignates not only a general register but also an access
register. The designated general register is used in
the ordinary way to form the logical address of the
storage operand. The designated access register is
used to specify the address space to which the
logical address is relative. The access register speci­
fies the address space by specifying a segment-table
designation for the address' space, and this segment­
table designation is used by DAT to translate the
logical address. An access register specifies a
segment-table designation in an indirect way, not
by containing the segment-table designation.

An access register may specify the primary or sec­
ondary segment-table designation in control register
1 or 7, respectively, or it may specify a segment­
table designation contained in an ASN-second-table
entry (which exists in 370-XA, but which may be
extended in size in ESA/370). In the latter case, the
access register designates an entry in a table called
an access list, and the designated access-list entry in
tum designates the ASN-second-table entry.

The process of using the contents of an access reg­
ister to obtain a segment-table designation for use
by DAT is called access-register translation (ART).
This is depicted in Figure 5-7 on page 5-28.

Chapter 5. Program Execution 5-27

Instruction
Displacement

General Register
In Access-Register Mode

Base Address

Access Register

Logical Address

B- STD ----.... DAT

Real Address

Figure 5-7. Use of Access Registers

An access register is said to specify an AR -specified
address space by means of an AR -specified segment­
table designation. The virtual addresses in an
AR -specified address space are called AR -specified
virtual addresses.

In the access-register mode, whereas -all storage­
operand addresses are AR -specified virtual, instruc­
tion addresses are primary virtual.

Designating Access Registers: In the access­
register mode, an instruction B or R field designates
an access register, for use in access-register trans­
lation, under the following conditions:

)

• The field is a B field which designates a general
register containing a base address. The base
address is used, along with a displacement (D)
and possibly an index (x), to form the logical
address of a storage operand.

• The field is an R field which designates a
general register containing the logical address of
a storage operand.

For example, consider the following instruction:

MVC 0(L,1),0(2)

The second operand, of length L, is to be moved to
the frrst-operand location. The logical address of

5-28 ESA/370 Principles of Operation

the second operand is in general register 2, and that
of the frrst-operand location in general register 1.
The address space containing the second operand is
specified by access register 2, and that containing
the frrst-operand location by access register 1.
These two address spaces may be different address
spaces, and each may be different from .the current
instruction space (the primary address space).

When psw bits 16 and 17 are 0 I, the B field of the
LOAD REAL ADDRESS instruction designates an
access register, for use in access-register translation,
regardless of whether D AT is on or off.

The COMPARE AND FORM CODEWORD and
UPDATE TREE instructions specify storage operands
by means of implicitly designated general registers
and access registers.

The MOVE TO PRIMARY and MOVE TO SECONDARY

instructions specify storage operands by means of
primary virtual and secondary virtual addresses, and
access registers do not apply to these instructions.
An exception is recognized when either of these
instructions is executed in the access-register mode.
The MOVE WITH KEY instruction can be used in
place of MOVE TO PRIMARY and MOVE TO SEC­

ONDARY in the access-register mode. If they are
installed, the MOVE WITH SOURCE KEY and MOVE

WITH DESTINATION KEY instructions also can be
used.

An instruction R field may designate an access reg­
ister for other than the purpose of access-register
translation.

The fields which may designate access registers,
whether or not for access-register translation, are
indicated in the summary figure at the beginning of
each instruction chapter.

Obtaining the Segment Table Designation: This
section and the following ones introduce the access­
register-translation process and present the concepts
related to access lists.

The segment-table designation specified by an
access register is obtained by access-register trans­
lation as follows:

.' If the access register contains 00000000 hex, the
specified segment-table designation is the
primary segment-table designation (PSTD),
obtained from control register 1.

• If the access register contains 00000001 hex, the
specified segment-table designation is the sec­
ondary segment-table designation (SSTD),
obtained from control register 7.

• If the access register contains any other value,
the specified segment-table designation is
obtained from an ASN-second-table entry. The
contents of the access register designate an
access-list entry, and it contains the real address
of the ASN-second-table entry.

Access register 0 is treated in a special way by
access-register translation; it is treated as containing
00000000 hex, and its actual contents are not exam­
ined. Thus, a logical address specified by means of
a zero B or R field in the access-register mode is
always relative to the primary address space, regard­
less of the contents of access register O. However,
there is one exception to how access register 0 is
treated: the TEST ACCESS instruction uses the
actual contents of access register 0, instead of
treating access register 0 as containing 00000000
hex.

The treatment of an access register containing the
value 00000000 hex as designating the current
primary address space allows that address space to
be addressed, in the access-register mode, without
requiring the use of an access-list entry. This is
useful when the primary address space is changed

by a space-switching PROGRAM CALL (PC-ss),
PROGRAM RETURN (PR-SS), or PROGRAM
TRANSFER (PT-ss) instruction. Similarly, the treat­
ment of an access register containing the value
0000000 I hex as designating the secondary address
space allows that space to be addressed after a
space-switching operation, again without requiring
the use of an access-list entry.

The contents of the access registers are not changed
by the PROGRAM CALL and PROGRAM TRANSFER
instructions. Therefore, an access register con­
taining 00000000 or 00000001 hex may specify a
different address space after the execution of a
PROGRAM CALL or PROGRAM TRANSFER than
before· the execution. For example, if a space­
switching PROGRAM CALL is executed, an access
register containing 00000000 hex specifies the old
primary address space before the execution and the
new primary address space after the execution.

When access-register translation obtains a segment­
table designation from an ASN-second-table entry,
,bit 0 of the entry, the ASX -invalid bit, must be zero;
otherwise, an exception is recognized.

Access Lists: The access-list entry that is desig­
nated by the contents of an access register can be
located in either one of two access lists, the
dispatchable-unit access list or the primary-space

. access list. A bit in the access register specifies
which of the two access 'lists contains the desig­
nated entry. Both of the access lists reside in real
storage. The locations of the access lists are speci­
fied by means of control registers 2 and 5.

Control register 2 contains the origin of a real­
storage area called the dispatchable-unit control
table. The dispatchable-unit control table contains
the designation -- the real origin and length -- of
the dispatchable-unit access list.

When the address-space-function (ASF) control, bit
15 of control register 0, is one, control register 5
contains the origin of a real-storage area called the
primary ASN-second-table entry. The primary
ASN-second-table entry contains the designation of
the primary-space access list, and it also contains
the linkage-table designation. When the ASF
control is zero, the linkage-table designation is in
control register 5.

The ASF control determines the contents of control
register 5 for the instructions LOAD ADDRESS SPACE
PARAMETERS, PROGRAM CALL, PROGRAM
RETURN, and PROGRAM TRANSFER. The access-

Chapter 5. Program Execution 5-29

register-translation process always treats control
register 5 as containing the primary-AsN-second­
table-entry origin and does not examine the ASF
control.

An access list, either the dispatchable-unit access
list or the primary-space access list, contains one of
the following, depending on the model: (1) some
multiple of eight 16-byte entries, up to a maximum
of 1024 entries, or (2) some multiple of sixteen
16-byte entries, up to a maximum of 4096 entries.

Programs and Dlspatchable Units: When dis­
cussing access lists, it is necessary to distinguish
between the terms "program" and "dispatchable
unit." A program is a sequence of instructions and
may be referred to as a program module. A
program may be a sequence of calling and called
programs. A dispatchable unit, which is sometimes
called a process or a task, is a unit of work that is
performed through the execution of a program by
one CPU at a time.

The dispatchable-unit access list is intended to be
associated with a dispatchable unit; that i~, it is
intended that a dispatchable unit have the same
dispatchable-unit access list regardless of which
program is currently being executed to perform the
dispatchable unit. There is no mechanism, except
for the LOAD CONTROL instruction, that changes
the dispatchable-unit-control-table origin in control
register 2.

The primary-space access list is associated with the
primary address space that is specified by the
primary ASN in control register 4 and the primary
segment-table designation in control register 1. The
primary-space access list that is available for use by
a· dispatchable unit changes as the primary address
space of the dispatchable unit changes, that is,
whenever a program in a different Primary address
space begins to be executed to perform the
dispat9hab1e unit. Whenever a LOAD ADDRESS
SPACE PARAMETERS, PROGRAM CALL, PROGRAM
RETURN, or PROGRAM TRANSFER instruction
replaces the primary ASN in control register 4 and
the primary segment-table designation in control
register 1, it also replaces the primary-AsN-second­
table-entry origin in control register 5,' if the
address-space-function control is one.

Thus, for a dispatchable unit, the dispatchable-unit
access list is intended to be constant. (although its
entries may be changed, as will be described), and
the primary-space access list is a function of which

5-30 ESA/370 Principles of Operation

program is being executed, through being a func­
tion of the primary address space of the program.
Also, all dispatchable units and programs in the
same primary address space have the same primary­
space access list.

Access-list-Entry Token: The contents of an
access register are called an access-list-entry token
(ALET) since, in the general case, they designate an
entry in an access list. An ALET has the following
fonnat:

I eeeeeeel pi ALESN I ALEN

o 7 8 16 31

The ALET contains a primary-list bit (p) that speci­
fies which access list contains the designated access­
list entry: the dispatchable-unit access list if the bit
is zero, or the primary-space access list if the bit is
one. The specified access list is called the effective
access list.

The ALET also contains an access-list-entry number
(ALEN) which, when multiplied by 16, is the
number of bytes from the beginning of the effective
access list to the designated access-list entry.
During access-register translation, an exception is
recognized if the ALBN designates an entry that is
outside the effective access list or if the leftmost
seven bits in the ALET are not aU zeros.

The access-list-entry sequence number (ALESN) in
the ALET is described in the next section.

The above format of the ALET does not apply
when the ALBT is 00000000 or 00000001 hex.

An ALET can exist in an access register, in a general
register, or in storage, and it has no special pro­
tection from manipulation by the problem
program. Any program can transfer ALETs back
and forth among access registers, general registers,
and storage. A called program can save the con­
tents of the access registers in any storage area
available to it, load and use the access registers for
its own purposes, and then restore the original con­
tents of the access registt?rs before returning to its
caller.

Allocating and Invalidating Access-List Entries:
It is intended that access lists be provided by the
control program and that they be protected from
direct manipulation by any problem program. This
protection may be obtained by means of key- .
controlled protection or by placing the access lists

in real storage not accessible by any pro blem
program by means of DAT.

As determined by a bit in the entry, an access-list
entry is either valid or invalid. A valid access-list
entry specifies an address space and can be used by
a suitably authorized program to access that space.
An invalid access-list entry is available for . allo­
cation as a valid entry. It is intended that the
control program provide services that allocate valid
access-list entries and that invalidate previously
allocated entries.

Allocation of an access-list entry may consist in the
following steps. A problem program passes some
kind of identification of an address space to the
control program, and it passes a specification of
either the dispatchable-unit access list or the
primary-space access list. The control program
checks, by some means, the authority of the
problem program to access the address space. If
the problem program is authorized, the control
program selects an invalid entry in the specified
access list, changes it to a valid entry specifying the
subject address space, and returns to the problem
program an access-list-entry token (A LET) that des­
ignates the allocated entry. The problem program
can subsequently place the ALET in an access reg­
ister in order to access the address space. Later,
through the use of the invalidation service of the
control program, the access-list entry that was allo­
cated may be made invalid. An exception is recog­
nized during access-register translation if an ALET is
used that designates an invalid access-list entry.

It may be that a particular access-list entry is allo­
cated, then invalidated, and then allocated again,
this time specifying a different address space than
the frrst time. To guard against erroneous use of
an ALET that designates a conceptually wrong
address space, an access-list-entry sequence number
(ALESN) is provided in both the ALET and the
access-list entry. When the control program allo­
cates an access-list entry, it should place the same
ALES N in the entry and in the designating ALET that
it returns to the problem program. When the
control program reallocates an access-list entry, it
should change the value of the ALESN. An excep­
tion is recognized during access-register translation
if the ALESN in the ALET used is not equal to the
ALESN in the designated access-list entry.

The ALESN check is a reliability mechanism, not an
authority mechanism, because the ALET is not pro-

tected from the problem program, and the problem
program can change the ALESN in the ALET to any
value. Also, this is not a fail-proof reliability mech­
anism because the ALESN is one byte and its value
wraps around after 256 reallocations, assuming that
the value is incremented by one for each reallo­
cation.

Authorizing the Use of Access-List Entries:
Although an access list is intended to be associated
with either a dispatchable unit or a primary address
space, the valid entries in the list are intended to be
associated with the different programs that are exe­
cuted, in some order, to perform the work of the
dispatchable unit. It is intended that each program
be able to have a particular authority that permits
the use of only those access-list entries that are
associated with the program. The authority being
referred to here is represented by a 16-bit extended
authorization index (EAX) in control register 8.
Other elements used in the related authorization
mechanism are: (1) a private bit in the access-list
entry, (2) an access-list-entry authorization index
(ALEAX) in the access-list entry, and (3) the
authority table (which is the same as in 370-XA).

A program is authorized to use an access-list entry,
in access-register translation, if any of the following
conditions is met:

1. The private bit in the access-list entry is zero.
This condition provides a high-performance
means to authorize any and all programs that
are executed to perform the dispatchable unit.

2. The ALEAX in the access-list entry is equal to
the EAX in control register 8. This condition
provides a high-performance means to
authorize only particular programs.

3. The EAX selects a secondary bit that is one in
the authority table associated with the address
space that is specified by the access-list entry.
The authority table is locatable in that the
access-list entry contains the real address of the
ASN-second-table entry (ASTE) for the address
space, and the ASTE contains the real address of
the authority table. This condition provides
another means, less well-performing than con­
dition 2, for authorizing only particular pro­
grams. However, providing for condition 3 to
be met instead of condition 2 can be advanta­
geous because it permits several programs, each
executed with a different EAX, all to use a single
access-list entry to access a particular address
space.

Chapter 5. Program Execution 5-31

•

Access-register translation tests for the three condi­
tions in the order indicated by their numbers, and a
higher-numbered condition is not tested for if a
lower-numbered condition is met. An exception is
recognized ifnone of the conditions is met.

Access List
I

~1
I

71 PBO,

I

I
I ASTE for Space 36

PBZ ~I'---._----J
I. ASTE for Space 25

ALEAX = 5 ~IL...-___ ----'
I ASTE for Space 62

ALEAX = 19 ~IL-____ --I

Figure 5-8 shows an example of how the authori­
zation mechanism can be used. In the figure,
"PBZ" means that the private bit is zero, and "PBO"

means that the private bit is one.

91 PBO,

I

121 PBO,

I ASTE for Space 17 Authority Table

ALEAX = 5 LI _____ -"f---. S bit selected by I - . EAX 10 is one.
{ {

Program A Program B Program C

~ __ E_A_X_=_0_' __ ~I+-+I~ ___ E_A_X_=_5 __ ~I+-+I~ ___ E_A_X_=_1_0 __ ~

Figure 5-8. Example of Authorizing the Use of Access-List Entries

5-32 ESAj370 Principles of Operation

The figure shows an access list -- assume it is a
dispatchable-unit access list -- in which the entries
of interest are entries 4, 7, 9, and 12. Each access­
list entry contains a private bit, an ALEAX, and the
real address of the ASTE for an address space. The
private bit in entry 4 is zero, and, therefore, the
value of the ALEAX in entry 4 is immaterial and is
not shown. The private bits in entries 7, 9, and 12
are ones, and the ALEAX values in these entries are
as shown. The numbers used to identify the
address spaces (36, 25, 62, and 17) are arbitrary.
They may be the ASNS of the address spaces;
however, ASNS are in no way used in access-register
translation. Only the authority table for address
space 17 is shown. In it, the secondary bit selected
by EAX lOis one. Assume that no secondary bits
are ones in the authority tables for the other spaces.

The figure also shows a sequence of three pro­
grams, named A, B, and c, that is executed to
perform the work of the dispatchable unit associ­
ated with the access list. These programs may be
in the same or different address spaces. The EAX in
control register 8 when each of these programs is
executed is 0, 5, and 10, respectively.

Each of programs A, B, and C can use access-list
entry (ALE) 4 to access address space 36 since the
private bit in ALE 4 is zero. Program B can use
ALE 7 to access space 25 because the ALEAX in the
ALE equals the EAX for the program, and no other
program can use this ALE. Similarly, only program
C can use ALE 9. Program B can use ALE 12
because the ALEAX and EAX are equal, and
program C can use it because c's EAX selects a sec­
ondary bit that is one in the authority table for
space 17.

The example would be the same if programs A, B,

and C were all in the same address space and the
access list were the primary-space access list for that
space.

An ALE in which the private bit is zero may be
called public because the ALE can be used by any
program, regardless of the value of the current EAX.
An ALE in which the private bit is one may be
called private because the ability of a program to
use the ALE depends on the current EAX.

Notes on the Authorization Mechanism: An
access list is a kind of capability list, in the sense in
which the word "capability" is used in computer
science. It is up to the control program to formu­
late the policies that are used to allocate entries in
an access list, and the programmed authorization

checking required during allocation may be very
complex and lengthy. Mter a valid entry has been
made in an access list, the access-register-translation
process enforces the control-program policies in a
well-performing way by means of the authorization
mechanism described above.

U sing access lists has an advantage over using only
ASNs and authority tables. For example, assume
that an access register could contain an ASN and
that access-register translation would do ASN trans­
lation of the ASN and then use the EAX to test the
authority table. This would make the EAX relevant
to all existing address spaces, and, therefore, it
would make the management of EAXs and their
assignment to programs more difficult. With the
actual defmitions of the ALET and access-register
translation, an EAX is relevant to only the address
spaces that are represented in the current
dispatchable-unit and primary-space access lists.
Also, since ASN translation is not done as a part of
access-register translation, the number of concur­
rently existing address spaces, as represented by
ASN-second-table entries, can be greater than the
number of available ASNs (64K).

The extended entry-table entry and linkage stack
can be used to assign EAXs to programs and to
change the EAX in control register 8 during
program linkages. These components are intro­
duced in the section "Linkage-Stack Introduction"
in this chapter.

The SET SECONDARY ASN instruction and the
authorization index (AX), bits 0-15 of control reg­
ister 4 (both of which are in 370-XA), can playa
role in the use of access registers. The space­
switching form of SET SECONDARY ASN (SSAR-SS)
establishes a new secondary address space if the
secondary bit selected by the AX is one in the
authority table associated with the new secondary
space. The secondary space can be addressed by
means of an ALET having the value 00000001 hex.

Revoking Accessing Capability: One final mech­
anism, which is a combined authority and integrity
mechanism, is part of access-register translation,
and it is described in this section.

An access-list entry (ALE) contains an ASN-second­
table-entry sequence number (ASTESN), and so does
the ASTE designated by the ALE when the ASTE is
extended to 64 bytes, as it is when the address­
space-function control is one. During access­
register translation, the ASTESN in the ALE must

Chapter S. Program Execution 5-33

equal the ASTESN in the designated ASTE; other­
wise, an exception is recognized.

When the control program allocates an ALE, it
should copy the ASTESN from the designated ASTE
into the ALE. Subsequently, the control program
can, in effect, revoke the addressing capability
represented by the ALE by changing the ASTESN in
the ASTE. Changing the ASTESN in the ASTE makes .
all previously usable ALEs that designate the ASTE
unusable.

Making an ALE unusable may be required in either
of two cases:

1. Some. element of the control-program policy
for determining the authority of a program to
have access to the address space specified by
the ASTE has changed. This may mean that
some or all of the programs that were author­
ized to the address space, and for which ALES
have been allocated, are no longer authorized.

Changing the ASTESN in the ASTE ends the usa­
bility of all ALES that designate the ASTE. If
this revocation of capability is to be selective,
then, when an exception is recognized because
of unequal ASTESNS, the control program can
reapply its programmed procedures for deter­
mining authorization, and an ALE which should
have remained usable can be made usable again
by copying the new ASTESN into it. When the
usability of an ALE is restored, the control
program normally should cause reexecution of
the instruction that encountered the exception.

2. The ASTE has been reassigned to specify a con­
ceptually different address space, and ALEs
which specified the old address space :r;nust not
be allowed to specify the new one. (Bit 0 of
the ASTE, the Asx-invalid bit, can be set to one
to delete the assignment of the ASTE to an
address space, and this prevents the use of the
ASTE in access-register translation. But after
reassignment, bit 0 normally again is zero.)

The ASTESN mechanism may be regarded as an
authority mechanism in the frrst case above and as
an integrity mechanism in the second.

The ASTESN mechanism is especially valuable
because it avoids the need of the control program
to keep track of the access lists that contain the
ALES that designate each ASTE. Furthermore, it
avoids the need of searching through these access
lists in order to fmd the ALES and set them invalid,
to prevent the use of the ALEs in access-register
translation. The latter activity could be particularly

5-34 ESA/370 Principles of Operation

time-consuming, or could present a particularly dif­
ficult management problem, because the access lists
could be in auxiliary storage, such as a direct-access
storage device, when the need arises to invalidate
the ALEs.

The ASTESN is a four-byte field. Assuming a rea­
sonable frequency of authorization-policy changes
or address-space reassignments, the approximately
four billion possible values of the ASTESN provide a
fail-proof authority or integrity mechanism over the
lifetime of the system.

Improving Translation Performance: Access­
register translation (ART) conceptually occurs each
time a logical address is used to reference a storage
operand in the access-register mode. To improve
performance, ART normally is implemented such
that some or all of the information contained in the
ART tables (access-list-designation sources, access
lists, ASN second tables, and authority tables) is
maintained in a special buffer referred to as the
ART-Iookaside buffer (ALB). The CPU necessarily
refers to an ART-table entry in real storage only for
the initial access to that entry. The information in
the entry may be placed in the ALB, and subsequent
translations may be performed using the informa­
tion in the ALB.

The PURGE ALB instruction can be used to clear all
information from the ALB after a change has been
made to an ART-table entry in real storage.

Access-Register Instructions
The following instructions are provided for exam­
ining and changing the contents :of access registers:

• COPY ACCESS
• EXTRACT ACCESS
• LOAD ACCESS MULTIPLE
• LOAD ADDRESS EXTENDED
• SET ACCESS
• STORE ACCESS MULTIPLE

The SET ACCESS instruction replaces the contents of
a specified access register with the contents of a
specified general register. Conversely, the EXTRACT
ACCESS instruction moves the contents of an access
register to a general register. The co PY ACCESS
instruction moves the contents of one access reg­
ister to another.

The LOAD ACCESS MULTIPLE instruction loads a
specified set of consecutively numbered access regis­
ters from a specified storage location whose length
in words equals the number of access registers

loaded. Conversely, the STORE ACCESS MULTIPLE
instruction function stores the contents of a set of
access registers at a storage location.

The LOAD ADDRESS EXTENDED instruction is
similar to the LOAD ADDRESS instruction in that it
loads a specified general register with an effective
address specified by means of the B, X, and D fields
of the instruction. In addition, LOAD ADDRESS
EXTENDED operates on the access register having
the same number as the general register loaded.
When the address-space control, psw bits 16 and
17, is 00, 10, or 11 binary, LOAD ADDRESS
EXTENDED loads the access register with 00000000,
00000001, or 00000002 hex, respectively. When the
address ·space control is 01 binary, LOAD ADDRESS
EXTENDED loads the target ·access register with a
value that depends on the B field of the instruction.
If the B field is zero, LOAD ADDRESS EXTENDED
loads the target access register with 00000000 hex.
If the B field is nonzero, LOAD ADDRESS
EXTEN D ED loads the target access register with the
contents of the access register designated by the B
field. However, in the last case when bits 0-6 of
the access register designated by the B field are not
all zeros, the results in the target general register
and access register are unpredictable.

The address-space-control values 00, 01, 10, and 11
binary specify primary-space, access-register,
secondary-space, and home-space mode, respec­
tively, when DAT is on. LOAD ADDRESS
EXTENDED functions the same regardless of
whether DAT is on or off.

When used in access-register translation, the access­
register values 00000000 and 00000001 hex specify
the primary and secondary address spaces, respec­
tively, and the value 00000002 hex designates
access-list entry 2. Loading the target access reg­
ister with 00000002 hex when the address-space
control is 11 binary is intended to support assign­
ment, by the control program, of access-list entry 2
as specifying the home address space.

Access-Register Translation
Access-register translation is introduced in the
section "Access-Register-Specified Address Spaces"
in this chapter.

Access-Register-Translation Control

Access-register translation is controlled by an
address-space control, by the address-space­
function (ASF) control in control register 0, and by
controls in control registers 2, 5, and 8. The
address-space control, psw bits 16 and 17, is
described in the section "Translation Modes" in
Chapter 3, "Storage." The other controls are
described below.

Additional controls are located in the access­
register-translation tables.

Address-Space-Functlon Control
Bit 15 of control register 0 is the address-space­
function (ASF) control. This bit must be one when
a SET ADDRESS SPACE CONTROL instruction that is
to set the access-register mode is executed, and
when a BRANCH AND STACK, EXTRACT STACKED
REGISTERS, EXTRACT STACKED STATE, MODIFY
STACKED STATE, PROGRAM RETURN, or TEST
ACCESS instruction is executed; otherwise, a special­
operation exception is recognized.

When the ASF control is one:

• pc-number translation obtains the linkage-table
designation from the primary ASN-second-tab1e
entry by fIrst obtaining the primary-AsTE origin
from control register 5, instead of obtaining the
linkage-table designation from control register
5.

• pc-number translation treats the length of the
entry-table entry as changed from 16 bytes to
32 bytes.

• ASN translation treats the boundary alignment
and length of the ASN-second-table entry as
changed from 16 bytes to 64 bytes.

Access-register translation always treats control reg­
ister 5 as containing the primary-ASTE origin and
always treats the ASN-second-table entry designated
by an access-list entry as being 64 bytes, and, for
these purposes, it does not examine the ASF
control. However, when the ASF control is or has
been zero, erroneous entries may exist in the
ART-Iookaside buffer (ALB), and, therefore, access­
register translation may be performed erroneously;
see the section "Formation of ALB Entries" in this
chapter.

Also when the ASF control is one:

• PROGRAM CALL with space switching may
obtain the address of an ASN-second-table entry

Chapter 5. Program Execution 5-35

from the entry-table entry used, instead of
obtaining it by means of ASN translation.

• LOAD ADDRESS SPACE PARAMETERS, when it
performs PASN translation, and also the space­
switching forms of PROGRAM CALL and
PROGRAM TRANSFER place the origin of the
new primary ASTE in control register 5 instead
of placing a linkage-table designation in that
register. (PROGRAM RETURN requires that the
ASF control be one. A space-switching
PROG RAM RETURN also places the new
primary-ASTE origin in control register 5.)

Control Register 2
The location of the dispatchable-unit control table
is specified in control register 2. The register has
the following format:

II DUCTO

o 1 26 31

Dispatchable-Unit Control Table Origin
(DUCTO): Bits 1-25 of control register 2, with six
zeros appended on the right, form a 31-bit real
address that designates the beginning of the
dispatchable-unit control table. Access-register
translation may obtain the dispatchable-unit access­
list designation from the dispatch able-unit control
table.

Control Register 5
The location of the primary ASN-second-table entry
is specified in control register 5. The register has
the following format:

I I PASTEO

o 1 26 31

Primary-ASTE Origin (PASTEO): Bits 1-25 of
control register 5, with six zeros appended on the
right, form a 3l-bit real address that designates the
beginning of the primary ASN-second-table entry.
Access-register translation may obtain the primary­
space access-list designation from the primary ASTE.
The primary-ASTE origin is set by LOAD ADDRESS
SPACE PARAMETERS when it performs PASN trans­
lation and by the space-switching forms of
PROGRAM CALL, PROGRAM RETURN, and
PROGRAM TRANSFER. When any of these
instructions places the primary-ASTE origin in
control register 5, it also places zeros in bit posi­
tions 0 and 26-31 of control register 5.

5-36 ESA/370 Principles of Operation

When the ASF control is zero, LOAD ADDRESS
SPACE PARAMETERS, PROGRAM CALL, and
PROGRAM TRANSFER treat control register 5 as
containing the linkage-table designation. Access­
register translation treats control register 5 as con­
taining the primary -ASTE origin regardless of the
value of the ASF control.

When control register 5 contains the primary-AsTE
origin, bits 0 and 26-31 of the register are subject to
possible future assignment, and they should not be
depended upon to be zeros.

Control Register 8
The extended authorization index is in control reg­
ister 8. The register has the following format:

EAX I
0, 16

Extended Authorization Index (EAX): Bits 0-15 of
control register 8 are the extended authorization
index. During access-register translation, the EAX
may be compared against the access-list-entry
authorization index (ALEAX) in an access-list entry,

. and it may be used as an index to locate a sec,:
ondary bit in an authority table .. The EAX may be
set by a stacking PROGRAM CALL operation, and it
is restored by PROGRAM RETURN.

Access Registers

There are sixteen 32-bit access registers numbered
0-15. The contents of an access register are called
an access-list-entry token (ALET). An ALET has the
following format:

IG0000G01pI ALESN ALEN

o 7 8 16 31

The fields in the ALET are allocated as follows:

Primary-List Bit (P): When the ALET is not
00000000 or 00000001 hex, bit 7 specifies the access
list to be used by access-register translation. When
bit 7 is zero, the dispatchable-unit access list is
used; this is specified by the dispatchable-unit
access-list designation in the dispatchable-unit
control table designated by the contents of control
register 2. When bit 7 is one, the prim~-space
access list is used; this is specified by the pnmary­
space access-list designation in the primary ASTE
designated by the contents of control register 5.

Access-list-Entry Sequence Number (ALESN):
Bits 8-15 may be used as a check on whether the
access-list entry designated by the ALET has been
invalidated and reallocated since the ALET was
obtained. During access-register translation when
the ALET is not 00000000 or 00000001 hex, bits
8-15 of the ALET are compared against the access­
list-entry sequence number (ALESN) in the desig­
nated access-list entry.

Access-list-Entry Number (ALEN): When the
ALET is not 00000000 or 00000001 hex, bits 16-31
of the ALET designate an entry in either the
dispatchable-unit access list or the primary-space
access list, as determined by bit 7. The access-list
designation that is used is called the. effective
access-list designation; it consists of the effective
access-list origin and the effective access-list length.

During access-register translation, the ALEN, with
four zeros appended on the right, is added to the
31-bit real address specified by the effective access­
list origin, and the result is the real address of the
designated access-list entry. The ALEN is compared
against the effective access-list length to determine
whether the designated access-list entry is within
the list, and an ALEN-translation exception is recog­
nized if the entry is outside the list. Although the
largest possible value of the ALEN is 65,535, an
access list can contain at most 1024 or 4096 entries,
depending on the model.

Bits 0-6 must be zeros during access-register trans­
lation; otherwise, an ALET-specification exception is
recognized.

When the ALET is 00000000 or 00000001 hex, it
specifies the primary or secondary address space,
respectively, and the above format does not apply.

Access register 0 usually is treated in access-register
translation as containing 00000000 hex, and its
actual contents are not examined; the access-register
translation done as part of TEST ACCESS is the only
exception. Access register 0 is also treated as con­
taining 00000000 hex when it is designated by the B

field of LOAD ADDRESS EXTENDED when psw bits
16 and 17 are 01 binary. When access register 0 is

specified for TEST ACCESS or as a source for COPY
ACCESS, EXTRACT ACCESS, or STORE ACCESS MUL­
TIPLE, the actual contents of the access register are
used. Access register 0, like any other access reg­
ister, can be loaded by COPY ACCESS, LOAD ACCESS
MULTIPLE, LOAD ADDRESS EXTENDED, and SET
ACCESS.

Access-Register-Translation Tables

When the ALET being translated is not 00000000 or
00000001 hex, access-register translation performs a
two-level lookup to locate fIrst the effective access­
list designation and then an entry in the effective
access list. The effective access-list designation and
the effective access list reside in real storage.

Access-register translation uses an address in the
access-list entry to locate an ASN-second-table
entry, and it may perform a one-level lookup to
locate an entry in an authority table. The
ASN-second-table entry and the authority table also
reside in real storage.

Authority-table entries are described in the section
"Authority-Table Entries" in Chapter 3, "Storage."
Access-list designations, access-list entries, and
ASN-second-table entries are described in the fol­
lowing sections.

Access-List Designations
When the ALET being translated is not 00000000 or
00000001 hex, access-register translation obtains the
dispatchable-unit access-list designation if bit 7 of
the ALET is zero, or it obtains the primary-space
access-list designation if bit 7 is one. The obtained
access-list designation is called the effective access­
list designation.

The dispatchable-unit access-list designation
(D U ALD) is located in bytes 16-19 of a 64-byte area·
called the dispatchable-unit control table (DUCT).
The DUCT resides in real storage, and its location is
specified by the DUCT origin in control register 2.

The dispatchable-unit control table has the fol­
lowing format:

Chapter 5. Program Execution 5-37

Hex Dec

0 0
4 4
8 8
C 12

10 16

14 20
18 24

1C 28

20 32
I

3C 60 I

DUALD

IIIIIIIIIIIIIIIIIII

Bytes 0-15, 20-27, and 32-63 of the DUCT are
reserved for possible future extensions and should
contain all zeros. Bytes 28-31 are available for use
by programming.

The primary-space access-list desi~ation (PSALD)
is located in bytes 16-19 of a 64-byte area called the
primary ASN-second-table entry. The primary ASTE
resides in real storage, and its location is specified
by the primary-AsTE origin in control register 5.
The format of the primary ASTE is described in the
section "Extended ASN-Second-Table Entries" in
this chapter.

The dispatchable-unit and primary-space access-list
designations both have the same format.

There are two possible formats of the access-list
designation, called format 0 and format 1. A
model implements one or the other of these two
formats but not both; that is, the access-list­
designation format that is available is model­
dependent, and no control is provided by which the
program can specify the format. A model provides
no special indication of the format that it imple­
ments.

The two possible formats of the access-list desig­
nation are as follows.

Format-O Access-List Designation

I I Access~List Origin I ALL

o 1 25 31

The fields in the format-O access-list designation are
allocated as follows:

5-38 ESAj370 Principles of Operation

Access-List Origin: Bits 1-24 of the format-O
access-list designation, with seven zeros appended
on the right, form a 3l-bit real address thatdesig­
nates the beginning of the access list.

Access-List Length (ALL): Bits 25-31 of the
format-O access-list designation specify the length of
the access list in units of 128 bytes, thus making
the length of the access list variable in multiples. of
eight 16-byte entries. The length of the access list,
in units of 128 bytes, is one more than the value in
bit positions 25-31. The access-list length, with six
zeros appended on the left, is compared against bits
0-12 of an access-list-entry number (bits 16-28 of
an access-list-entry token) to determine whether the
access-list-entry number designates an entry in the
access list.

Bit 0 is reserved for a possible future extension and
should be zero.

Format-l Access-List Designation

I I Access-List Origin I ALL

o 1 24 31

The fields in the format-l access-list designation are
allocated as follows:

Access-List Origin: Bits 1-23 of the format-l
access-list designation, with eight zeros appended
on the right, form a 31-bit real address that desig­
nates the beginning of the access list.

Access-List Length (ALL): Bits 24-31 of the
format-1 access-list designation specify the length of
the access list in units of 256 bytes, thus making
the length of the access list variable in multiples of
sixteen 16-byte entries. The length of the access
list, in units of 256 bytes, is one more than the
value in bit positions 24-31. The access-list length,
with four zeros appended on the left, is compared
against bits 0-11 of an access-list-entry number (bits
16-27 of an access-list-entry token) to determine
whether the access-list-entry number designates an
entry in the access list.

Bit 0 is reserved for a possible future extension and
should be zero.

Programming Note: . The maximum number of
access-list entries allowed by a format-O or format-l
access-list designation is 1024 or 4096, respectively.

There are two access lists available for use at any
time. Therefore, if a model implements the
format-O access-list designation, a maximum of
2048 20-byte address spaces can be addressable
without control-program intervention, which is a
total of 4T bytes; and if a model implements the
format-l access-list designation, a maximum of
8192 20-byte address spaces can be addressable
without control-program intervention, which is a
total of l6T bytes.

Access-List Entries
The effective access list is the dispatchable-unit
access list if bit 7 of the ALBT being translated is
zero, or it is the primary-space access list if bit 7 is
one. The entry fetched from the effective access list
is 16 bytes in length and has the following format:

ALEAX

o 1 7 8 16 31

32 63

II ASTE Address

64 90 95

ASTESN

96 127

The fields in the access-list entry are allocated as
follows:

ALEN-Invalid Bit (I): Bit 0, when zero, indicates
that the access-list entry specifies an address space.
When bit 0 is one during access-register translation,
an ALBN-translation exception is recognized.

Private Bit (P): Bit 7, when zero, specifies that
any program is authorized to use the access-list
entry in access-register translation. When bit 7 is
one, authorization is determined as described for
bits 16-31.

Access-list-Entry Sequence Number (ALESN):
Bits 8-15 are compared against the ALBSN in the
ALBT during access-register translation. Inequality
causes an ALE-sequence exception to be recognized.
It is intended that the control program change bits
8-15 each time it reallocates the access-list entry.

Access-list-Entry Authorization Index (ALEAX):
Bits 16-31 may be used to determine whether the
program for which access-register translation is
being performed is authorized to use the access-list
entry. The program is authorized if any of the fol­
lowing conditions is met:

1. Bit 7 is zero.

2. Bits 16-31 are equal to the extended authori­
zation index (BAX) in control register 8.

3. The EAX selects a secondary bit that is one in
the authority table for the specified address
space.

An extended-authority exception is recognized if
none of the conditions is met.

ASN-Second-Table-Entry (ASTE) Address: Bits
65-89, with six zeros appended on the right, form
the 31-bit real address of the ASTB for the specified
address space. Access-register translation obtains
the segment-table designation for the address space
from the ASTB.

ASTE Sequence Number (ASTESN): Bits 96-127
may be used to revoke the addressing capability
represented by the access-list entry. Bits 96-127 are
compared against an ASTB sequence number
(ASTBSN) in the designated ASTB during access­
register translation.

,
Bits 1-6, 32-64, and 90-95 are reserved for possible
future extensions and should be zeros.

In both the dispatchable-unit access list and the
primary-space access list, access-list entries 0 and 1
are intended not to be used in access-register trans­
lation. Bits 1-127 of access-list entry 0 and bits
1-63 of access-list entry 1 are reserved for possible
future extensions and should be zeros. Bit 0 of
access-list entries 0 and 1, and bits 64-127 of access­
list entry 1, are available for use by programming.
The control program should set bit 0 of access-list
entries 0 and 1 to one in order to prevent the use of
these entries by means of ALBTs in which the ALEN
is 0 or 1.

Chapter S. Program Execution 5-39

Extended ASN-Second-Table Entries
When the ASF control is one, the length of each
entry in the ASN second table is extended from 16
bytes to 64 bytes when the table is used in ASN
translation. Also, the ASN second table begins on a
64-byte boundary instead of a 16-byte boundary.
Access-register translation, which does not involve
ASN translation, always treats the ASN-second-table
entry as being 64 bytes on a 64-byte boundary, and
access-register translation does not examine the ASF
control. The frrst 32 bytes of the 64-byte ASTE
have the following format:

ATO

o 1 31

ASTESN

160 191

5-40 ESAj370 Principles of Operation

1....---__ --11
192 223

/////////////////////////////////

224 255

The fields in bit positions 0-127 of the ASTE are
defmed with respect to certain mechanisms and
instructions in the section "AsN-Second-Table
Entries" in Chapter 3, "Storage." With respect to
access-register translation only, the fields in the
ASTE are allocated as follows:

ASX-Invalid Bit (I): Bit 0 controls whether the
address space associated with the ASTE is available.
When bit 0 is zero, access-register translation pro­
ceeds. When the bit is one, an ASTE-validity excep­
tion is recognized.

Authority-Table Origin (ATO): Bits 1-29, with two
zeros appended on the right, form a 31-bit real
address that designates the beginning of the·
authority table. The authority table is accessed in
access-register translation only if the private bit in
the access-list entry is one and the access-list-entry
authorization index (ALEAX) in the access-list entry
is not equal to the extended authorization index
(EAX) in control register 8.

Authorization Index (AX): Bits 32-47 are not used
in access-register translation.

Authority-Table Length (ATL): Bits 48-59 specify
the length of the authority table in units of four
bytes, thus making the authority table variable in
multiples of 16 entries. The length of the authority
table, in units of four bytes, is one more than the
ATL value. The contents of the ATL field are used
to establish whether the entry designated by a par­
ticular EAX falls within the authority table. An
extended-authority exception is recognized if the
entry does not fall within the table.

Segment-Table Designation (STD): Bits 65-95 are
obtained as the result of access-register translation
and are used by DAT to translate the logical address
for the storage-operand reference being made. Bit
64, the space-switch-event control, is not used in or
as a result of access-register translation.

Linkage-Table Designation (LTD): Bits 96-127 are
not used in access-register translation.

Access-List Designation (ALD): When this ASTE
is designated by the primary-ASTE origin in control
register 5, bits 128-159 are the primary-space
access-list designation (PSALD). During access­
register translation when the primary-list bit, bit 7,
in the ALET· being translated is one, the PSALD is
the effective access-list designation. The PSALD is a
format-O ALD or a format-l ALD, depending on the
model.

ASN-Second-Table-Entry Sequence Number
(ASTESN): Bits 160-191 are used to control revo­
cation of the accessing capability represented by
access-list entries that designate the ASTE. During
access-register translation, bits 160-191 are com­
pared against the ASTESN in the access-list en~ry,
and inequality causes an ASTE-sequence exceptIon
to be recognized. It is intended that the control
program change the value of bits 160-191 when. the
authorization policies for the address space specified
by the ASTE change or when the ASTE is reassigned
to specify another address space.

Bits 30, 31, and 60-63 must be zeros during access­
register translation if the authority table is to be
accessed; otherwise, an ASN-translation-specification
exception is recognized.

Bits 84-88 and 192-223 are reserved for possible
future extensions and should be zeros. Bits
224-255 are available for use by programming. The
second 32 bytes of the 64-byte ASTE also are
reserved for possible future extensions and should
contain all zeros.

Access-Register-Translation Process

This section describes the access-register-translation
process as it is performed during a storage-operand
reference in the access-register mode by any instruc­
tion except LOAD REAL ADDRESS, TEST ACCESS,
and TEST PROTECTION. LOAD REAL ADDRESS
when psw bits 16 and 17 are 0 I binary, TEST
ACCESS in any translation mode, and TEST PRO·
TECTION in the access-register mode, perform
access-register translation the same as described
here, except that the following exceptions caus~ a
setting of the condition code instead of bemg
treated as program-interruption conditions:

• ALET specification
• ALEN translation
• ALE sequence

• ASTE validity
• ASTE sequence
• Extended authority

Access-register translation operates on the access
register designated in a storage-operand reference in
order to obtain a segment-table designation for use
by DAT. When one of access-registers 1-15 is desig­
nated, the access-list-entry token (ALET) that is in
the access register is used to obtain the segment­
table designation. When access register 0 is desig­
nated, an ALET having the value 00000000 hex is
used, except that TEST ACCESS uses the actual con­
tents of access register o.

When the ALET is 00000000 or 00000001 hex, the
primary or secondary segment-table designation,
respectively, is obtained.

When the ALET is other than 00000000 or
00000001 hex, the leftmost seven bits of the ALET
are checked for zeros, the primary-list bit in the
ALET and the contents of control register 2 or 5 are
used to obtain the effective access-list designation,
and the access-list entry number (ALEN) in the
ALET is used to select an entry in the effective
access list.

The access-list entry is checked for validity and for
containing the correct access-list-entry sequence
number (ALESN).

The ASN-second-table entry (ASTE) addressed by
the access-list entry is checked for validity and for
containing the correct ASN-second-table-entry
sequence number (ASTESN).

Whether the program is authorized to use the
access-list entry is determined through the use of
one or more of: (1) the private bit and access-list­
entry authorization index (ALEAX) in the access-list
entry, (2) the extended authorization index (EAX)
in control register 8, and (3) an entry in the
authority table addressed by the ASN-second~table
entry.

When no exceptions are recognized, the segment-.
table designation in the ASN-second-table entry is
obtained.

In order to avoid the delay associated with refer­
ences to real storage, the information fetched from
real storage normally is also placed in a special
buffer, the ART-Iookaside buffer (ALB), arid subse­
quent translations involving the same information
may be performed by using the contents of the

Chapter 5. Program Execution 5-41

ALB. The operation of the ALB is described in the
section "ART-Lookaside Buffer" in this chapter.

Whenever access to real storage is made during
access-register translation for the purpose of
fetching an entry from an access-list-designation

5-42 ESAj370 Principles of Operation

source, access list, ASN second table, or authority
table, key-controlled protection does not apply.

The principal features of access-register translation,
including the effect of the ALB, are shown in
Figure 5-9 on page 5-43.

Access-List Designation ALET in Access Register Control Register 1

U_A--rLO_~~~

r Control Register 7 t ~c.ss List

II IplALESNIALEAXI I ASTE Addr·1 ASTESN

1 =91
1

CR 8

I

G ---.

ASN-Second-Tab1e Entry

411 1 1 1 1
----..--"---.--/

~ ____ ~ ____ L-__ ~ ____ ~ __ ~ ____ L-. ______ ~ ______ ~/

(x 1/4) 0--1 ALB

~~ftY rabl.

Obtained STD]

Explanation:

~ The appropriate ALD is obtained:
~ When P in the ALET is zero (and the ALET is not zero or one), the DUALD in the DUCT is obtained.

When P in the ALET is one, the PSALD in the primary ASTE is obtained.

r.J
2

Information, which may include the ALD-source origin, ALET, ALO, and EAX, is used to search
LJ the ALB. This information, along with information from the ALE, ASTE, and ATE, may be

placed in the ALB.

r:l The appropriate STD is obtained:
~ When the ALET is zero, the PSTD in CR 1 is obtained.

When the ALET is one, the SSTD in CR 7 is obtained.
When the ALET is larger than one:

If a match exists, the STD from the ALB is used.
If no match exists, tables from real storage are fetched. The resulting STD from the

ASTE ;s obtained, and entries may be formed in the ALB.

Figure 5-9. Access-Register Translation

Chapter 5. Program Execution 5-43

Selecting the Access-List-Entry Token
When one of access registers 1-15 is designated, or
for the access register designated by the R 1 field of
TEST ACCESS, access-register translation uses the
access-list-entry token (ALET) that is in the access
register. When access register 0 is designated,
except for TEST ACCESS, an ALET having the value
00000000 hex is used, and the contents of access
register 0 are not examined.

Obtaining the Primary or Secondary
Segment-Table Designation
When the ALET being translated is 00000000 hex,
the primary segment-table designation in control
register 1 is obtained. When the ALET is 00000001
hex, the secondary segment-table designation in
control register 7 is obtained. In each of these two
cases, access-register translation is completed.

Checking the First Byte of the ALET
When the ALET being translated is other than
00000000 or 00000001 hex, bits 0-6 of the ALET are
checked for being all zeros. If bits 0-6 are not all
zeros, an ALET-specification exception is recog­
nized, and the operation is suppressed.

Obtaining the Effective Access-List
Designation
The primary-list bit, bit 7, in the ALET is used to
perform a lookup to obtain the effective access-list
designation. When· bit 7 is zero, the effective ALD
is the dispatchable-unit ALD located in bytes 16-19
of the dispatchable-unit control table (DUCT).
When bit 7 is one, the effective ALD is the primary­
space ALD located in bytes 16-19 of the primary
ASN-second-table entry (primary ASTE).

When bit 7 is zero, the real address of the
dispatchable-unit ALD is obtained by appending six
zeros on the right to the DUCT origin, bits 1-25 of
control register 2, and adding 16. The addition
cannot cause a carry into bit position O. The result
is a 3 I-bit real address.

When bit 7 is one, the real address of the primary­
space ALD is obtained by appending six zeros on
the right to the primary-ASTE origin, bits 1-25 of
control register 5, and adding 16. The addition
cannot cause a carry into bit position O. The result
is a 3l-bit real address.

The obtained 3l-bit real address is used to fetch the
effective ALD -- either the dispatchable-unit ALD or
the primary-space ALD, depending on bit 7 of the
ALET. The fetch of the effective ALD appears to be

5-44 ESAj370 Principles of Operation

word-concurrent, as observed by other CPUs, and is
not subject to protection. When the storage
address that is generated for fetching the effective
ALD refers to a location which is not available in
the configuration, an addressing exception is recog­
nized, and the operation is suppressed. When the
primary-space ALD is fetched, bit 0, the
ASX-invalid bit, and bits 30, 31, and 60-63 in the
primary ASTE are ignored.

Access-List Lookup
A lookup in the effective access list is performed.
The effective access list is the dispatchable-unit
access list if bit 7 of the ALET is zero, or it is the
primary -space access list if bit 7 is one.

The access-list-entry-number (ALEN) portion of the
ALET is used to select an entry in the effective
access list. If the format-O ALD is implemented, the
real address of the access-list entry is obtained by
appending seven zeros on the right to bits 1-24 of
the effective ALD and adding the ALEN to this
value. If the format-l ALD is implemented, the real
address of the access-list entry is obtained by
appending eight zeros on the right to bits 1-23 of
the effective ALD and adding the ALEN to this
value. For these additions, the ALEN is extended
with four rightmost zeros and II leftmost zeros. In
either case, a carry, if any, into bit position 0 is
ignored, and the result is a 31-bit real address.

As part of the access-list-lookup process if the
format-O ALD is implemented, the leftmost 13 bits
of the ALEN are compared against the effective
access-list length, bits 25-31 of the effective ALD, to
establish whether the addressed entry is within the
access list. For this comparison, the access-list
length is extended with six leftmost zeros. If the
value formed from the access-list length is less than
the value in the 13 leftmost bits of the ALEN, an
ALEN-translation exception is recognized, and the
operation is nullified. If the format-l ALD is imple­
mented, the leftmost 12 bits of the ALEN are com­
pared against bits 24-31 of the effective ALD. For
this comparison, the access-list length is extended
with four leftmost zeros. If the value formed from
the access-list length is less than the value in the 12
leftmost bits of the ALEN, an ALEN-translation
exception is recognized, and the operation is nulli­
fied.

The 16-byte access-list entry is fetched by using the
real address. The fetch of the entry appears to be
word-concurrent as observed by other cpus, with
the leftmost word fetched frrst. The order in which

the remaining three words are fetched is unpredict­
able. The fetch access is not subject to protection.
When the storage address that is generated for
fetching the access-list entry refers to a location
which is not available in the configuration, an
addressing exception is recognized, and the opera­
tion is suppressed.

Bit 0 of the access-list entry indicates whether the
access-list entry specifies an address space by desig­
nating an ASN-second-table entry. This bit is
inspected, and, if it is one, an ALEN-translation
exception is recognized, and the operation is nulli­
fied.

When bit 0 is zero, the access-list-entry sequence
number (ALESN) in bit positions 8-15 of the access­
list entry is compared against the ALES N in the
ALET to determine whether the ALET designates the
conceptually correct access-list entry. Inequality
causes an ALE-sequence exception to be recognized
and the operation to be nullified.

Locating the ASN-Second-Table Entry
The ASN-second-table-entry (ASTE) address in the
access-list entry is used to locate the ASTE. Bits
65-89 of the access-list entry, with six zeros
appended on the right, fonn the 31-bit real address
of the ASTE.

The 64-byte ASTE is fetched by using the real
address. The fetch of the entry appears to be word­
concurrent as observed by other cpus, with the left­
most word fetched frrst. The order in which the
remaining words are fetched is unpredictable. The
fetch access is not subject to protection. When the
storage address that is generated for fetching the
ASTE refers to a location which is not available in
the configuration, an addressing exception is recog­
nized, and the operation is suppressed.

Bit 0 of the ASTE indicates whether the ASTE speci­
fies an address space. This bit is inspected, and, if
it is one, an ASTE-validity exception is recognized,
and the operation is nullified.

When bit 0 is zero, the ASTE sequence number
(ASTESN) in bit positions 160-191 of the ASTE is
compared against the ASTESN in bit positions
96-127 of the access-list entry to determine whether
the addressing capability represented by the access­
list entry has been revoked. Inequality causes an
ASTE-sequence exception to be recognized and the
operation to be nullified.

Authorizing the Use of the Access-List
Entry
The private bit, bit 7, in the access-list entry is used
to determine whether the program is authorized to
use the access-list entry. The access-list-entry
authorization index (ALEAX) in bit positions 16-31
of the access-list entry, the extended authorization
index (EAX) in bit positions 0-15 of control register
8, and the authority table designated by the ASTE
may also be used.

When the private bit is zero, the program is author­
ized, and the authorization step of access-register
translation is completed.

When the private bit is one but the ALEAX is equal
to the EAX, the program is authorized, and the
authorization step of access-register translation is
completed.

When the private bit is one and the ALEAX is not
equal to the EAX, bits 30,31, and 60-63 of the ASTE
must be zeros; otherwise, an ASN-translation­
specification exception is recognized, and the opera­
tion is suppressed.

When the private bit is one and the ALEAX is not
equal to the EAX, a process called the extended­
authorization process is perfonned. Extended
authorization uses the EAX to select an entry in the
authority table designated by the ASTE, and it tests
the secondary -authority bit in the selected entry for
being one. The program is authorized if the tested
bit is one.

Extended authorization is the same as the sec­
ondary-AsN-authorization process described in the
section "ASN Authorization" in Chapter 3,
"Storage," except as follows:

• The EAX in control register 8 is used instead of
the authorization index (AX) in control register
4.

• When the value in bit positions 0-11 of the
EAX is greater than the authority-table length
(ATL) in the ASTE, an extended-authority excep­
tion is recognized instead of a secondary­
authority exception. The operation is nullified
if the extended-authority exception is recog­
nized.

When the private bit is one, the ALEAX is not equal
to the EAX, and the secondary bit in the authority­
table entry selected by the EAX is not one, an
extended-authority exception is recognized, and the
operation is nullified.

Chapter 5. Program Execution 5-45

Obtaining the Segment-Table
Designation from the ASN-Second-Table
Entry
When the ALET being translated is other than
00000000 . or 0000000 I hex and no exception is
recognized in the steps described above, access­
register translation obtains the segment-table desig­
nation from bit positions 65-95 of the ASTE. Bit 64
of the ASTE, the space-switch-event control, is
ignored.

Recognition of Exceptions During
Access-Register Translation
The exceptions which can be encountered during
the access-register-translation process and their pri-
0rity are shown in the section "Access Exceptions"
in Chapter 6, "Interruptions."

Programming Note: When updating an access-list
entry or ASN -second-table entry, the program
should change the entry from invalid to valid (set
bit 0 of the entry to zero) as the last step of the
updating. This ensures, because the leftmost word
is fetched fIrst, that words of a partially updated
entry will not be fetched.

ART -Lookaside Buffer

To enhance performance, the access-register­
translation (ART) mechanism normally is imple­
mented such that access-list designations and infor­
mation specified in access lists, ASN second tables,
and authority tables are maintained in a special
buffer, referred to as the ART-Iookaside buffer
(ALB). Access-list designations, access-list entries,
ASN-second-table entries, and authority-table
entries are collectively referred to as ART-table
entries. The CPU necessarily refers to an ART-table
entry in real storage only for the initial access to
that entry. The information in the entry may be
placed in the ALB, and subsequent ART operations
may be performed using the information in the
ALB. The presence of the ALB affects the ART
process to the extent that a modification of an
ART-table entry in real storage does not necessarily
have an immediate effect, if any, on the translation.
In a multiple-cpu configuration, each CPU has its
own ALB.

Entries within the ALB are not explicitly addressable
by the program.

Information is not necessarily retained in the ALB
under all conditions for which such retention is
possible. Furthermore, information in the ALB

5-46 ESA/370 Principles of Operation

may be cleared under conditions additional to those
for which clearing is mandatory.

ALB Structure
The description of the logical structure of the ALB
covers the implementation by all systems operating
as defmed by ESA/370. The ALB entries are consid­
ered as being of four types: ALB access-list desig­
nations (ALB ALDS), ALB access-list entries (ALB
ALES), ALB ASN-second-table entries (ALB ASTES),
and ALB authority-table entries (ALB ATES). An
ALB entry is considered as containing within it both
the information obtained from the ART-table entry
in real storage and the attributes used to fetch the
ART-table entry from real storage, as follows:

ALB ALD:

ALDSO

ALO

ALL

ALB ALE:

The access-list-designation-source
origin used to select the ALD in real
storage; this is either the dispatchable­
unit-control-table ongm or the
priinary~AsTE origin, depending on the
value of the primary-list bit in the
ALET that was - translated when the
ALB ALD was formed

The access-list origin fetched from the
ALD in real storage

The access-list length fetched from the
ALD in real storage

ALO The access-list origin used to select the
ALE in real storage

ALET The access-list-entry token used to
select the ALE in real storage

P The private bit fetched from the ALE
in real storage

ALEAX

ASTE

ASTESN

The ALE authorization index fetched
from the ALE in real storage

The ASTE address fetched from the
ALE in real storage

The ASTE sequence number fetched
from the ALE in real storage

ALB ASTE:

ASTE Addr. The ASTE address used to select the
ASTE in real storage

ASTESN The ASTE sequence number fetched
from the ASTE in real storage

ATO The authority-table origin fetched
from the ASTE in real storage

ATL The authority-table length fetched
from the ASTE in real storage

STD The segment-table designation fetched
from the ASTE in real storage

ALB ATE:

ATO The authority-table origin used to
select the ATE in real storage

EAX The extended authorization index used
to select the ATE in real storage

S The secondary bit fetched from the
ATE in real storage

There is not an indication in an ALB ALD of
whether the ALD-source origin used to select the
ALD in real storage was the dispatchable-unit­
control-table origin or the primary-ASTE origin.

Note: The following sections describe the condi­
tions under which information may be placed in
the ALB, the conditions under which information
from the ALB may be used for access-register trans­
lation, and how changes to the tables affect the ART
process.

Formation of ALB Entries
The formation of ALB entries and the effect of any
manipulation of an ART-table entry in real storage
by the program depend on whether the ART-table
entry is attached to a particular CPU and on
whether the entry is valid.

The attached state of an ART-table entry denotes
that the CPU to which the entry is attached can
attempt to use the entry for access-register trans-

lation. The ART-table entry maybe attached to
more than one CPU at a time.

An access-list entry or ASN-second-table entry is
valid when the invalid bit associated with the entry
is zero. Access-list designations and authority-table
entries have no invalid bit and are always valid.
The primary-space access-list designation is valid
regardless of the value of the invalid bit in the
primary ASTE.

An ART-table entry may be placed in the ALB
whenever the entry is attached and valid.

An access-list designation is attached to a CPU
when the designation is within the dispatchable­
unit control table specified by the dispatchable­
unit-control-table origin in control register 2 or is
within the primary ASTE specified by the
primary-ASTE origin in control register 5. Control
register 5 is considered to contain the primary-ASTE
origin regardless of the value of the address-space­
function (ASP) control, bit 15 of control register 0;
however, see the note below.

An access-list entry is attached to a CPU when the
entry is within the access list specified by either an
ALB ALD or an attached ALD.

An ASN-second-table entry is attached to a CPU
when it is designated by the ASTE address in either
an ALB ALE or an attached and valid ALE.

An authority-table entry is attached to a CPU when
it is within the authority table designated by either
an ALB ASTE or an attached and valid ASTE.

Note: During the execution of a PROGRAM CALL,
PROGRAM TRANSFER, or LOAD ADDRESS SPACE
PARAMETERS instruction that loads control register
5 when the ASF control is zero, an unpredictable
access-list-designation (ALD) may be placed in the
ALB. This unpredictable ALB ALD may then be
used at any time to place other entries (ALE, ASTE,
and ATE) in the ALB. If access-register translation
uses any of these erroneous. ALB entries, the results
are unpredictable. These specific erroneous entries
are removed from the ALB either by clearing the
entire ALB or by the execution of (1) a PROGRAM
CALL, PROGRAM RETURN, PROGRAM TRANSFER,
or LOAD ADDRESS SPACE PARAMETERS instruction
that loads control register 5 when the ASF control is
one, or (2) a LOAD CONTROL instruction that loads
control register 5, regardless of the value of the ASF
control.

Chapter 5. Program Execution 5-47

Use of ALB Entries
An ALB ALD may be used for ART when either of
the following conditions is met:

1. The primary-list bit in the ALET to be trans­
lated is zero, and the ALDSO field in the ALB
ALD matches the current dispatchable-unit­
control-table origin.

2. The primary-list bit in the ALET to be trans­
lated is one, and the ALDSO field in the ALB
ALD matches the current primary -ASTE origin.

An ALB ALE may be used for ART only when all of
the following conditions are met:

1. The ALET to be translated has a value larger
than 1. (If the ALET is 0 or 1, the contents of
CR 1 or CR 7 are used.)

2. The ALO field in the ALB ALE matches the ALO
field in the ALD or ALB ALD being used.

3. The ALET field in the ALB ALE matches the
ALET to be translated.

4. The ALB ALE passes the ALE authorization test;
that is, one of the following conditions is true:

• The private bit in the ALB ALE is zero.

• The ALEAX in the ALB ALE equals the
current EAX.

• The current EAX selects a secondary bit
that is one in the authority table designated
by the ASTE that is addressed by the ALB
ALE.

An ALB ASTE may be used for ART whenever the
ASTE address and ASTE sequence number in the
ALB ASTE match the ASTE address and ASTE
sequence number in the ALE or ALB ALE being
used.

An ALB ATE may be used for ART when both of
the following conditions are met:

1. The ATO in the ALB ATE matches the ATO in
the ASTE or ALB ASTE being used.

2. The EAX in the ALB ATE matches the current
EAX.

Modification of ART Tables
When an attached but invalid ART-table entry is
made valid, or when an unattached but valid
ART-table entry is made attached, and no usable
entry formed from the ART-table entry is already in
the ALB, the change takes effect no later than the
end of the current instruction.

5-48 ESAj370 Principles of Operation

When an attached and valid ART-table entry is
changed, and when, before the ALB is cleared of
copies of that entry, an attempt is made to perform
ART requiring that entry, unpredictable results may
occur, to the following extent. The use of the new
value may begin between instructions or during the
execution of an instruction, including the instruc­
tion that caused the change. Moreover, until the
ALB is cleared of copies of the entry, the ALB may
contain both the old and the new values, and it is
unpredictable whether the old or new value is
selected for a particular ART operation. If the old
and new values are used as representations of effec­
tive space designations, failure to recognize that the
effective space designations are the same may
occur, with the result that operand overlap may not
be recognized. Effective space designations and
operand overlap are discussed in the section "Jnter­
locks Within a Single Instruction" in this chapter.

When LOAD ACCESS MULTIPLE or LOAD CONTROL
changes the parameters associated with ART, the
values of these parameters at the start of the opera­
tion are in effect for the duration of the operation.

All entries are cleared from the ALB by the exe­
cution of PURGE ALB and SET PREFIX and by CPU
reset.

Linkage-Stack Introduction
Many of the functions related to the linkage stack
are described in this section and in the section
"Linkage-Stack Operations" in this chapter. Addi­
tionally, tracing of the stacking PROGRAM CALL
instruction and of the PROGRAM RETURN instruc­
tion is described in Chapter 4, "Control"; inter­
ruptions in Chapter 6, "Interruptions"; and the
instructions in Chapter 10, "Control Instructions."

Summary

These major functions are provided:

1. A table-based subroutine-linkage mechanism
that provides increased (compared to 370-XA)
psw and control-register status changing and
which saves and restores this status and the
contents of general registers and access registers
through the use of an entry in a linkage stack.

2. A new branch-type linkage mechanism that
uses the linkage stack.

3. Instructions for placing an additional two
words of status in the current linkage-stack

entry and for retrieving all of the status and the
general-register and access-register contents that
are in the entry.

4. An instruction for detennining whether. a
program is authorized to use a particular
access-list-entry token.

5. Aids for program-problem analysis.

In addition, control and authority mechanisms are
incorporated to control these functions.

It is intended that a separate linkage stack be asso­
ciated with and used by each dispatchable unit.
The linkage stack for a dispatchable unit resides in
the home address space of the dispatchable unit.

It is intended that .a dispatchable unit's linkage
stack be protected from the dispatchable unit by
means of key-controlled protection. Key-controlled
protection does not apply to the linkage-stack
instructions that place information in or retrieve
information from the linkage stack.

The linkage-stack functions are for use by programs
considered to be semiprivileged, that is, programs
which are executed in the problem state but which
are authorized to use additional functions. With
these authorization controls, a nonhierarchical
organization of programs may be established, with
each program in a sequence of calling and called
programs having a degree of authority that is arbi­
trarily different from those of programs before or
after it in the sequence. The range of functions
available to each program, and the ability to
transfer control from one program to another, are
prescribed in tables that are managed by the control
program.

The linkage-stack instructions, which are semiprivi­
leged, are described in Chapter 10, "Control
Instructions. " They are:

• BRANCH AND STACK

• EXTRACT STACKED REGISTERS

• EXTRACT STACKED STATE

• MODIFY STACKED STATE

• PROGRAM RETURN

• TEST ACCESS

In addition, the PROGRAM CALL instruction is
changed (relative to 370-XA) to optionally form an
entry in the linkage stack. A PROGRAM CALL that
operates on the linkage stack is called a stacking
PROGRAM CALL. Recognition of a PROGRAM

CALL as a stacking PROGRAM CALL is under the

control of a bit in a 32-byte entry-table entry. The
entry-table entry is extended in length from 16
bytes to 32 bytes when the address-space-function
(ASF) control, bit 15 of control register 0, is one.

Linkage-Stack Functions

Transferring Program Control
The use of the linkage stack permits programs
operating at arbitrarily different levels of authority
to be linked directly without the intervention of the
control program. The degree of authority of each
program in a sequence of calling and called pro­
grams may be arbitrarily different, thus allowing a
nonhierarchical organization of programs to be
established. Modular authorization control can be
obtained principally by associating an extended
authorization index with each program module.
This allows program modules with different author­
ities to coexist in the same address space. On the
other hand, the extended authorization index in
effect during the execution of a called program
module can be the one that is associated with the
calling program module, thus allowing the called
module to be executed with different authorities on
behalf of different dispatchable units. Options con­
cerning the psw-key mask and the secondary ASN

are other means of associating different authorities
with different programs or with the same called
program. The authority of each program is pre­
scribed in tables that are managed by the control
program. By setting up the tables so that the same
program can be called by means of different PC

numbers, the program can be assigned different
authorities depending on which PC number is used
to call it. The tables also allow control over which
PC numbers can be used by a program to call other
programs.

The stacking PROGRAM CALL and PROGRAM

RETURN linkage operations can link programs
residing in different address spaces and having dif­
ferent levels of authority. The execution state and
the contents of the general registers and access reg­
isters are saved during the execution of stacking
PROG RAM CALL and are partially restored during
the execution of PROGRAM RETURN. A linkage
stack provides an efficient means of saving and
restoring both the execution state and the contents
of registers during linkage operations. The avail­
ability of the linkage stack is controlled by the ASF

control in control register O. When the linkage
stack is not available, these two linkage operations
cannot be performed.

Chapter 5. Program Execution 5-49

During the execution of a PROGRAM CALL instruc­
tion, the pc-number-translation process is per­
formed to locate a 16-byte or 32-byte entry-table
entry, as determined by the ASF control. When a
32-byte entry-table entry is located and a bit,
named the pc-type bit, in the entry-table entry is
one, the stacking PROGRAM CALL operation is
specified; otherwise, the basic PROGRAM CALL
operation (the 370-XA operation) is specified.

In addition to the entry information specified in the
16-byte entry-table entry, the 32-byte entry-table
entry further contains infonnation that specifies
options concerning the address-space control and
psw key in the PSW, and the psw-key mask,
extended authorization index, and secondary ASN in
the control registers.

During the stacking PROGRAM CALL operation and
by means of the additional infonnation in the
entry-table entry, the address-space control in the
psw can be set to specify either the primary-space
mode or the access-register mode. The psw key
can be either left unchanged or replaced from the
entry-table entry. The psw-key mask in control
register 3 can be either 0 Red to from or replaced
from the entry-table entry. The extended authori­
zation index in control register 8 can be either left
unchanged or replaced from the entry-table entry.
The secondary ASN in control register 3 can be set
equal to the primary ASN of either the calling
program or the called program; thus, the ability of
the called program to have access to the primary
address space of the calling program can be con­
trolled.

The stacking PROGRAM CALL operation always
forms an entry, called a state entry, in the linkage
stack to save the execution state and the contents
of general registers 0-15 and access registers 0-15.
The saved execution state includes the PC number
used, the updated psw before any changes are made
due to the entry-table entry, and the extended
authorization index, psw-key mask, primary ASN,
and secondary ASN existing before the operation.
However, the value of the PER mask in the saved
updated psw is unpredictable. The linkage-stack
state entry also contains an entry-type code that
identifies the entry as one that was formed by
PROGRAM CALL.

A space-switching operation occurs when the
address-space number (ASN) specified in the entry­
table entry is nonzero. When space switching
occurs, the operation is called PROGRAM CALL with

5-50 ESAj370 Principles of Operation

space switching (pc-ss). When no space switching
occurs, the operation is called PROGRAM CALL to
current primary (pc-cp).

PROGRAM CALL with space switching performs ASN
translation of the new primary ASN to obtain a new
primary segment;.table designation, which it places
in control register 1. It sets the secondary segment­
table designation in control register 7 equal to
either the old primary segment-table designation or
the new one, depending on whether it set the sec­
ondary ASN equal to the old primary ASN or the
new one, respectively. PROGRAM CALL to current
primary sets the secondary AS N equal to the
primary ASN and the secondary segment-table des­
ignation equal to the primary segment-table desig­
nation.

The instruction PROGRAM RETURN restores most
of the information saved in the linkage stack by the
stacking PROG RAM CALL operation. It restores the
psw, extended authorization index, psw-key mask,
primary ASN, secondary ASN, and the contents of
general registers 2-14 and access-registers 2-14.
However, the PER mask in the current psw remains
unchanged, and the resulting condition code is
unpredictable. The operation of PROGRAM
RETURN is referred to by saying that PROGRAM
RETU RN unstacks a state entry.

For PROGRAM RETURN, a space-switching opera­
tion occurs when the restored primary AS N is not
equal to the primary ASN existing before the opera­
tion. When space switching occurs, the operation
is called PROGRAM RETURN with space switching
(PR-SS). When no space switching occurs, the
operation is called PROGRAM RETURN to current
primary (PR-Cp).

PROGRAM RETURN with space switching performs
AS N translation of the restored primary AS N to
obtain a new primary segment-table designation,
which it places in control register 1. For PROGRAM
RETURN with space switching or to current
primary, (1) if the restored secondary ASN is the
same as the restored primary ASN, the secondary
segment-table designation in control register 7 is set
equal to the new primary segment-table designation
in control register 1, or (2) if the the restored sec­
ondary ASN is not the same as the restored primary
ASN, ASN translation and ASN authorization of the
restored secondary ASN are performed to obtain a
new secondary segment-table designation, which is
placed in control register 7.

The stacking PROGRAM CALL operation and the
PROGRAM RETURN operation each can. be per­
fonned successfully only in the primary-space mode
or access-register mode. An exception is recognized
when the CPU is in the real mode, secondary-space
mode, or home-space mode.

A bit, named the unstack-suppression bit, can be
set to one in a linkage-stack state entry to cause an
exception if an attempt is made by PROGRAM

RETURN to unstack the entry. When the bit is one,
. the entry still can be operated on by the

instructions that add infonnation to or retrieve
infonnation from the entry. The unstack­
suppression bit is intended to allow the control
program to gain control when an attempt is made
to unstack a state entry in which the bit is one.

Branching Using the Linkage Stack
The execution state and the contents of the general
registers and access registers can also be saved in
the linkage stack by means of the instruction
BRANCH AND STACK. BRANCH AND STACK uses a
branch address as do the other branching
instructions, instead of using a PC number.
BRANCH AND STACK, along with PROGRAM

RETURN, can link programs residing in the same
address space and having the same level of
authority; that is, BRANCH AND STACK does not
change the execution state except for the instruc­
tion address.

BRANCH AND STACK fonns a linkage-stack state
entry that is almost the same as one fonned by
PROGRAM CALL. When it is necessary to distin­
guish between these two types of state entry, an
entry fonned by PROGRAM CALL is called a
program-call state entry, and one fonned by
BRANCH AND STACK is called a branch state entry.
A branch state entry differs from a program-call
state entry in two ways: (I) it contains a different
entry-type code, which identifies it as a branch state
entry, and (2) it contains the new value of bits
32-63 of the current PSW, the addressing mode and
the branch address, instead of a PC number. The
new value of psw bits 32-63 is in addition to the
complete psw that is saved in the state entry.

For BRANCH AND STACK, the addressing mode and
instruction address that are part of the complete
psw saved in the state entry can be the current
addressing mode and the updated instruction
address (the address of the next sequential instruc­
tion) , or they can be specified in a register. This
register can be one that had link infonnation placed
in it by a BRANCH AND LINK (BALR only),

BRANCH AND SAVE, BRANCH AND SAVE AND SET

MODE, or BRANCH AND SET MODE instruction.
Thus, BRANCH AND STACK can be used either in a
calling program or at (or near) the entry point of a
called program, and, in either case, a PROGRAM

RETURN instruction located at the end of the called
program will return correctly to the calling
program. The ability to use BRANCH AND STACK

at an entry point allows the linkage stack to be
used without changing old calling programs.

When the R2 field of BRANCH AND STACK is zero,
the instruction 1S executed without causing
branching.

When PROGRAM RETURN unstacks a branch state
entry, it ignores the extended authorization index,
psw-key mask, primary ASN, and secondary ASN in
the entry. The PROGRAM RETURN instruction
restores the psw and the contents of general regis­
ters 2-14 and access registers 2-14 that were saved
in the entry. However, the PER mask in the current
psw remains unchanged, and the resulting condi­
tion code is unpredictable.

BRANCH AND STACK can be executed successfully
only in the primary-space mode or access-register
mode. An exception is recognized when the CPU is
in the real mode, secondary-space mode, or home­
space mode.

The unstack -suppression bit has the same effect in
a branch state entry as it does in a program-call
state entry.

Adding and Retrieving Information
The instruction MODIFY STACKED STATE can be
used by a program to place two words of infonna­
tion, contained in a designated general-register pair,
in the current linkage-stack state entry (a branch
state entry or a program-call state entry). This is
intended to allow a called program to establish a
recovery routine that will be given control by the
control program, if necessary.

The instructions EXTRACT STACKED REGISTERS

and EXTRACT STACKED STATE can be used by a
program to obtain any of the infonnation saved in
the current state entry by BRANCH AND STACK or
PROGRAM CALL or placed there by MODIFY

STACKED STATE. EXTRACT STACKED REGISTERS

places the contents of a specified range of general
registers and access registers back in the registers
from which the contents were saved. EXTRACT

STACKED STATE obtains any pair of words of the

Chapter 5. Program Execution 5-51

nonregister infonnation saved or placed in a state
entry and places them in a designated general­
register pair. EXTRACT STACKED STATE sets the
condition code to indicate whether the current state
entry is a branch state entry or a program -call state
entry.

Testing Authorization
The instruction TEST ACCESS has as operands an
access-list-entry token (ALET) in a designated access
register and an extended authorization index (EAX)
in a designated general register. TEST ACCESS
applies the access-register-translation process, which
uses the specified EAX instead of the current EAX in
control register 8, to the ALET, and it sets the con­
dition code to indicate the result. The condition
code may indicate: (I) the ALET is 00000000 hex,
(2) the ALET designates an entry in the
dispatchable-unit access list and can be translated
without exceptions in access-register translation,
(3) the ALET designates an entry in the primary­
space access list and can be translated without
exceptions in access-register translation, or (4) the
ALET is 00000001 hex or causes exceptions in
access-register translation.

The principal purpose of TEST ACCESS is to allow a
called program to determine whether an ALET
passed to it by the calling program is authorized for
use by the calling program by means of the calling
program's EAX. This is in support of a possible
programming convention in which a called program
will not operate on an AR-specified address space
by means of its own EAX unless the calling program
is authorized to operate on that space by means of
the calling program's EAX. The called program can
obtain the calling program's EAX, for use by TEST
ACCESS, from the current linkage-stack state entry
by means of the EXTRACT STACKED STATE instruc­
tion.

Another purpose of TEST ACCESS is to indicate the
special cases in which the ALET is 00000000 hex,
designating the primary address space, or 0000000 I
hex, designating the secondary address space.
Because PROGRAM CALL may change the primary
and secondary address spaces, ALETS 00000000 hex
and 00000001 hex may designate different address
spaces when used by the called program than when
used by the calling program.

Still another purpose of TEST ACCESS is to indicate
whether the ALET designates an entry in the
primary-space access list since such a designation

5-52 ESA/370 Principles of Operation

after the primary address space was changed by a
space-switching program-linkage operation may be
an error.

Program-Problem Analysis
To aid program-problem analysis, the option is
provided of having a trace entry made implicitly for
three additional linkage operations when the
linkage stack is used. When branch tracing is on, a
trace entry is made each time a BRANCH AND
STACK instruction is executed and causes
branching. When ASN tracing is on, a trace entry is
made each time the stacking PROGRAM CALL oper­
ation is perfonned and each time PROGRAM
RETURN unstacks a linkage-stack state entry fonned
by PROGRAM CALL. A detailed defInition of
tracing is contained in the section "Tracing" in
Chapter 4, "Control."

As a further analysis aid, BRANCH AND STACK
when it causes branching, stacking PROGRAM
CALL, and PROGRAM RETURN are also recognized
as PER successful-branching events. For PROGRAM
RETURN, the unstacked state entry may have been
formed by BRANCH AND STACK or PROGRAM
CALL.

The execution of a space-switching stacking
PROGRAM CALL or PROGRAM RETURN instruction
causes a space-switch event if the primary space­
switch-event control is one before or after the oper­
ation or if a PER evept is to be indicated.

Extended Entry-Table Entries
When the address-space-function (ASF) control, bit
15 of control register 0, is one, the entry-table entry
is extended in length from 16 bytes to 32 bytes. Bit
128 of the 32-byte entry-table entry specifies
whether the basic or the stacking PROGRAM CALL
operation is to be performed, and bit positions
131-139 and 144-159 contain infonnation that is
used only if stacking is specified.

This section describes the use of the 32-byte entry­
table entry in both the basic and the stacking
PROGRAM CALL· operations. The description here
of the use in the basic PROGRAM CALL operation is
the same as the description in the section "Entry­
Table Entries" in this chapter.

The 32-byte entry-table entry has the following
fonnat:

Authorization Key Mask ASN

9 16 31

Entry Instruction Address

32 63

Entry Parameter

64 95

Entry Key Mask

96 112 127

Entry Ext. Auth. Index

128 131 136 140 144 159

II ASTE Address

169 186 191

192 223

224 255

The fields in the 32-byte entry-table entry are allo­
cated as follows:

Authorization Key Mask: Bits 0-15 are used to
verify whether the program issuing the PROGRAM
CALL instruction, when in the problem state, is
authorized to call this entry point. The authori­
zation key mask and the current psw-key mask in
control register 3 are ANDed, and the result is
checked for all zeros. If the result is all zeros, a
privileged-operation exception is recognized. The
test is not performed in the supervisor state.

ASN: Bits 16-31 specify whether a pc-ss or Pc-cp
is to occur. When bits 16-31 are all zeros, a pc-cp
is specified. When bits 16-31 are not all zeros, a
pc-ss is specified, and the bits are the ASN that
replaces the primary ASN.

Entry Addressing Mode (A): Bit 32 replaces the
addressing-mode bit, bit 32 of the current psw, as
part of the PROGRAM CALL operation. When bit
32 is zero, bits 33-39 must also be zeros; otherwise,
a pc-translation-specification exception is recog­
nized.

Entry Instruction Address: Bits 33-62, with a zero
appended on the right, form the instruction address
that replaces the instruction address in the psw as
part of the PROGRAM CALL operation.

Entry Problem State (P): Bit 63 replaces the
problem-state bit, bit 15 of the current psw, as part
of the PROGRAM CALL operation.

Entry Parameter: Bits 64-95 are placed in general
register 4 as part of the PROG RAM CALL operation.

Entry Key Mask: Bits 96-111 are oRed into the
psw-key mask in control register 3 when bit 132,
the psw-key-mask control, is zero, or replace the
psw-key mask in control register 3 when bit 132 is
one, as part of the stacking PROGRAM CALL opera­
tion. Bits 96-111 are oRed into the psw-key mask
as part of the basic PROGRAM CALL operation.

PC-Type Bit (T): Bit 128, when one, specifies that
the PROGRAM CALL instruction is to perform the
stacking PROGRAM CALL operation. When this bit

/ is zero, PROGRAM CALL performs the basic
PROGRAM CALL operation.

PSW-Key Control (K): Bit 131, when one, speci­
fies that bits 136-139 are to replace the psw key in
the psw as part of the stacking PROGRAM CALL
operation. When this bit is zero, the psw key
remains unchanged. Bit 131 is ignored during the
basic PROG RAM CALL operation.

PSW-Key-Mask Control (M): Bit 132, when one,
specifies that bits 96-111 are to replace the psw-key
mask in control register 3 as part of the stacking
PROGRAM CALL operation. When this bit is zero,
bits 96-111 are oRed into the psw-key mask in
control register 3 as part of the stacking PROG RAM
CALL operation. Bit 132 is ignored during the basic
PROG RAM CALL operation.

Chapter 5. Program Execution 5-53

Extended-Authorization-Index Control (E): Bit
133, when one, specifies that bits 144-159 are to
replace the current extended authorization index in
control register 8 as part of the stacking PROGRAM
CALL operation. When this bit is zero, the current
extended authorization index remains unchanged.
Bit 133 is ignored during the basic PROGRAM CALL
operation.

Address-Space-Control Control (e): Bit 134,
when one, specifies that bit 17 of the current psw is
to be set to one as part of the stacking PROGRAM
CALL operation. When this bit is zero, bit 17 is set
to zero. Because the CPU must be in either the
primary-space mode or the access-register mode
when a stacking PROGRAM CALL instruction is
issued, the result is that the CPU is placed in the
access-register mode if bit 134 is one or the
primary-space mode if bit 134 is zero. Bit 134 is
ignored during the basic PROGRAM CALL operation.

Secondary-ASN Control (S): Bit 135, when one,
specifies that bits 16-31 are to become the new sec­
ondary ASN, and the new SSTD is to be set equal to
the new PSTD, as part of the stacking PROGRAM
CALL with space switching (pc-ss) operation.
When this bit is zero, the new SASN and SSTD are
set equal to the PASN and PSTD, respectively, of the
calling program. Bit 135 is ignored during the basic
PROGRAM CALL operation and the stacking
PROGRAM CALL to-current-primary (Pc-cp) opera­
tion.

Entry Key (EK): Bits 136-139 replace the psw key
in the psw as part of the stacking PROGRAM CALL
operation if the psw-key control, bit 131, is one.
Bits 136-139 are ignored and the current psw key
remains unchanged if bit 131 is zero. Bits 136-139
are ignored during the basic PROGRAM CALL opera­
tion.

Entry Extended Authorization Index: Bits 144-159
replace the current extended authorization index,
bits 0-15 of control register 8, as part of the
stacking PROGRAM CALL operation if the extended­
authorization-index control, bit 133, is one. Bits
144-159 are ignored and the current extended
authorization index remains unchanged if bit 133 is
zero. Bits 144-159 are ignored during the basic
PROG RAM CALL operation.

ASTE Address: When bits 16-31 are not all zeros,
bits 161-185, with six zeros appended on the right,
form the real ASN-second-table-entry (ASTE)
address that should result from applying the
ASN-translation process to bits 16-31. It is unpre-

5-54 ESAj370 Principles of Operation

dictable whether pc-ss uses bits 161-185 or uses
ASN translation to obtain the ASTE address.

Bits 33-39 must be zeros when bit 32 is zero; other­
wise, a pc-translation-specification exception is
recognized.

Bits 112-127, 129, 130, 140-143, 160, and 186-255
are reserved for possible future extensions and
should be zeros.

Linkage-Stack Operations
A linkage stack may be formed by the control
program for each dispatchable unit. The linkage
stack is used to save the execution state and the
contents of the general registers and access registers
during the BRANCH AND STACK and stacking
PROGRAM CALL operations. The linkage stack is
also used to restore a portion of the execution state
and general-register and access-register contents
during the PROGRAM RETURN operation.

A linkage stack resides in virtual storage. The
linkage stack for a dispatchable unit is in the home
address space for that dispatchable unit. The home
address space is designated by the home segment­
table designation in control register 13.

The linkage stack \ is intended to be protected from
problem-state programs so that these programs
cannot examine or modify the information saved in
the linkage stack, except by means of the EXTRACT
STACKED REGISTERS, EXTRACT STACKED STATE,
and MODIFY STACKED STATE instructions. This
protection can be obtained by means of key­
controlled protection.

A linkage stack may consist of a number of
linkage-stack sections chained together. A linkage­
stack section is variable in length. The maximum
length of each linkage-stack section is 65,560 bytes.

There are three types of entry in the linkage stack:
header entry, trailer entry, and state entry. A
header entry and a trailer entry are at the beginning
and end, respectively, of a linkage-stack section,
and they are used to chain linkage-stack sections
together. Header entries· and trailer entries are
formed by the control program. A state entry is
used to contain the execution state and register
contents that are saved during the BRANCH AND
ST ACK or stacking PROGRAM CALL operation, and
it is formed during the operation. A state entry is
further distinguished as being a branch state entry if

it was formed by BRANCH AND STACK or as being
a program-call state entry if it was formed by
PROGRAM CALL.

The actions of forming a state entry and saving
information in it during the BRANCH AND STACK

and stacking PROGRAM CALL operations are called
the stacking process. The actions of restoring
information from a state entry and logically deleting
the entry during the PROGRAM RETURN operation
are called the unstacking process. The part of the
un stacking process that locates a state entry is also
performed during the EXTRACT STACKED REG IS­

TERS, EXTRACT STACKED STATE, and MODIFY

ST ACKED STATE operations.

Each type of linkage-stack entry has a length that is
a multiple of eight bytes. A header entry and
trailer entry each has a length of 16 bytes. A state
entry has a length of 168 bytes.

Each of the header entry, trailer entry, and state
entry has a common eight-byte area at its end,
called the entry descriptor. The linkage-stack -entry
address in control register 15 designates the leftmost
byte of the entry descriptor of the last linkage-stack
entry, other than the trailer entry, in a linkage-stack
section. This entry is called the current linkage­
stack entry, and the section is called the current
linkage-stack section.

Each entry descriptor in a linkage-stack section,
except the one in the trailer entry of the section,
includes a field that specifies the amount of space
existing between the end of the entry descriptor and
the beginning of the trailer entry. This field is
named the remaining-free-space field. The
remaining-free-space field in a trailer entry is
unused.

When a new state entry is to be formed in the
linkage stack during the stacking process, the new
entry is placed immediately after the entry
descriptor of the current linkage-stack entry, pro­
vided that there is enough remaining free space in
the current linkage-stack section to contain the new
entry. If there is not enough remaining free space
in the current section, and if the trailer entry in the
current section indicates that another section
follows the current section, the new entry is placed
immediately after the entry descriptor of the header
entry of that following section, provided that there
is enough remaining free space in that section. If
the trailer entry indicates that there is not a fol­
lowing section, an exception is recognized, and a
program interruption occurs. It is then the respon-

sibility of the control program to allocate another
section, chain it to the current section, and cause
the BRANCH AND STACK or stacking PROGRAM

CALL instruction to be reexecuted. If there is a fol­
lowing section but there is not enough remaining
free space in it, an exception is recognized.

If the remaining-free-space value that is used to
locate a trailer entry is not a multiple of 8, an
exception is recognized. The remaining-free-space
value in the header entry of a linkage-stack section
must be set to a multiple of 8 to ensure that the
remaining-free-space value that may be used to
locate the trailer entry of the section will be a mul­
tiple of 8.

When the stacking process is successful in forming
a new state entry, it updates the linkage-stack -entry
address in control register 15 so that the address
designates the leftmost byte of the entry descriptor
of the new entry, which thus becomes the new
current linkage-stack entry.

When, during the un stacking process in PROGRAM

RETURN, the current linkage-stack entry is a state
entry, the process operates on that entry and then
updates the linkage-stack-entry address so that it
designates the entry descriptor of the preceding
entry in the same linkage-stack section. The pre­
ceding entry thus becomes the current entry. The
new current entry may be another state entry, or it
may be a header entry.

The header entry of a linkage-stack section indi­
cates whether there is a preceding section. If there
is a preceding section, the header entry contains the
address of the last linkage-stack entry, other than
the trailer entry, in the preceding section. That last
entry should be a state entry (not another header
entry), unless there is an error in the linkage stack.

If the unstacking process is performed when the
current linkage-stack entry is a header entry, and if
the header entry indicates that a preceding linkage­
stack section exists, the unstacking process proceeds
by- treating the entry designated in the preceding
section as if it were the current entry, provided that
this entry is a state entry. If the header entry does
not indicate a preceding section, or if the entry des­
ignated in the preceding section is not a state entry,
an exception is recognized.

When the unstacking process is performed in
EXTRACT STACKED REGISTERS, EXTRACT STACKED

STATE, or MODIFY STACKED STATE, the process

Chapter 5. Program Execution 5-55

locates a state entry but does not change the
linkage-stack-entry address in control register 15.

Each entry descriptor in a linkage-stack section
includes a field that specifies the length of the next
linkage-stack entry, other than the trailer entry, in
the section. When a state entry is created during
the stacking process, zeros are placed in this field in
the created entry, and the length of the state entry
is placed in this field in the preceding entry. When
a state entry is logically deleted during the
un stacking process in PROGRAM RETURN, zeros are
placed in this field in the preceding entry. This
field is named the next-entry-size field.

When the stacking or unstacking process operates
on the linkage stack, key-controlled protection does
not apply, but low-address and page protection do
apply.

Linkage-Stack-Operations Contr!ll

The use of the linkage stack is controlled by the
ASF control, bit 15 of control register 0, the home
segment-table designation in control register 13,
and the linkage-stack-entry address in control reg­
ister 15. The home segment-table designation is
described in the section "Dynamic Address
Translation" in Chapter 3, "Storage." The ASF

control and linkage-stack-entry address are
described below.

Control Register 0
Bit 15 of control register 0 is the address-space­
function (ASF) control. This bit controls whether
the linkage stack is available. The bit must be one
for the following instructions to be executed suc­
cessfully:

• BRANCH AND STACK

• EXTRACT STACKED REGISTERS

• EXTRACT STACKED STATE

• MODIFY STACKED STATE

• PROGRAM RETURN

• TEST ACCESS

Otherwise, a special-operation exception is recog­
nized.

TEST ACCESS does not use the linkage stack. For
TEST ACCESS, the ASF control controls whether the
access-list-designation sources are available.

A complete description of the effects of the ASF

control is in the section "Address-Space-Function
Control" in this chapter.

5-56 ESA/370 Principles of Operation

Control Register 15
The location of the entry descriptor of the current
linkage-stack entry is specified in control register
15. The register has the following format:

II Li nkage-Stack-Entry Address I I
o 1 29 31

Linkage-Stack-Entry Address: Bits 1-28 of
control register 15, with three zeros appended on
the right, form the home virtual address of the
entry descriptor of the current linkage-stack entry in
the current linkage-stack! section. Bits 1-28 are
changed during the stacking process in BRANCH

AND STACK and stacking PROGRAM CALL and
during the unstacking process in PROGRAM

RETURN. Bits 0 and 29-31 of control register 15
are set to zeros when bits 1-28 are changed.

Linkage Stack

The linkage stack consists of one or more linkage­
stack sections containing linkage-stack entries.
There are three principal types of linkage-stack
entry: header entry, trailer entry, and state entry.
A state entry is further distinguished as being either
a branch state entry or a program-call state entry.

Each type of linkage-stack entry has an entry
descriptor at its end. The leftmost byte of the entry
descriptor of the current linkage-stack entry in the
current linkage-stack section is designated by the
linkage-stack-entry address in control register 15.

The linkage stack resides in the home address
space, designated by the home segment-table desig­
nation in control register 13. The linkage stack is
available only when the ASF control, bit 15 of
control register 0, is one.

Entry Descriptors
An entry descriptor is at the end of each linkage­
stack entry. The entry descriptor is eight bytes in
length and has the following format:

o 1 8 16 32 48 63

The fields in the entry descriptor are allocated as
follows:

Unstack-Suppresslon Bit (U): When bit 0 is one
in the entry descriptor of a header entry or state
entry encountered during the unstacking process in
PROGRAM RETURN, a stack-operation exception is
recognized. Bit 0 is ignored in a trailer entry and
during . the un stacking process in EXTRACT

STACKED REGISTERS, EXTRACT STACKED STATE,

and MODIFY STACKED STATE. The control
program can temporarily set bit 0 to one in the
current linkage-stack entry (a header entry or state
entry) to prevent PROGRAM RETURN from being
executed successfully while still allowing EXTRACT

STACKED REGISTERS, EXTRACT STACKED STATE,

and MODIFY STACKED STATE to be executed suc­
cessfully. Bit 0 is set to zero in the entry descriptor
of a state entry when the entry is formed during the
stacking process.

Entry Type (ET): Bits 1-7 are a code that specifies
the type of the linkage-stack entry containing the
. entry descriptor. The assigned codes are:

Code (in
binary)
0000001
0000010
0000100
0000101

Entry Type
Header entry
Trailer entry
Branch state entry
Program-call state entry

Codes 0000000, 0000011, and 0000110 through
0111111 binary are reserved for possible future
assignments. Codes 1000000 through 1111111
binary are available for use by programming.

Bits 1-7 are set to 0000100 or 0000101 binary in the
entry descriptor of a state entry when the entry is
formed during the stacking process.

A stack-type exception is recognized during the
un stacking process in EXTRACT STACKED REGIS­

TERS, EXTRACT STACKED STATE, MODIFY STACKED

STATE, or PROGRAM RETURN if bits 1-7 in the
current linkage-stack entry do not indicate that the
entry is a state entry or a header entry; or, when
the current entry is a header entry, if bits 1-7 in the
entry designated by the backward stack -entry
address in the header entry do not indicate that the
designated entry is a state entry. However, a stack­
specification exception is recognized, instead of a
stack-type exception, if both the current entry and
the designated entry are header entries.

Section Identification (SI): Bits 8-15 are an iden­
tification, provided by the control program, of the
linkage-stack section containing the entry
descriptor. In the state entry formed by a stacking

process, the process sets bits 8-15 equal to the con­
tents of the section -identification field in the pre­
ceding linkage-stack entry.

Remaining Free Space (RFS): Bits 16-31 specify
the number of bytes between the end of this entry
descriptor and the beginning of the trailer entry in
the same linkage-stack section, except that this field
in a trailer entry has no meaning. Thus, in the last
state entry in a section, or in the header entry if
there is no state entry, bits 16-31 specify the
number of bytes available in the section for per­
formances of the stacking process. In the state
entry formed by a stacking process, the process sets
bits 16-31 equal to the contents of the remaining­
free-space field in the preceding linkage-stack entry
minus the size, in bytes, of the new entry. Bits
16-31 must be a multiple of 8 (bits 29-31 must be
zeros) in the entry descriptor of the header entry in
a linkage-stack section; otherwise, a value that is
not a multiple of 8 will be propagated to bits 16-31
in the entry descriptor of each state entry in the
section, and a stack -specification exception will be
recognized if the stacking process attempts to locate
the trailer entry in the section in order to proceed
to the next section.

Next-Entry Size (NES): Bits 32-47 specify the size
in bytes of the next linkage-stack entry, other than
a trailer entry, in the same linkage-stack section.
This field in the current linkage-stack entry con­
tains all zeros. This field in a trailer entry has no
meaning. When the stacking process forms a state
entry, it places zeros in the next-entry-size field of
the new entry, and it places the size of the new
entry in the next-entry-size field of the preceding
entry. When the unstacking process logically
deletes a state entry, it places zeros in the next­
entry-size field of the preceding entry, which entry
becomes the current entry.

Bits 48-63 are set to zeros in a state entry when the
entry is formed during the stacking process. In a
header entry, trailer entry, or state entry, bits 48-63
are reserved for possible future extensions and
should always be zeros.

Programming Note: No entry-type code will be
assigned in which the leftmost bit of the code is
one. The control program can temporarily set the
leftmost bit to one in the entry-type code of the
current linkage-stack entry (a header entry or a
state entry) to prevent the successful execution of
EXTRACT STACKED REGISTERS, EXTRACT STACKED

STATE, MODIFY STACKED STATE, ~r PROGRAM

RETURN.

Chapter 5. Program Execution 5-57

Header Entries
A header entry is at the beginning of each linkage­
stack section. The header entry is 16 bytes in
length and has the following format:

IIIIIIIIIIIIIIIIIIIBI BSEA
1 1

e 32 61 63

Entry Descriptor

64 127

The fields in the first eight bytes of the header entry
are allocated as follows:

Backward Stack-Entry Validity Bit (B): Bit 32,
when one, specifies that the preceding linkage-stack
section is available and that the backward stack­
entry address, bits 33-60, is valid. Bit 32 is set to
one during the stacking process when the process
proceeds to this section from the preceding one
because there is not enough space available in the
preceding section to perform the process. During
the un stacking process when this header entry is the
current linkage-stack entry, a stack-empty exception
is recognized if bit 32 is zero.

Backward Stack-Entry Address (BSEA): When
bit 32 is one, bits 33-60, with three zeros appended
on the right, form the 31-bit home virtual address
of the entry descriptor of the last linkage-stack
entry, other than the trailer entry, in the preceding
linkage-stack section. However, if the current
linkage-stack entry is in the preceding or an earlier
linkage-stack section, bits 33-60 may have no
meaning because the entry they designate, and
earlier entries, may have been logically deleted.
Bits 33-60 are set during the stacking process when
the process proceeds to this section from the pre­
ceding one because there is not enough space avail­
able in the preceding section to perform the
process. During the un stacking process when this
header entry is the current linkage-stack entry and
bit 32 is one, the entry designated by bits 33-60 is
treated as the current entry.

Bits 61-63 are set to zeros when bits 32-60 are set
during the stacking process. Bits 0-31 are available

5-58 ESA/370 Principles of Operation

for use by programming. Bits 61-63 are reserved
for possible future extensions.

Trailer Entries
A trailer entry is at the end of each linkage-stack
section. The trailer entry begins immediately after
the area specified by the remaining-free-space field
in the entry descriptors of the header entry and
each state entry in the same linkage-stack section.
The trailer entry is 16 bytes in length and has the
following. format:

IIIIIIIIIIIIIIIIIIIFI FSHA
1 I

e 32 61 63

Entry Descriptor

64 127

The fields in the frrst eight bytes of the trailer entry
are allocated as follows:

Forward-Section Validity Bit (F): Bit 32, when
one, specifies that the next linkage-stack section is
available and that the forward-section-header
address, bits 33-60, is valid. During the stacking
process when there is not enough space available in
the current linkage-stack section to perform the
process, a stack-full exception is recognized if bit 32
in the trailer entry of the current section is zero.

Forward-Section-Header Address (FSHA): When
bit 32 is one, bits 33-60, with three zeros appended
on the right, form the 31-bit home virtual address
of the entry descriptor of the header entry in the
next linkage-stack section. During the stacking
process when there is not enough space available in
the current section to perform the process and bit
32 is one, the header entry designated by bits 33-60
becomes the current linkage-stack entry.

Bits 0-31 are available for use by programming.
Bits 61-63 are reserved for possible future exten­
sions.

Programming Note: All of the fields in the trailer
entry are set only by the control program.

State Entries
Zero, one, or more state entries may follow the
header entry in each linkage-stack section. A state
entry may be a branch state entry, formed by a
BRANCH AND STACK instruction, or a program-call
state entry, formed by a stacking PROGRAM CALL

instruction. The state entry is 168 bytes in length
. and has the following format:

Hex Dec

0 0 i 8 8 Contents of
I General Registers I 64 bytes

30 48 0-15 ~ 38 56

40 64 i 48 72 Contents of
I Access Registers I 64 bytes

70 112 0-15 ~ 78 120

80 128 t
88 136 Other Status 32 bytes
90 144 Information ~ 98 152

A0 160 Entry Descriptor 8 bytes

Bytes 0-63 of the state entry contain the contents of
general registers 0-15 in the ascending order of the
register numbers. Bytes 64-127 contain the con­
tents 'Of access registers 0-15 in the ascending order
of the register numbers. The contents of these
fields are moved from the registers to the state entry
during the BRANCH AND STACK and stacking
PROGRAM CALL operations. The contents of
general registers 2-14 and access registers 2-14 are
restored from the state entry to the registers during
the PROGRAM RETURN operation. The contents of
a specified range of general registers and access reg­
isters can be restored from the state entry to the
registers by EXTRACT STACKED REGISTERS.

Bytes 128-159 of the state entry contain the other
status information that is placed in the entry by
BRANCH AND STACK, stacking PROG RAM CALL,

and MODIFY STACKED STATE. A portion of this
status information is restored to the psw and
control registers by PROGRAM RETURN, and all of
the information can be examined by means of
EXTRACT STACKED STATE. Bytes 160-167 contain
the entry descriptor. EXTRACT STACKED STATE sets
the condition code to indicate whether the entry­
type code in the entry descriptor specifies a branch
state entry or a program-call state entry.

Bytes 128-159 of the state entry have the following
detailed format:

PKM SASN EAX PASN

128 130 132 134 135

PSW

136 143

In a Branch State Entry

IAIBranCh Address

144 148 151

In a Program-Call State Entry

PC Number

144 148 151

Modifiable Area

152 159

The fields in bytes 128-159 are allocated as follows.
In the following, "of the calling program" means
the value existing at the beginning of the execution
of the BRANCH AND STACK or stacking PROGRAM

CALL instruction that formed the state entry.

PSW-Key Mask (PKM): Bytes 128-129 contain the
psw-key mask, bits 0-15 of control register 3, of the
calling program. The psw-key mask is saved in the
state entry by BRANCH AND STACK or stacking
PROGRAM CALL, and it is restored to the control
register by a PROGRAM RETURN instruction that
unstacks an entry formed by stacking PROGRAM

CALL.

Secondary ASN (SASN): Bytes 130-131 contain
the secondary ASN, bits 16-31 of control register 3,
of the calling program. The SASN is saved in the
state entry by BRANCH AND STACK or stacking
PROGRAM CALL, and it is restored to the control
register by a PROGRAM RETURN instruction that

Chapter 5. Program Execution 5-59

unstacks an entry formed by stacking PROGRAM

CALL.

Extended Authorization Index (EAX): Bytes
132-133 contain the extended authorization index,
bits 0-15 of control register 8, of the calling
program. The EAX is saved in the state entry by
BRANCH AND STACK or stacking PROGRAM CALL,

and it is restored to the control register by a
PROGRAM RETURN instruction that unstacks an
entry formed by stacking PROGRAM CALL.

Primary ASN (PASN): BYtes 134-135 contain the
primary ASN, bits 16-31 of control register 4, of the
calling program. The PASN is saved in the state
entry by BRANCH AND STACK or stacking
PROGRAM CALL, and it is restored to the control
register by a PROGRAM RETURN instruction that
unstacks an entry formed by stacking PROGRAM

CALL.

Program-Status Word (PSW): In a branch state
entry formed by a BRANCH AND STACK instruction
in which the Rl field is zero, and in a program-call
state entry, bytes 136-143 contain the updated psw
of the calling program. Thus, the addressing-mode
bit in this psw specifies the addressing mode of the
calling program, and the instruction address desig­
nates the next sequential instruction following the
BRANCH AND STACK or stacking PROGRAM CALL

instruction that formed the state entry, or following
an EXECUTE instruction that had the BRANCH AND

STACK or stacking PROGRAM CALL instruction as
its target instruction. In a branch state entry
formed by a BRANCH AND STACK instruction in
which the Rl field is nonzero, bytes 136-143
contain the psw of the calling program, except that
the addressing-mode bit and instruction address in
bytes 140-143 are as specified by the contents of the
general register designated by the R 1 field. See the
definition of BRANCH AND STACK in Chapter 10,
"Control Instructions," for how the addre s sing­
mode bit and instruction address are specified. The
value of the PER mask in bytes 136-143 is always
unpredictable. The psw is saved in the state entry
by BRANCH AND STACK or stacking PROGRAM

CALL and is restored as the current psw by
PROGRAM RETURN, except that the PER mask and
the condition code, bits 1 and 18-19 of the PSW, are
not restored. PROGRAM RETURN does not change
the PER mask in the current PSW, and it sets the
condition code to an unpredictable value.

5-60 ESAj370 Principles of Operation

Addressing Mode (A): In a branch state entry, bit
position 0 of bytes 148-151 contains the addressing­
mode bit, bit 32 of the PSW, at the end of the exe­
cution of the BRANCH AND STACK instruction that
formed the state entry. The addressing-mode bit is
saved in bit position 0 of bytes 148-151 by
BRANCH AND STACK. BRANCH AND STACK does
not change the addressing-mode bit in the psw.

Branch Address: In a branch state entry, bit posi­
tions 1-31 of bytes 148- 151 contain the instruction
address, bits 33-63 of the PSW, at the end of the
execution of the BRANCH AND STACK instruction
that formed the state entry. The instruction
address is saved in bit positions 1-31 of bytes
148-151 by BRANCH AND STACK. When the R2

field of the BRANCH AND STACK is nonzero, the
instruction causes branching, and bits 1-31 of bytes
148-151 are the branch address. When the R2 field
of BRANCH AND STACK is zero, the instruction is
executed without branching, and bits 1-31 of bytes
148-151 designate the next sequential instruction
following the BRANCH AND STACK instruction, or
following an EXECUTE instruction that had the
BRANCH AND STACK instruction as its target
instruction.

PC Number: In a program-call state entry, bit
positions 12-31 of bytes 148-151 contain the PC

number used by the stacking PROGRAM CALL

instruction that formed the entry. Stacking
PROGRAM CALL places the PC number in bit posi­
tions 12-31 of bytes 148-151, and it places zeros in
bit positions 0-11.

Modifiable Area: Bytes 152-159 are the field that
is set by MODIFY STACKED STATE. BRANCH AND

STACK and stacking PROGRAM CALL place all zeros
in bytes 152-159.

The contents placed in bytes 144-147 by BRANCH

AND STACK and stacking PROGRAM CALL are
unpredictable. Bytes 144-147 are reserved for pos­
sible future extensions.

Stacking Process

The stacking process is performed as part of a
BRANCH AND STACK or stacking PROGRAM CALL

operation. The process locates space for anew
linkage-stack state entry, forms the entry, updates
the next-entry-size field in the preceding entry, and
updates the linkage-stack-entry address in control
register 15 so that the new entry becomes the
current linkage-stack entry.

For the stacking process to be performed success­
fully, the address-space-function control, bit 15 of
control register 0, must be one, OAT must be on,
and the CPU must be in the primary-space mode or
access-register mode; otherwise, a special-operation
exception is recognized, and the operation is sup­
pressed.

Except as just mentioned, the stacking process is
performed independent of the current addressing
mode and translation mode, as specified by bits 32
and 16-17 of the current psw. All addresses used
during the stacking process are always 31-bit home
virtual addresses.

During the stacking process when any address is
formed through the addition or subtraction of a
value to or from another address, a carry out of, or
a borrow into, bit 1 of the address, if any, is
ignored.

When the stacking process fetches or stores by
using an address that designates, after translation, a
location that is not available in the configuration,
an addressing exception is recognized, and the oper­
ation is suppressed.

Key-controlled protection does not apply to the
accesses made during the stacking process, but page
protection and low-address protection do apply. A
protection exception causes the operation to be
suppressed.

Locating Space for a New Entry
The linkage-stack -entry address in control register
15 is used to locate the current linkage-stack entry.
Bits 1-28 of control register 15, with three zeros
appended on the right, form the 31-bit home
virtual address of the leftmost byte of the entry
descriptor of the current linkage-stack entry.

The first word of the entry descriptor of the current
linkage-stack entry is fetched by using the 31-bit
home virtual address. This fetch is for the purpose
of obtaining the section-identiftcation and
remaining-free-space fields in the word; the
unstack-suppression bit and entry-type field in the
word are not examined.

The 16-bit unsigned binary value in the remaining­
free-space field, bits 16-31 of the entry descriptor, is
compared against the size in bytes of the linkage­
stack entry to be formed. The size of a state entry
is 168 bytes. If the value in the field is equal to or
greater than the size of the entry to be formed,

processing continues as described in "Forming the
New Entry"; otherwise, processing continues as
described below.

When the remaining-free-space field in the current
linkage-stack entry indicates that there is not
enough space available in the current linkage-stack
section to form the new entry, the second word of
the trailer entry of the current section is fetched.
The address for fetching this word is determined as
follows: to the address formed from the contents
of control register 15, add 8 to address the frrst byte
after the entry descriptor of the current entry, then
add the contents of the remaining-free-space field of
the current entry to address the frrst byte of the
trailer entry, and then add 4 to address the second
word of the trailer entry. The remaining-free-space
value used in the addition must be a multiple of 8;
otherwise, a stack-specification exception is recog­
nized, and the operation is nullified.

If the forward-section-validity bit, bit 32, of the
trailer entry is zero, a stack-full exception is recog­
nized, and the operation is nullified; otherwise, the
forward-section-header address in the trailer entry is
used to locate the header entry in the next linkage­
stack section. Bits 33-60 of the trailer entry, with
three zeros appended on the right, form the 31-bit
home virtual address of the leftmost byte of the
entry descriptor of the header entry in the next
section.

The first word of the entry descriptor of the header
entry in the next linkage-stack section is fetched.
This fetch is for the purpose of obtaining the
section-identification and remaining-free-space fields
in the word; the unstack-suppression bit and entry­
type field in the word are not examined.

The value in the remaining-free-space field of the
header entry in the next linkage-stack section is
compared against the size in bytes of the entry to
be formed. If the value in the field is equal to or
greater than the size of the entry to be formed, the
following occurs:

• The linkage-stack-entry address, bits 1-28 of
control register 15, is placed, as the backward
stack-entry address, in bit positions 33-60 of
the header entry in the next linkage-stack
section, and zeros are placed in bit positions
61-63.

• The backward stack-entry validity bit, bit 32, in
the header entry in the next section is set to
one.

Chapter 5. Program Execution 5-6 t

• Bits 1-28 of the 31-bit home virtual address of
the entry descriptor of the header entry in the
next section are placed in bit positions 1-28 of
control register 15, and zeros are placed in bit
positions 0 and 29-31 of control register 15.
Thus, the header entry in the next section
becomes the current linkage-stack entry, and
the next section becomes the current linkage­
stack section.

• Processing continues as described in "Forming
the New Entry."

If the value in the remaining-free-space field of the
header entry in the next section (before the next
section becomes the current section) is less than the
size of the linkage-stack entry to be formed, a
stack-specification exception is recognized, and the
operation is nullified.

Forming the New Entry
When the remaining-free-space field in the current
linkage-stack entry indicates that there ~is enough
space available in the current linkage-stack section
to form the new entry, the new entry is formed
beginning immediately after the entry descriptor of
the current entry.

The new entry is a state entry. The contents of
general registers 0-15 are stored in bytes 0-63 of the
new entry, in the ascending order of the register
numbers. The contents of access registers 0-15 are
stored in bytes 64-127 of the new entry, in the
ascending order of the register numbers. The
psw-key mask, bits 0-15 of control register 3; sec­
ondary ASN, bits 16-31 of control register 3;
extended authorization index, bits 0-15 of control
register 8; and primary ASN, bits 16-31 of control
register 4, are stored in bytes 128-129, 130-131 ,
132-133, and 134-135, respectively, of the new
entry. The current PSW, in which the instruction
address has been updated, is stored in bytes
136-143 of the new entry. However, the value of
the PER mask, bit 1 in the psw stored, is unpredict­
able. Also, if the instruction being executed is a
BRANCH AND STACK instruction in which the Rl
field is nonzero, the addressing-mode bit and
instruction address stored in bytes 140-143 of the
new entry are as specified by the contents of the
general register designated by the R 1 field. When
the instruction is BRANCH AND STACK, the
addressing-mode bit and instruction address, psw
bits 32-63, existing at the end of the execution of
the instruction are stored in bytes 148-151 of the
new entry. When the instruction is PROGRAM
CALL, the 20-bit PC number used, with 12 zeros

5-62 ESAj370 Principles of Operation

appended on the left, is stored in bytes 148-151.
Zeros are stored in bytes 152-159 of the new entry.
The contents of bytes 144-147 of the new entry are
unpredictable.

Bytes 160-167 of the new entry are its entry
descriptor. The unstack-suppression bit, bit 0, of
this entry descriptor is set to zero. The code
0000100 binary is stored in the entry-type field, bits
1-7, of this entry descriptor if the instruction being
executed is BRANCH AND STACK. The code
0000101 binary is stored if the instruction is
PROGRAM CALL. The value in the section­
identification field of the current linkage-stack entry
is stored in the section-identification field, bits 8-15,
of this entry descriptor. The value in the
remaining-free-space field of the current entry,
minus the size in bytes of the new entry, is stored
in the remaining-free-space field of this entry
descriptor. Zeros are stored in the next-entry-size
field, bits 32-47, and in bit positions 48-63 of this
entry descriptor.

The stores into the new entry appear to be word­
concurrent as observed by other CPus. The order in
which the stores occur is unpredictable.

Updating the Current Entry
The size in bytes of the new linkage-stack entry is
stored in the next-entry-size field of the current
entry. The remainder of the current entry remains
unchanged.

The order of the stores into the current entry and
the new entry is unpredictable.

Updating Control Register 15
Bits 1-28 of the 31-bit home virtual address of the
entry descriptor of the new linkage-stack entry are
placed in bit positions 1-28 of control register 15,
the linkage-stack-entry address. Zeros are placed in
bit positions 0 and 29-31 of control register 15.
Thus, the new entry becomes the current linkage­
stack -entry.

Recognition of Exceptions During the
Stacking Process
The exceptions which can be encountered during
the stacking process and their priority are described
in the defmition of the PROGRAM CALL instruction.

Programming Note: Any exception recognized
during the execution of PROGRAM CALL causes
either nullification or suppression. Therefore, if an
exception is recognized, the stacking process does

not store into any linkage-stack entry or change the
contents of control register 15.

Unstacking Process

The unstacking process is performed as part of the
PROGRAM RETURN operation. The process locates
the last state entry in the linkage stack, restores a
portion of the information in the entry, to the CPU

registers, updates the next-entry-size field in the
preceding entry, and updates the linkage-stack-entry
address in control register 15 so· that the preceding
entry becomes the current linkage-stack entry. The
part of the unstacking process that locates the last
state entry is also performed as part of the
EXTRACT STACKED REGISTERS, EXTRACT STACKED

STATE, and MODIFY STACKED STATE operations.

F or the un stacking process to be performed suc­
cessfully, the address-space-function control, bit 15
of control register 0, must be one, DAT must be on,
and the CPU must be in the primary-space mode or
access-register mode; otherwise, a special-operation
exception is recognized, and the operation is sup­
pressed. However, when the unstacking process is
performed as part of EXTRACT ST ACKED

REGISTERS, EXTRACT STACKED STATE, or MODIFY

STACKED STATE, the CPU may be in the primary­
space, access-register, or home-space mode.

Except as just mentioned, the un stacking process is
performed independent of the current addressing
mode and translation mode, as specified by bits 32
and 16-17 of the current psw. All addresses used
during the unstacking process are always 31-bit
home virtual addresses.

During the unstacking process when any address is
formed through the addition or subtraction of a
value to or from another address, a carry out of, or
a borrow into, bit 1 of the address, if any, is
ignored.

When the unstacking process fetches or stores by
using an address that designates, after translation, a
location that is not available in the configuration,
an addressing exception is recognized, and the oper­
ation is suppressed.

Key-controlled protection does not apply to the
accesses made during the un stacking process, but
page protection and low-address protection do
apply. A protection exception causes the operation
to be suppressed.

Locating the Current Entry and
Processing a Header Entry
The linkage-stack-entry address in control register
15 is used to locate the current linkage-stack entry.
Bits 1-28 of control register 15, with three zeros
appended on the right, form the 31-bit home
virtual address of the leftmost byte of the entry
descriptor of the current linkage-stack entry.

The first word of the entry descriptor of the current
linkage-stack entry is fetched by using the 31-bit
home virtual address. If the entry-type code in bits
1-7 of the entry descriptor is not 0000001 binary,
indicating that the entry is not a header entry, proc­
essing continues as described in "Checking for a
State Entry"; otherwise, processing continues as
described below.

When the entry-type code in the current linkage­
stack entry is 0000001 binary, indicating a header
entry, the next processing depends on which
instruction is being executed. When the un stacking
process is performed as part of the PROGRAM

RETURN operation and the unstack-suppression bit,
bit 0, in the entry descriptor of the current entry is
one, a stack-operation exception is recognized, and
the operation is nullified. When the unstacking
process is performed as part of EXTRACT STACKED

REGISTERS, EXTRACT STACKED STATE, or MODIFY

STACKED STATE, the unstack-suppression bit is
ignored.

When there is not an exception due to the unstack­
suppression bit, the second word of the current
linkage-stack entry (a header entry) is fetched. The
address of this word is determined by subtracting 4
from the address of the entry descriptor of the
current entry.

If the backward stack-entry validity bit, bit 32, of
the current entry is zero, a stack-empty exception is
recognized, and the operation is nullified; otherwise,
the backward stack -entry address in the current
entry is used to locate a linkage-stack entry referred
to here as the designated entry. Bits 33-60 of the
current entry, with three zeros appended on the
right, form the 31-bit home virtual address of the
leftmost byte of the entry descriptor of the desig­
nated entry.

It is assumed in this defmition of the un stacking
process that the designated linkage-stack entry is
the last entry, other than the trailer entry, in the
preceding linkage-stack section. This assumption

Chapter 5. Program Execution 5-63

does not imply any processing that is not explicitly
described.

The frrst word of the entry descriptor of the desig­
nated entry is fetched. If the entry-type code in this
entry descriptor is not 0000001 binary, indicat~g
that the entry is not a header entry, the followmg
occurs:

• When the unstacking process is perfonned as
part of the PROGRAM RETURN operation, bits
1-28 of the 31-bit home virtual address of the
entry descriptor of the designated entry are
placed in bit positions 1-28 of control register
15, and zeros are placed in bit positions 0 ~d
29-31 of control register 15. Thus, the deSIg­
nated entry becomes the current linkage-stack
entry, and the preceding section (based on the
assumption) becomes the current linkage-stack
section. When the unstacking process is per­
fonned as part of EXTRACT STACKED REGIS­
TERS, EXTRACT STACKED STATE, or MODIFY
STACKED STATE, the contents of control reg­
ister 15 remain unchanged, but the designated
entry is temporarily, during the remainder of
the defmition of the instruction, referred to as
the current linkage-stack entry.

• Processing continues as described in "Checking
for a State Entry."

If the entry-type code in the designated entry is
0000001 binary, indicating a header entry, a stack­
specification exception is recognized, and the opera­
tion is nullified.

Checking for a State Entry
When the entry-type code in the current linkage­
stack entry indicates that the entry is not a header
entry, the code is checked for being 0000100 or
0000101 binary, which are the codes assigned to a
state entry.

If the current linkage-stack entry is a state entry,
the next processing depends on which instruction is
being executed. When the unstacking process is
perfonned as part of the PROGRAM RETUR.N oper~­
tion, processing continues as descnbed m
"Restoring Infonnation." When the process is per­
fonned as part of EXTRACT STACKED REGISTERS,
EXTRACT STACKED STATE, or MODIFY STACKED
STATE, the process is completed; that is, no ad.di­
tional processing occurs as a part of the unstacking
process.

If the current linkage-stack entry is not a state entry
(and necessarily not a header entry either), a stack-

5-64 ESAj370 Principles of Operation

type exception is recognized, and the operation is
nullified.

Restoring Information
The remaining parts of the un stacking process
occur only in the PROGRAM RETURN operation.

The current linkage-stack entry is a state entry. If
the unstack-suppression bit in the entry is one, a
stack-operation exception is recognized, and the
operation is nullified.

When there is not an exception due to the un stack -
suppression bit, a portion of the contents of the
current linkage-stack entry are restored to the CPU
registers. The contents of general registers 2-14 and
access registers 2-14 are restored to those registers
from where they were saved in the current entry by
the stacking process. When the entry-type code in
the current entry is 0000101 binary, indicating a
program-call state entry, the psw-key mask and
secondary ASN in control register 3, extended
authorization index in control register 8, and
primary ASN in control register 4 are similarly
restored. During this restoration, the authorization
index in control register 4 and the monitor masks
in control register 8 remain unchanged. (The
authorization index may be changed by the part of
the PROGRAM RETURN execution that occurs after
the unstacking process.) When the entry-type code
is 0000100 binary, indicating a branch state entry,
the psw-key mask, secondary ASN, extended
authorization index, and primary ASN in the current
entry are ignored, and all contents of the control
registers remain unchanged. When the current
entry is either a branch state entry or a program­
call state entry, the current psw is restored from
bytes 136-143 of the entry, except that the PER
mask and the condition code are not restored. The
PER mask in the current psw remains unchanged,
and the condition code is set to a unpredictable
value. Bytes 144-159 of the current entry are
ignored.

The fetches from the current entry appear to be
word-concurrent as observed by other CPUs. The
order in which the fetches occur is unpredictable.

Updating the Preceding Entry . .
Zeros are stored in the next-entry-slZe field, bits
32-47, of the entry descriptor of the preceding
linkage-stack entry. The remainder of the pre­
ceding entry remains unchanged. The address of
the entry descriptor of the preceding entry is deter­
mined by subtracting the size in bytes of the

current entry from the address of the entry
descriptor of the current entry.

The order of the store into the preceding entry and
the fetches from the current entry is unpredictable.

Updating Control Register 15
Bits 1-28 of the 3l-bit home virtual address of the
entry descriptor of the preceding linkage-stack entry
are placed in bit positions 1-28 of control register
15, the linkage-stack-entry address. Zeros are
placed in bit positions 0 and 29-31 of control reg­
ister 15. Thus, the preceding entry becomes the
current linkage-stack entry.

Recognition of Exceptions during the
Unstacklng Process
The exceptions which can be encountered during
the unstacking process and their priority are
described in the defmition of the PROGRAM
RETURN instruction. The exceptions which apply
to EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, and MODIFY STACKED STATE are
described in the defmitions of those instructions.

Programming Notes:

1. Any exceptions recognized during the execution
of EXTRACT STACKED REGISTERS, EXTRACT
STACKED STATE, MODIFY STACKED STATE, or
PROGRAM RETURN cause either nu1li:fication or
suppression. Therefore, if an exception is
recognized, the unstacking process does not
change the contents of any CPU register (except
for updating the instruction address in the psw
in the case of suppression) or store into any
linkage-stack entry.

2. The unstacking process in PROGRAM RETURN
does not restore the PER mask in the psw so
that an act of turning PER on or off after the
execution of the related BRANCH AND STACK
or PROGRAM CALL instruction but before the
execution of the PROGRAM RETURN instruction
will not be counteracted. When PROGRAM
CALL or PROGRAM RETURN is space switching,
the space-switch event can be used as a signal
to tum PER on or off, if desired.

Sequence of Storage References
The following sections describe the effects which
can be observed in storage due to overlapped oper­
ations and piecemeal execution of a CPU program.
Most of the effects described in these sections are
observable only when two or more CPUs or

channel programs are in simultaneous execution
and access common storage locations. Thus, most
of the effects need be taken into account by a
program only if the program interacts with another
CPU or a channel program.

Some of the effects described in the following
sections are independent of interaction with another
CPU or a channel program. These effects, which
are therefore more readily observable, relate to pre­
fetched instructions and overlapping operands of a
single instruction. These effects are described in the
sections "Conceptual Sequence" and "Interlocks
for Virtual-Storage References." .

conceptual Sequence
In the real mode, primary-space mode, or
secondary-space mode, the CPU conceptually proc­
esses instructions one at a time, with the execution
of one instruction preceding the execution of the
following instruction. The execution of the instruc­
tion designated by a successful branch follows the
execution of the branch. Similarly, an interruption
takes place between instructions or, for interrup­
tible instructions, between units of operation of
such instructions.

The sequence of events implied by the processing
just described is sometimes called the conceptual
sequence.

Each operation of instruction execution appears to
the program itself to be performed sequentially,
with the current instruction being fetched after the
preceding operation is completed and before the
execution of the current operation is begun. This
appearance is maintained even though the storage­
implementation characteristics and overlap of
instruction execution with storage accessing may
cause actual processing to be different. The results
generated are those that would have been obtained
had the operations been performed in the concep­
tual sequence. Thus, it is possible for an instruc­
tion to modify the next succeeding instruction in
storage.

Operations in the access-register mode or home­
space mode are the same as in the other translation
modes, with one exception: an instruction that is a
store-type operand of a preceding instruction may
appear to be fetched before the store occurs. Thus,
it is not assured that an instruction can modify the
succeeding instructions.

Chapter 5. Program Execution 5-65

Regardless of the translation mode, there are two
other cases in which the copies of prefetched
instructions are not necessarily discarded: (I) when
the fetch and the store are done by means of dif­
ferent effective addresses that map to the same real
address, and (2) when the store is caused by the
execution of a vector-facility instruction. The case
involving different effective addresses is described in
more detail in the section "Interlocks for Virtual­
Storage References."

Overlapped Operation of Instruction
Execution
In simple models in which operations are not over­
lapped, the conceptual and actual sequences are
essentially the same. However, in more complex
machines, overlapped operation, buffering of oper­
ands and results, and execution times which are
comparable to the propagation delays between
units can cause the actual sequence to differ consid­
erably from the conceptual sequence. In these
machines, special circuitry is employed to detect
dependencies between operations and ensure that
the results obtained, as observed by the CPU which
generates them, are those that would have been
obtained if the operations had been performed in
the conceptual sequence. However, other CPUs
and channel programs may, unless otherwise con­
strained, observe a sequence that differs from the
conceptual sequence.

Divisible Instruction Execution
It can normally be assumed that the execution of
each instruction occurs as an indivisible· event.
However, in actual operation, the execution of an
instruction consists in a series of discrete steps.
Depending on the instruction, operands may be
fetched and stored in a piecemeal fashion, and
some delay may occur between fetching operands
and storing results. As a consequence, intermediate
or partially completed results may be observable by
other CPus and by channel programs.

When a program interacts with the operation on
another CPU, or with a channel program, the
program may have to take into consideration that a
single operation may consist in a series of storage
references, that a storage reference may in tum
consist in a series of accesses, and that the concep­
tual and observed sequences of these accesses may
differ.

Storage references associated with instruction exe­
cution are of the following types: instruction
fetches, ART-table and DAT-table fetches, and

5-66 ESA/370 Principles of Operation

storage-operand references. For the purpose of
describing the sequence of storage references,
accesses to storage in order to perform AS N trans­
lation, pc-number translation, tracing, and the
linkage-stack stacking and un stacking processes are
considered to be storage-operand references.

Programming Note: The sequence of execution of
a CPU may differ from the simple conceptual defi­
nition in the following ways:

• As observed by the CPU itself, instructions tnay
appear to be prefetched in the access-register or
home-space mode. They may also appear to
be prefetched because of a vector-facility store
or when different effective addresses are used.
(See the section "Interlocks for Virtual-Storage
References" in this chapter.)

• As observed by other CPus and by channel
programs, the execution of an instruction may
appear to be performed as a sequence of piece­
meal steps. This is described for each type of
storage reference in the following sections.

• As observed by other CPus and by channel
programs, the storage-operand accesses associ­
ated with one instruction are not necessarily
performed in the conceptual sequence. (See
the section "Relation between Operand
Accesses" in this chapter.)

• As observed by channel programs, in certain
unusual situations, the contents of storage may
appear to change and then be restored to the
original value. (See the section "Storage
Change and Restoration for DAT-Associated
Access Exceptions" in this chapter.)

Interlocks for Virtual-Storage
References

As described in the immediately preceding sections,
CPU operation appears, with certain exceptions, to
be performed sequentially as observed by the CPU
itself; the stores performed by one instruction gen­
erally appear to be completed before the next
instruction and its operands are fetched. This
appearance is maintained in overlapped machines
by means of interlock circuitry that detects accesses
to a common storage location.

For those instructions which alter the contents of
storage and have more than one operand, the
instruction definition normally describes the results
that are obtained when the operands overlap in
storage, this defmition being in terms of a sequence

of stores and fetches. The interlock circuitry is
used in determining whether operand overlap exists.

The purpose of this section is to defme those cases
in which the machine must appear to operate
sequentially, and in which operands of a single
instruction must or must not be treated as overlap­
ping.

Proper operation is provided in part by comparing
effective addresses. For the purpose of this defi­
nition, the term "effective address" means an
address before translation, if any, regardless of
whether the address is virtual, real, or absolute. If
two effective addresses have the same value, the
effective addresses are said to be the same even
though one may be real or in a different address
space.

The values of two virtual effective addresses do not
necessarily indicate whether or not the addresses
designate the same storage location. The address­
translation tables may be set up so that different
effective addresses map to the same real address, or
so that the same effective address in different
address spaces maps to different real addresses.

The interlocks for virtual-storage references are
considered in two situations: storage references of
one instruction as they affect storage references of
another instruction, and multiple storage references
of a single instruction.

Interlocks Between Instructions
As observed by the CPU itself, the storage accesses
for operands for each instruction appear to occur in
the conceptual sequence independent of the effec­
tive address used. That is, the operand stores for
one instruction appear to be completed before the
operand fetches for the next instruction occur. For
instruction fetches, the operand stores for one
instruction necessarily appear to be completed
before the next instruction is fetched only when the
same effective address is used for the operand store
and the instruction fetch, and then only in the real
mode, primary-space mode, or secondary-space
mode and when the store is not done by the vector
facility.

When an instruction changes the contents of a
main-storage location in which a conceptually sub­
sequent instruction is to be executed, either directly
or by means of EXECUTE, and when different effec­
tive addresses are used to designate that location for
storing the result and fetching the instruction, the
instruction may appear to be fetched before the

store occurs. In the access-register mode or home­
space mode or when the store is done by the vector
facility, changes to the contents of storage are not
necessarily recognized even if the effective address
used to store the value and the effective address
used to fetch the instruction are the same. If an
intervening operation causes the prefetched
instructions to be discarded, then the updated value
is recognized. A defmition of when prefetched
instructions must be discarded is included in the
section "Instruction Fetching" in this chapter.

Any change to the storage key appears to be com­
pleted before the conceptually following reference
to the associated storage block is made, regardless
of whether the reference to the storage location is
made by means of a virtual, real, or absolute
address. Analogously, any conceptually prior refer­
ences to the storage block appear to be completed
when the key for that block is changed or
inspected.

Interlocks Within a Single Instruction
For those instructions which alter the contents of
storage and have more than one operand, the
instruction defmition normally describes the results
which are obtained when the operands overlap in
storage. This result is normally defined in terms of
the sequence of the storage accesses; that is, a
portion of the results of a store-type operand must
appear to be placed in storage before some portion
of the other operand is fetched. This defmition
applies provided that the store and fetch accesses
are specified by means of the same effective
addresses and the sam.e effective space designations.

When multiple address spaces are involved in the
access-register mode, the term "effective space
designation" is used to denote the value used by
the machine to determine whether two spaces are
the same. In the access-register mode, the 32-bit
access-list-entry-token (ALET) value associated with
each storage-operand address is called the effective
space designation. When a B field of zero is speci­
fied, a value of all zeros is used for the effective
space designation. If the effective space desig­
nations are different, the spaces are considered to
be different even if both ALETS map to the same
segment-table-designation value.

When the store and the fetch accesses are specified
by means of different effective space designations or
by means of different effective addresses, the
operand fetch may appear to precede the operand
store.

Chapter 5. Program Execution 5-67

Figure 5-10 summarizes the cases of overlap and
the specified results, including when MOVE LONG

(MveL) sets condition code 3, for each case.

Effective Effective Operands Is Overlap Recognized?
Space Addresses Overlap
Designations Overlap Destructively MVCL Sets Operand
Equal? ' Destructively? In Real Storage? CC 3 Results

Yes No No No No
Yes No Yes No Unp.
Yes Yes No * *
Yes Yes Yes Yes Yes
No No No No No
No No Yes No Unp.
No Yes No No No
No Yes Yes No Unp.

Ex~lanation:

* This case cannot occur.
Unp. It is unpredictable whether or not the overlap is recognized.

Figure 5-10. Virtual-Storage Interlocks within a Single Instruction

5-68 ESAj370 Principles of Operation

Effective space designations may be represented by
ALB entries, and the test for whether two effective
space designations are the same may be performed
by comparing ALB entries. If the program changes
an attached and valid ART-table entry without sub­
sequently causing the execution of PURGE ALB, two
effective space designations that are the same may
have different representations in the ALB, and
failure to recognize operand overlap may result.
The use of the ALB never causes overlap to be
recognized when the effective space designations are
different.

Programming Note: A single main-storage
location can be accessed by means of more than
one address in several ways:

1. The DAT tables may be set up such that mul­
tiple addresses in a single address space, or
addresses in different address spaces, map to a
single real address.

2. The translation of logical, instruction, and
virtual addresses may be changed by loading
the DAT parameters in the control registers, by
changing the address-space-control bits in the
PSW, or, for logical and instruction addresses,
by turning DAT on or off.

3. In the access-register mode, different address
spaces may be selected by means of each access
register. In addition, the primary address space
is selected for instruction fetching and the target
of EXECUTE.

4. STORE USING REAL ADDRESS performs a store
by means of a real address.

5. Certain other instructions also use real
addresses, and the instructions MOVE TO
PRIMARY and MOVE TO SECONDARY access
two address spaces.

6. Accesses to storage for the purpose of storing
and fetching information for interruptions is
performed by means of real addresses, and, for
the store-status function, by means of absolute
addresses, whereas accesses by the program
may be by means of virtual addresses.

7. The real-to-absolute mapping may be changed
by means of the SEf PREFIX instruction or a
reset.

8. A main-storage location may be accessed by
channel programs by means of an absolute
address and by the CPU by means of a real or a
virtual address.

9. A main-storage location may be accessed by
another CPU by means of one type of address
and by this CPU by means of a different type of
address.

The primary purpose of this section on interlocks is
to describe the effects caused in cases I, 3, and 4,
above.

For case 2, no effect is observable because pre­
fetched instructions are discarded when the trans­
lation parameters are changed, and the delay of
stores by a CPU is not observable by the CPU itself.

For case 5, for those instructions which fetch by
using real addresses (for example, LOAD REAL
ADDRESS, which fetches a segment-table entry and
a page-table entry), no effect is observable because
only operand accesses between instructions are
involved. All instructions that store by using a real
address, except STORE USING REAL ADDRESS (or
vector-facility instructions executed with DAT ofl),
or that store across address spaces, except in the
access-register mode, cause prefetched instructions
to be discarded, and no effect is observable.

Cases 6 and 7 are situations which are dermed to
cause serialization, with the result that prefetched
instructions are discarded. In these cases, no effect
is observable.

The handling of cases 8 and 9 involves accesses as
observed by other CPUs and by channel programs
and is covered in the following sections in this
chapter.

Instruction Fetching

Instruction fetching consists in fetching the one,
two, or three halfwords designated by the instruc­
tion address in the current psw. The immediate
field of an instruction is accessed as part of an
instruction fetch. If, however, an instruction desig­
nates a storage operand at the location occupied by
the instruction itself, the location is accessed both
as an instruction and as a storage operand. The
fetch of the target instruction of EXECUTE is consid­
ered to be an instruction fetch.

The bytes of an instruction may be fetched piece­
meal and are not necessarily accessed in a left-to­
right direction. The instruction may be fetched
multiple times for a single execution; for example,
it may be fetched for testing the addressability of
operands or for inspection of PER events, and it
may be ref etched for actual execution.

Chapter 5. Program Execution 5-69

Instructions are . not necessarily fetched in the
sequence in which they are conceptually executed
and are not necessarily fetched each time they are
executed. In particular, the fetching of an instruc­
tion may precede the storage-operand references for
an instruction that is conceptually earlier. The
instruction fetch occurs prior to all storage-operand
references for all instructions that are conceptually
later.

An instruction may be prefetched by using a virtual
address only when the associated DAT table entries
are attached and valid or when entries which
qualify for substitution for the table entries exist in
the TLB. An instruction that has been prefetched
may be interpreted for execution only for the same
virtual address for which the instruction was pre­
fetched.

No limit IS established on the number of
instructions which may be prefetched, and multiple
copies of the contents of a single storage location
may be fetched. As a result, the instruction exe­
cuted is not necessarily the most recently fetched
copy. Storing caused by other CPus and by
channel programs does not necessarily change the
copy of prefetched instructions. However, if a non­
vector-facility store that is conceptually earlier is
made by the same CPU using the same effective
address as that by which the instruction is subse­
quently fetched, and the CPU is in the real mode,
primary-space mode, or secondary-space mode, the
updated information is obtained. If the store is
caused by a vector-facility instruction, if the effec­
tive addresses are different, or if the CPU is in the
access-register mode or home-space mode, the
updated information is not necessarily obtained.

All copies of prefetched instructions are discarded
when:

• A serializing function is performed.
• The CPU enters the operating state.
• D AT is turned on or off.
• A change is made to a translation parameter in

control register I when in the primary-space,
secondary-space, or access-register mode, or in
control register 7 when in the secondary-space
mode, or in control register 13 when in the
home-space mode

5-70 ESA/370 Principles of Operation

Programming Notes:

1. As observed by a CPU itself, its own instruction
prefetching may be apparent when storing is
done by the vector facility, when different effec­
tive addresses map to a single real address, or
when the CPU is in the access-register or home­
space mode. This is described in the sections
"Conceptual Sequence" and "Interlocks' for
Virtual-Storage References" in this chapter.

2. Any means of changing psw bits 16 and 17
causes serialization to be performed and pre­
fetched instructions to be discarded. Turning
D AT on or off causes prefetched instructions to
be discarded. Therefore, any change of the
translation mode always causes prefetched
instructions to be discarded. A change away
from the access-register or home-space mode
that intervenes between the store of an operand
and the subsequent fetch of that operand as an
instruction causes the updated information to
be obtained.

3. The following are some effects of instruction
prefetching on one CPU as observed by other
CPus and by channel programs.

It is possible for one CPU to prefetch the con­
tents of a storage location, after which another
CPU or a channel program can change the con­
tents of that storage location and then set a flag
to indicate that the change has been made.
Subsequently, the first CPU can test and fmd
the flag set, branch to the modified location,
and execute the original prefetched contents.

It is possible, if another CPU or a channel
program concurrently modifies the instruction,
for one CPU to recognize the changes to some
but not all bit positions of an instruction.

It is possible for one CPU to prefetch an
instruction and subsequently, before the
instruction is executed, for another CPU to
change the storage key. As a result, the fust
CPU may appear to execute instructions from a
protected storage location. However, the copy
of the instructions executed is the copy pre­
fetched before the location was protected.

ART-Table and OAT-Table Fetches

The access-register-translation (ART) table entries
are access-list designations, access-list entries,
ASN-second-table entries, and authority-table
entries. The dynamic-address-translation (OAT)
table entries are segment-table entries and page­
table entries. The fetching of these entries may
occur as follows:

1. An ART-table entry may be prefetched into the
ART-Iookaside buffer (ALB) and used from the
ALB without ref etching from storage, until the
entry is cleared by a PURGE ALB or SET PREFIX
instruction or by CPU reset. A OAT-table entry
may be prefetched into the translation­
lookaside buffer (TLB) and used from the TLB
without ref etching from storage, until the entry
is cleared by an INVALIOATE PAGE TABLE
ENTRY, PURGE TLB, or SET PREFIX instruction
or by CPU reset. ART-table and OAT-table
entries are not necessarily fetched in the
sequence conceptually called for; they may be
fetched at any time they are attached and valid,
including during the execution of conceptually
previous instructions.

2. The fetching of access-list designations, access­
list entries, ASN-second-table entries, and
OAT-table entries appears to be word­
concurrent as observed by other CPUs.
However, the reference to an entry may appear
to access a single byte at a time as observed by
channel programs.

3. The order in which the words of an access-list
entry or ASN-second-table entry are fetched is
unpredictable, except that the leftmost word of
an entry is fetched frrst.

4. An ART-table or OAT-table entry may be
fetched even after some operand references for
the instruction have already occurred. The
fetch may occur as late as just prior to the
actual byte access requiring the ART-table or
OAT-table entry.

5. An ART-table or OAT-table entry may be
fetched for each use of the address, including
any trial execution, and for each reference to
each byte of each operand.

6. The OAT page-table-entry fetch precedes the
reference to the page. When no copy of the
page-table entry is in the TLB, the fetch of the
associated segment-table entry precedes the
fetch of the page-table entry.

7. When no copy of a segment-table entry desig­
nated by means of an ART-obtained segment­
table designation is in the TLB, the ART fetch of
the ASN-second-table entry precedes the OAT
segment-table-entry fetch. When no copy of a
required authority-table entry is in the ALB, the
ART fetch of the associated ASN-second-table
entry precedes the fetch of the authority-table
entry. When no copy of a required
ASN-second-table entry is in the ALB, the fetch
of the associated access-list entry precedes the
fetch of the ASN-second-table entry. When no
copy of a required access-list entry is in the
ALB, the fetch of the associated access-list des­
ignation precedes the fetch of the access7list
entry.

Storage-Key Accesses

References to the storage key are handled as
follows:

1. Whenever a reference to storage is made and
key-controlled protection applies to the refer­
ence, the four access-control bits and the fetch­
protection bit associated with the storage
location are inspected concurrently with the ref­
erence to the storage location.

2. When storing is performed, the change bit is set
in the associated storage key concurrently with
the store operation.

3. The instruction SET STORAGE KEY EXTENOEO
causes all seven bits to be set concurrently in
the storage key. The access to the storage key
for SET STORAGE KEY EXTENDED follows the
sequence rules for storage-operand store refer­
ences and is a single-access reference.

4. The INSERT STORAGE KEY EXTENDED instruc­
tion provides a consistent image of bits 0-6 of
the storage key. Similarly, the instructions
INSERT VIRTUAL STORAGE KEY and TEST PRO­
TECTION provide a consistent image of bits 0-4
of the storage key. The access to the storage
key for all of these instructions follows the
sequence rules for storage-operand fetch refer­
ences and is a single-access reference.

5. The instruction RESET REFERENCE BIT
EXTENDED modifies only the reference bit. All
.other bits of the storage key remain unchanged.
The reference bit and change bit are examined
concurrently to set the condition code. The
access to the storage key for RESET REFERENCE
BIT EXTENOEO follows the sequence rules for

Chapter 5. Program Execution 5-71

storage-operand update references. The refer­
ence bit is the only bit which is updated.

The' record of references provided by the reference
bit is not necessarily accurate, and the handling of
the reference bit is not subject to the concurrency
rules. However, in the majority of situations, refer­
ence recording approximately coincides with the
storage reference.

The change bit may be set in cases when no storing
has occurred. See the ,section "Exceptions to
Nullification and Suppression" in this chapter.

Storage-Operand References

A storage-operand reference is the fetching or
storing of the explicit operand or operands in the
storage locations designated by the instruction. '

During the execution of an instruction, all or some
of the storage operands for that instruction may be
fetched, intermediate results may be maintained for
subsequent modification, and fmal results may be
temporarily held prior to placing them in storage.
Stores caused by other CPus and by channel pro­
grams do not necessarily affect these intermediate
results.

Storage-operand references are of three types:
fetches, stores, and updates.

storage-Operand Fetch References
When the bytes of a storage operand participate in
the instruction execution only as a source, the
operand is called a fetch-type operand, and the ref­
erence to the location is called a storage-operand
fetch reference. A fetch-type operand is identified
in individual instruction defmitions by indicating
that the access exception is for fetch.

All bits within a single byte of a fetch reference are
accessed concurrently. When an operand consists
of more than one byte, the bytes may be fetched
from storage piecemeal, one byte at a time. Unless
otherwise specified, the bytes are not necessarily
fetched in any particular sequence.

The storage-operand fetch references of one instruc­
tion occur after those of all preceding instructions
and before those of subsequent instructions, as
observed by other CPUs and by channel programs.
The operands of anyone instruction are fetched in
the sequence specified for that instruction.

5-72 ESA/370 Principles of Operation

Storage-Operand Store References
When the bytes of a storage operand participate in
the instruction execution only as a destination, to
the extent of being replaced by the result, the
operand is called a store-type operand, and the ref­
erence to the location is called a storage-operand
store reference. A store-type operand is identified
in individual instruction defmitions by indicating
that the access exception is for store.

All bits within a single byte of a store reference are
accessed concurrently. When an operand consists
of more than one byte, the bytes may be placed in
storage piecemeal, one byte at a time. Unless oth­
erwise specified, the bytes are not necessarily stored
in any particular sequence.

The CPU may delay placing results in storage.
There is no defined limit on the length of time that
results may remain pending before they are stored.
This delay does not affect the sequence in which
results are placed in storage.

The results of one instruction are placed in storage
after the results of all preceding instructions have
been placed in storage and before any results of the
succeeding instructions are stored, as observed by
other CPUs and by channel programs. The results
of anyone instruction are stored in the sequence
specified for that instruction.

The CPU does not fetch operands, ART-table
entries, or OAT-table entries from a storage location
until all information destined for that location by
the CPU has been stored. Prefetched instructions
may appear to be updated before the information
appears in storage.

The stores are necessarily completed only as a
result of a serializing operation and before the CPU
enters the stopped state.

Storage-Operand Update References
In some instructions, the storage-operand location
participates both as a source and as a destination.
In these cases, the reference to the location consists
first in a fetch and subsequently in a store. The
operand is called an update-type operand, and the
combination of the two accesses is referred to as an
update reference. Instructions such as MOVE
ZONES, TRANSLATE, OR (oc, 01), and ADD
DECIMAL cause an update to the frrst-operand
location. An update-type operand is identified in
the individual instruction defmition by indicating
that the access exception is for both fetch and store.

For most instructions which have update-type
operands, the fetch and store accesses associated
with an update reference do not necessarily occur
one immediately after the other,· and it is possible
for other CPUs and channel programs to make fetch
and store accesses to the same location during this
time. Such an update reference is sometimes called
a noninterlocked-update storage reference.

For certain special instructions, the update refer­
ence is interlocked against certain accesses by other
CPUs. Such an update reference is called an
interlocked-update reference. The fetch and store
accesses associated with an interlocked-update refer­
ence do not necessarily occur one immediately after
the other, but all store accesses and the fetch and
store accesses associated with interlocked-update
references by other CPUs are prevented from occur­
ring at the same location between the fetch and the
store accesses of an interlocked-update reference.
Accesses by channel programs may occur to the
location during the interlock period.

The storage-operand update reference for the fol­
lowing instructions appears to be an interlocked­
update reference as observed by other CPUs. The
instructions TEST AND SET, COMPARE AND SWAP,
and COMPARE DOUBLE AND SWAP perform an
interlocked-update reference. On models in which
the STORE CHARACTERS UNDER MASK instruction
with a mask of zero fetches and stores the byte des­
ignated by the second -operand address, the fetch
and store accesses are an interlocked-update refer­
ence.

Within the limitations of the above requirements,
the fetch and store accesses associated with an
update reference follow the same rules as the
fetches and stores described in the previous
sections.

Programming Notes:

1. When two CPUs attempt to update information
at a common main-storage location by means
of a noninterlocked-update reference, it is pos­
sible for both cpus to fetch the information
and subsequently make the store access. The
change made by the frrst CPU to store the result
in such a case is lost. Similarly, if one CPU
updates the contents of a field by means of a
noninterlocked-update reference, but another
CPU makes a store access to that field between
the fetch and store parts of the update refer-

ence, the effect of the store is lost. If, instead
of a store access, a CPU makes an interlocked­
update reference to the common storage field
between the fetch and store portions of a
noninterlocked-update reference due to another
CPU, any change in the contents produced by
the interlocked-update reference is lost.

2. The instructions TEST AND SET, COMPARE AND
SWAP, and COMPARE DOUBLE AND SWAP facili­
tate updating of a common storage field by two
or more CPus. To ensure that no changes are
lost, all CPus must use an instruction providing
an interlocked-update reference. In addition,
the program must ensure that channel pro­
grams do not store into the same storage
location since such stores may occur between
the fetch and store portions of an interlocked­
update reference.

3. Only those bytes which are included in the
result field of both operations are considered to
be part of the common main-storage location.
However, all bits within a common byte are
considered to be common even if the bits mod­
ified by the two operations do not overlap. As
an example, if (1) one CPU executes the
instruction OR (oc) with a length of 1 and the
value 80 hex in the second-operand location,
(2) the other CPU executes AND (NC) with a
length of 1 and the value FE hex in the second­
operand location, and (3) the frrst operand of
both instructions is the same byte, then the
result of one of the updates can be lost.

4. When the store access is part of an update ref­
erence by the CPU, the execution of the storing
is not necessarily contingent on whether the
information to be stored is different from the
original contents of the location. In particular,
the contents of all designated byte locations are
replaced, and, for each byte in the field, the
entire contents of the byte are replaced.

Depending on the model, an access to store
information may be performed, for example, in
the following cases:

a. Execution of the OR instruction (01 or oc)
with a second operand of all zeros.

h. Execution of OR (oc) with the frrst-and
second-operand fields coinciding.

c. For those locations of the first operand of
TRANSLATE where the argument and func­
tion values are the same.

Chapter 5. Program Execution 5-73

Storage-Operand Consistency

Single-Access References
A fetch reference is said to be a single-access refer­
ence if the value is fetched in a single access to each
byte of the data field. In the case of overlapping
operands, the location may be accessed once for
each operand. A store-type reference is said to be a
single~access reference if a single store access occurs
to each byte location within the data field. An
update reference is said to be single access if both
the fetch and store accesses are each single access.

Except for the accesses associated with multiple­
access references and the stores associated with
storage change and restoration for OAT-associated
access exceptions, all storage-operand references are
single-access references.

Multiple-Access References
In some cases, multiple accesses may be made to
all or some of the bytes of a storage operand. The
following cases may involve multiple-access refer­
ences:

1. The storage operands of the following
instructions: CONVERT TO BINARY, CONVERT
TO DECIMAL, MOVE INVERSE, MOVE WITH

OFFSET, PACK, TRANSLATE, TEST BLOCK,
UNPACK, and UPDATE TREE.

2. The stores into that portion of the frrst operand
of MOVE LONG which is filled with padding
bytes.

3. The storage operands of the decimal
instructions.

4. The stores into a trace entry.

5. The storage operands of vector-facility
instructions.

6. The stores associated with the stop-and-store­
status and store-status-at-address SIGNAL
PROCESSOR orders.

When a storage-operand store reference to a
location is not a single-access reference, the value
placed at a byte location is not necessarily the same
for each store access; thus, intermediate results in a
single-byte location may be observed by other CPUS
and by channel programs.

5-74 ESA/370 Principles of Operation

Programming Notes:

1. When multiple fetch or store accesses are made
to a single byte that is being changed by
another CPU or by a channel program, the
result is not necessarily limited to that which
could be obtained by fetching or storing the
bits individually. For example, the execution
of MULTIPLY DECIMAL may consist in repeti­
tive additions and subtractions, each of which
causes the second operand to be fetched from
storage and the frrst operand to be updated in
storage.

2. When CPU instructions which make multiple­
access references are used to modify storage
locations being simultaneously accessed by
another CPU or by a channel program, multiple
store accesses to a single byte by the CPU may
result in intermediate values being observed by
the other CPU or by the channel program. To
avoid these intermediate values (for example,
when modifying a ccw chain), only
instructions making single-access references
should be used.

Block-Concurrent References
For some references, the accesses to all bytes within
a halfword, word, or doubleword are specified to
appear to be block-concurrent as observed by other
CPUs. These accesses do not necessarily appear to
channel programs to include more than a byte at a
time. The half word , word, or doubleword is
referred to in this section as a block. When a fetch­
type reference is specified to appear to be concur­
rent within a block, no store access to the block by
another CPU is permitted during the time that bytes
contained in the block are being fetched. Accesses
to the bytes within the block by channel programs
may occur between the fetches. When a store-type
reference is specified to appear to be concurrent
within a block, no access to the block, either fetch
or store, is permitted by another CPU during the
time that the bytes within the block are being
stored. Accesses to the bytes in the block by
channel programs may occur between the stores.

Consistency Specification
For all instructions in the S format and RX format,
with the exception of EXECUTE, CONVERT TO
DECIMAL, CONVERT TO BINARY, and the 1/0

instructions, when the operand is addressed on a
boundary which is integral to the size of the
operand, the storage-operand references appear to
be block-concurrent as observed by. other CPUs.

For the instructions COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP, all accesses to the
storage operand appear to be block-concurrent as
observed by other CPUs.

The instructions LOAD MULTIPLE and STORE MUL­
TIPLE, when the operand starts on a word
boundary, and the instructions COMPARE LOGICAL
(CLC), COMPARE LOGICAL CHARACTERS UNDER
MASK, INSERT CHARACTERS UNDER MASK, and
STORE CHARACTERS UNDER MASK access their
storage operands in a left-to-right direction, and all
bytes accessed within each doubleword appear to
be accessed concurrently as observed by other
CPus.

The instructions LOAD ACCESS MULTIPLE, LOAD
CONTROL, STORE ACCESS MULTIPLE, and STORE
CONTROL access the storage operand in a left-to­
right direction, and all bytes accessed within each
word' appear to be accessed concurrently as
observed by other CPUs.

When destructive overlap does not exist, the oper­
ands of MOVE (MVC), MOVE WITH KEY, MOVE TO
PRIMARY, and MOVE TO SECONDARY are accessed
as follows:

1. The fIrst operand is accessed in a left-to-right
direction, and all bytes accessed within a
doubleword appear to be accessed concurrently
as observed by other CPUs.

2. The second operand is accessed left to right,
and all bytes within a doubleword in the
second operand that are moved into a single
doubleword in the fIrst operand appear to be
fetched concurrently. as 0 bserved by other
CPUs. Thus, if the fIrst and second operands
begin on the same byte offset within a
doubleword, the fetch of the second operand
appears to be doubleword-concurrent as
observed by other CPus. If the offsets within a
doubleword differ by 4, the fetch of the second
operand appears to be word-concurrent as
observed by other CPus.

Destructive overlap is said to exist when the result
location is used as a source after the result has been
stored, assuming processing to be performed one
byte at a time.

The operands of MOVE WITH SOURCE KEY and
MOVE WITH DESTINATION KEY are accessed the
same as those of MOVE (MVC), except that destruc­
tive overlap is assumed not to exist.

The operands for MOVE LONG appear to be
accessed doubleword-concurrent as observed by
other CPUs when all of the following are true:

• Both operands start on doubleword boundaries
and are an integral number of doublewords in
length.

• The operands do not overlap.

• The nonpadding part of the operation is being
executed.

The operands for COMPARE LOGICAL LONG appear
to be accessed doubleword-concurrent as observed
by other CPus when both operands start on
doubleword boundaries and are an integral number
of doublewords in length.

For EXCLUSIVE OR (XC), the operands are proc­
essed in a left-to-right direction, and, when the fIrst
and second operands coincide, all bytes accessed
within a doubleword appear to be accessed concur­
rently as observed by other CPus.

Programming Note: In the case of EXCLUSIVE OR
(XC) designating operands which coincide exactly,
the bytes within the field may appear to be accessed
as many as three times, by two fetches and one
store: once as the fetch portion of the fIrst operand
update, once as the second-operand fetch, and then
once as the store portion of the fIrst-operand
update. Each of the three accesses appears to be
doubleword-concurrent as observed by other CPus,
but the three accesses do not necessarily appear to
occur one immediately after the other. One or
both fetch accesses may be omitted since the
instruction can be completed without fetching the
operands.

Relation between Operand Accesses

As observed by other CPus and by channel pro­
grams, storage-operand fetches associated with one
instruction execution appear to precede all storage­
operand references for conceptually subsequent
instructions. A storage-operand store specified by
one instruction appears to precede all storage­
operand stores specified by conceptually subsequent
instructions, but it does not necessarily precede
storage-operand fetches specified by conceptually
subsequent instructions. However, a storage­
operand store appears to precede a conceptually
subsequent storage-operand fetch from the same
main-storage location.

Chapter 5. Program Execution 5-75

When an instruction has two storage operands both
of which cause fetch references, it is unpredictable
which operand is fetched frrst, or how much of one
operand is fetched before the other operand is
fetched. When the two operands overlap, the
common locations may be fetched independently
for each operand.

When an instruction has two storage operands the
frrst of which causes a store and the second a fetch
reference, it is unpredictable how much of the
second operand is fetched before the results are
stored. In the case of destructively overlapping
operands, the portion of the second operand which
is common to the frrst is not necessarily fetched
from storage.

When an instruction has two storage operands the
frrst of which causes an update reference and the
second a fetch reference, it is unpredictable which
operand is fetched frrst, or how much of one
operand is fetched before the other operand is
fetched. Similarly, it is unpredictable how much of
the result is processed before it is returned to
storage. In the case of destructively overlapping
operands, the portion of the second operand which
is common to the frrst is not necessarily fetched
from storage.

Programming Note: The independent fetching of a
single location for each of two operands may affect
the program execution in the following situation.

When the same storage location is designated by
two operand addresses of an instruction, and
another CPU or a channel program causes the con­
tents of the location to change during execution of
the instruction, the old and new values of the
location may be used simultaneously. For
example, comparison of a field to itself may yield a
result other than equal, or EXCLusIvE-oRing of a
field with itself may yield a result other than zero.

Other Storage References

The restart, program, supervisor-call, external,
input/output, and machine-check PSWs appear to
be accessed doubleword-concurrent as observed by
other CPUs. These references appear to occur after
the conceptually previous unit of operation and
before the conceptually subsequent unit of opera­
tion. The relationship between the new-psw fetch,
the old-psw store, and the interruption-code store
is unpredictable.

5-76 ESA/370 Principles of Operation

Store accesses for interruption codes are not neces­
sarily single-access stores. The store accesses for
the external and supervisor-calI-interruption codes
appear to occur between the conceptually previous
and conceptually subsequent operations. The store
accesses for the program -interruption codes may
precede the storage-operand references associated
with the instruction which results in the program
interruption.

Serialization
The sequence of functions performed by a CPU is
normally independent of the functions performed
by other cpus and by channel programs. Similarly,
the sequence of functions performed by a channel
program is normally independent of the functions
performed by other channel programs and by cpus.
However, at certain points in its execution, serial­
ization of the CPU occurs. Serialization also occurs
at certain points for channel programs.

CPU Serialization

All interruptions and the execution of certain
instructions cause a serialization of CPU operations.
A serialization operation consists in completing all
conceptually previous storage accesses by the CPU,
as observed by other CPus and by channel pro­
grams, before the conceptually subsequent storage
accesses occur. Serialization affects the sequence of
all CPU accesses to storage and to the storage keys,
except for those associated with ART-table-entry
and DAT-table-entry fetching.

Serialization is performed by CPU reset, all inter­
ruptions, and by the execution of the following
instructions:

• The general instructions BRANCH ON CONDI­
TION (BCR) with the Ml and R2 field containing
all ones and all zeros, respectively, and
COMPARE AND SWAP, COMPARE DOUBLE AND
SWAP, STORE CLOCK, SUPERVISOR CALL, and
TEST AND SET.

• LOAD PSW and SET STORAGE KEY EXTENDED.
• All I/O instructions.
• PURGE ALB, PURGE TLB, and SET PREFIX.

PURGE ALB and SET PREFIX also cause the
ART-Iookaside buffer to be cleared of all entries.
PURGE TLB and SET PREFIX also cause the
translation-Iookaside buffer to be cleared of all
entries.

• SIGNAL PROCESSOR.
• INVALIDATE PAGE TABLE ENTRY.

• TFST BLOCK.
• MOVE TO PRIMARY, MOVE TO SECONDARY,

PROGRAM CALL, PROGRAM TRANSFER, SET
ADDRFSS SPACE CONTROL, and SET SEC­
ONDARY ASN.

• PROGRAM RETURN when the state entry to be
unstacked is a program~call state entry.

• The three trace functions ~~ branch tracing, ASN
tracing, and explicit tracing ~~ cause serializa~­

tion to be perfonned before the trace action
and after completion of the trace action.

The sequence of events associated with a serializing
operation is as follows:

1. All conceptually previous storage accesses by
the CPU are completed as observed by other
CPUs and by channel programs. This includes
all conceptually previous stores and changes to
the storage keys.

2. The nonnal function associated with the serial ~
izing operation is perfonned. In the case of
instruction execution, operands are fetched, and
the storing of results is completed. The
exceptions are LOAD PSW and SET PREFIX, in
which the operand may be fetched before pre~
vious stores have been completed, and inter~

ruptions, in which the interruption code and
associated fields may be stored prior to the
serialization. The fetching of the serializing
instruction occurs before the execution of the
instruction and may precede the execution of
previous instructions, but may not precede the
completion of ~y previous serializing opera­
tion. In the case of an interruption, the old
PSW, the interruption code, and other infonna­
tion, if any, are stored, and the new psw is
fetched, but not necessarily in that sequence.

3. Finally, instruction fetch and operand accesses
for conceptually subsequent operations may
begin.

A serializing function affects the sequence of
storage accesses that are under the control of the
CPU in which the serializing function takes place.
It does not affect the sequence of storage accesses
under the control of other CPus and of channel
programs.

Programming Notes:

1. The following are some effects of a serializing
operation:

a. When the execution of an instruction
changes the contents of a storage location
that is used as a source of a following

instruction and when different addresses are
used to designate the same absolute
location for storing the result and fetching
the instruction, a serializing operation fol~
lowing the change ensures that the modi­
fied instruction is executed.

b. When a serializing operation takes place,
other cpus and channel programs observe
instruction and operand fetching and result
storing to take place in the sequence estab­
lished by the serializing operation.

2. Storing into a location from which a serializing
instruction is fetched does not necessarily affect
the execution of the serializing instruction
unless a serializing function has been perfonned
after the storing and before the execution of the
serializing instruction.

Channel-Program Serialization

Serialization of a channel program occurs as
follows:

1. All storage accesses and storage-key accesses by
the channel program follow initiation of the
execution of START SUBCHANNEL, or, if sus­
pended, RFSUME SUBCHANNEL, as observed by
cpus and by other channel programs. This
includes all accesses for the ccws, IDA ws, and
data.

2. .All storage accesses and storage-key accesses by
the channel program are completed, as
observed by CPus and by other channel pro­
grams, before the subchannel status indicating
status-pending with primary status is made
available to any CPU.

3. If a ccw contains a PCI flag or a suspend flag
which is one, all storage accesses and
storage-key accesses due to CCws preceding it
in the ccw chain are completed, as observed
by CPus and by other channel programs, before
the subchannel status indicating status-pending
with intennediate status (PCI or suspended) is
made available to any CPU.

The serialization of a channel program does not
affect the sequence of storage accesses or
storage-key accesses caused by other channel pro­
grams or by another CPU program.

Chapter S. Program Execution 5-77

..

•

Chapter 6. Interruptions

Interruption Action
Interruption Code ...
Enabling and Disabling
Handling of Floating Interruption

Conditions
Instruction -Length Code

Zero ILC
ILC on Instruction-Fetching Exceptions

Exceptions Associated with the PSW
Early Exception Recognition
Late Exception Recognition

External Interruption
Clock Comparator
CPU Timer
Emergency Signal
External Call ...
Interrupt Key
Malfunction Alert
Service Signal
TO D-Clock Sync Check

I/O Interruption
Machine-Check Interruption
Program Interruption

Exception-Extension Code
Program -Interruption Conditions

Addressing Exception
AFX -Translation Exception
ALEN-Translation Exception
ALE-Sequence Exception ..
·ALET -Specification Exception
AS N -Translation -Specification

Exception
ASTE-Sequence Exception
ASTE-Validity Exception
ASX -Translation Exception
Data Exception
Decimal-Divide Exception
Decimal-Overflow Exception
Execute Exception
Exponent-Overflow Exception

6-2
6-5
6-6

6-6
6-7
6-7
6-7
6-8
6-8
6-9
6-9

6-10
6-10
6-11
6-11
6-11
6-11
6-12
6-12
6-12
6-13
6-13
6-14
6-14
6-14
6-16
6-16
6-16
6-16

6-16
6-17
6-17
6-17
6-17
6-18
6-18
6-18
6-18

Exponent-Underflow Exception
EX -Translation Exception
Extended-Authority Exception
Fixed-Point-Divide Exception
Fixed-Point-Overflow Exception
Floating-Point-Divide Exception
LX -Translation Exception
Monitor Event
Operand Exception
Operation Exception ...
Page-Translation Exception
PC-Translation -Specification Exception
PER Event
Primary-Authority Exception
Privileged-Operation Exception
Protection Exception
Secondary-Authority Exception

. Segment-Translation Exception
Signillcance Exception ...
Space-Switch Event
Special-Operation Exception
Specification Exception
Stack-Empty Exception
Stack-Full Exception ..
Stack-Operation Exception
Stack -Specification Exception
Stack-Type Exception
Trace-Table Exception
Translation -Specification Exception
Unnormalized-Operand Exception
Vector-Operation Exception

Collective Program-Interruption Names
Recognition of Access Exceptions ...
Multiple Program-Interruption Conditions

Access Exceptions
ASN-Translation Exceptions
Trace Exceptions ...

Restart Interruption
Supervisor-Call Interruption
Priority of Interruptions

6-19
6-19
6-19
6-19
6-19
6-20
6-20
6-20
6-21
6-21
6-21
6-22
6-22
6-22
6-22
6-23
6-24
6-24
6-24
6-24
6-25
6-26
6-27
6-27
6-27
6-27
6-27
6-28
6-28
6-28
6-28
6-29
6-29
6-32
6-34
6-38
6-38
6-38
6-38
6-39

Chapter 6. Interruptions 6-1

The interruption mechanism permits the CPU to
change its state as a result of conditions external to
the configuration, within the configuration, or
within the CPU itself. To permit fast response to
conditions of high priority and immediate recogni­
tion of the type of condition, interruption condi­
tions are grouped into six classes: external,
input/output, machine check, program, restart, and
supervisor call.

Interruption Action
An interruption consists in storing the current PSW

as an old PSW, storing information identifying the
cause of the interruption, and fetching a new psw.
Processing resumes as specified by the new psw.

The old psw stored on an interruption normally
contains the . address of the instruction that would
have been executed next had the interruption not

6-2 ESA/370 Principles of Operation

occurred, thus permitting. resumption of the inter­
rupted program. For program and supervisor-call
interruptions, the information stored also contains
a code that identifies the length of the last-executed
instruction, thus permitting the program to respond
to the cause of the interruption. In the case of
some program ~onditions for which the normal
response is reexecution of the instruction causing
the interruption, the instruction address directly
identifies the instruction last executed.

Except for restart, an interruption can occur only
when the CPU is in the operating state. . The restart
interruption can occur with the CPU in either the
stopped or operating state ..

The details of source identification, location deter­
mination, and instruction execution are explained
in later sections and are summarized in Figure 6-1
on page 6-3.

Mask Bits
in Ctrl Execution of

psw- Registers Instruction
Source Interruption Mask ILC Identified

Identification Code Bits Reg, Bit Set by Old PSW

MACHINE CHECK Locations 232-239 1

(01 d PSW 4S,
new PSW 112)

Exigent condition 13 u terminated or
nullified2

Repressible cond 13 14, 3-7 u unaffected 2

SUPERVISOR CALL Locations 13S-139
(01 d PSW 32,
new PSW 96)

Instruction bits eeeeeeee ssssssss 1,2 completed

PROGRAM Locations 142-143
(01 d PSW 4e,
new PSW 1e4) Binary Hex 3

Operation eeeeeeee peeeeeel eeel 1,2,3 suppressed
Privileged oper eeeeeeee peeeeele eee2 2,3 suppressed
Execute eeeeeeee peeeee11 eee3 2 suppressed
Protection eeeeeeee peeeelee eee4 1,2,3 suppressed or

terminated
Addressing eeeeeeee peeee1e1 eees 1,2,3 suppressed or

terminated
Specification eeeeeeee peeee11e eee6 e,1,2,3 suppressed or

completed
Data eeeeeeee peeee111 eee7 2,3 suppressed or

terminated
Fixed-pt overflow xxxxxxxx peee1eee eees 2e 1,2 completed
Fixed-point divide eeeeeeee peee1eel eee9 1,2 suppressed or

completed
Decimal overflow eeeeeeee peee1e1e eeeA 21 2,3 completed
Decimal divide eeeeeeee peeelell eeeB 2,3 suppressed
Exponent overflow xxxxxxxx peeellee eeec 1,2 completed
Exponent underflow xxxxxxxx peeellel eeeD 22 1,2 completed
Significance xxxxxxxx peee1lle eeeE 23 1,2 completed
Floating-pt divide xxxxxxxx peeell11 eeeF 1,2 suppressed or

inhibited4

Segment transl eeeeeeee peeleeee eele 1,2,3 null i fi ed
Page translation eeeeeeee pee1eeel eell 1,2,3 null i fi ed
Translation spec eeeeeeee peeleele ee12 1,2,3 suppressed
Special operation eeeeeeee peeleell ee13 e, 1 1,2,3 suppressed
Operand eeeeeeee peelelel eelS 2 suppressed
Trace table eeeeeeee peele lIe ee16 1,2 null i fi ed
ASN-transl spec eeeeeeee pee1elll ee17 1,2,3 suppressed
Vector operation 4 eeeeeeee peelleel ee19 2,3 null i fi ed
Space-switch event eeeeeeee peelllee eelC 1, e 1,2 completed
Unnormalized xxxxxxxx pee1llle ee1E 2 inhibited 4

operand4

Figure 6-1 (Part 1 of 3). Interruption Action

Chapter 6. Interruptions 6-3

Mask Bits
in Ctrl Execution of

PSW- Registers Instruction
Source Interruption Mask ILC Identified

Identification Code Bits Reg, Bit Set by Old PSW

PC-transl spec 00000000 p0011111 001F 2 suppressed
AFX translation 00000000 p0100000 0020 1,2 null i fi ed
ASX translation 00000000 p0100001 0021 1,2 null i fi ed
LX translation 00000000 p0100010 0022 2 null i fi ed
EX translation 00000000 p0100011 0023 2 null i fi ed
Primary authority 00000000 p0100100 0024 2 null i fi ed
Secondary auth 00000000 p0100101 0025 1,2 null i fi ed
ALET specification 00000000 p0101000 0028 1,2,3 suppressed
ALEN translation 00000000 p0101001 0029 1,2,3 null i fi ed
ALE.sequence 00000000 p0101010 002A 1,2,3 null i fi ed
ASTE validity 00000000 p0101011 002B 1,2,3 null i fi ed
ASTE sequence 00000000 p0101100 002C 1,2,3 null i fi ed
Extended authority 00000000 p0101101 0020 1,2,3 null i fi ed
Stack full 00000000 p0110000 0030 2 null i fi ed
Stack empty 00000000 p0110001 0031 1,2 null i fi ed
Stack specification 00000000 p0110010 0032 1,2 null i fi ed
Stack type 00000000 p0110011 0033 1,2 null i fi ed
Stack operation 00000000 p0110100 0034 1 null i fi ed
Monitor event 00000000 p1000000 0040 8, 16-31 2 completed
PER event xxxxxxxx 1nnnnnnn 5 0080 1 9, 0-4@ 0,1,2,3 completed6

EXTERNAL Locations 134-135
(old PSW 24,
new PSW 88) Binary Hex 3

Interrupt key 00000000 01000000 0040 7 0, 25 u unaffected
Malfunction alert 00010010 00000000 1200 7 0, 16 u unaffected
Emergency signal 00010010 00000001 1201 7 0, 17 u unaffected
External call 00010010 00000010 1202 7 0, 18 u unaffected
TOO-clock sync chk 00010000 00000011 1003 7 0, 19 u unaffected
Clock comparator 00010000 00000100 1004 7 0, 20 u unaffected
CPU timer 00010000 00000101 1005 7 0, 21 u unaffected
Service signal 00100100 00000001 2401 7 0, 22 u unaffected

INPUT/OUTPUT Locations 184-191
(old PSW 56,
new PSW 120)

I/O-interruption 6 6, 0-7 7 u unaffected
subclass

RESTART None
(01 d PSW 8,
new PSW 0)

Restart key u unaffected

Figure 6-1 (Part 2 of 3). Interruption Action

6-4 ESA/370 Principles of Operation

Explanation:

Locations for the old PSWs, new PSWs, and interruption codes are real locations.
1 A model-independent machine-check interruption code of 64 bits is stored at

real locations 232-239.
2 The effect of the machine-check condition is indicated by bits in the machine­

check-interruption code. The setting of these bits indicates the extent of
the damage and whether the unit of operation is nullified, terminated, or
unaffected.

3 The interruption code in the column labeled "Hex" is the hex code for the
basic interruption; this code does not show the effects of concurrent inter­
ruption conditions represented by n, p, or x in the column labeled "Binary."

4 Vector-operation and unnormalized-operand exceptions are associated with
the vector facility. "Inhibited" is a type of ending which occurs only for
instructions associated with the vector facility. These are described in
the publication Enterprise Systems Architecture/37G and System/37G Vector
Operations, SA22-7125.

5 When the interruption code indicates a PER event, an ILC of 0 may be stored
only when bits 8-15 of the interruption code are 10000110 (PER, specifi­
cation).

6 The unit of operation is completed, unless a program exception concurrently
indicated causes the unit of operation to be inhibited, nullified, suppressed,
or terminated.

7 Bits 0-7 of control register 6 provide detailed masking of I/O-interruption
subclasses 0-7 respectively.

@ Additional masks in control register 9, bit positions 16-31, provide detailed
control over the source of PER general-register-alteration events which are
masked by control register 9, bit 3.

n A possible nonzero code indicating another concurrent program-interruption
condition

p If one, the bit indicates a concurrent PER-event interruption condition.
s Bits of the I field of SUPERVISOR CALL.
u Not stored.
x Exception-extension code. This field is described in the publication

Enterprise Systems Architecture/37G and System/37G Vector Operations,
SA22-7125. This field is set to zero except by vector instructions.

Figure 6-1 (Part 3 of 3). Interruption Action

I nterruption Code

The six classes of interruptions (external, I/O,
machine check, program, restart, and supervisor
call) are distinguished by the storage locations at
which the old psw is stored and from which the
new psw is fetched. For most classes, the causes
are further identified by an interruption code and,
for some classes, by additional information placed
in permanently assigned real storage locations
during the interruption. (See also the section
"Assigned Storage Locations" in Chapter 3,
"Storage.") For external, program, and supervisor­
call interruptions, the interruption code consists of
16 bits.

For external interruptions, the interruption code is
stored at reallocations 134-135. A parameter may

be stored at real locations 128-131, or a CPU

address may be stored at reallocations 132-133.

For I/O interruptions, the I/o-interruption code is
stored at real locations 184-191. The I/o-inter­
ruption code consists of a 32-bit subsystem­
identification word and a 32-bit interruption
parameter.

For machine-check interruptions, the interruption
code consists of 64 bits and is stored at real
locations 232-239. Additional information for iden­
tifying the cause of the interruption and for recov ..
ering the state of the machine may be provided by
the contents of the machine-check failing-storage
address and the contents of the fixed-logout and
machine-cheek-save areas. (See Chapter 11,
"Machine-Check Handling.")

Chapter 6. Interruptions 6-5

For program interruptions, the interruption code is
stored at real locations 142-143, and the
instruction-length code is stored in bit positions 5
and 6 of real location 141. Further information
may be provided in the form of the trans1ation­
exception identification, exception access identifica­
tion, monitor-class number, monitor code, PER

code, PER access identification, and PER address,
which are stored at reallocations 144-161.

For restart interruptions, no interruption code IS

. stored.

For supervisor-call interruptions, the interruption
code is stored at real locations 138-139, and the
instruction-length code is stored in bit positions 5
and 6 of reallocation 137.

Enabling and Disabling

By means of mask bits in the current psw and in
control registers, the CPU may be enabled or disa­
bled for all external, 110, and machine-check inter­
ruptions and for some program interruptions.
When a mask bit is one, the CPU is enabled. for the
corresponding class of interruptions, and these
interruptions can occur.

When a mask bit is zero, the CPU is disabled for
the corresponding interruptions. The conditions
that cause 110 interruptions remain pending.
External-interruption conditions either remain
pending or persist until the cause is removed.
Machine-cheek-interruption conditions, depending
on the type, are ignored, remain pending, or C3:use
the CPU to enter the check-stop state. The disal­
lowed program-interruption conditions are ignored,
except that some causes are indicated also by the
setting of the condition code. The setting of the
significance and exponent-underflow program-mask
bits affects the manner in which floating-point
operations are completed when the corresponding
condition occurs.

The CPU is always enabled for program inter­
ruptions for which mask bits are not provided, as
well as the supervisor-call and restart interruptions.

The mask bits may allow or disallow all inter­
ruptions within the class, or they may selectively
allow or disallow interruptions for particular causes.
This control may be provided by mask bits in the
psw that are assigned to particular causes, such as
the bits assigned to the four maskable program­
interruption conditions. Alternatively, there may

6-6 ESA/370 Principles of Operation

be a hierarchy of masks, where a mask bit in the
psw controls all interruptions within a type, and
mask bits in a control register provide more
detailed control over the sources.

When the mask bit is one, the CPU is enabled for
the corresponding interruptions. When the mask
bit is zero, these interruptions are disallowed.
Interruptions that are controlled by a hierarchy of
masks are allowed only when all controlling mask
bits are ones.

Programming Notes:

1. Mask bits in the psw provide a means of disal­
lowing all maskable interruptions; thus, subse­
quent interruptions can be disallowed by the
new psw introduced by an interruption. Fur­
thermore, the mask bits can be used to estab- .
lish a hierarchy of interruption priorities, where
a condition in one class can interrupt the
program handling a condition in another class
but not vice versa. To prevent an interruption­
handling routine from being interrupted before
the necessary housekeeping steps are per­
formed, the new psw must disable the CPU for
further interruptions within the same class or
within a class of lower priority.

2 .. Because the mask bits in control registers are
not changed' as part of the interruption proce­
dure, these masks cannot be used to prevent an
interruption immediately after a previous inter­
ruption in the same class. The mask ~its in
control registers provide a means for selectively
enabling the CPU for ·some sources and disa­
bling it for others within the same class.

Handling of Floating Interruption
Conditions

An interruption condition which can be presented
to any CPU in the configuration is called a floating
interruption condition. The condition is presented
to the fIrst CPU in. the configuration which is
enabled for the corresponding interruption and
which can perform the interruption, and then the
condition is cleared and not presented to any other
CPU in the configuration. A CPU cannot perform
the interruption when it is in the check-stop state,
has an invalid prefix, is in a string of program inter­
ruptions due to a specification exception of the
type which is recognized early, or is in the stopped
state. However, a CPU with the rate control set to .
instruction step can perform the interruption when
the start key is activated.

Service signal, I/O, and certain machine-check con­
ditions are floating interruption conditions.

Instruction-Length Code

The instruction-length code (ILC) occupies two bit
positions and provides the length of the last
instruction executed. It permits identifying the
instruction causing the interruption when the
instruction address in the old psw designates the
next sequential instruction. The ILC is provided
also by the BRANCH AND LINK instructions in the
24-bit addressing mode.

The ILC for program and supervisor-call inter­
ruptions is stored in bit positions 5 and 6 of the
bytes at real locations 141 and 137, respectively.
For external, I/O, machine-check, and restart inter­
ruptions, the ILC is not stored since it cannot be
related to the length of the last-executed instruc­
tion.

For supervisor-call and program interruptions, a
nonzero ILC identifies in halfwords the length of the
instruction that was last executed. Whenever an
instruction is executed by means of EXECUTE,
instruction-length code 2 is set to indicate the
length of EXECUTE and not that of the target
instruction.

The value of a nonzero instruction-length code is
related to the leftmost two bits of the instruction.
The value does not depend on whether the opera­
tion code is assigned or on whether the instruction
is installed. The following table summarizes the
meaning of the instruction-length code:

ILC Instr
Bits Instruction

Decimal Binary 0-1 Length

0 00 Not available
1 01 00 One halfword
2 10 01 Two halfwords
2 10 10 Two halfwords
3 11 11 Three halfwords

Zero ILC
Instruction-length code 0, after a program inter­
ruption, indicates that the instruction address stored
in the old psw does not identify the instruction
causing the interruption.

An ILC of 0 occurs when a specification exception

due to a psw-format error is recognized as part of
early exception recognition and the psw has been
introduced by LOAD PSW or an interruption. (See
the section "Exceptions Associated with the PSw"
later in this chapter.) In the case of LOAD psw, the
instruction address of LOAD PSW or EXECUTE has
been replaced by the instruction address of the new
PSW. When the invalid psw is introduced by an
interruption, the psw-format error cannot be attri­
buted to an instruction.

In the case of LOAD PSW and the supervisor-call
interruption, a PER event may be indicated concur­
rently with a specification exception having an ILC
ofO.

ILC on Instruction-Fetching Exceptions
When a program interruption occurs because of an
exception that prohibits access to the instruction,
the instruction-length code cannot be set on the
basis of the frrst two bits of the instruction. As far
as the significance of the ILC for this case is con­
cerned," the following two situations are distin­
guished:

1. When an odd instruction address causes a spec­
ification exception to be recognized or when an
addressing, protection, or translation­
specification exception is encountered on
fetching an instruction, the ILC is set to 1, 2, or
3, indicating the multiple of 2 by which the
instruction address has been incremented. It is
unpredictable whether the instruction address is
incremented by 2, 4, or 6. By reducing the
instruction address in the old psw by the
number of half word locations indicated in the
ILC, the instruction address originally appearing
in the psw may be obtained.

2. When a segment-translation or page-translation
exception is recognized while fetching an
instruction, the ILC is arbitrarily set to 1, 2, or
3. In this case, the operation is nullified, and
the instruction address is not incremented.

The ILC is not necessarily related to the frrst two
bits of the instruction when the first half word of an
instruction can be fetched but an access exception
is recognized on fetching the second or third
halfword. The ILC may be arbitrarily set to 1, 2, or
3 in these cases. The instruction address is or is
not updated, as described in situations 1 and 2
above.

When any exceptions are encountered on fetching
the target instruction of EXECUTE, the ILC is 2.

Chapter 6. Interruptions 6-7

Programming Notes:

1. A nonzero instruction-length code for a
program interruption indicates the number of
halfword- locations by which the instruction
address in the program old psw must be
reduced to obtain the instruction address of the
last instruction executed, unless one of the fol­
lowing situations exists:

a. The interruption is caused by an exception
resulting in nullification.

b. An interruption for a PER event occurs
before the execution of an interruptible
instruction is completed, and no other
program-interruption condition is indicated
concurrently.

c. The interruption is caused by a PER event
due to LOAD PSW or a branch or linkage
instruction, including SUPERVISOR CALL

(but not including MONITOR CALL).

d. The interruption is caused by an access
exception encountered in fetching an
instruction, and the instruction address has
been introduced into the psw by a means
other than sequential operation (by a
branch instruction, LOAD PSW, an inter­
ruption, or conclusion of an IPL sequence).

e. The interruption is caused by a specifica­
tion exception because of an odd instruc­
tion address.

f. The interruption is caused by an early
specification exception or by an access
exception encountered in fetching an
instruction, and changes have been made to
a parameter that controls the relation
between instruction addresses and real
addresses. The relation between instruction
addresses and real addresses can be changed
without introducing an entire new psw by
switching from the real mode, primary­
space mode, secondary-space mode, access­
register mode, or home-space mode to a
different mode, or by changing one or
more of the translation parameters in
control registers 1, 7, and 13. The early
specification exception can be caused by
executing STORE THEN OR SYSTEM MASK

or SET SYSTEM MASK, which switches to or
from the real mode while introducing
invalid values in bit positions 0-7 of the
psw.

6-8 ESA/370 Principles of Operation

For situations a and b above, the instruction
address in the psw is not incremented, and the
instruction designated by the instruction
address is the same as the last one executed.
These situations are the only ones in which the
instruction address in the old psw identifies the
instruction causing the exception.

For situations c, d, and e, the instruction
address has been replaced as part of the opera­
tion, and the address of the last instruction exe­
cuted cannot be calculated using the one
appearing in the program old psw.

F or situation f, the instruction address in the
psw has not been replaced, but the corre­
sponding real address after the change may be
different.

2. The instruction-length code (ILC) is redundant
when a PER event is indicated since the PER

address in the word at real location 152 identi­
fies the instruction causing the interruption (or
the EXECUTE instruction, as appropriate). Sim­
ilarly, the ILC is redundant when the operation
is nullified, since in this case the instruction
address in the psw is not incremented. If the
ILC value is required in this case, it can be
derived from the operation code of the instruc­
tion identified by the old psw.

Exceptions Associated with the PSW

Exceptions associated with erroneous information
in the current psw may be recognized when the
information is introduced into the psw or may be
recognized as part of the execution of the next
instruction. Errors in the psw which are
specification-exception conditions are called
psw-format errors.

Early Exception Recognition
For the following error conditions, a program inter­
ruption for a specification exception occurs imme­
diately after the psw becomes active:

• A one is introduced into an unassigned bit
position of the psw (that is, any of bit positions
0, 2-4, or 24-31).

• A zero is introduced into bit position 32 of the
PSW, but bits 33-39 are not all zeros.

• A zero is introduced into bit position 12 of the
psw.

The interruption occurs regardless of whether the
wait state is specified. If the invalid psw causes the
CPU to become enabled for a pending I/O, external,
or machine-check interruption, the program inter­
ruption occurs instead, and the pending inter­
ruption is subject to the mask bits of the new psw
introduced by the program interruption.

When an· interruption or the execution of LOAD

pswor PROGRAM RETURN introduces a psw with
one of the above error conditions, the instruction­
length code is set to 0, and the newly introduced
psw is stored unmodified as the old psw. When
one of the above error conditions is introduced by
execution of SET SYSTEM MASK or STORE THEN OR

SYSTEM MASK, the instruction-length code is set to
2, and the instruction address is incremented by 4.
The psw containing the invalid value introduced
into the system-mask field is stored as the old psw.

When a psw with one of the above error conditions
is introduced during initial program loading, the
loading sequence is not completed, and the load
indicator remains on.

Late Exception Recognition
For the following conditions, the exception is
recognized as part of the execution of the next
instruction:

• A specification exception is recognized due to
an odd instruction address in the psw (psw bit
63 is one).

• An access exception (addressing, page­
translation, protection, segment-translation, or
translation-specification) is associated with the
location designated by the instruction address
or with the location of the second or third
halfword of the instruction starting at the desig­
nated instruction address.

The instruction-length code and instruction address
stored in the program old psw under these condi­
tions are discussed in the section "ILC on
Instruction-Fetching Exceptions" in this chapter.

If an I/O, external, or machine-check-interruption
condition is pending and the psw causes the CPU to
be enabled for that condition, the corresponding
interruption occurs, and the psw is not inspected
for exceptions which are recognized late. Similarly,
a psw specifying the wait state is not inspected for
exceptions which are recognized late.

Programming Notes:

1. The execution of LOAD ADDRESS SPACE

PARAMETERS, LOAD PSW, PROGRAM CALL,

PROGRAM RETURN, PROGRAM TRANSFER, SET

PREFIX, SET SECONDARY ASN, SET SYSTEM

MASK, STORE THEN AND SYSTEM MASK, and
STORE THEN OR SYSTEM MASK is suppressed
on an addressing or protection exception, and
hence the program old psw provides informa­
tion concerning the program causing the excep­
tion.

2. When the frrst halfword of an instruction can
be fetched but an access exception is recognized
on fetching the second or third halfword, the
ILC is not necessarily related to the operation
code.

3. If the new psw introduced by an interruption
contains a psw-format error, a string of inter­
ruptions may occur. (See the section "Priority
of Interruptions" in this chapter.)

External Interruption
The external interruptio.n provides a means by
which the CPU responds to various signals origi­
nating from either inside or outside the configura­
tion.

An external interruption causes the old psw to be
stored at real location 24 and a new psw to be
fetched from reallocation 88.

The source of the interruption is identified in the
interruption code which is stored at real locations
134-135. The instruction-length code is not stored.

Additionally, for the malfunction-alert, emergency­
signal, and external-call conditions, a 16-bit CPU

address is associated with the source of the inter­
ruption and is stored at real locations 132-133.
When the CPU address is stored, bit 6 of the inter­
ruption code is set to one. For all other condi­
tions, no CPU address is stored, bit 6 of the inter­
ruption code is set to zero, and zeros are stored at
reallocations 132-133.

For the service-signal interruption, a 32-bit param­
eter is associated with the interruption and is stored
at real locations 128-131. Bit 2 of the external­
interruption code indicates that a parameter has
been stored. When bit 2 is zero, the contents of
reallocations 128-131 remain unchanged.

Chapter 6. Interruptions 6-9

External-interruption conditions are of two types:
those for which an interruption-request condition is
held pending, and those for which the condition
directly requests the interruption. Clock
comparator, CPU timer, and Too-clock sync check
are conditions which directly request external inter­
ruptions. If a condition which directly requests an
external interruption is removed before the request
is honored, the request does not remain pending,
and no interruption occurs. Conversely, the
request is not cleared by the interruption, and if the
condition persists, more than one interruption may
result from a single occurrence of the condition.

When several interruption requests for a single
source are generated before the interruption occurs,
and the interruption condition is of the type which
is held pending, only one request for that source is
preserved and remains pending.

An external interruption for a particular source can
occur only when the CPU is enabled for inter­
ruption by that source. The external interruption
occurs at the completion of a unit of operation.
The external mask, psw bit 7, and external
subclass-mask bits in control register 0 control
whether the CPU is enabled for a particular source.
Each source for . an external interruption has a
subclass-mask bit assignedJo it, and the source can
cause an interruption only when the external-mask
bit is one and the corresponding subclass-mask bit
is one.

When the CPU becomes enabled for a pending
external-interruption condition, the interruption
occurs at the completion of the instruction exe­
cution or interruption that causes the enabling.

More than one source may present a request for an
external interruption at the same time. When the
CPU becomes enabled for more than one concur­
rently pending request, the interruption occurs for
the pending condition or conditions having the
highest priority.

The priorities for external-i~~rruption requests in
descending order are as follows':,

• Interrupt key
• Malfunction alert
• Emergency signal
• External call
• Too-clock sync check
• Clock comparator
• CPU timer
• Service signal

6-10 ESA/370 Principles of Operation

All requests are honored one at a time. When
more than one emergency-signal request exists at a
time or when more than one malfunction-alert
request exists at a time, the request associated with
the smallest CPU address is honored frrst.

Clock Comparator

An interruption request for the clock comparator
exists whenever either of the following conditions is
met:

1. The TOO clock is in the set or not-set state, and
the value of the clock comparator is less than
the value in the compared portion of the TO 0

clock, both compare values being considered
unsigned binary intege1;'s.

2. The TOD clock is in the error or not-
operational state.

If the condition responsible for the request is
removed before the request is honored, the request
does not remain pending, and no interruption
occurs. Conversely, the request is not cleared by
the interruption, and, if the condition persists, more
than one interruption may result from a single
occurrence of the condition.

When the TO D clock accessed by a CPU is set or
changes state, interruption conditions, if any, that
are due to the clock comparator mayor may not
be recognized for up to 1.048576 seconds after the
change.

TIle subclass-mask bit is in bit position 20 of
control register O. This bit is initialized to zero.

The clock-comparator condition is indicated by an
external-interruption code of 1004 hex.

CPU Timer

An interruption request for the CPU timer exists
whenever the cpu-timer value is negative (bit 0 of
the CPU timer is one). If the value is made positive
before the request is honored, the request does not
remain pending, and no interruption occurs. Con­
versely, the request is not cleared by the inter­
ruption, and, if the condition persists, more than
one interruption may occur from a single occur­
rence of the condition.

When the TOO clock accessed by a CPU is set or
changes state, interruption conditions, if any, that

are due to the CPu timer mayor may not be recog­
nized for up to 1.048576 seconds after the change.

The subclass-mask bit is in bit position 21 of
control register O. This bit is initialized to zero.

The cpu-timer condition is indicated by an
external-interruption code of 1005 hex.

Emergency Signal

An interruption request for an emergency signal is
generated when the cpu accepts the emergency­
signal order specified by a SIGNAL PROCESSOR
instruction addressing this cpu. The instruction
may have been executed by this cpu or by another
cpu in the configuration. The request is preserved
and remains pending in the receiving CPU until it is
cleared. The pending request is cleared when it
causes an interruption and by CPU reset.

Facilities are provided for holding a separate
emergency-signal request pending in the receiving
cpu for each CPU in the configuration, including
the receiving CPU itself.

The subclass-mask bit is in bit position 17 of
control register O. This bit is initialized to zero.

The emergency -signal condition is indicated by an
external-interruption code of 1201 hex. The
address of the CPU that executed the SIGNAL
PROCESSOR instruction is stored at real locations
132-133.

External Call

An interruption request for an external call is gen­
erated when the CPU accepts the external-call order
specified by a SIGNAL PROCESSOR instruction
addressing this CPU. The instruction may have
been executed by this cpu or by another CPU in
the configuration. The request is preserved and
remains pending in the receiving cpu until it is
cleared. The pending request is cleared when it
causes an interruption and by cpu reset.

Only one external-call request, along with the
processor address, may be held pending in a cpu at
a time.

The subclass-mask bit is in bit position 18 of
control register O. This bit is initialized to zero.

The external-call condition is indicated by an
external-interruption code of 1202 hex. The
address of the CPU that executed the SIGNAL
PROCESSOR instruction is stored at real locations
132-133.

Interrupt Key

An interruption request for the interrupt key is gen­
erated when the operator activates that key. The
request is preserved and remains pending in the
CPU until it is cleared. The pending request is
cleared when it causes an interruption and by cpu
reset.

When the interrupt key is activated while the CPU
is in the load state, it depends on the model
whether an interruption request is generated or the
condition is lost.

The subclass-mask bit is in bit position 25 of
control register O. This bit is initialized to one.

The interrupt-key condition is indicated by an
external-interruption code of 0040 hex.

Malfunction Alert

An interruption request for a malfunction alert is
generated when another CPU in the configuration
enters the check-stop state or loses power. The
request is preserved and remains pending in the
receiving CPU until it is cleared. The pending
request is cleared when it causes an interruption
and by cpu reset.

Facilities are provided for holding a separate
malfunction-alert request pending in the receiving
CPU for each of the other CPus in the configura­
tion. Removal of a CPU from the configuration
does not generate a malfunction-alert condition.

The subclass-mask bit is in bit position 16 of
control register O. This bit is initialized to zero.

The malfunction-alert condition is indicated by an
external-interruption code of 1200 hex. The
address of the CPU that generated the condition is
stored at reallocations 132-133.

Chapter 6. Interruptions 6-11

Service Signal

An interruption request for a service signal is gener­
ated upon the completion of certain configuration­
control and maintenance functions, such as those
initiated by means of the model-dependent DIAG­
NOSE instruction. A 32-bit parameter is· provided
with the interruption to assist the program in deter­
mining the operation for which the interruption is
reported.

Service signal is a floating interruption condition
and is presented to the frrst CPU in· the configura­
tion which can perform the interruption. The
interruption condition is cleared when it causes an
interruption in anyone of the CPus and also by
subsystem reset.

The subclass-mask bit is in bit position 22 of
control register O. This bit is initialized to zero.

The service-signal condition is indicated by an
external-interruption code of 2401 hex. A 32-bit
parameter is stored at reallocations 128-131.

TOO-Clock Sync Check

The Too-clock-sync-check condition indicates that
more than one TOO clock exists in the configura­
tion, and that the rightmost 32 bits of the clocks
are not running in synchronism.

An interruption request for a Too-clock sync check
exists when the TOO clock accessed by this CPU is
running (that is, the clock is in the set or not-set
state), the clock accessed by any other CPU in the
configuration is running, and bits 32-63 of the two
clocks do not match. When a clock is set or
changes state, or when a running clock is added to
the configuration, a delay of up to 1.048576
seconds (220 micfoseconds) may occur before the
mismatch condition is recognized.

When only two TOO clocks are in the configuration
and either or both of the clocks are in the error,
stopped, or not-operational state, it is unpredictable
whether a TOD-clock-sync-check condition is recog­
nized; if the condition is recognized, it may con­
tinue to persist up to 1.048576 seconds after both
clocks have been running with the rightmost 32 bits
matching. However, in this case, the condition
does not persist if one of the TO 0 clocks is removed
from the configuration.

6-12 ESAj370 Principles of Operation

When more than one CPU shares a TOO clock, only
the CPU with the smallest CPU address among those
sharing the clock indicates a TO D-clock -sync-check
condition associated with that clock.

If the condition responsible for the request is
removed before the request is honored, the request
does not remain pending, and no interruption
occurs. Conversely, the request is not cleared by
the interruption, and, if the condition persists, more
than one interruption may result from a single
occurrence of the condition. .

The subclass-mask bit is in bit position 19 of
control register O. This bit is initialized to zero.

The TOD-clock-sync-check condition is indicated by
an external-interruption code of 1003 hex.

1/0 Interruption
The input/output (I/O) interruption provides a
means by which the CPU responds to conditions
originating in I/O devices and the channel sub­
system.

A request for an I/O interruption may occur at any
time, and more than one request may occur at the
saine time. The requests are preserved and remain
pending until accepted by a CPU, or until cleared by
some other means, such as subsystem reset.

The I/O interruption occurs at the completion of a
unit of operation. Priority is established among
requests so that in each CPU only one interruption
request is processed at a time. Priority among
requests for interruptions of differing I/o-inter­
ruption subclasses is according to the numerical
value of the I/o-interruption subclass (with zero
having the highest priority), in conjunction with the
I/o-interruption subclass-mask settings. in control
register 6. For more details, see Chapter 16, "I/O
Interruption$. "

When a CPU becomes enabled for I/O .interruptions
and the channel subsystem has established priority
for a pending I/o-interruption condition, the inter­
ruption occurs at the completion of the instruction
execution or interruption that causes the enabling.

An I/O interruption causes the old psw to be stored
. at real location 56 and a new psw to be fetched
from real location 120. Additional information, in
the form of an eight-byte I/o-interruption code, is
stored at real locations 184-191. The I/o-inter-

ruption code consists of a 32-.bit subsystem­
identification word' and a 32-bit interruption
parameter.

An I/O interruption can occur only while a CPU is
enabled for the interruption subclass presenting the
request. The . I/o-mask bit, bit 6 of the PSW, and
the I/o-interruption subclass J;Ilask in control reg­
ister 6 determine whether the CPU is enabled for a
particular I/O interruption.

I/O interruptions are grouped into eight I/o-inter­
ruption subclasses, numbered from 0-7. Each
I/o-interruption 6ubclass has an associated I/o-inter­
ruption subclass-mask bit in bit positions 0-7 of
control register 6. Each subchannel has an
I/o-interruption subclass value associated with it.
The CPU is enabled for I/O interruptions of a partic- .
ular I/Q-interruption subclass only when psw bit 6
is one· and the associated I/O-interruption subclass­
mask bit in control register 6 is also one. If the
correswnding I/o-interruption subclass-mask bit is,
zero, then the CPU 'is disabled for I/O interruptions
with that subclass value. I/O interruptions for all
subclasses are disallowed when psw bit 6 is zero.

Machine-Check Interruption
The machine-check interruption is a means for'
reporting' to the program the occurrence of equip~
ment malfunctions. Information is .provided to
assist the program in determining the source of" the
fault and extent of the damage.

A machine-check interruption causes the old psw
to \?e stored at real~.locatioR 48 and a new psw to
be fetched from reallocation 112.

The cause and severity of the malfunction are iden­
tified by a 64-bit machine-check-interruption code
stored at reallocations 232-239. Further informa­
tion identifying the cause of the interruption and
the location of the fault may be stored ~t real
Ipcations 216-511.

The interruption action and the storing of the asso­
ciated information are under the control of psw bit
13 and bits in control register 14: See Chapter II,
"Machine-Check Handling, '.' for more detailed
information.

· Program Interruption
Prograrp interruptions are used to report exceptions
and events which occur during execution of the
program.

A program interruption causes the old psw to be
stored at real location· 40 and a new PSW to be
fetched from reallocation 104.

The cause of the interruption is identified by the
interruption code. The interruption code is placed
at real locations 142-143, the instruction-length
code is placed in bit positions 5 and 6 of the byte
at real location 141 with the rest of the bits set to
zeros, and zeros are stored at real location 140.
For some causes, additional information identifying
the reason for the interruption is stored at real
locations 144-161.

Except for PER events, the condition causing the
interruption is indicated by a coded value placed in
the rightmost seven bit positions of the interruption
code. Only one condition at a time can be indi-

, cated. Bits 0-:] of the interruption code are set to
zeros.

PER events are indicated by setting bit 8 of the
interruption code to one. When this is the only
condition, bits 0-7 and 9-15 are also set to zeros.
When a PER event is indicated concurrently with
another progr~-interruption condition, bit 8 is
one, and the coded value for the other condition is
indicated in bit positio~s 0-7. and 9-15 ..

When there is a corresponding mask bit, a program
interruption can occur only when that mask bit is
one. The program 'mask ip the psw controls four
of the exceptions, bit 1 in control register. 0 controls
whether 'SET SYSTEM . MASK causes a special­
operation exception, hits 16-31 in control register 8
control interruptiotts due to monitor events, and a
hierarchy of masks control interruptions due to PER

events. When any controlling mask bit is zero, the
condition is ignored; the condition does not remain
pending.

Programming Notes: ,

1. When the new psw for a program interruption
has a psw-format error or causes an exception
to be recognized in the process of instruction
fetching, a string of program interruptions may
occur. See tqe section "Priority of
Interruptions" in. thls~' chapter for a description
of how such strings are terminated.

Chapter 6. Interruptions 6-13

2. Some of the conditions indicated as program
exceptions may be recognized also by the
channel subsystem, in which case the exception
is indicated in the subchannel-status word or
extended-status word.

Exception-Extension Code

When an arithmetic exception is recognized during
execution of an interruptible vector instruction, a
nonzero exception -extension code is stored in bits
0-7 of the program-interruption code. This code is
set to a nonzero value only for arithmetic
exceptions occurring during the execution of vector
instructions. For more details, see the publication
Enterprise Systems Architecture/370 and
System/370 Vector Operations, SA22-7125.

Program-Interruption Conditions

The following is a detailed description of each
program -interruption condition.

Addressing Exception
An addressing exception is recognized when the
CPU attempts to reference a main-storage location
that is not available in the configuration. A main­
storage location is not available in the configuration
when the location is not installed, when the storage
unit is not in. the configuration, or when power is
off in the storage unit. An address designating a
storage location that is not available in the config­
uration is referred to as invalid.

The operation is suppressed when the address of
the instruction is invalid. Similarly, the operation
is suppressed when the address of the target instruc·
tion of EXECUTE is invalid. Also, the unit of oper­
ation is suppressed when an addressing exception is
encountered in accessing a table or table entry.
The tables and . table entries to which the rule
applies are the dispatchable-unit-control table, the
primary ASN-second-table entry, and entries in the
access list, segment table, page table, linkage table,
entry table, ASN first table, ASN second table,
authority table, linkage stack, and trace table.

6-14 ESA/370 Principles of Operation

Addressing exceptions result in suppression when
they are encountered for references to the segment
table and page table, in both implicit references for
dynamic address translation and references associ­
ated with the execution of LOAD REAL ADDRESS
and TEST PROTECTION. Similarly, addressing
exceptions for accesses to the dispatchable-unit­
control table, primary ASN-second-table entry,
access list, ASN second table, or authority table
result in suppression when they are encountered in
access-register translation done either implicitly or
as part of LOAD REAL ADDRESS, TEST ACCESS, or
TEST PROTECTION. Except for some specific
instructions whose execution is suppressed, the
operation is terminated for an operand address that
can be translated but designates an unavailable
location. See Figure 6-2 on page 6-15.

F or termination, changes may occur only to result
fields. In this context, the term "result field"
includes the condition code, registers, and any
storage locations that are provided and that are des­
ignated to be changed by the instruction. There­
fore, if an instruction is due to change only the
contents of a field in storage, and every byte of the
field is in a location that is not available in the con­
figuration, the operation is suppressed. When part
of an operand location is available in the configura­
tion and part is not, storing may be performed in
the part that is available in the configuration.

When an addressing exception occurs during the
fetching of an instruction or during the fetching of
a DAT table entry associated with an instruction
fetch, it is unpredictable whether the ILC is 1, 2, or
3. When the exception is associated with fetching
the target of EXECUTE, the ILC is 2.

In all cases of addressing exceptions not associated
with instruction fetching, the ILC is 1, 2, or 3, indi­
cating the length of the instruction that caused the
reference.

An addressing exception is indicated by a program­
interruption code of 0005 hex (or 0085 hex if a
concurrent PER event is indicated).

Action on

Tab1e- Tab1e- Instruction
Exception Entry Fetch 1 Entry Store2 Fetch Operand Reference

Addressing Suppress Suppress Suppress Suppress for IPTE, LASP,
exception LPSW, MSCH, SCKC, SPT,

SPX, SSCH, SSM, STCRW,
STNSM, STOSM, TPI, TPROT.
Terminate for all others.4

Protection -- -- Suppress Suppress for IPTE, LASP,
exception LPSW, MSCH, SCKC, SPT,
for key-_ SPX, SSCH, SSM, STCRW,
controlled STNSM, STOSM, and TPI5.
protection Terminate for all others.4

Protection -- Suppress J -- Suppress for STCRW,
exception STNSM, STOSM, and TPI5.
for page
protection Terminate for all others.4

Protection -- Suppress -- Suppress for IPTE, STCRW,
exception STNSM, STOSM, and TPI5.
for low-
address
protection Terminate for all others.4

Explanation:

-- Not applicable.

1 Table entries include segment table, page table, linkage table, entry
table, ASN first table, ASN second table, authority table, dispatch­
able-unit-control table, primary ASN-second-table-entry, access list,
and linkage stack.

2 Table entries include linkage stack and trace table.

3 Page protection applies to the linkage stack but not the trace table.

4 For termination, changes may occur only to result fields. In this
context, "result field" includes condition code, registers, and
storage locations, if any, which are designated to be changed by the
instruction. However, no change is made to a storage location or a
storage key when the reference causes an access exception. Therefore,
if an instruction is due to change only the contents of a field in
main storage, and every byte of that field would cause an access ex­
ception, the result is the same as if the operation had been sup­
pressed.

5 When the effective address of TPI is zero, the store access is to
implicit real locations 184-191, and key-controlled protection, page
protection, and low-address protection do not apply.

Figure 6-2. Summary of Action for Addressing and Protection Exceptions

Chapter 6. Interruptions 6-15

AFX-Translation Exception
An AFx-translation exception is recognized when,
during ASN translation in the space-switching fonn
of PROGRAM CALL, PROGRAM REf URN, PROGRAM
TRANSFER, or SET SECONDARY ASN, or during ASN
translation in PROGRAM REf URN when the restored
SASN does not equal the restored PASN, bit 0 of the
ASN-frrst-table entry used is not zero.

The ASN being translated is stored at reallocations
146-147, and reallocations 144-145 are set to zeros.

The operation is nullified.

The instruction-length code is 1 or 2.

The AFx-translation exception is indicated by a
program-interruption code of 0020 hex (or OOAO
hex if a concurrent PER event is indicated).

AL~N-Translation' Exception
An ALEN-translation exception is recognized during
access-register translation when either:

1. The access register used contains an access-list­
entry number that designates an access-list
entry which is beyond the' end of the access list
designated by the effective access-list desig­
nation.

2. Bit 0 of the access-list entry is not zero.

The number of the access register is stored in bit
positions 4-7 at reallocation 160, and bits 0-3 are
set to zeros.

The operation is nullified.

The instruction-length code is 1, 2, or 3.

The ALEN-translation exception is indicated' by a
program-interruption code of 0029 hex (or 00A9
hex if a concurrent PER event is indicated).

ALE-Sequence Exception
An ALE-sequence exception is recognized during
access-register translation when the access register
used contains an access-list-entry sequence number
(ALESN) which is not equal to the ALESN in the
access-list entry that is designated by the access reg­
ister.

The number of the access register is stored in bit
positions 4-7 at real location 160, and bits 0-3 are
set to zeros.

The operation is nullified.

6-16 ESA/370 Principles of Operation

The instruction-length code is 1, 2, or 3.

The ALE-sequence exception is indicated by a
program-interruption code of 002A hex (or OOAA
hex if a concurrent PER event is indicated).

ALET -Specification Exception
An ALET-specification exception is recognized
during access-register translation when bit positions
0-6 of the access-list-entry token in the access reg­
ister used do not contain all zeros. However, when
access-register 0 is used, except in TEST ACCESS, it
is treated as containing all zeros, and this exception
is not recognized. TEST ACCESS uses the actual
contents of access register O.

The operation is suppressed.

The instruction-length code is 1, 2, or 3.

The ALET-specification exception is indicated by a
program-interruption code of 0028 hex (or 00A8
hex if a concurrent PER event is indicated).

ASN-Translation-Specification Exception
An ASN-translation-specification exception is recog­
nized during ASN translation in the space-switching
form of PROGRAM CALL, PROGRAM RETURN,
PROGRAM TRANSFER, or SET SECONDARY ASN,
during ASN translation in PROGRAM REf URN when
the restored SASN does not equal the restored PASN,
or during ASN translation in LOAD ADDRESS SPACE
PARAMETERS, when either:

1. Bit positions 28-31 or 26-31, depending on the
address-space-function control, bit 15 of
control register 0, of the valid ASN-frrst-table
entry used do not contain zeros.

2. Bit positions 30, 31, and 60-63 of the valid
ASN-second-table entry used do not contain
zeros.

An ASN-translation-specification exception is also
recognized during implicit access-register translation
and during access-register translation in the exe­
cution of LOAD REAL ADDRP.sS, TEST ACCESS, and
TEST PROTECTION when bit positions 30, 31, and
60-63 of the valid ASN-second-table entry used do
not contain zeros, provided that it is necessary to
examine the authority table that is designated by
the ASN-second-table entry. This examination is
necessary if the private bit in the access-list entry
used is not zero and the access-list-entry authori­
zation index in the access-list entry is not equal to

the extended authorization index in control register
8.

The operation is suppressed.

The instruction-length code is 1, 2, or 3.

The ASN-translation-specification exception is indi­
cated by a program-interruption code of 0017 hex
(or 0097 hex if a concurrent PER event is indicated).

ASTE-Sequence Exception
An ASTE-sequence exception is recognized during
access-register translation when the access-list entry
used contains an ASN-second-table-entry sequence
number (ASTESN) which is not equal to the ASTESN
in the ASN-second-table entry that is designated by
the access-list entry. The access-list entry is the
one designated by the access register used.

The number of the access register is stored in bit
positions 4-7 at reallocation 160, and bits 0-3 are
set to zeros.

The operation is nullified.

The instruction-length code is 1, 2, or 3.

The ASTE-sequence exception is indicated by a
program-interruption code of 002C hex (or OOAC
hex if a concurrent PER event is indicated).

ASTE-Valldity Exception
An ASTE-validity exception is recognized during
access-register translation when the access-list entry
used designates an ASN-second-table entry in which
bit 0 is not zero. The access-list entry is the one
designated by the access register used.

The number of the access register is stored in bit
positions 4-7 at real location 160, and bits 0 .. 3 are
set to zeros.

The operation is nullified.

The instruction-length code is 1, 2, or 3.

The ASTE-validity exception is indicated by a
program-interruption code of 002B hex (or OOAB
hex if a concurrent PER event is indicated).

ASX-Translation Exception
An Asx-translation exception is recognized when,
during ASN translation in the space-switching form
of PROGRAM CALL, PROGRAM RETURN, PROGRAM
TRANSFER, or SET SECONDARY ASN, or during ASN
translation in PROGRAM RETURN when the restored
SASN does not equal the restored PASN, bit 0 of the
ASN-second-table entry used is not zero.

The ASN being translated is stored at reallocations
146-147, and reallocations 144-145 are set to zeros.

The operation is nullified.

The instruction -length code is 1 or 2.

The Asx-translation exception is indicated by a
program-interruption code of 0021 hex (or OOAI
hex if a concurrent PER event is indicated).

Data Exception
A data exception is recognized when any of the fol­
lowing is· true:

I. The sign or digit codes of operands in the
decimal instructions (described in Chapter 8,
"Decimal Instructions") or in CONVERT TO
BINARY are invalid.

2. The operand fields in ADD DECIMAL,
COMPARE DECIMAL, DIVIDE DECIMAL, MUL­
TIPLY DECIMAL, and SUBTRACT DECIMAL
overlap in a way other than with coincident
rightmost bytes; or operand fields in ZERO AND
ADD overlap, and the rightmost byte of the
second operand is to the right of the rightmost
byte of the frrst operand.

3. The multiplicand in MULTIPLY DECIMAL has
an insufficient number of leftmost zeros.

The action taken for a data exception depends on
whether a sign code is invalid. The operation is
suppressed when a sign code is invalid, regardless of
whether any other condition causing the exception
exists; when no sign code is invalid, the operation is
terminated.

For all instructions other than EDIT and EDIT AND
MARK, when the operation is terminated, the con­
tents of the sign position in the rightmost byte of
the result field either remain unchanged or are set
to the preferred sign code; the contents of the
remainder of the result field are unpredictable.

In the case of EDIT and EDIT AND MARK, an
invalid sign code cannot occur; the operation is ter-

Chapter 6. Interruptions 6-17

minated on a data exception. for an invalid digit
code.

The instruction-length code is 2 or 3.

The data exception is indicated by a pro gram­
interruption code of 0007 hex (or 0087 hex if a
concurrent PER event is indicated).

Programming Notes:

1. The defmition for data exception pennits tenni­
nation when digit codes are invalid but no sign
code is invalid. On some models, valid digit
codes may be placed in the result field even if
the original contents were invalid. Thus it is
possible, after a data exception occurs, for all
fields to contain valid codes.

2. An invalid sign code for the rightmost byte of
the result field is not generated when the opera­
tion is terminated. However, an invalid
second-operand sign code is not necessarily
preserved when it is located in the numeric
portion of the result field.

3. When, after a program interruption for data
exception, a sign code is found to be invalid,
the operation has been suppressed if both of
the following conditions are met:

a. The invalid sign of the source field is not
located in the numeric portion of the result
field.

b. The invalid sign code is in a position speci­
fied by the instruction to be checked for a
valid sign. (This condition excludes the
frrst operand of ZERO AND ADD, both
operands of EDIT, and EDIT AND MARK.)

Decimal-Divide Exception
A decimal-divide exception is recognized when in
decimal division the divisor is zero or the quotient
exceeds the specified data-field size.

The decimal-divide exception is indicated only if
the sign codes of both the divisor and dividend are
valid and only if the digit or digits used in estab­
lishing the exception are valid.

The operation is suppressed.

The instruction-length code is 2 or 3.

6-18 ESAj370Principles of Operation

The decimal-divide exception is indicated by a
program-interruption code of OOOB hex (or 008B
hex if a concurrent PER event is indicated).

Decimal-Overflow Exception
A decimal-overflow exception is recognized when
one or more nonzero digits are lost because the
destination field in a decimal operation is too short
to contain the result.

The interruption may be disallowed by the decimal­
overflow mask (ps w bit 21).

The operation is completed. The result is obtained
by ignoring the overflow digits, and condition code
3 is set.

The instruction-length code is 2 or 3.

The decimal-overflow exception is indicated by a
program-interruption code of OOOA hex (or 008A
hex if a concurrent PER event is indicated).

Execute Exception
The execute exception is recognized when the target
instruction of EXECUTE is another EXECUTE.

The operation is suppressed.

The instruction-length code is 2.

The execute exception is indicated by a program­
interruption code of 0003 hex (or 0083 hex if a
concurrent PER event is indicated).

Exponent-Overflow Exception
An exponent-overflow exception is recognized
when the result characteristic of a floating-point
operation exceeds 127 and the result fraction is not
zero.

The operation is completed. The fraction is nor­
malized, and the sign and fraction of the result
remain correct. The result characteristic is made
128 smaller than the correct characteristic.

The instruction-length code is 1 or 2.

The exponent-overflow exception is indicated by a
program-interruption code of XXOC hex (or XX8C
hex if a concurrent PER event is indicated), where
XX is the exception-extension code.

Exponent-Underflow Exception
An exponent-underflow exception is recognized
when the result characteristic of a floating-point
operation is less than zero and the result fraction is
not zero. For an extended-format floating-point
result, exponent underflow is indicated only when
the high-order characteristic underflows.

The interruption may be disallowed by the
exponent-underflow mask (psw bit 22).

The operation is completed. The exponent­
underflow mask also affects the result of the opera­
tion. When the mask bit is zero, the sign, charac­
teristic, and fraction are set to zero, making the
result a true zero. When the mask bit is one, the
fraction is normalized, the characteristic is made
128 larger than the correct characteristic, and the
sign and fraction remain correct.

The instruction-length code is 1 or 2.

The exponent-underflow exception is indicated by a
program-interruption code of XXOD hex (or
XX8D hex if a concurrent PER event is indicated),
where XX is the exception -extension code.

EX-Translation Exception
An Ex-translation exception is recognized during
pc-number translation in PROGRAM CALL when
the entry-table entry indicated by the entry-index
part of the PC number is beyond the end of the
entry table as designated by the linkage-table entry.

The PC number is stored in bit positions 12-31 of
the word at real location 144, and the leftmost 12
bits of the word are set to zeros.

The operation is nullified.

The instruction-length code is 2.

The Ex-translation exception is indicated by a
program-interruption code of 0023 hex (or 00A3
hex if a concurrent PER event is indicated).

Extended-Authority Exception
An extended-authority exception is recognized
during access-register translation when all of the
following are true:

1. The private bit in the access-list entry used is
not zero.

2. The access-list-entry authorization index
(ALEAX) in the access-list entry is not equal to

the extended authorization index (EAX) in
control register 8.

3. Either of the following is true:

• The authority-table entry designated by the
EAX is beyond the length of the authority
table used. The authority table is the one
designated by the ASN-second-table entry
that is designated by the access-list entry
used.

• The secondary-authority bit designated by
the EAX is zero.

The access-list entry is the one designated by the
access register used.

The number of the access register is stored in bit
positions 4-7 at real location 160, and bits 0-3 are
set to zeros.

The operation is nullified.

The instruction-length code is 1, 2, or 3.

The extended-authority exception is indicated by a
program-interruption code of 002D hex (or OOAD
hex if a concurrent PER event is indicated).

Fixed-Point-Divide Exception
A fixed-point-divide exception is recognized when
in signed binary division the divisor is zero or when
the quotient in signed binary division or the result
of CONVERT TO BINARY cannot be expressed as a
32-bit signed binary integer.

In the case of division, the operation is suppressed.
The execution of CONVERT TO BINARY is com­
pleted by ignoring the leftmost bits that cannot be
placed in the register.

The instruction-length code is 1 or 2.

The fixed-point-divide exception is indicated by a
program-interruption code of 0009 hex (or 0089
hex if a concurrent PER event is indicated).

Fixed-Point-Overflow Exception
A fixed-point-overflow exception is recognized
when an overflow occurs during signed binary
arithmetic or signed left-shift operations.

The interruption may be disallowed by the fixed­
point-overflow mask (psw bit 20).

Chapter 6. Interruptions 6-19

The operation is completed. The result is obtained
by ignoring the overflow information, and condi­
tion code 3 is set.

The instruction -length code is 1 or 2.

The fixed-point-overflow exception is indicated by
a program-interruption code of XX08 hex (or
XX88 hex if a concurrent PER event is indicated),
where XX is the exception-extension code.

Floating-Point-Divide Exception
A floating-point-divide exception is recognized
when in floating-point division the divisor has a
zero fraction.

The operation is suppressed.

The instruction -length code is 1 or 2.

The floating-point-divide exception is indicated by
a program-interruption code of XXOF hex (or
XX8F hex if a concurrent PER event is indicated),
where XX is the exception-extension code.

LX-Translation Exception
An Lx-translation exception is recognized during
pc-number translation in PROGRAM CALL when
either:

1. The linkage-table entry indicated by the
linkage-index part of the PC number is beyond
the end of the linkage table as designated by
the linkage-table d~signation being used.

2. Bit 0 of the linkage-table entry is not zero.

The PC number is stored in bit positions 12-31 of
the word at real location 144, and the leftmost 12
bits of the word are set to zeros.

The operation is nullified.

The instruction -length code is 2.

The Lx-translation exception is indicated by a
program-interruption code of 0022 hex (or 00A2
hex if a concurrent PER event is indicated).

Monitor Event
A monitor event is recognized when MONITOR
CALL is executed and the monitor-mask bit in
control register 8 corresponding to the class speci­
fied by instruction bits 12-15 is one. The informa­
tion in control register 8 has the following format:

6-20 ESA/370 Principles of Operation

Control Register 8

I Monitor Masks

16 31

The monitor-mask bits, bits 16-31 of control reg­
ister 8, correspond to monitor classes 0-15, respec­
tively. Any number of monitor-mask bits may be
on at a time; together they specify the classes of
monitor events that are monitored at that time.
The mask bits are initialized to zeros.

When MONITOR CALL is executed and the corre­
sponding monitor-mask bit is one, a program inter­
ruption for monitor event occurs.

Additional information is stored at real locations
148-149 and 156-159. The format of the informa­
tion stored at these locations is as follows:

Real Locations 148-149

Monitor
eeeeeeee Class No.

e 8 15

Real Locations 156-159

101 Monitor Code

e 1 31

The contents of bit positions 8-15 of the MONITOR
CALL instruction are stored at reallocation 149 and
constitute the tnonitor-class number. Zeros are
stored at real location 148. The effective address
specified by the Bland D 1 fields of the instruction
forms the monitor code, which is stored in the
word at real location 156. The value of the address
is under control of the addressing mode, bit 32 of
the current psw; in the 24-bit addressing mode, bits
0-7 of the address are zeros, while in the 31-bit
addressing mode, bit 0 is zero.

The operation is completed.

The instruction -length code is 2.

The monitor event is indicated by a progratn­
interruption code of 0040 hex (or OOCO hex if a
concurrent PER event is indicated).

Operand Exception
An operand exception is recognized when any of
the following is true:

1. Execution of CLEAR SUBCHANNEL, HALT SUB­

CHANNEL, MODIFY SUBCHANNEL, RESUME

SUBCHANNEL, START SUBCHANNEL, STORE

SUBCHANNEL, or TEST SUBCHANNEL is
attempted, and bits 0-15 of general register 1 do
not contain 0001 hex.

2. Execution of MODIFY SUBCHANNEL is
attempted, and bits 0-1 and 5-7 of word 1 and
bits 0-31 of word 6 of the SCHIB operand are
not all zeros.

3. Execution of MODIFY SUBCHANNEL is
attempted, and bits 9 and 10 of word 1 of the
SCHIB operand are both ones.

4. Execution of RESET CHANNEL PATH is
attempted, and bits 0-23 of general register 1
are not all zeros.

5. Execution of SET ADDRESS LIMIT is attempted,
and bits 0 and 16-31 of general register 1 are
not all zeros.

6. Execution of SET CHANNEL MONITOR is
attempted, bit 30 of general register 1 is one,
and bits 0 and 27-31 of general register 2 are
not all zeros.

7. Execution of SET CHANNEL MONITOR is
attempted, and bits 4-29 of general register 1
are not all zeros.

8. On some models, execution of START SUB­

CHANNEL is attempted, and bits 5-7, 13-15,
and 25-31 of word 1 and bit 0 of word 2 of the
ORB operand are not all zeros.

9. On some models, execution of START SUB­

CHANNEL is attempted, the incorrect-Iength­
indication suppression facility is not installed,
and bit 24 of word 1 of the ORB is one.

The operation is suppressed.

The instruction-length code is 2.

The operand exception is indicated by a program­
interruption code of 0015 hex (or 0095 hex if a
concurrent PER event is indicated).

Operation Exception
An operation exception is recognized when the CPU

attempts to execute an instruction with an invalid
operation code. The operation code may be unas­
signed, or the instruction with that operation code
may not be installed on the CPU.

For the purpose of checking the operation code of
an instruction, the operation code is defmed as
follows:

1. When the fIrst eight bits of an instruction have
the value 01, B2, A4, AS, A6, E4, or E5 hex,
the fust 16 bits form the operation code.

2. In all other cases, the frrst eight bits alone form
the operation code.

The operation is suppressed.

The instruction-length code is 1, 2, or 3.

The operation exception is indicated by a pro gram­
interruption code of 0001 hex (or 0081 hex if a
concurrent PER event is indicated).

Programming Notes:

1. Some models may offer instructions not
described in this publication, such as those pro­
vided for assists or as part of special or custom
features. Consequently, operation codes not
described in this publication do not necessarily
cause an operation exception to be recognized.
Furthermore, these instructions may cause
modes of operation to be set up or may other­
wise alter the machine so as to affect the exe­
cution of subsequent instructions. To avoid
causing such an operation, an instruction with
an operation code not described in this publica­
tion should be executed only when the specifIc
function associated with the operation code is
desired.

2. The operation code 00, with a two-byte
instruction format, curr.~ntly is not assigned. It
is improbable thatThi; operation code will ever
be assigned.

Page-Translation Exception
A page-translation exception is recognized when
either:

1. The page-table entry indicated by the page­
index portion of a virtual address is outside the
page table.

2. The page-invalid bit is one.

Chapter 6. Interruptions 6-21

The exception is recognized as part of the execution
of the instruction that needs the page-table entry in
the translation of either an instruction or operand
address, except for the operand address in LOAD
REAL ADDRESS and TEST PROTECTION, in which
case the condition is indicated by the setting of the
condition code.

When an interruption occurs, infonnation about
the virtual address causing the exception is stored at
real locations 144-147 and conditionally at real
location 160. See the section "Assigned Storage
Locations" in Chapter 3, "Storage," for a detailed
description of this infonnation.

The unit of operation is nullified.

When the exception occurs during fetching of an
instruction, it is unpredictable whether the ILC is I,
2, or 3. When the exception occurs during a refer­
ence to the target of EXECUTE, the ILC is 2.

When the exception occurs during a reference to an
operand location, the instruction-length code (ILC)
is 1, 2, or 3 and indicates the length of the instruc­
tion causing the exception.

The page-translation exception is indicated by a
program-interruption code of 0011 hex (or 0091
hex if a concurrent PER event is indicated).

pc-Translation-Specification Exception
A pc-translation-specification exception is recog­
nized during pc-number translation in PROGRAM
CALL when bit position 32 of the entry-table entry
used is zero and bit positions 33-39 are not all
zeros.

The operation is suppressed.

The instruction-length code is 2.

The pc-translation-specification exception is indi­
cated by a program-interruption code of OOIF hex
(or 009F hex if a concurrent PER event is indi­
cated).

PER Event
A PER event is recognized when the CPU is enabled
for PER and one or more of these events occur.

The PER mask, bit I of the PSW, controls whether
the CPU is enabled for PER. When the PER mask is
zero, PER eventsare not recognized. When the bit
is one, PER events are recognized, subject to the
pER-event-mask bits in control register 9.

6-22 ESA/370 Principles of Operation

The unit of operation is completed, unless another
condition has caused the unit of operation to be
inhibited, nullified, suppressed, or terminated.

Additional infonnation identifying the event is
stored at reallocations ISO-ISS and conditionally at
reallocation 161.

The instruction-length code is 0, I, 2, or 3. Code 0
is set only if a specification exception is indicated
concurrently.

The. PER event is indicated by setting bit 8 of the
program-interruption code to one.

See the section "Program-Event Recording" in
Chapter 4, "Control," for a detailed description of
the PER event and the associated interruption infor­
mation.

Primary-Authority Exception
A primary-authority exception is recognized during
ASN authorization in PROGRAM TRANSFER with
space switching (PT-SS) when either:

1. The authority-table entry indicated by the
authorization index in control register 4 is
beyond the end of the authority table used.
The authority table is the one designated by the
ASN-second-table entry for the ASN used.

2. The primary -authority bit indicated by the
authorization index is zero.

The ASN used is stored at reallocations 146-147,
and reallocations 144-145 are set to zeros.

The operation is nullified.

The instruction-length code is 2.

The primary-authority exception is indicated by a
program-interruption code of 0024 hex (or 00A4
hex if a concurrent PER event is indicated).

Privileged-Operation Exception
A privileged-operation exception IS recognized
when any of the following is true:

1. Execution of a privileged instruction is
attempted in the problem state.

2. The value of the rightmost bit of the general
register designated by the R2 field of the
PROGRAM TRANSFER instruction is zero and
would cause the psw problem-state bit to

change from the problem state (one) to the
supervisor state (zero).

3. In the problem state, the key value specified by
the second operand of the SET PSW KEY FROM
AD DRESS instruction corresponds to a zero
psw-key-mask bit in control register 3.

4. In the problem state, the key value specified by
the rightmost byte of the register designated by
the R3 field of the MOVE WITH KEY instruction
corresponds to a zero psw-key-mask bit in
control register 3.

5. In the problem state, the key value specified by
the rightmost byte of the register designated by
the R3 field of the instructions MOVE TO
PRIMARY and MOVE TO SECONDARY corre­
sponds to a zero psw-key-mask bit in control
register 3.

6. In the problem state, any of the instructions

• EXTRACT PRIMARY ASN
• EXTRACT SECONDARY ASN
• INSERT ADDRESS SPACE CONTROL
• INSERT PSW KEY
• INSERT VIRTUAL STORAGE KEY

is encountered, and the extraction-authority
control, bit 4 of control register 0, is zero.

7. In the probleln state, the result of ANDing the
authorization key mask (AKM) with the
psw-key mask in control register 3 during
PROGRAM CALL produces a result of zero.

8. In the problem state, bits 20-23 of the second­
operand address of the SET ADDRESS SPACE
CO NTRO L instruction have the value 0011.

9. In the problem state, the key value specified by
the rightmost byte of general register 1 for the
instruction MOVE WITH SOURCE KEY or MOVE
WITH DESTINATION KEY corresponds to a zero
psw-key-maskbit in control register 3.

The operation is suppressed.

The instruction-length code is 2 or 3.

The privileged -operation exception is' indicated by a
program-interruption code of OOO~ hex (or 0082
hex if a concurrent PER event is indicated).

Protection Exception
A protection exception is recognized when any of
the following is true:

1. Key-Controlled Protection: The CPU attempts
to access a storage location that is protected
against the type of reference, and the access key
does not match the storage key.

2. Low-Address Protection: The CPU attempts a
store that is subject to low-address protection,
the effective address is in the range 0-511, and
the low-address protection control, bit 3 of
control register 0, is one.

3. Page Protection: The CPU attempts to store,
with DAT on, into a page which has the page­
protection bit set to one.

The operation is suppressed when the location of
the instruction is protected against fetching. Simi­
larly, the operation is suppressed when the location
of the target instruction of EXECUTE is protected
against fetching.

Except for some specific instructions whose exe­
cution is suppressed, the operation is terminated
when a protection exception is encountered during
a reference to an operand location. See Figure 6-2
on page 6-15.

For termination, changes may occur only to result
fields. In this context, the term "result field"
includes condition code, registers, and storage
locations, if any, which are due to be changed by
the instruction. However, no change is made to a
storage location when a reference to that location
causes a protection exception. Therefore, if an
instruction is due to change only the contents of a
field in storage, and every byte of that field would
cause a protection exception, the operation is sup­
pressed. When termination occurs on fetching, the
protected information is not loaded into an address­
able register nor moved to another storage location.

When the exception occurs during fetching of an
instruction, it is unpredictable whether the ILC is 1,
2, or 3. When the exception occurs during the
fetching of the target of EXECUTE, the ILC is 2.

For a protected operand location, the instruction­
length code (ILC) is 1, 2, or 3, indicating the length
of the instruction that caused the reference.

The protection exception is indicated by a
program-interruption code of 0004 hex (or 0084
hex if a concurrent PER event is indicated).

Chapter 6. Interruptions 6-23

Secondary-Authority Exception
A secondary -authority exception is recognized
during ASN authorization in SET SECONDARY ASN
with space switching, or during ASN authorization
in PROGRAM RETURN when the restored SASN does
not equal the restored PASN, when either:

1. The authority-table entry indicated by the
authorization index in control register 4 is
beyond the end of the authority table used.
The authority table is the one designated by the
ASN-second-table entry for the ASN used. For
PROGRAM RETURN, the ASN is the SASN being
restored from the linkage-stack state entry used.

2. The secondary-authority bit indicated by the
authorization index is zero.

The ASN used is stored at real locations 146-147,
and reallocations 144-145 are set to zeros.

The operation is nullified.

The instruction -length code is 1 or 2.

The secondary -authority exception is indicated by a
program-interruption code of 0025 hex (or 00A5
hex if a concurrent PER event is indicated).

Segment-Translation Exception
A segment-translation exception is recognized when
either:

1. The segment-table entry indicated by the
segment-index portion of a virtual address is
outside the segment table.

2. The segment-invalid bit is one.

The exception is recognized as part of the execution
of the instruction that needs the segment-table
entry in the translation of either the instruction or
operand address, except for the operand address in
LOAD REAL ADDRESS and TEST PROTECTION, in
which case the condition is indicated by the setting
of the condition code.

When an interruption occurs, information about
the virtual address causing the exception is stored at
real locations 144-147 and conditionally at real
location 160. See the section "Assigned Storage
Locations" in Chapter 3, "Storage," for a detailed
description of this information.

The unit of operation is nullified.

When the exception occurs during fetching of an
instruction, it is unpredictable whether the ILC is 1,

6-24 ESA/370 Principles. of Operation

2, or 3. When the exception occurs during the
fetching of the target of EXECUTE, the ILC is 2.

When the exception occurs during a reference to· an
operand location, the instruction-length code (ILC)
is 1, 2, or 3 and indicates the length of the instruc­
tion causing the exception.

The segment-translation exception is indicated by a
program-interruption code of 0010 hex (or 0090
hex if a concurrent PER event is indicated).

Significance Exception
A significance exception is recognized when the
result fraction in floating-point addition or sub­
traction is zero.

The interruption may be disallowed by the signif­
icance mask (psw bit 23).

The operation is completed. The significance mask
also affects the result of the operation. When the
mask bit is zero, the operation is completed by
replacing the result with a true zero. When the
mask bit is one, the operation is completed without
further change to the characteristic of the result.

The instruction-length code is 1 or 2.

The significance exception is indicated by a
program-interruption code of XXOE hex (or XX8E
hex if a concurrent PER event is indicated), where
XX is the exception-extension code.

Space-Switch Event
A space-switch event is recognized at the com­
pletion of the operation in each of the following
cases:

1. The space-switching form of PROGRAM CALL,
PROGRAM RETURN, or PROGRAM TRANSFER is
executed and any of the following is true:

• The primary space-switch-event-control bit,
bit 0 of control register 1, is one before the
operation.

• The primary space-switch-event-control bit
is one after the operation.

• A PER event is indicated.

2. SET ADDRESS SPACE CONTROL is executed and
the CPU is in the home-space mode either
before or after the operation, but not both
before and after the operation, and any of the
following is true:

• The primary space-switch-event-control bit,
bit 0 of control register 1, is one.

• The home space-switch-event-control bit,
bit 0 of control register 13, is one.

• A PER event is indicated.

For PROGRAM CALL, PROGRAM RETURN, and
PROGRAM TRANSFER, and for a SET ADDRESS
SPACE CONTROL that changes the translation mode
to the home-space mode, the old PASN, which is in
the right half of control register 4 before the opera­
tion, is stored at reallocations 146-147, and the old
primary space-switch-event-control bit is placed in
bit position 0 and zeros are placed in bit positions
1-15 at reallocations 144-145.

For a SET ADDRESS SPACE CONTROL that changes
the translation mode away from the home-space
mode, zeros are stored at real locations 146-147,
and the home space-switch-event-control bit is
placed in bit position 0 and zeros are placed in bit
positions 1-15 at reallocations 144-145.

The operation is completed.

The instruction -length code is 1 or 2.

The space-switch event is indicated by a program­
interruption code of 001 C hex (or ·009C hex if a
concurrent PER event is indicated).

Programming Notes:

1. The space-switch event permits the control
program to gain control whenever a program
enters or leaves a particular address space. The
primary space-switch-event-control bit is
loaded into control register 1, along with the
remaining bits of the primary segment-table
designation, whenever control register 1 is
loaded.

2. The space-switch event may be useful in
obtaining programmed authorization checking,
in causing additional trace information to be
recorded, or in enabling or disabling the CPU
for PER or tracing.

3. Bit 64 of the ASN-second-table entry (ASTE) is
loaded into bit position 0 of control register 1
as part of the Pc-ss, PR-SS, and PT-SS opera­
tions. If bit 64 of the ASTE for a particular
address space is set to one, then a space-switch
event is recognized when a program enters or
leaves the address space by means of any of a
Pc-ss, PR-SS, or PT-ss.

4. The occurrence of a space-switch event at the
completion of a Pc-ss, PR-SS, or PT-SS when any
PER event is indicated, or at the completion of
a SET ADDRESS SPACE CONTROL that changes
to or from the home-space mode when ally
PER event is indicated, permits the control
program to determine the address space from
which the instruction causing the PER event
was fetched.

Special-Operation Exception
A special-operation exception is recognized when
any of the following is true:

1. Execution of SET SYSTEM MASK is attempted in
the supervisor state and the SSM -suppression
control, bit 1 of control register 0, is one.

2. Execution of any of the following instructions
is attempted with DAT off:

• EXTRACT PRIMARY ASN
• EXTRACT SECONDARY ASN
• INSERT ADDRESS SPACE CONTROL
• INSERT VIRTUAL STORAGE KEY
• SET ADDRESS SPACE CONTROL
• SET SECONDARY ASN

3. Execution of MOVE TO PRIMARY or MOVE TO
SECONDARY is attempted, and the CPU is not
in the primary-space or secondary-space mode.

4. Execution of basic PROGRAM CALL or
PROGRAM TRANSFER is attempted, and the
CPU is not in the primary-space mode.

5. Execution of BRANCH AND STACK, stacking
PROGRAM CALL, or PROGRAM RETURN is
attempted, and the CPU is not in the primary­
space or access-register mode. .

6. Execution of EXTRACT STACKED REGISTERS,
EXTRACT STACKED STATE or MODIFY STACKED
STATE is attempted, and the CPU is not in the
primary-space, access-register, or home-space
mode.

7. Execution of LOAD ADDRESS SPACE PARAME­
TERS, PROGRAM CALL with space switching
(PC-S8), PROGRAM TRANSFER with space
switching (PT-SS), or SET SECONDARY ASN
(SSAR-CP or SSAR-SS) is attempted, or execution
of a PROGRAM RETURN instruction requiring
PASN or SASN translation is attempted, and the
ASN-translation control, bit 12 of control reg­
ister 14, is zero.

8. Execution of PROGRAM CALL or PROGRAM
TRANSFER is attempted, and the subsystem-

Chapter 6. Interruptions 6-25

linkage control, bit 0 of control register 5, is
zero.

9. Execution of SET ADDRESS SPACE CONTROL,
MOVE TO PRIMARY, or MOVE TO SECONDARY
is attempted, and the secondary-space control,
bit 5 of control register 0, is zero.

10. Execution of BRANCH AND STACK, EXTRACT
ST ACKED REG ISTERS, EXTRACT STACKED
STATE, MODIFY STACKED STATE, PROGRAM
RETURN, or TEST ACCESS is attempted, or exe­
cution of a SET ADDRESS SPACE CONTROL
instruction that is to set the access-register
mode is attempted, and the address-space­
function control, bit 15 of control register 0, is
zero.

The operation is suppressed.

The instruction-length code is 1, 2, or 3, and indi­
cates the length of the instruction causing the
exception.

The special-operation exception is indicated by a
program-interruption code of 0013 hex (or 0093
hex if a concurrent PER event is indicated).

Specification Exception
A specification exception is recognized when any of
the following is true:

1. A one is introduced into an unassigned bit
position of the psw (that is, any of bit posi­
tions 0, 2-4, or 24-31). This is handled as an
early psw specification exception.

2. A zero is introduced into bit position 12 of the
psw. This is handled as an early psw specifica­
tion exception.

3. A zero is introduced into bit position 32 of the
PSW, "but bits 33-39 are not all zeros. This is
handled as an early psw specification exception.

4. The psw contains an odd instruction address.

5. An operand address does not designate an inte­
gral boundary in an instruction requiring such
integral-boundary designation.

6. An odd-numbered general register is designated
by an' R field of an instruction that requires an
even-numbered register designation.

7. A floating-point register other than 0, 2, 4, or 6
is designated for a short or long operand, or a
floating-point register other than 0 or 4 is desig­
nated for an extended operand.

6-26 ESAj370 Principles of Operation

8. The multiplier or divisor in decimal arithmetic
exceeds 15 digits and sign.

9. The length of the frrst-operand field is less than
or equal to the length of the second-operand
field in decimal multiplication or division.

10. Bit positions 8-11 of MONITOR CALL do not
contain zeros.

11. Bits 20-21 of the second-operand address of
SET ADDRESS SPACE CONTROL are not all
zeros.

12. The addressing bit in the general register desig­
nated by the R2 field of PROGRAM TRANSFER is
zero, but the leftmost seven bits of the instruc­
tion address in the same register are not all
zeros.

13. Execution of COMPARE AND FORM CODEWORD
is attempted, and general registers 1, 2, and 3
do not initially contain even values.

14. Execution of UPDATE TREE is attempted, and
bits 29-31 of general registers 4 and 5 do not
initially contain zeros.

The execution of the instruction identified by the
old psw is suppressed. However, for early psw
specification exceptions (causes 1-3), the operation
that introduces the new psw is completed, but an
interruption occurs immediately thereafter.

Except as noted below, the instruction-length code
(ILC) is 1, 2, or 3, indicating the length of the
instruction causing the exception.

When the instruction address is odd (cause 4), it is
unpredictable whether the ILC is 1, 2, or 3.

When the exception is recognized because of an
early psw specification exception, (causes 1-3), and
the exception has been introduced by LOAD PSW or
an interruption, the ILC is O. When the exception
is introduced by SET SYSTEM MASK or by STORE
THEN OR SYSTEM MASK, the ILC is 2.

The specification exception is indicated by a
program-interruption code of 0006 hex (or 0086
hex if a concurrent PER event is indicated).

I

Programming Note: See the section "Exceptions
Associated with the PSw" in this chapter for a defi­
nition of when the exceptions associated with the
PSWare recognized.

Stack-Empty Exception
A stack-empty exception is recognized during the
un stacking process in EXTRACT STACKED REGIS­

TERS, EXTRACT STACKED STATE, MODIFY STACKED

STATE, or PROGRAM RETURN when the current
linkage-stack entry is a header entry and the back­
ward stack -entry validity bit in the header entry is
zero.

The operation is nullified.

The instruction-length code is 1 or 2.

The stack-empty exception is indicated by a
program-interruption code of 0031 hex (or OOBI
hex if a concurrent PER event is indicated).

Stack-Full Exception
A stack-full exception is recognized during the
stacking process in BRANCH AND STACK or stacking
PROGRAM CALL when there is not enough
remaining free space in the current linkage-stack
section and the forward-section validity bit in the
trailer entry of the section is zero.

The operation is nullified.

The instruction-length code is 2.·

The stack-full exception is indicated by a program­
interruption code of 0030 hex (or OOBO hex if a
concurrent PER event is indicated).

Stack-Operation Exception
A stack-operation exception is recognized during
the unstacking process in PROGRAM RETURN when
the unstack -suppression bit is one in any linkage­
stack state entry or header entry encountered during
the process.

The operation is nullified.

The instruction-length code is 1.

The stack -operation exception is indicated by a
program-interruption code of 0034 hex (or 00B4
hex if a concurrent PER event is indicated).

Stack-Specification Exception
A stack-specification exception is recognized ill

each of the following cases:

1. During the stacking process in BRANCH AND

STACK or stacking PROGRAM CALL, when there
is not enough remaining free space in the
current linkage-stack section and either of the
following is true:

• The remaining-free-space value used to
locate the trailer entry of the current
section is not a multiple of 8.

• There is not enough remaining free space
in the next section.

2. During the unstacking process ill EXTRACT

STACKED REGISTERS, EXTRACT STACKED

STATE, MODIFY STACKED STATE, or PROGRAM

RETURN, when the current linkage-stack entry
is a header entry in which the backward stack­
entry address designates another header entry.

The operation is nullified.

The instruction-length code is 1 or 2.

The stack-specification exception is indicated by a
program-interruption code of 0032 hex (or OOB2
hex if a concurrent PER event is indicated).

Stack-Type Exception
A stack-type exception is recognized during the
unstacking process in EXTRACT STACKED REGIS­

TERS, EXTRACT STACKED STATE, MODIFY STACKED

STATE, or PROGRAM RETURN in each of the fol­
lowing cases:

1. The current linkage-stack entry is not a header
entry or a state entry.

2. When the current linkage-stack entry is a
header entry, the preceding entry, designated by
the backward stack -entry address in the header
entry, is not a header entry or a state entry. (A
stack-specification exception is recognized if the
preceding entry is a header entry.)

The operation is nullified.

The instruction-length code is 1 or 2.

The stack-type exception is indicated by a program­
interruption code of 0033 hex (or 00B3 hex if a
concurrent PER event is indicated).

Chapter 6. Interruptions 6-27

Trace-Table Exception
A trace-table exception is recognized when the CPU

attempts to store a trace;;.table entry which would
reach or cross the next 4K-byte block boundary.
For the purpose of recognizing this exception in the
TRACE instruction, the explicit trace entry is treated
as being 76 bytes long.

The operation is nullified.

The instruction -length code is 1, 2, or 3, indicating
the length of the instruction causing the exception.

The trace-table exception is indicated by a
program-interruption code of 0016 hex (or 0096
hex if a concurrent PER event is indicated).

Translation-Specification Exception
A translation-specification exception is recognized
when translation of a virtual address is attempted
and any of the following is true:

1. Bit positions 8-12 of control register 0 do not
contain the code 10110.

2. The segment-table entry used for the trans­
lation is valid, and bit position 0 in the. entry
does not contain zero.

3. The page-table entry used for the translation is
valid, and bit positions 0, 20, and 23 in the
entry do not contain zeros.

4. The private-space facility is installed, the
private-space control, bit 23, in the segment­
table designation used for the translation is one,
and the common-segment bit, bit 27, in the
segment-table entry used for the translation is
one.

The exception is recognized only as part of the exe­
cution of an instruction using address translation,
that is, when DAT is on and a logical address,
instruction address, or virtual address must be
translated, or when LOAD REAL ADDRESS or
INVALIDATE PAGE TABLE ENTRY is executed.
Cause I is recognized on any translation attempt;
causes 2, 3, and 4 are recognized only for table
entries that are actually used.

The unit of operation is suppressed.

When the exception occurs during fetching of an
instruction, it is unpredictable whether the ILC is I,
2, or 3. When the exception occurs during the
fetching of the target of EXECUTE, the ILC is 2.",

6-28 ESA/370 Principles of Operation

When the exception occurs during a reference to an
operand location, the instruction-length code (ILC)

is I, 2, or 3 and indicates the length of the instruc­
tion causing the exception.

The translation-specification exception is indicated
by a program -interruption code of 0012 hex (or
0092 hex if a concurrent PER event is indicated).

Programming Note: When a translation­
specification exception is recognized in the process
of translating an instruction address, the operation
is suppressed. In this case, the instruction-length
code (ILC) is needed to derive the address of the
instruction, as the instruction address in the old
psw has been incremented by the amount indicated
by the ILC. In the case of segment-translation and
page-translation exceptions, the operation is nulli­
fied the instruction address in the old psw identi­
fies'the instruction, a~d the ILC may be arbitrarily
set to 1, 2, or 3.

Unnormallzed-Operand Exception
An unnormalized-operand exception is recognized
when, in a vector floating-point divide or multiply
operation, a source-operand element has a nonzero
fraction with a leftmost hexadecimal digit of zero.
For more details, see the publication Enterprise
Systems Architecture/370 and System/370 Vector
Operations, SA22-7125.

The unit of operation is inhibited.

The instruction-length code is 2.

The unnormalized-operand exception is indicated
by a program-interruption code of XXIE hex (or
XX9E hex if a concurrent PER event is indicated),
where XX is the exception-extension code.

Vector-Operation Exception
A vector-operation exception is recognized when a
vector-facility instruction is executed while bit 14 of
control register 0 is zero on a CPU which has the
vector facility installed and available. The vector­
operation exception is also recognized when a
vector-facility instruction is executed and the vector
facility is not installed or available on this CPU, but
the facility can be made available to the program
either on this CPU or another CPU in the configUra­
tion.

When a vector-facility instruction is executed, and
the vector facility is not installed on any CPU which
is or can be placed in the configuration, it depends

on the model whether a vector-operation exception
or an operation exception is recognized.

The operation is nullified when the vector­
operation exception is recognized.

The instruction-length code is 2 or 3.

The vector-operation exception is indicated bya
program-interruption code of 0019 hex (or 0099
hex if a concurrent PER event is indicated).

Collective Program-Interruption
Names

For the. sake of convenience, certain program
exceptions are grouped together pnder a single col­
lective name. These collective names are used
when it is necessary to refer to the complete set of
exceptions, such as in instruction defInitions.
Three collective names are used:

• Access exceptions
• ASN-translation exceptions
• Trace exceptions

The individual exceptions and their priorities are
listed in the section "Multiple-Program­
Interruption Conditions" in this chapter.

Recognition of Access Exceptions

Figure 6-3 on page 6-30 summarizes the condi­
tions that can cause access exceptions and the
action taken when they are encountered.

Chapter~. Interruptions 6-29

Translation for
TAR and TPROT,

Translation for and Access for Translation and
Virtual Address Logical Address ,Access for Any
of LRA of TPROP Other Address

Indi- Indi- Indi-
Condition cation Action cation Action cation Action

Access register2
Bits 9-6 not all zeros cc3 Complete cc3 Complete AS Suppress

Effective access-list deslgnation2
Designation protected against - - - - - -

fetching
Invalid address of designation A Suppress A Suppress A Suppress

Access-list entr~2
Access-list-length violation cc3 Complete cc3 Complete AT Nullify
Entry protected against fetching - - - - - -
Invalid address of entry A Suppress A Suppress A Suppress
I bit on cc3 Complete cc3 Complete AT Null ify
Sequence number in access register cc3 Complete cc3 Complete ALQ Null ify

not equal to sequence number in
entry

ASN-second-table entr~2
Entry protected against fetching - - - - - -
Invalid address of entry A Suppress A Suppress A Suppress
I bit on cc3 Complete cc3 Complete AV Null ify
Sequence number in access-list cc3 Complete cc3 Complete ASQ Null ify

entry not equal to sequence
number in entry

Bits 39, 31, and 69-63 not all ATS Suppress ATS Suppress ATS Suppress
zeros 3

Authorit~-table entr~2 4

Authority-table-length violation cc3 Complete cc3 Complete EA Null ify
Entry protected against fetching - - - - - -
Invalid address of entry A Suppress A Suppress A Suppress
Secondary-authority bit not one cc3 Complete cc3 Complete EA Null ify

Control-register-9 contents5

Invalid encoding of bits 8-12 TS Suppress _6 _6 TS Suppress

Se~ent-table entr~
Segment-table-length violation cc3 Complete cc3 Complete ST Nullify
Entry protected against fetching - - - - - -
Invalid address of entry A Suppress A Suppress A Suppress
I bit on cc1 Complete cc3 Complete ST Nullify
One in a bit position which is TS Suppress TS Suppress TS Suppress

checked for zer0 7

Page-table entr~
Page-table-length violation cc3 Complete cc3 Complete PT Null ify
Entry protected against fetching - - - - - -
Invalid address of entry A Suppress A Suppress A Suppress
I bit on cc2 Complete cc3 Complete PT Null ify
One in a bit position which is TS Suppress T5 Suppress TS Suppress

checked for zer0 7

Access for instruction fetch
Location protected - - - - P Suppress
Invalid address - - - - A Suppress

Access for oRerands
Location protected - - cc setS Complete P Term. *
Invalid address - - A Suppress A Term. *

Figure 6-3 (Part 1 of 2). Handling of Access Exceptions

6-30 ESA/370 Principles of Operation

Explanation:

2

4

J

•

A
ALQ
AS
ASQ
AT
ATS
AV
cel
cc2
cc3
EA
P
PT
ST
TS

The condition does not apply.
Action is to tenminate except where otherwise specified in this publication.
TAR does not have a logical address. The rows "Contro1-register-a contents"
through "Access for operands" apply only to TPROT, not to TAR.
Exceptions related to an access register, effective access-list designa­
tion, access-list entry, ASN-second-table entry, or authority-table entry
are recognized only in the access-register mode, except that for LOAD REAL
ADDRESS they are recognized when PSW bits 16 and 17 are al binary, and
for TEST ACCESS they are recognized regardless of the translation mode.
An ASN-trans1ation-specification exception is recognized only if it is
necessary to access the authority table.
Authority table is not accessed and secondary-authority bit is not checked
if the private bit in the access-list entry is zero or the access-list­
entry authorization index in the access-list entry is equal to the extended
authorization index in control register 8.
A translation-specification exception for an invalid code in control reg­
ister a, bit positions 8-12, is recognized as part of the execution of the
instruction using address translation; when OAT is on, it is recognized
during translation of the instruction address, and, when OAT is off, it is
only recognized during execution of INVALIDATE PAGE TABLE ENTRY or for
translation of the operand address of LOAD REAL ADDRESS.
A translation-specification exception cannot occur for the logical address
of TEST PROTECTION because this exception would have been recognized during
the instruction fetch for the instruction.
A translation-specification exception for a fonmat error in a table entry
is recognized only when the execution of an instruction requires the entry
for translation of an address.
The condition code is set as follows:

a Operand location not protected.
1 Fetches penmitted, but stores not penmitted.
2 Neither fetches nor stores penmitted.

Addressing exception.
ALE-sequence exception.
ALET-specification exception.
ASTE-sequence exception.
ALEN-trans1ation exception.
ASN-translation-specification exception.
ASTE-va1idity exception.
Condition code 1 set.
Condition code 2 set.
Condition code 3 set.
Extended-authority exception.
Protection exception.
Page-translation exception.
Segment-translation exception.
Translation-specification exception.

Figure 6-3 (Part 2 of 2). Handling of Access Exceptions

Any access exception is recognized as part of the
execution of the instruction with which the excep­
tion is associated. An access exception is not
recognized when the CPU attempts to prefetch from
an unavailable location or detects some other
access-exception condition, but a branch instruc­
tion or an interruption changes the instruction
sequence such that the instruction is not executed.

Every instruction can cause an access exception to
be recognized because of instruction fetch. Addi­
tionally, access exceptions associated with instruc­
tion execution may occur because of an access to
an operand in storage.

An access exception due to fetching an instruction
is indicated when the rust instruction halfword
cannot be fetched without encountering the excep­
tion. When the rust half word of the instruction has
no access exceptions, access exceptions may be
indicated for additional halfwords according to the
instruction length specified by the rust two bits of
the instruction; however, when the operation can
be performed without accessing the second or third
halfwords of· the instruction, it is unpredictable
whether the access exception is indicated for the
unused part. Since the indication of access
exceptions for instruction fetch is common to all
instructions, it is not covered in the individual
instruction dermitions.

Chapter 6. Interruptions 6.;.31

Except where otherwise indicated in the individual
instruction description, the following rules apply for
exceptions associated with an access to an operand
location. For a fetch-type operand, access
exceptions are necessarily indicated only for that
portion of the operand which is required for com­
pleting the operation. It is unpredictable whether
access exceptions are indicated for those portions of
a fetch-type operand which are not required for
completing the operation. For a store-type
operand, access exceptions are tecognized for the
entire operand even if the operation could be com­
pleted without the use· of the inaccessible part of
the operand. In situations where the value of a
store-type operand is defined to be unpr~dictable, it
is unpredictable whether an access exception is
indicated.

Whenever an access to an operand location can
cause an access exception to be recognized, the
word "access" is included in the list of program
exceptions in the description of the instruction.
This entry also indicates which operand can cause
the exception to be recognized and whether the
exception is recognized on a fetch or store access to
that operand location. Access exceptions are recog­
nized only for the portion of the operand as defmed
by each particular instruction.

Multiple Program-Interruption
Conditions

Except for PER events, only one program­
interruption condition is indicated with a program
interruption. The existence of one condition,
however, does not preclude the existence of other
conditions. When more than one program­
interruption condition exi~ts, only the condition
having the highest priority is identified in the inter­
ruption code.

With two' conditions of the same priority, it is
unpredictable which is indicated. In particular, the
priority of access exceptions associated with the
two parts of an operand that crosses a page or pro­
tection boundary is unpredictable and is not neces­
sarily related to the sequence specified for the
access of bytes within the operand.

The 'type of ending which occurs (nullification, sup­
pression, or termination) is that which is defmed
for the type of ~xception that is indicated in the
interruption code. However, if a condition is indi-

6-32 ESA/370 Principles of Operation

cated which permits termination, and another con­
dition also exists which would cause either
nullification or suppression, then the unit of opera-
tion is suppressed. ·

Figure 6-4 on page 6-33 lists the priorities of all
program-interruption conditions other than PER

events and exceptions associated with some of the
more complex control instructions. All exceptions
associated with references to storage for a particular
instruction halfword or a particular operand byte
are grouped as a single entry called "access."
Figure 6-5 on page 6-36 lists the priority of access
exceptions for a single access. Thus, the second
figure specifies which of several exceptions;
encountered either in the access of a particular
portion of an instruction or in any particular access
associated with an operand, has highest priority,
and the first figure specifies the priority of this con.;
dition in relation to other conditions detected in the
operation. Similarly, the priorities for exceptions
occurring as part of AS N translation and tracing are
covered in Figure 6-6 on page 6-38 and Figure 6-7
on page 6-38, respectively.

For some instructions, the priority is shown in the
individual instruction description.

The relative priorities of any two conditions listed
in the figure can be found by comparing the pri­
ority numbers, as found in the figure, from left to
right until a mismatch is found. If the frrst ine­
quality is between numeric characters, either the
two conditions are mutually exclusive or, if both
can occur, the condition with the smaller number is
indicated. If the frrst inequality is between alpha­
betic characters, then the two conditions are not
exclusive, and it is unpredictable which is indicated
when both occur.

To understand the use. of the table, .consider an
example involving the instruction ADD DECIMAL,
which is a six-byte instruction. Assume that the
frrst four bytes of the instruction can be accessed
but that the instruction crosse~ a boundary so' that
an addressing exception exists for . the last two
bytes. Additionally, assume that the frrst operand
addressed by the instruction contains invalid
decimal digits and is in a location that can be
fetched from, but not stored into, because of key­
controlled protection. The three exceptions which
could result from attempted execution of the ADD

DECIMAL are:

Priority
Number Exception

7.B Access exceptions
tion halfword.

B.B Access exceptions
B.D Data exception.

for third instruc-

(operand 1).

Since the frrst inequality (7i=8) is between numeric
characters, the addressing exception would be indi­
cated. If, however, the entire ADD DECIMAL

instruction can be fetched, and only the second two
exceptions listed above exist, then the inequality
(Bi=D) is between alphabetic characters, and it is
unpredictable whether the protection exception or
the data exception would be indicated.

1. Specification exception due to any PSW error of the type that causes an
immediate interruption. 1

2. Specification exception due to an odd instruction address in the PSW.

3. Access exceptions for first halfword of EXECUTE.2

4. Access exceptions for second halfword of EXECUTE.2

5. Specification exception due to target instruction of EXECUTE not being
specified on halfword boundary.2

6. Access exceptions for first instruction halfword.

7.A Access exceptions for second instruction halfword. 3

7.B Access exceptions for third instruction halfword. 3

7.C.l Vector-operation exception.

7.C.2 Operation exception.

7.C.3 Privileged-operation exception for privileged instructions.

7.C.4 Execute exception

7.C.5 Special-operation exception

8.A Specification exception due to conditions other than those included in
1, 2, and 5 above.

8.B4 Access exceptions for an access to an operand in storage. 5

8.C4 Access exceptions for any other access to an operand in storage. 5

8.0 Data exception. s

8.E Decimal-divide exception. 7

8.F Trace exceptions.

9. Events other than PER events, exceptions which result in completion,
and the following exceptions: fixed-point divide, floating-point divide,
operand, and unnormalized operand. Either these exceptions and events
are mutually exclusive or their priority is specified in the correspond­
ing definitions.

Figure 6-4 (Part 1 of 2). Priority of Program-Interruption Conditions

Chapter 6. Interruptions 6-33

Explanation:

Numbers indicate priority, with "1" being the highest priority; letters indicate
no priority.

1 PSW errors which cause an immediate interruption may be introduced by a new
PSW loaded as a result of an interruption or by the instructions LOAD PSW,
PROGRAM RETURN, SET SYSTEM MASK, and STORE THEN OR SYSTEM MASK. The priority
shown in the chart is for a PSW error introduced by an interruption and may
also be considered as the priority for a PSW error introduced by the previous
instruction. The error is introduced only if the instruction encounters no
other exceptions. The resulting interruption has a higher priority than any
interruption caused by the instruction which would have been executed next; it
has lower priority, however, than any interruption caused by the instruction
w.hi ch introduced the erroneous PSW.

2 Priorities 3, 4, and 5 are for the EXECUTE instruction, and priorities start­
ing with 6 are for the target instruction. When no EXECUTE is encountered,
priorities 3, 4, and 5 do not apply.

3 Separate accesses may occur for each halfword of an instruction. The second
instruction halfword is accessed only if bits 0-1 of the instruction are not
both zeros. The third instruction halfword is accessed only if bits 0-1 of
of the instruction are both ones. Access exceptions for one of these half­
words are not necessarily recognized if the instruction can be completed
without use of the contents of the halfword or if an exception of lower pri­
ority can be determined without the use of the halfword.

4 As in instruction fetching, separate accesses may occur for each portion of
an operand. Each of these accesses is of equal priority, and the two entries
8.B and 8.C are listed to represent the relative priorities of exceptions as­
sociated with any two of these accesses. Access exceptions for INSERT
STORAGE KEY EXTENDED, INSERT VIRTUAL STORAGE KEY, INVALIDATE PAGE TABLE ENTRY,
LOAD REAL ADDRESS, RESET REFERENCE BIT EXTENDED, SET STORAGE KEY EXTENDED,
and TEST PROTECTION are also included in 8.B.

5 For MOVE LONG and COMPARE LOGICAL LONG, an access exception for a particular
operand can be indicated only if the R field for that operand designates an
even-numbered register.

6 The exception can be indicated only if the sign, digit, or digits responsi­
ble for the exception were fetched without encountering an access exception.

7 The exception can be indicated only if the digits used in establishing the
exception, and also the signs, were fetched without encountering an access
exception, only if the signs are valid, and only if the digits used in estab­
lishing the exception are valid.

Figure 6-4 (Part 2 of 2). Priority of Program-Interruption Conditions

Access Exceptions
The access exceptions consist of those exceptions
which can be encountered while using an absolute,
instruction, logical, real, or virtual address to access
storage. Thus, in the access-register mode, the
exceptions are:

1. ALET specification

6-34 ESA/370 Principles of Operation

2. ALEN translation
3. ALE sequence
4. ASTE validity
5. ASTE sequence
6. ASN-translation specification
7. Extended authority
8. Addressing (the ART tables)
9. Translation specification

10. Segment translation
11. Page translation
12. Addressing (the DAT tables and the operand or

instruction)
13. Protection (key-controlled, page, and low-

address)

With DAT on but in other than the access-register
mode, exceptions 9-13 in the above list can be
encountered.

With DAT off, the exceptions are:

1. Addressing
2. Protection (key-controlled and low-address)

Additionally, the instructions LOAD REAL ADDRESS

and INVALIDATE PAGE TABLE ENTRY can
encounter a translation-specification exception even
with DAT off.

Chapter 6. Interruptions 6-35

A. Protection exception (low-address protection) due to
a store-type operand reference with an effective ad­
dress in the range 0-511.

B.l.A.l ALET-specification exception due to bits 0-6 of
acc~~s register not being all zeros.

B.1.A.2 Addressing exception for access to effective access­
list designation.

B.l.A.3 ALEN-trans1ation exception due to access-list entry
being outside the list.

B.1.A.4 Addressing exception for access to access-list entry.

B.1.A.5 ALEN-trans1ation exception due to I bit in access­
list entry having the value one.

B.l.A.6 ALE-sequence exception due to access-list-entry
sequence number (ALESN) in access register not being
equal to ALESN in access-list entry.

B.1.A.7 Addressing exception for access to ASN-second-tab1e
entry.

B.1.A.8 ASTE-va1idity exception due to I bit in ASN-second­
table entry having the value one.

B.1.A.9 ASTE-sequence exception due to ASN-second-tab1e­
entry sequence number (ASTESN) in access-list entry
not being equal to ASTESN in ASN-second-tab1e entry.

B.1.A.10 ASN-trans1ation-specification exception due to a one
in bit positions 30, 31, or 60-63 of ASN-second-table
entry (only if authority-table access is required).

B.1.A.11 Extended-authority exception due to authority-table
entry being outside table.

B.1.A.12 Addressing exception for access to authority-table
entry.

B.1.A.13 Extended-authority exception due to (1) private bit
in access-list entry not being zero, (2) access-1ist­
entry authorization index in access-list entry not
being equal to extended authorization index in con­
trol register 8, and (3) secondary-authority bit
selected by extended authorization index not being
one.

B.1.B Translation-specification exception due to invalid
encoding of bits 8-12 of control register 0. 1

Figure 6-5 (Part 1 of 2). Priority of Access Exceptions

6-36 ESAj370 Principles of Operation

B.2.

B.3.

B.4.

B.5.

B.B.

B.7.

B.B.

B.9.

B.10.A

B.10.B

B.Il.

Segment-translation exception due to segment-table
entry being outside table. 2

Addressing exception for access to segment-table
entry. 3

Segment-translation exception due to I bit in seg­
ment-table entry having the value one. 2

Translation-specification exception due to invalid
ones in segment-table entry (bit 0, and common­
segment bit if private-space bit in segment-table
designation is one).3

Page-translation exception due to page-table entry
being outside table. 2

Addressing exception for access to page-table entry.l

Page-translation exception due to I bit in page-table
entry having the value one. 2

Translation-specification exception due to invalid
ones in page-table entry (bits 0, 20, and 23).3

Protection exception (page protection) due to a
store-type operand reference to a virtual address
which is protected against stores. 4

Addressing exception for access to instruction or
operand.

Protection exception (key-controlled protection) due
to attempt to access a protected instruction or op­
erand location.

Explanation:

1 Not applicable when OAT is off, except for execution of
INVALIDATE PAGE TABLE ENTRY and for translation of operand
address of LOAD REAL ADDRESS.

2 Not applicable when OAT is off; not applicable to operand
addresses for LOAD REAL ADDRESS and TEST PROTECTION.

3 Not applicable when OAT is off except for translation of
operand address for LOAD REAL ADDRESS.

4 Not applicable when OAT is off.

Figure 6-5 (Part 2 of 2). Priority of Access Exceptions

Chapter 6. Interruptions 6-37

ASN-Translation Exceptions
The ASN-translation exceptions are those
exceptions which are common to the process of
translating an ASN in the instructions PROGRAM
RETURN, PROGRAM TRANSFER, and SET SEC­
ONDARY ASN. The exceptions and the priority in
which they are detected are shown in Figure 6-6.

1.

2.

3.

4.

5.

Addressing exception for access to ASN­
first-table entry.

AFX-translation exception due to I bit
(bit 0) in ASN-first-table entry being
one.

ASN-translation-specification exception
due to invalid ones (bits 28-31) in
first-table entry.

Addressing exception for access to ASN­
second-table entry.

ASX-translation exception due to I bit
(bit 0) in ASN-second-table entry being
one.

6. ASN-translation-specification exception
due to invalid ones (bits 30, 31, 60-
63) in ASN-second-table entry.

Figure 6-6. Priority of ASN -Translation Exceptions

Trace Exceptions
The trace exceptions are those exceptions which
can be encountered while forming a trace-table
entry. The exceptions and their priority are shown
in Figure 6-7.

A. Protection exception (low-address pro­
tection) due to entry address being in
the range 0-511.

B.1 Trace-table exception due to new entry
reaching or crossing next 4K-byte
boundary.

B.2 Addressing exception for access to
trace-table entry.

Figure 6-7. Priority of Trace Exceptions

6-38 ESAj370 Principles of Operation

Restart Interruption
The restart interruption provides a means for the
operator or another CPU to invoke the execution of
a specified program. The CPU cannot be disabled
for this interruption.

A restart interruption causes the old psw to be
stored at reallocation 8 and a new PSW, designating
the start of the program to be executed, to be
fetched from real location o. The instruction -length
code and interruption code are not stored.

If the CPU is in the operating state, the exchange of
the PSWs occurs at the completion of the current
unit of operation and after all other pending inter­
ruption conditions for which the CPU is enabled
have been honored. If the CPU is in the stopped
state, the CPU enters the operating state and
exchanges the PSWs without frrst honoring any
other pending interruptions.

The restart interruption is initiated by activating the
restart key. The operation can also be initiated at
the addressed CPU by executing a SIGNAL
PROCESSOR instruction which specifies the restart
order.

When the rate control is set to the instruction-step
position, it is unpredictable whether restart causes a
unit of operation or additional interruptions to be
performed after the psws have been exchanged.

Programming Note: To perform a restart when
the CPU is in the check-stop state, the CPU has to
be reset. Resetting with loss of the least amount of
information can be accomplished by means of the
system-reset-normal key, which does not clear the
contents of program-addressable registers, including
the control registers, but causes the channel sub­
system to be reset. The cPu-reset SIGNAL
PROCESSOR order can be used to clear the CPU
without affecting the channel subsystem.

Supervisor-Call Interruption
The supervisor-call interruption occurs when the
instruction SUPERVISOR CALL is executed. The
CPU cannot be disabled for the interruption, and
the interruption occurs immediately upon the exe­
cution of the instruction.

The supervisor-call interruption causes the old psw
to be stored at reallocation 32 and a new psw to
be fetched from reallocation 96.

The contents of bit positions 8-15 of the SUPER­
VISOR CALL instruction are placed in the rightmost
byte of the interruption code. The leftmost byte of
the interruption code is set to zero. The
instruction -length code is 1, unless the instruction
was executed by means of EXECUTE, in which case
the code is 2.

The interruption code is placed at real locations
138-139; the instruction-length code is placed in bit
positions 5 and 6 of the byte at reallocation 137,
with the other bits set to zeros; and zeros are stored
at reallocation 136.

Priority of Interruptions
During the execution of an instruction, several
interruption -causing events may occur simultane­
ously. The instruction may give rise to a program
interruption, a request for an external interruption
may be received, equipment malfunctioning may be
detected, an I/o-interruption request may be made,
and the restart key may be activated. Instead of the
program interruption, a supervisor-call interruption
might occur; or both can occur if PER is active.
Simultaneous interruption requests are honored in
a predetermined order.

An exigent machine-check condition has the
highest priority. When it occurs, the current opera­
tion is terminated or nullified. Program and
supervisor-call interruptions that would have
occurred as a result of the current operation may be
eliminated. Any pending repressible machine-check
conditions may be indicated with the exigent
machine-check interruption. Every reasonable
attempt is made to limit the side effects of an
exigent machine-check condition, and requests for
external, I/O, and restart interruptions normally
remain unaffected.

In the absence of an exigent machine-check condi­
tion, interruption requests existing concurrently at
the end of a unit of operation are honored, in
descending order of priority, as follows:

• Supervisor call
• Program
• Repressible machine check
• External
• Input/output
• Restart

The processing of multiple simultaneous inter­
ruption requests consists in storing the old psw and
fetching the new psw belonging to the interruption

fITst honored. This new psw is subsequently stored
without the execution of any instructions, and the
new psw associated with the next interruption is
fetched. Storing and fetching of psws continues
until no more interruptions are to be serviced. The
priority is reevaluated after each new psw is loaded.
Each evaluation takes into consideration any addi­
tional interruptions which may have become
pending. Additionally, external and I/O inter­
ruptions, as well as machine-check interruptions
due to repressible conditions, occur only if the
current psw at the instant of evaluation indicates
that the CPU is interruptible for the cause.

Instruction execution is resumed using the last­
fetched psw. The order of executing interruption
subroutines is, therefore, the reverse of the order in
which the psws are fetched.

If the new psw for a program interruption does not
specify the wait state and has an odd instruction
address, or causes an access exception to be recog­
nized, another program interruption occurs. Since
this second interruption introduces the same unac­
ceptable PSW, a string of interruptions is estab­
lished. These program exceptions are recognized as
part of the execution of the following instruction,
and the string may be broken by an external, I/O,
machine-check, or restart interruption or by the
stop function.

If the new psw for a program interruption contains
a zero in bit position 12 or contains a one in an
unassigned bit position or if the leftmost seven bits
of the instruction address are not zeros when bit 32
indicates 24-bit addressing, another program inter­
ruption occurs. This condition is of higher priority
than restart, I/O, external, or repressible machine­
check conditions, or the stop function, and CPU
reset has to be used to break the string of inter­
ruptions.

A string of interruptions for other interruption
classes can also exist if the new psw allows the
interruption which has just occurred. These
include machine-check interruptions, external inter­
ruptions, and I/O interruptions due to PCI condi­
tions generated because of CCW s which form a
loop. Furthermore, a string of interruptions
involving more than one interruption class can
exist. For example, assume that the CPU timer is
negative and the cpu-timer subclass mask is one.
If the external new psw has a one in an unassigned
bit position, and the program new psw is enabled
for external interruptions, then a string of inter-

Chapter 6. Interruptions 6-39

ruptions occurs, alternating between external and
program. Even more complex strings of inter­
ruptions are possible. As long as more inter­
ruptions must be serviced, the string of inter­
ruptions cannot be broken by employing the stop
function; CPU reset is required.

Similarly, CPU reset has to be invoked to terminate
the condition that exists when an interruption is

6-40 ESAj370 Principles of Operation

attempted with a prefix value designating a storage
location that is not available to the CPU.

Interruptions for all requests for which the CPU is
enabled occur before the CPU is placed in the
stopped state. When the CPU is in the stopped
state, restart has the highest priority.

Programming Note: The order in which concur­
rent interruption requests are honored can be
changed to some extent by masking.

Chapter 7. General Instructions

Data Fonnat 7-2 Load Complement 7-30
Binary-Integer Representation 7-2 Load Halfword 7-30
Binary Arithmetic 7-3 Load Multiple 7-31

Signed Binary Arithmetic 7-3 Load Negative 7-31
Addition and Subtraction 7-3 Load Positive 7-31
Fixed-Point Overflow 7-3 Monitor Call 7-32

Unsigned Binary Arithmetic 7-3 Move 7-32
Signed and Logical Comparison 7-4 Move Inverse 7-33
Instructions 7-4 Move Long 7-33

Add 7-8 Move Numerics 7-37
Add Halfword 7-8 Move with Offset 7-37
Add Logical 7-9 Move Zones 7-38
AND 7-9 Multiply • 7-39
Branch and Link 7-10 Multiply Halfword 7-39
Branch and Save 7-11 OR 7-40
Branch and Save and Set Mode 7-11 Pack 7-40
Branch and Set Mode 7-12 Set Access 7-41
Branch on Condition 7-12 Set Program Mask 7-41
Branch on Count 7-13 Shift Left Double 7-42
Branch on Index High 7-14 Shift Left Double Logical 7-42
Branch on Index Low or Equal 7-14 Shift Left Single· 7-43
Compare 7-15 Shift Left Single Logical 7-43
Compare and Fonn Codeword 7-15 Shift Right Double 7-43
Compare and Swap 7-19 Shift Right Double Logical 7-44
Compare Double and Swap 7-19 Shift Right Single 7-44
Compare Halfword 7-20 Shift Right Single Logical 7-45
Compare Logical 7-21 Store 7-45
Compare Logical Characters under Mask 7-21 Store Access Multiple 7-45
Compare Logical Long 7-22 Store Character 7-46
Convert to Binary •............. 7-24 Store Characters under Mask 7-46
Convert to Decimal 7-24 Store Clock 7-46
Copy Access 7-24 Store Halfword 7-47
Divide 7-25 Store Multiple 7-47
Exclusive OR 7-25 Subtract 7-48
Execute 7-26 Subtract Halfword 7-48
Extract Access 7-27 Subtract Logical 7-48
Insert Character 7-27 Supervisor Call 7-49
Insert Characters under Mask 7-27 Test and Set 7-49
Insert Program Mask 7-28 Test under Mask 7-50
Load 7-28 Translate 7-50
Load Access Multiple 7-28 Translate and Test 7-51
Load Address 7-29 Unpack 7-52
Load ·Address Extended 7-29 Update Tree 7-52
Load and Test 7-30

Chapter 7. General Instructions 7-1

This chapter includes all the unprivileged
instructions described in this publication other than
the decimal and floating-point instructions.

Data Format
The general instructions treat data as being of four
types: signed binary integers, unsigned binary inte­
gers, unstructured logical data, and decimal data.
Data is treated as decimal by the conversion,
packing, and unpacking instructions. Decimal data
is described in Chapter 8, "Decimal Instructions."

The general instructions manipulate data which
resides in general registers or in storage or is intro­
duced from the instruction stream. Some general
instructions operate on data which resides in the
psw or the TOO clock.

In a storage-to-storage operation the operand fields
may be defmed in such a way that they overlap.
The effect of this overlap depends upon the opera­
tion. When the operands remain unchanged, as in
COMPARE or TRANSLATE AND TEST, overlapping
does not affect the execution of the operation. For
instructions such as MOVE and TRANSLATE, one
operand is replaced by new data, and the execution
of the operation may be affected by the amount of
overlap and the manner in which data is fetched or
stored. For purposes of evaluating the effect of
overlapped operands, data is considered to be
handled one eight-bit byte at a time. Special rules
apply to the operands of MOVE LONG and MOVE

INVERSE.

Binary-Integer Representation
Binary integers are treated as signed or unsigned.

In an unsigned binary integer, all bits are used to
express the absolute value of the number. When
two unsigned binary integers of different lengths are
added, the shorter number is considered to be
extended on the left with zeros.

In some operations, the result is achieved by the
use of the one's complement of the number. The
one's complement of a number is obtained by
inverting each bit of the number, including the sign.

For signed binary integers, the leftmost bit repres­
ents the sign, which is followed by the numeric
field. Positive numbers are represented in true
binary notation with the sign bit set to zero. When

7-2 ESAj370 Principles of Operation

the value is zero, all bits are zeros, including the
sign bit. Negative numbers are represented in
two's-complement binary notation with a one in
the sign-bit position.

Specifically, a negative number is represented by
the two's complement of the positive number of
the same absolute value. The two's complement of
a number is obtained by forming the one's comple­
ment of the number, adding a value of one in the
rightmost bit position, allowing a carry into the
sign position, and ignoring any carry out of the sign
position.

This number representation can be considered the
rightmost portion of an infmitely long represen­
tation of the number. When the number is posi­
tive, all bits to the left of the most significant bit of
the number are zeros. When the number is nega­
tive, these bits are ones. Therefore, when a signed
operand must be extended with bits on the left, the
extension is achieved by setting these bits equal to
the sign bit of the operand.

The notation for signed binary integers does not
include a negative zero. It has a number range in
which, for a given length, the set of negative
nonzero numbers is one larger than the set of posi­
tive nonzero numbers. The maximum positive
number consists of a sign bit of zero followed by all
ones, whereas the maximum negative number (the
negative number with the greatest absolute value)
consists of a sign bit of one followed by all zeros.

A signed binary integer of either sign, except for
zero and the maximum negative number, can be
changed to a number of the same magnitude but
opposite sign by forming its two's complement.
Forming the two's complement of a number is
equivalent to subtracting the number from zero.
The two's complement of zero is zero.

The two's complement of the maximum negative
number cannot be represented in the same number
of bits. When an operation, such as LOAD COM­

PLEMENT, attempts to produce the two's comple­
ment of the maximum negative number, the result
is the maximum negative number, and a fixed­
point-overflow exception is recognized. An over­
flow does not result, however, when the maximum
negative number is complemented as an interme­
diate result but the fmal result is within the repre­
sentable range. An example of this case is a sub­
traction of the maximum negative number from -1.
The product of two maximum negative numbers of

a given length is representable as a positive number
of double that length.

In discussions of signed binary integers in this pub­
lication, a signed binary integer includes the sign
bit. Thus, the expression "32-bit signed binary
integer" denotes an integer with 31 numeric bits
and a sign bit, and the expression "64-bit signed
binary integer" denotes an integer with 63 numeric
bits and a sign bit.

In an arithmetic operation, a carry out of the
numeric field of a signed binary integer is carried
into the sign bit. However, in algebraic left­
shifting, the sign bit does not change even if signif­
icant numeric bits are shifted out.

Programming Notes:

1. An alternate way of forming the two's comple­
ment of a signed binary integer is to invert all
bits to the left of the rightmost one bit, leaving
the rightmost one bit and all zero bits to the
right of it unchanged.

2. The numeric bits of a signed binary integer
may be considered to represent a positive. value,
with the sign representing a value of either zero
or the maximum negative number.

Binary Arithmetic

Signed Binary Arithmetic

Addition and Subtraction
Addition of signed binary integers is performed by
adding all bits of each operand, including the sign
bits. When one of the operands is shorter, the
shorter operand is considered to be extended on the
left to the length of the longer operand by propa­
gating the sign-bit value.

Subtraction is performed by adding the one's com­
plement of the second operand and a value of one
to the frrst operand.

Fixed-Point Overflow
A fixed-point-overflow condition exists for signed
binary addition or subtraction when the carry out
of the sign-bit position and the carry out of the left­
most numeric bit position disagree. Detection of
an overflow does not affect the result· produced by
the addition. In mathematical terms, signed addi­
tion and subtraction produce a fixed-point overflow
when the result is outside the range of represen-

tation for signed binary integers. Specifically, for
ADD and SUBTRACT, which operate on 32-bit
signed binary integers, there is an overflow when
the proper result would be greater than or equal to
+ 231 or less than _231. The actual result placed in
the general register after an overflow differs from
the proper result by 232 . A fixed-point overflow
causes a program interruption if allowed by the
program mask.

The instructions SHIFT LEFT SINGLE and SHIFT

LEFT DOUBLE produce an overflow when the result
is outside the range of representation for signed
binary integers. The actual result differs from that
for addition and subtraction in that the sign of the
result remains the same as the original sign.

Unsigned Binary Arithmetic

Addition of unsigned binary integers is performed
by adding all bits of each operand. When one of
the operands is shorter, the shorter operand is con­
sidered to be extended on the left with zeros.
Unsigned binary arithmetic is used in address arith­
metic for adding the x, H, and D fields. (See the
section "Address Generation" in Chapter 5,
"Program Execution.") It is also used to obtain the
addresses of the function bytes in TRANSLATE and
TRANSLATE AND TEST. Furthermore, unsigned
binary arithmetic is used on 32-bit unsigned binary
integers by ADD LOGICAL and SUBTRACT LOGICAL.

Given the same two operands, ADD and ADD

LOGICAL produce the same 32-bit result. The
instructions differ only in the interpretation of this
result. ADD interprets the result as a signed binary
integer and inspects it for sign, magnitude, and
overflow to set the condition code accordingly.
ADD LOGICAL interprets the result as an unsigned
binary integer and sets the condition code according
to whether the result is zero and whether there was
a carry out of bit position O. Such a carry is not
considered an overflow, and no program inter­
ruption for overflow can occur for ADD LOGICAL.

SUBTRACT LOGICAL differs from ADD LOGICAL in
that the one's complement of the second operand
and a value of one are added to the frrst operand.

Programming Notes:

1. Logical addition and subtraction may be used
to perform arithmetic on multiple-precision
binary-integer operands. Thus, for multiple­
precision addition, ADD LOGICAL can be used
to add the corresponding parts of the operands
beginning with the lowest-order parts. If the

Chapter 7. General Instructions 7-3

condition code indicates a carry, a value of one
should be added to the sum of the next-higher­
order parts. If the multiple-precision operands
are signed, ADD should be used on the highest­
order parts. The condition code then indicates
any overflow or the proper sign and magnitude
of the entire result; an overflow is also indi­
cated by a program interruption for fixed-point
overflow if allowed by the program mask. If
the multiple-precision operands are unsigned,
ADD LOGICAL should be used throughout.

2. Another use for ADD LOGICAL is to· increment
values representing binary counters, which are
allowed to wrap around from all ones to all
zeros without indicating overflow.

Signed and Logical Comparison
Comparison operations determine whether two
operands are equal or not and, for most operations,
which of two unequal operands is the greater
(high). Signed-binary-comparison operations are
provided which treat the operands as signed binary
integers, and logical-comparison operations are pro­
vided which treat the operands as unsigned binary
integers or as unstructured data.

COMPARE and COMPARE HALFWORD are signed­
binary-comparison operations. These instructions
are equivalent to SUBTRACT and SUBTRACT

HALFWORD without replacing either operand, the
resulting difference being used only to set the con­
dition code. The operations permit comparison of
numbers of opposite sign which differ by 231 or
more. Thus, unlike SUBTRACT, COMPARE cannot
cause overflow.

Logical comparison of two operands is performed
byte by byte, in a left-to-right sequence. The oper­
ands are equal when all their bytes are equal.
When the operands are unequal, the comparison
result is determined by a left-to-right comparison of
corresponding bit positions in the fust unequal pair
of bytes: the zero bit in the fust unequal pair of
bits indicates the low operand, and the one bit the
high operand. Since the remaining bit and byte
positions do not change the comparison, it is not

7 -4 ESA/370 Principles of Operation

necessary to continue comparing unequal operands
beyond the fust unequal bit pair.

Instructions
The general instructions and their mnemonics,
formats, and operation codes~ are listed in
Figure 7-1 on page 7-5. The figure also indicates
when the condition code is set, the instruction
fields that designate access registers, and the excep­
tional conditions in operand designations, data, or
results that cause a program interruption.

A detailed defmition of instruction formats,
operand designation and length, and address gener­
ation is contained in the section "Instructions" in
Chapter 5, "Program Execution." Exceptions to the
general rules stated in that section are explicitly
identified in the individual instruction descriptions.

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic
operand designations for the assembler language are
shown with each instruction. For LOAD AND TEST,

for example, LTR is the mnemonic and Rl, R2 the
operand designation.

Programming Notes:

1. In general, bimodal addressing affects the
general instructions only in the manner in
which logical storage addresses are handled.
The instructions BRANCH AND LINK (BAL,

BALR) , COMPARE LOGICAL LONG, LOAD

ADDRESS, MOVE LONG, and TRANSLATE AND

TEST are affected in that the leftmost byte of
the results in registers is handled differently in
the two modes. Otherwise, the general
instructions are executed the same way in both
the 24-bit and 31-bit addressing modes.

2. The following additional general instructions
are available in ESA/370 as compared to 370-XA:

• COpy ACCESS

• EXTRACT ACCESS

• LOAD ACCESS MULTIPLE

• LOAD ADDRESS EXTENDED

• SET ACCESS

• STORE ACCESS MULTIPLE

Mne- Op
Name monic Characteristics Code

ADD AR RR C IF R 1A
ADD A RX C A IF R B2 5A
ADD HALFWORD AH RX C A IF R B2 4A
ADD LOGICAL ALR RR C R 1E
ADD LOGICAL AL RX C A R B2 5E

AND NR RR C R 14
AND N RX C A R B2 54
AND (character) NC SS C A ST B1 B2 04
AND (immediate) NI SI C A ST B1 94
BRANCH AND LINK BALR RR T B R 05

BRANCH AND, LINK BAL RX B R 4~
BRANCH AND SAVE BASR RR T B R 00
BRANCH AND SAVE BAS RX B R 40
BRANCH AND SAVE AND SET MODE BASSM RR t B R 0C
BRANCH AND SET MODE BSM RR B R aB

BRANCH ON CONDITION BCR RR ¢1 B 07
BRANCH ON CONDITION BC RX B 47
BRANCH ON COUNT BCTR RR B R 06
BRANCH ON COUNT BCT RX B R 46
BRANCH ON INDEX HIGH BXH RS B R 86

BRANCH ON INDEX LOW OR EQUAL BXLE RS B R 87
COMPARE CR RR C 19
COMPARE C RX C A B2 59
COMPARE AND FORM CODEWORD CFC S C A SP II GM R 11 B21A
COMPARE AND SWAP CS RS C A SP $ R ST B2 BA

COMPARE DOUBLE AND SWAP CDS RS C A SP $ R ST B2 BB
COMPARE HALFWORD CH RX C A B2 49
COMPARE LOGICAL CLR RR C 15
COMPARE LOGICAL CL RX C A B2 55
COMPARE LOGICAL (character) CLC SS C A B1 B2 05

COMPARE LOGICAL (immediate) CLI SI C A B1 95
COMPARE LOGICAL C. UNDER MASK CLM RS C A B2 BD
COMPARE LOGICAL LONG CLCL RR C A SP II R R1 R2 0F
CONVERT TO BINARY CVB RX A 0 IK R B2 '4F
CONVERT TO DECIMAL CVD RX A ST B2 4E

COpy ACCESS CPYA RRE U1 U2 B24D
DIVIDE DR RR SP IK R 10
DIVIDE 0 RX A SP IK R B2 50
EXCLUSIVE OR XR RR C R' 17
EXCLUSIVE OR X RX C A R B2 57

EXCLUSIVE OR (character) XC SS C A ST B1 B2 07
EXCLUSIVE OR (immediate) XI SI C A ST B1 97
EXECUTE EX RX AI SP EX 44
EXTRACT ACCESS EAR RRE R U2 B24F
INSERT CHARACTER IC RX A R B2 43

Figure 7-1 (Part 1 of 4). Summary of General Instructions

Chapter 7. General Instructi,ons 7-5

Mne- Op
Name monic Characteristics Code

INSERT CHARACTERS UNDER MASK ICM RS C A R B2 BF
INSERT PROGRAM MASK IPM RRE R B222
LOAD LR RR R 18
LOAD L RX A R B2 58
LOAD ACCESS MULTIPLE LAM RS A SP UB 9A

LOAD ADDRESS LA RX R 41
LOAD ADDRESS EXTENDED LAE RX R Ul BP 51
LOAD AND TEST LTR RR C R 12
LOAD COMPLEMENT LCR RR C IF R 13
LOAD HALFWORD LH RX A R B2 48

LOAD MULTIPLE LM RS A R B2 98
LOAD NEGATIVE LNR RR C R 11
LOAD POSITIVE LPR RR C IF R 10
MONITOR CALL MC SI SP MO AF
MOVE (character) MVC SS A ST Bl B2 02

MOVE (immediate) MVI SI A ST Bl 92
MOVE INVERSE MVCIN SS MI A ST Bl B2 E8
MOVE LONG MVCL RR C A SP II R ST Rl R2 0E
MOVE NUMERICS MVN SS A ST Bl B2 01
MOVE WITH OFFSET MVO SS A ST Bl B2 Fl

MOVE ZONES MVZ SS A ST Bl B2 03
MUL TIPLY MR RR SP R 1C
MULTIPLY M RX A SP R B2 5C
MULTIPLY HALFWORD MH RX A R B2 4C
OR OR RR C R 16

OR 0 RX C A R B2 56
OR (character) OC SS C A ST Bl B2 06
OR (immediate) 01 SI C A ST Bl 96
PACK PACK SS A ST Bl B2 F2
SET ACCESS SAR RRE Ul B24E

SET PROGRAM MASK SPM RR L 04
SHIFT LEFT DOUBLE SLDA RS C SP IF R 8F
SHIFT LEFT DOUBLE LOGICAL SLDL RS SP R 80
SHIFT LEFT SINGLE SLA RS C IF R 8B
SHIFT LEFT SINGLE LOGICAL SLL RS R 89

SHIFT RIGHT DOUBLE SRDA RS C SP R 8E
SHIFT RIGHT DOUBLE LOGICAL SRDL RS SP R 8C
SHIFT RIGHT SINGLE SRA RS C R 8A
SHIFT RIGHT SINGLE LOGICAL SRL RS R 88
STORE ST RX A ST B2 50

STORE ACCESS MULTIPLE STAM RS A SP ST UB 9B
STORE CHARACTER STC RX A ST B2 42
STORE CHARACTERS UNDER MASK STCM RS A ST B2 BE
STORE CLOCK STCK S C A $ ST B2 8205
STORE HALFWORD STH RX A ST B2 40

Figure 7-1 (Part 2 of 4). Summary of General Instructions

'·6 ESA/370 Princi.ples of Op'eration

Mne- Op
Name monic Characteristics Code

STORE MULTIPLE STM RS A ST B2 90
SUBTRACT SR RR C IF R 1B
SUBTRACT S RX C A IF R B2 58
SUBTRACT HALFWORD SH RX C A IF R 82 4B
SUBTRACT LOGICAL SLR RR C R 1F

SUBTRACT LOGICAL SL RX C A R B2 5F
SUPERVISOR CALL SVC RR ¢ 0A
TEST AND SET TS S C A $ ST B2 93
TEST UNDER MASK TM SI C A B1 91
TRANSLATE TR SS A ST B1 B2 DC

TRANSLATE AND TEST TRT S5 C A GM R B1 B2 DO
UNPACK UNPK 55 A ST B1 B2 F3
UPDATE TREE UPT E C A SP II GM R ST 14 0102

Explanation:

¢ Causes serialization and checkpoint synchronization.
¢l Causes serialization and checkpoint synchronization when the Ml and R2 fields

contain all ones and all zeros, respectively.
$ Causes serialization.
A Access exceptions for logical addresses.
AI Access exceptions for instruction address.
B PER branch event.
B1 B1 field designates an access register in the access-register mode.
B2 B2 field designates an access register in the access-register mode.
BP B2 field designates an access register when PSW bits 16 and 17 have the

value 01.
C
o
E

Condition code is set.
Data exception.
E instruction format.

EX Execute exception.
GM Instruction execution includes the implied use of multiple general registers:

General registers 1 and 2 for TRANSLATE AND TEST.
General registers 1, 2, and 3 for COMPARE AND FORM CODEWORD.
General registers 0-5 for UPDATE TREE.

IF Fixed-point-overflow exception.
II Interruptible instruction.
IK Fixed-point-divide exception.
11 Access register 1 is implicitly designated in the access-register mode.
14 Access register 4 is implicitly designated in the access-register mode.
L New condition code is loaded.
MI
MO
R

Move-inverse facility.
Monitor event.
PER general-register-alteration event.

Rl R1 field designates an access register in the access-register mode.
R2 R2 field designates an access register in the access-register mode.

Figure 7-1 (Part 3 of 4). Summary of General Instructions

Chapter 7. General Instructions 7-7

Explanation (Continued):

RR RR instruction format.
RRE RRE instruction format.
RS RS instruction format.
RX RX instruction format.
S S instruction format.
S1 S1 instruction format.
SP Specification exception.
SS SS instruction format.
ST PER storage-alteration event.
T - Trace exceptions (includes trace table, addressing, and low-address protec-

tion).
Ul Rl field designates an access register unconditionally.
U2 R2 field designates an access register unconditionally.
UB Rl and R3 fields designate access registers unconditionally, and B2 field

designates an access register in the access-register mode.

Figure 7-1 (Part 4 of 4). Summary of General Instructions

Add

AR [RR]

'lA' I R. I R, I
o 8 12 15

A [RX]

'5A' I R. I x, I B,

o 8 12 16 20 31

The second operand is added to the frrst operand,
and the sum is placed at the frrst-operand location.
The operands and the sum are treated as 32-bit
signed binary integers.

When there is an overflow, the result is obtained by
allowing any carry into the sign-bit position and
ignoring any carry out of the sign-bit position, and
condition code 3 is set. If the fixed-point-overflow
mask is one, a program interruption for fixed-point
overflow occurs. .

Resulting Condition Code:

o Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

7 -8 ESA/370 Principles of Operation

Program Exceptions:

• Access (fetch, operand 2 of A only)
• Fixed-point overflow

Add Halfword

AH [RX]

'4A' I R. I x, I B,

o 8 12 16 20 31

The second operand is added to the first operand,
and the sum is placed at the first-operand location.
The second operand is two bytes in length and is
treated as a 16-bit signed binary integer. The· frrst
operand and the sum are treated as 32-bit signed
binary integers.

When there is an overflow, the result is obtained by
allowing any carry into the sign-bit position and
ignoring any carry out of the sign-bit position, and,
condition code 3 is set. If the fixed-point-overflow
mask is one, a program interruption for fixed-point
overflow occurs.

Resulting Condition Code:

o Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

Program Exceptions:

• Access (fetch, operand 2)
• Fixed-point overflow

Programming Note: An example of the use of the
ADD HALFWORD instruction is given in Appendix
A.

Add Logical

ALR Rl,R2 [RR]

'lE' I Rl I R2 I

0 8 12 15

'5E' I Rl I X2 I B2 02

o 8 12 16 20 31

The second operand is added to the frrst operand,
and the sum is placed at the frrst-operand location.
The operands and the sum are treated as 32-bit
unsigned binary integers.

Resulting Condition Code:

o Result zero; no carry
I Result not zero; no carry
2 Result zero; carry
3 Result not zero; carry

Program Exceptions:

• Access (fetch, operand 2 of AL only)

AND

[RR]

'14' I Rl I R2 I

o 8 12 15

N R1,02(X2,B2) [RX]

'54' I Rl I X2 I B2 02

0 8 12 16 20 31

NI 01 (B1) ,12 [SI]

'94' 12 Bl 01

0 8 16 20 31

NC 01(L,Bl),02(B2) [SS]

~'0_4_' ~_L~I_B_1~1~~~~
o 8 16 20 32 36 47

The AND of the first and second operands is placed
at the frrst-operand location.

The connective AND is applied to the operands bit
by bit. A bit position in the result is set to one if
the corresponding bit positions in both operands
contain ones; otherwise, the result bit is set to zero.

For AND (NC), each operand is processed left to
right. When the operands overlap, the result is
obtained as if the operands were processed one byte
at a time and each result byte were stored imme­
diately after fetching the necessary operand bytes.

For AND (NI), the frrst operand is one byte in
length, and only one byte is stored.

Resulting Condition Code:

o Result zero
1 Result not zero
2
3

Program Exceptions:

• Access (fetch, operand 2, N and NC; fetch and
store, operand 1, NI and NC)

Chapter 7. General Instructions 7-9

Programming Notes:

1. An example of the use of the AND instruction
is given in Appendix A.

2. The AND instruction may be used to set a bit
to zero.

3. Accesses to the frrst operand of AND (NI) and
AND (NC) consist in fetching a frrst~operand
byte from storage and subsequently storing the
updated value. These fetch and store accesses
to a particular byte do not necessarily occur
one immediately after the other. Thus, the
instruction AND cannot be safely used to
update a location in storage if the possibility
exists that another CPU or a channel program
may also be updating the location. An
example of this effect is shown for OR (01) in
the section "Multiprogramming and Multiproc­
essing Examples" in Appendix A.

Branch and Link

[RR]

'05' I Rl I R2 I
o 8 12 15

BAL [RX]

, 45 ' I R 1 I x 2 I B 2 02

o 8 12 16 20 31

Information from the current PSW, including the
updated instruction address, is loaded as link infor­
mation at the frrst-operand location. Subsequently,
the instruction address is replaced by the branch
address.

In the RX format, the second-operand address is
used as the branch address. In the RR format, the
contents of general register R 2 are used to generate
the branch address; however, when the R2 field is
zero, the operation is performed without branching.
The branch address is computed before general reg­
ister R 1 is changed.

The link information in the 24-bit addressing mode
consists of the instruction-length code (ILC), the
condition code (cc), the program-mask bits, and

7-10 ESAj370 Principles of Operation

the rightmost 24 bits of the updated instruction
address, arranged in the following format:

Prog
ILC CC Mask Instruction Address

o 2 4 8 31

The instruction -length code is I or 2.

The link information in the 31-bit addressing mode
consists of the right half of the PSW, that is, the
addressing-mode bit (always a one) and a 31-bit
updated instruction address, arranged in the fol­
lowing format:

111 Instruction Address

o 1 31

Condition Code: The code remains unchanged.

Program Exceptions:

• Trace (R2 field nonzero, BALR only)

Programming Notes:

1. An example of the use of the BRANCH AND

LINK instruction is given in Appendix A.

2. When the R2 field in the RR format is zero, the
link information is loaded without branching.

3. The BRANCH AND LINK instruction (BAL and
BALR) is provided for compatibility purposes.
It is recommende4 that, where possible, the
BRANCH AND SAVE instruction (BAS and BASR)

be used and BRANCH AND LINK avoided, since
the latter places nonzero information in bit
positions 0-7 of the link register in the 24-bit
addressing mode, which may lead to problems.
Additionally, BRANCH AND LINK may be
slower than BRANCH AND SAVE because
BRANCH AND SAVE always saves the right half
of the PSW, and BRANCH AND LINK, which
does not, may require additional time to test
the addressing mode, and even more time, if
the 24-bit addressing mode is in effect, to con­
struct the ILC, condition code, and program
mask to be placed in the leftmost byte of the
link register.

4. The condition-code and program-mask infor­
mation, which is provided in the leftmost byte
of the link information only in the 24-bit
addressing mode, can be obtained in both the

24-bit and 31-bit addressing modes by means of
the INSERT PROGRAM MASK instruction.

Branch and Save

BASR Rl,R2 [RR]

'eo' I R 1 I R, I
o 8 12 15

BAS [RX]

'40' I Rl I X, I 8,

o 8 12 16 20 31

Bits 32-63 of the current PSW, including the
updated instruction address, are saved as link infor­
mation at the frrst-operand location. Subsequently,
the instruction address is replaced by the branch
address.

In the 24-bit addressing mode, the link information
consists of a 24-bit instruction address with eight
zeros appended on the left. In the 3I-bit address~g
mode, the link information consists of a 3I-blt
address with a one appended on the left.

In the RX format, the second-operand address is
used as the branch address. In the RR format, the
contents of general register R2 are used to generate
the branch address; however, when the R2 field is
zero, the operation is performed without branching.
The branch address is computed before general reg­
ister Rl is changed.

Condition Code: The code remains unchanged.

Program Exceptions:

• Trace (R2 field nonzero, BASR only)

Programming Notes:

1. An example of the use of the BRANCH AND

SA VB instruction is given in Appendix A.

2. The BRANCH AND SAVE instruction (BAS and
BASR) is intended to be used for linkage to pro­
grams known to be in the same addressing
mode as the caller. This instruction should be
used in place of the BRANCH AND LINK

instruction (BAL and BALR). See the program­
ming notes at the end of the section "Subrou­
tine Linkage without the Linkage Stack" in
Chapter 5, "Program Execution," for a detailed
discussion of these and other linkage
instructions. See also the programming note
under BRANCH AND LINK for a discussion of
the advantages of the BRANCH AND SAVE

instruction.

Branch and Save and Set Mode

BASSM Rl,R2 [RR]

'ec' I Rl I R, I
o 8 12 15

Bits 32-63 of the current PSW, including the
updated instruction address, are saved as link infor­
mation at the frrst-operand location. Subsequently,
the addressing mode and instruction address in the
current psw are replaced from the second operand.
The action associated with the second operand is
not performed if the R2 field is zero.

The contents of general register R 2 specify the new
addressing mode and designate the branch address;
however, when the R2 field is zero, the operation is
performed without branching and without setting
the addressing mode.

When the contents of general register R2 are used,
bit 0 of the register specifies the new addressing
mode and replaces bit 32 of the current PSW, and
the branch address is generated from the contents
of the register under the control of the new
addressing mode. The new value for the psw is
computed before general register R 1 is changed.

Condition Code: The code remains unchanged.

Program Exceptions:

• Trace (R2 field nonzero)

Programming Notes:

1. An example of the use of the BRANCH AND

SAVE AND SET MODE instruction is given in
Appendix A.

2. BRANCH AND SAVE AND SET MODE is intended
to be the principal calling instruction to sub­
routines which may operate in a different

Chapter 7. General Instructions 7 -11

addressing mode from that of the caller. See
the programming note at the end of the section
"Subroutine Linkage without the Linkage
Stack" in Chapter 5, "Program Execution," for
a detailed discussion of this and other link~ge
instructions.

Branch and Set Mode

8SM [RR]

'9B' I RI I R. I
a 8 12 15

Bit 32 of the current PSW, the addressing mode, is
inserted into the frrst operand. Subsequently the
addressing mode and instruction address in the
current psw are replaced from the second operand.
The action associated with an operand is not per­
formed if the associated R field is zero.

The value of bit 32 of the psw is placed in bit posi­
tion 0 of general register R 1, and bits 1-31 of the
register remain unchanged; however, when the Rl

field is zero, the bit is not inserted, and the contents
of general register 0 are not changed.

The contents of general register R 2 specify the new
addressing mode and designate the branch address;
however, when the R2 field is zero, the operation is
performed without branching and without setting
the addressing mode.

When the contents of general register R2 are used,
bit 0 of the register specifies the new addressing
mode and replaces bit 32 of the current PSW, and
the branch address is generated from the contents
of the register under the control of the new
addressing mode. The new value for the psw is
computed before general register R 1 is changed.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Programming Notes:

1. An example of the use of the BRANCH AND

SET MODE instruction is given in Appendix A.

2. BRANCH AND SET MODE with an Rl field of
zero is intended to be the standard return
instruction. BRANCH AND SAVE AND SET

7 -12 ESA/370 Principles of Operation

MODE with a nonzero Rl field is intended to be
used in a "glue module" to connect old 24-bit
programs and new programs which may exploit
bimodal addressing. See the programming note
at the end of the section "Subroutine Linkage
without the Linkage Stack" in Chapter 5,
"Program Execution," for a detailed discussion
of this and other linkage instructions.

Branch on Condition

8CR [RR]

'a7'

a 8 12 15

'47' I MI I X. I B2 D,

a 8 12 16 2a 31

The instruction address in the current psw is
replaced by the branch address if the condition
code has one of the values specified by M 1; other­
wise, normal instruction sequencing proceeds with
the updated instruction address.

In the RX format, the second-operand address is
used as the branch address. In the RR format, the
contents of general register R2 are used to generate
the branch address; however, when the R2 field is
zero, the operation is performed without branching.

The M 1 field is used as a four-bit mask. The four
condition codes (0, 1, 2, and 3) correspond, left to
right, with the four bits of the mask, as follows:

Instruction Mask
Condition Bit No. of Position

Code Mask Value

a 8 8
1 9 4
2 10 2
3 11 1

The current condition code is used to select the
corresponding mask bit. If the mask bit selected by
the condition code is one, the branch is successful.

If the mask bit selected is zero, normal instruction
sequencing proceeds with the next sequential
instruction.

When the M 1 and R2 fields of BRANCH ON CONDI­

TION (BCR) are all ones and all zeros, respectively,
a serialization and checkpoint-synchronization
function is performed.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Programming Notes:

1. An example of the use of the BRANCH ON CON­

DITION instruction is given in Appendix A.

2. When a branch is to depend on more than one
condition, the pertinent condition codes are
specified in the mask as the sum of their mask
position values. A mask of 12, for example,
specifies that a branch is to be made when the
condition code is 0 or 1.

3. When all four mask bits are zeros or when the
R2 field in the RR format contains zero, the
branch instruction is equivalent to a no­
operation. When all four mask bits are ones,
that is, the mask value is 15, the branch is
unconditional unless the R2 field in the RR

format is zero.

4. Execution of BCR 15,0 (that is, an instruction
with a value of 07FO hex) may result in signif­
icant performance degradation. To ensure
optimum performance, the program should
avoid use of BCR 15,0 except in cases when the
serialization or the checkpoint-synchronization
function is actually required.

5. Note that the relation between the RR and RX

formats in branch-address specification is not
the same as in operand-address specification.
For branch instructions in the RX format, the
branch address is the address specified by X 2,

B2, and D2; in the RR format, the branch
address is contained in the register designated
by R2. For operands, the address specified by
X2, B2, and D2 is the operand address, but the
register designated by R2 contains the operand,
not the operand address.

Branch on Count

BCTR Rl,R2 [RR]

o 8 12 15

BCT [RX]

'46' I Rl I X, I B,

o 8 12 16 20 31

A one is subtracted from the rust operand, and the
result is placed at the rust-operand location. The
rust operand and result are treated as 32-bit binary
integers, with overflow ignored. When the result is
zero, normal instruction sequencing proceeds with
the updated instruction address. When the result is
not zero, the instruction address in the current psw
is replaced by the branch address.

In the RX format, the second-operand address is
used as the branch address. In the RR format, the
contents of general register R 2 are used to generate
the branch address; however, when the R2 field is
zero, the operation is performed without branching.
The branch address is computed before general reg­
ister R 1 is changed.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Programming Notes:

1. An example of the use of the BRANCH ON,

COUNT instruction is given in Appendix A.

2. The fust operand and result can be considered
as either signed or unsigned binary integers
since the result of a binary subtraction is the
same in both cases.

3. An initial count of one results in zero, and no
branching takes place; an initial count of zero
results in -1 and causes branching to be exe­
cuted; an initial count of -1 results in -2 and
causes branching to be executed; and so on. In
a loop, branching takes place each time the
instruction is executed until the result is again
zero. Note that, because of the number range,

Chapter 7. General Instructions 7 -13

an initial count of _231 results in a positive
value of 231 - 1.

4. Counting is perfonned without branching when
the R2 field in the RR fonnat contains zero.

Branch on Index High

'86' I R. I R3 I 82 02

o 8 12 16 20 31

Branch on Index Low or Equal

'87' I R. I R3 I 82 02

o 8 12 16 20 31

An increment is added to the frrst operand, and the
sum is compared with a compare value. The result
of the comparison determines whether branching
occurs. Subsequently, the sum is placed at the
frrst-operand location. The second-operand address
is used as a branch address. The R3 field designates
registers containing the increment and the compare
value.

For BRANCH ON INDEX HIGH, when the sum is
high, the instruction address in the current psw is
replaced by the branch address. When the sum is
low or equal, nonnal instruction sequencing pro­
ceeds with the updated instruction address.

For BRANCH ON INDEX LOW OR EQUAL, when the
sum is low or equal, the instruction address in the
current psw is replaced by the branch address.
When the sum is high" nonnal instruction
sequencing proceeds with the updated instruction
address.

When the R3 field is even, it designates a pair of
registers; the contents of the even and odd registers
of the pair are used as the increment and the
compare value, respectively. When the R3 field is

7 -14 ESA/370 Principles of Operation

odd, it designates a single register, the contents of
which are used as both the increment and the
compare value.

For purposes of the addition and comparison, all
operands and results are treated as 32-bit signed
binary integers. Overflow caused by the addition is
ignored.

The original contents of the compare-value register
are used as the compare value even when that reg­
ister is also specified to be the frrst-operand
location. The branch address is computed before
general register R 1 is changed.

The sum is placed at the frrst-operand location,
regardless of whether the branch is taken.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Programming Notes:

1. Several examples of the use of the BRANCH ON

INDEX HIGH and BRANCH ON INDEX LOW OR

EQUAL instructions are given in Appendix A.

2. The word "index" in the names of these
instructions indicates that one of the major
purposes is the incrementing and testing of an
index value. The increment, being a signed
binary integer, may be used to increase or
decrease the value in general register R 1 by an
arbitrary amount.

3. Care must be taken in the 31-bit addressing
mode when a data area in storage is at the
rightmost end of an address space and a
BRANCH ON INDEX LOW OR EQUAL or
BRANCH ON INDEX HIGH instruction is used to
step upward through the data. Since the addi­
tion and comparison operations perfonned
during the execution of these instructions treat
the operands as 32-bit signed binary integers,
the value following 231 - 1 is not 231 , which
cannot be represented in that fonnat, but _231.
The instruction does not provide an indication
of such overflow. Consequently, some
common looping techniques based on the use
of these instructions do not work when a data
area ends at address 231

- 1. This problem is
illustrated in a BRANCH ON INDEX LOW OR

EQ U AL example in Appendix A.

Compare

CR Rl,R2 [RR]

119 1 I RI I R. I
0 8 12 15

C Rl,02(X2,B2) [RX]

159 1
I RII x·1 B2 02

0 8 12 16 20 31

The first operand is compared with the second
operand, and the result is indicated in the condition
code. The operands are treated as 32-bit signed
binary integers.

Resulting Condition Code:

o Operands equal
1 First operand low
2 First operand high
3

Program Exceptions:

• Access (fetch, operand 2 of conly)

Compare and Form Codeword

CFC [S]

IB21AI

e 16 20 31

General register 2 contains an index, which is used
along with the contents of general registers 1 and 3
to designate the starting addresses of two fields in
storage, called the frrst and third operands. The
frrst and third operands are logically compared, and
a codeword is formed for use in sort/merge algo­
rithms.

The second-operand address is not used to address
data. Bits 17-30 of the second-operand address,
with one rightmost and one leftmost zero
appended, are used as a 16-bit index limit. Bit 31
of the second-operand address is the operand-

control bit. When bit 31 is zero, the codeword is
formed from the high operand; when bit 31 is one,
the codeword is formed from the low operand.
The remainder of the second -operand address is
ignored.

General registers 1 and 3 contain the base addresses
of the first and third operands. Bits 16-31 of
general register 2 are used as an index for
addressing both the flIst and third operands.
General registers 1, 2, and 3 must all initially
contain even values; otherwise, a specification
exception is recognized.

In the access-register mode, access register 1 speci­
fies the address space containing the frrst and third
operands.

The operation consists in comparing the flIst and
third operands halfword by halfword and incre­
menting the index until an unequal pair of
halfwords is found or the index exceeds the index
limit. This proceeds in units of operation, between
which interruptions may occur. The condition
code is unpredictable if the instruction is inter­
rupted.

At the start of a unit of operation, the index, bits
16-31 of general register 2, is logically compared
with the index limit. If the index is larger, the
instruction is completed by placing the contents of
general register 3, with bit 0 set to one, in general
register 2, and by setting condition code O.

If the index is less than or equal to the index limit,
the index is applied to the first-operand and third­
operand base addresses to locate the current pair of
halfwords to be compared. The index, with 16 left­
most zeros appended, and the contents of general
register 1 are added to form a 32-bit intermediate
value. A carry out of bit 0, if any, is ignored. The
address of the current frrst-operand halfword is gen­
erated from the intermediate value by following the
normal rules for operand address generation. The
address of the current third-operand halfword is
formed in the same manner by adding the contents
of general register 3 and the index.

The current first-operand and third-operand
halfwords are logically compared. If they are equal,
general register 2 is incremented by 2, and a unit of
operation ends.

If the compare values are unequal, general register 2
is incremented by 2 and then shifted left logically

Chapter 7. General Instructions 7 -15

by 16 positions. If the operand-control bit is zero,
(1) the one's complement of the higher halfword is
placed in the right half of general register 2, and (2)
if operand 1 was higher, the contents of general reg­
isters 1 and 3 are interchanged. If the operand­
control bit is one, (1) the lower halfword is placed
in the right half of general register 2, and (2) if
operand 1 was lower, the contents of general regis­
ters 1 and 3 are interchanged.

For the purpose of recognizing access exceptions,
operand 1 and operand 3 are both considered to
have a length equal to 2 more than the value of the
index limit minus the index. When the index is ini­
tially larger than the index limit, access exceptions
are not recognized for the storage operands. For
operands longer than 4K bytes, access exceptions
are not recognized more than 4K bytes beyond the
byte being processed. Access exceptions. are not
recognized when a specification exception exists.

If the B 2 field designates general register 2, it is
unpredictable whether or not the index limit is
recomputed; thus, in this case the operand length is
unpredictable. However, in no case can the oper­
ands exceed 215 bytes in length.

Resulting Condition Code:

o Operands equal
1 Operand-control bit zero and operand 1 low,

or operand-control bit one and operand 3 low
2 Operand-control bit zero and operand 1 high,

or operand-control bit one and operand 3 high
3

Program Exceptions:

• Access (fetch, operands 1 and 3)
• Specification

Programming Notes:

1. The offset of the halfword of the frrst and third
operands at which comparison is to begin
should be placed in bit positions 16-31 of
general register 2 before executing COMPARE

AND FORM CODEWORD. The index limit
derived from the second-operand address

7-16 ESAj370 Principles of Operation

should be the offset of the last halfword of the
frrst and third operands for which comparison
can be made. When the operands do not
compare equal, the left half of the codeword
formed in general register 2 by the execution of
COMPARE AND FORM CODEWORD gives the
offset of the frrst half word not compared. If
the codewords compare equal in an UPDATE

TREE operation, bit positions 0-15 of general
register 2 will contain the offset at which
another COMPARE AND FORM CODEWORD

should resume comparison for breaking
codeword ties. Operand-control-bit values of
zero or one are used for sorting operands in
ascending or descending order, respectively.

2. The condition code indicates the results of
comparing operands up to 32,768 bytes long.
Equal operands result in a negative codeword
in general register 2. A negative codeword also
results when the index limit is 32,766 and the
operands that are compared differ in only their
last two bytes. If this latter codeword is used
by UPDATE TREE, an incorrect result may be
indicated in general registers 0 and 1. There­
fore, the index limit should not exceed 32,764
when the resulting codeword is to be used by
UPDATE TREE.

3. Figure 7-2 on page 7-17 and Figure 7-3 on
page 7-18 contain summaries of the operation.

4. Special precautions should be taken if
COMPARE AND FORM CODEWORD is made the
target of EXECUTE. See the programming note
concerning interruptible instructions under
EXECUTE.

S. Further programming notes concerning inter­
ruptible instructions are included in the section
"Interruptible Instructions" in Chapter S,
"Program Execution."

Operand- Resulting
Control Condition Result Result Result

Bit Relation Code in GR2 in GRI in GR3
-

e opl = op3 9 OGR3bl - -
e opl < op3 1 X, nop3 - -
9 opl > op3 2 X, nopl OGR3 OGRI
1 opl = op3 9 OGR3bl - -
1 opl < op3 2 X, topl OGR3 OGRI
1 opl > op3 1 X, top3 - -

Explanation:

- The contents of the register remain unchanged.

OGRI The original contents of GRI

OGR3 The original contents of GR3

OGR3bl The original contents of GR3 with bit e set to
one

X Bits 9-15 of GR2 contain 2 more than the index
of the first unequal halfword.

nopl Bits 16-31 of GR2 contain the one's complement
of the first unequal halfword in operand 1.

nop3 Bits 16-31 of GR2 contain the one's complement
of the first unequal halfword in operand 3.

topl Bits 16-31 of GR2 contain the first unequal
halfword in operand 1.

top3 Bits 16-31 of GR2 contain the first unequal
halfword in operand 3.

Figure 7-2. Operation of COMPARE AND FORM
CODEWORD

Chapter 7. General Instructions 7 -17

2 x bits 17-3e of 2nd-operand address ~ index limit

Bit 31 of 2nd-operand address ~ operand-control bit

No
Bit 31 of GRl, GR2, and GR3 all zerosf------... Specification

exception
Yes

Yes
Bits 16-31 of GR2 > index limit 1----------,

No

Unit-of­
operation
boundary

GRI + bits 16-31 of GR2
~ 1st-operand address

GR3 ~ GR2

1 ~ bit e of GR2
GR3 + bits 16-31 of GR2
~ 3rd-operand address e ~ Cond code

Fetch halfwords from current
Ist- and 3rd-operand locations

GR2 + 2 ~ GR2

One's complement
of 3rd-op HW
~ TEMPHW

lst-op HW
~ TEMPHW

Exchange
GRI and GR3

2 ~ Cond code

1st op high

One's complement
of Ist-op HW
~ TEMPHW

Exchange
GRI and GR3

2 --. Cond code

l l

'End operation

~--------. .. ~--------------.,.------------~
~

Shift GR2 left 16 positions

TEMPHW ~ bits 16-31 of GR2

l
End operation

Figure 7-3. Execution of COMPARE AND FORM CODEWORD

7 -18 ESA/370 Principles of Operation

Compare and Swap

cs Rl,R3,D2(B2) [RS]

'BA' I R. I R3 I B2 D2

13 8 12 16 213 31

Compare Double and Swap

CDS Rl,R3,D2(B2) [RS]

'BB' I R. I R3 I B2 D2

13 8 12 16 213 31

The frrst and second operands are compared. If
they are equal, the third operand is stored at the
second-operand location. If they are unequal, the
second operand is loaded into the frrst-operand
location. The result of the comparison is indicated
in the condition code.

For COMPARE AND SWAP, the frrst and third oper­
ands are 32 bits in length, with each operand occu­
pying a general register. The second operand is a
word in storage.

For COMPARE DOUBLE AND SWAP, the frrst and
third operands are 64 bits in length, with each
operand occupying an even-odd pair of general reg­
isters. The second operand is a doubleword in
storage.

When an equal comparison occurs, the third
operand is stored at the second-operand location.
The fetch of the second operand for purposes of
comparison and the store into the second-operand
location appear to be a block-concurrent
interlocked-update reference as observed by other
CPUs.

When the result of the comparison is unequal, the
second-operand location remains unchanged.
However, on some models, the value may be
fetched and subsequently stored back unchanged at
the second-operand location. This update appears
to be a block-concurrent interlocked-update refer­
ence as observed by other CPus.

A serialization function is performed before the
operand is fetched and again after the operation is
completed.

The second operand of COMPARE AND SWAP must
be designated on a word boundary. The R 1 and R3
fields for COMPARE DOUBLE AND SWAP must each
designate an even register, and the second operand
for the CDS instruction must be designated on a
doubleword boundary. Otherwise, a specification
exception is recognized.

Resulting Condition Code:

o First and second operands equal, second
operand replaced by third operand

2
3

First and second operands unequal, frrst
operand replaced by second operand

Program Exceptions:

• Access (fetch and store, operand 2)
• Specification

. Programming Notes:

1. Several examples of the use of the COMPARE
AND SWAP and COMPARE DOUBLE AND SWAP
instructions are given in Appendix A.

2. COMPARE AND SWAP can be used by CPU pro­
grams sharing common storage areas in either a
multiprogramming or multiprocessing environ­
ment. Two examples are:

a. By performing the following procedure, a
CPU program can modify the contents of a
storage location even though the possibility
exists that the CPU program may be inter­
rupted by another CPU program that will
update the location or that another CPU
program may simultaneously update the
location. First, the entire word containing
the byte or. bytes to be updated is loaded
into a general register. Next, the updated
value is computed and placed in another
general register. Then COMPARE AND
SWAP is executed with the R 1 field desig­
nating the register that contains the original
value and the R3 field designating the reg­
ister that contains the updated value. If the
update has been successful, condition code
o is set. If the storage location no longer
contains the original value, the update has
not been successful, the general registe(
designated by the Rl field of the COMPARE

Chapter 7. General Instructions 7-19

AND SWAP instruction contains the new
current value of the storage location, and
condition code I is set. When condition
code 1 is set, the CPU program can repeat
the procedure using the new current value.

b. COMPARE AND SWAP can be used for con­
trolled sharing of a common storage area,
including the capability of leaving a
message (in a chained list of messages)
when the common area is in use. To
accomplish this, a word in .storage can be
used as a control word, with a zero value
in the word indicating that the common
area is not in use and that no messages
exist, a negative value indicating that the
area is in use and that no messages exist,
and a nonzero positive value indicating that
the common area is in use and that the
value is the address of the most recent
message added to the list. Thus, any
number of CPU programs desiring to seize
the area can use COMPARE AND SWAP to
update the control word to indicate that
the area is in use or to add messages to the
list. The single CPU program which has
seized the area can also safely use
COMPARE AND SWAP to remove messages
from the list.

3. COMPARE DOUBLE AND SWAP can be used in a
manner similar to that described for COMPARE

AND SWAP. In addition, it has another use.
Consider a chained list, with a control word
used to address the fIrst message in the list, as
described in programming note 2b above. If
multiple CPU programs are to be permitted to
delete messages by using COMPARE AND SWAP

(and not just the single CPU program which has
seized the common area), there is a possibility
the list will be incorrectly updated. This would
occur if, for example, after one CPU program
has fetched the address of the most recent
message in order to remove the message,
another CPU program removes the fIrst t:wo
messages and then adds the fIrst message back.
into the chain. Th~ fIrst CPU program, on con­
tinuing, cannot easily detect that the list is
changed. By increasing the size of the control
word to a double\yord containing both the fIrst
message address and a word with a change
number that is incremented for each modifica­
tion of the list, and by using COMPARE

DOUBLE AND SWAP' to update .both fields

7-20 ESA/370 Principles of Operation

together, the possibility of ,the list being incor­
rectly updated is reduced to a negligible level.
That is, an incorrect update can occur only if
the fIrst CPU program is delayed while changes.
exactly equal in number to a multiple of 232

take place and only if the last change places the
original message address in the control word.

4. COMPARE AND SWAP and COMPARE DOUBLE

AND SWAP do not interlock against storage
accesses by channel programs. Therefore, the
instructions should not be used to update a
location at which a channel program may store,
since the channel-program data may be lost.

s. For the case of a condition-code setting of 1,
COMPARE AND SWAP and COMPARE DOUBLE

AND SWAP mayor may not, depending on the
model, cause any of the following to occur for
the second-operand location: a PER storage­
alteration event may be recognized; a pro­
tection exception for storing may be recog­
nized; and, provided no access exception exists,
the change bit may be set to one.

Compare Halfword

'49' I R. I X2 I B2 02

8 12 16 2e 31

The fIrst operand is compared with the second
operand, and the result is indicated in the condition
code. The second operand is two bytes in length
and is treated as a 16-bit signed binary integer. The
fIrst operand is treated as a 32-bit signed binary
integer.

Resulting Condition Code:

o Operands equal
1 First operand low
2 First operand high
3

Program Exceptions:

• Access (fetch, operand 2)

Programming Note: An example of the use of the
COMPARE HALFWORD instruction is given in
AppendixA. .

Compare Logical

ClR R1,R2 [RR]

115 1 I R. I R2 I
0 8 12 15

Cl R1,02(X2,B2) [RX]

155 1 I R. I X2 I B2 02

0 8 12 16 20 31

CLI 01 (B 1) ,12 [SI]

195 1 12 B1 01

0 8 16 20 31

ClC 01 (l,B1) ,02(B2) [SS]

I&H&~ 105 1 l I B.
/ /

0 8 16 20 32 36 47

The first operand is compared with the second
operand, and the result is indicated in the condition
code.

The comparison proceeds left to right, byte by
byte, and ends as soon as an inequality is found or
the end of the fields is reached. For COMPARE

LOGICAL (CL) and COMPARE LOGICAL (CLC) ,

access exceptions mayor may not be recognized for
the portion of a storage operand to the right of the
first unequal byte.

Resulting Condition Code:

o Operands equal
I First operand low
2 First operand high
3

Program Exceptions:

• Access (fetch, operand 2, CL and CLC; fetch,
operand I, CLI and CLC)

Programming Notes:

I. Examples of the use of the COMPARE LOGICAL

instruction are given in Appendix A.

2. COMPARE LOGICAL treats all bits of each
operand alike as part of a field of unstructured
logical data. For COMPARE LOGICAL (CLC) ,

the comparison may extend to field lengths. of
256 bytes.

Compare Logical Characters under
Mask

ClM [RS]

IBOI

o 8 12 16 20 31

The frrst operand is compared with the second
operand under control of a mask, and the result is
indicated in the condition code.

The contents of the M 3 field are used as a mask.
These four bits, left to right, correspond one for
one with the four bytes, left to right, of general reg­
ister Rl. The byte positions corresponding to ones
in the mask are considered as a contiguous field
and are compared with the second operand. The
second operand is a contiguous field in storage,
starting at the second -operand address and equal in
length to the number of ones in the mask. The
bytes in t e general register corresponding to zeros
in the mask do not participate in the operation.

The . comparison proceeds left to right, byte by
byte, and ends .,as soon as an inequality is found or
the end of the fields is reached.

When the mask, is not zero, exceptions associated
with storage-operand access are recognized for no
more than the number of bytes specified by the
mask. Access exceptions mayor may not be recog­
nized for the portion of a storage operand to the
right of the ftrst unequal byte. When the mask is
zero, access exceptions are recognized for one byte
at the second-operand address.

Resulting Condition Code:

o Operands equal, or mask bits all zeros
I First operand low
2 First operand high
3

Chapter 7. General Instructions 7 -21

Program Exceptions:

• Access (fetch, operand 2)

Programming Note: An example of the use of the
COMPARE LOGICAL CHARACTERS UNDER MASK

instruction is given in Appendix A.

Compare Logical Long

CLCL Rl,R2 [RR]

'aF' I R. I R, I
o 8 12 15

The frrst operand is compared with the second
operand, and the result is indicated in the condition
code. The shorter operand is considered to be
extended on the right with padding bytes.

The Rl and R2 fields each designate an even-odd
pair of general registers and must designate an

24-Bit Addressing Mode

Rl I11111111I First-Operand Address III
0 8 31 0 1

even-numbered register; otherwise, a specification
exception is recognized.

The location of the leftmost byte of the frrst
operand and second operand is designated by the
contents of general registers Rl and R2, respectively.
The number of bytes in the frrst-operand and
second-operand locations is specified by bits 8-31
of general registers Rl + 1 and R2 + 1, respectively.
Bit positions 0-7 of general register R2 -I- 1 contain
the padding byte. The contents of bit positions 0-7
of general register Rl + 1 are ignored.

The handling of the addresses in general registers
Rl and R2 is dependent on the addressing mode.

In the 24-bit addressing mode, the contents of bit
positions 8-31 of general registers Rl and R2 consti­
tute the address, and the contents of bit positions
0-7 are ignored. In the 31-bit addressing mode, the
contents of bit positions 1-31 of general registers R 1

and R2 constitute the address, and the contents of
bit position 0 are ignored.

The contents of. the registers just described are
shown in Figure 7-4.

31-Bit Addressing Mode

First-Operand Address

31

Rl + 1 I11111111I First-Operand Length 1////// III First-Operand Length

0 8 31 0 8 31

R2 III Second-Operand Address

0 8 31 0 1 31

R2 + 1 Pad Second-Operand Length Pad Second-Operand Length

0 8 31 0 8 31

Figure 7-4. Register Contents for COMPARE LOGICAL LONG

7-22 ESA/370 PrlDclples of Operation

The comparison proceeds left to right, byte by
byte, and ends as soon as an inequality is found or
the end of the longer operand is reached. If the
operands are not of the same length, the shorter
operand is considered to be extended on the right
with the appropriate number of padding bytes.

If both operands are of zero length, the operands
are considered to be equal.

The execution of the instruction is interruptible.
When an interruption occurs, other than one that
causes termination, the contents of general registers
Rl + 1 and R2 + 1 are decremented by the number
of bytes compared, and the contents of general reg­
isters Rl and R2 are incremented by the same
number, so that the instruction, when reexecuted,
resumes at the point of interruption. The leftmost
bits which are not part of the address in general
registers Rl and R2 are set to zeros; the contents of
bit positions 0-7 of general registers Rl + 1 and
R2 + 1 remain unchanged; and the condition code
is unpredictable. If the operation is interrupted
after the shorter operand has been exhausted, the
length field pertaining to the shorter operand is
zero, and its address is updated accordingly.

If the operation ends because of an inequality, the
address fields in general registers Rl and R2 at com­
pletion identify the frrst unequal byte in each
operand. The lengths in bit positions 8-31 of
general registers Rl + 1 and R2 + 1 are decre­
mented by the number of bytes that were equal,
unless the inequality occurred with the padding
byte, in which case the length field for the shorter
operand is set to zero. The addresses in general
registers Rl and R2 are incremented by the amounts
by which the corresponding length fields were
reduced.

If the two operands, including the padding byte, if
necessary, are equal, both length fields are made
zero at completion, and the addresses are incre­
mented by the corresponding operand-length
values.

At the completion of the operation, the leftmost
bits which are not part of the address in general
registers Rl and R2 are set to zeros, including the
case when one or both of the initial length values
are zero. The contents of bit positions 0-7 of
general registers Rl + 1 and R2 + 1 remain
unchanged.

Access exceptions for the portion of a storage
operand to the right of the frrst unequal byte may
or may not be recognized. For operands longer
than 2K bytes, access exceptions are not recognized
more than 2K bytes beyond the byte being proc­
essed. Access exceptions are not indicated for
locations more than 2K bytes beyond the frrst
unequal byte.

When the length of an operand. is zero, no access
exceptions are recognized for that operand. Access
exceptions are not recognized for an operand if the
R field associated with that operand is odd.

Resulting Condition Code:

o Operands equal, or both zero length
1 First operand low
2 First operand high
3

Program Exceptions:

• Access (fetch, operands 1 and 2)
• Specification

Programming Notes:

1. An example of the use of the COMPARE

LOGICAL LONG instruction is given in
Appendix A.

2. When the Rl and R2 fields are the same, the
operation proceeds in the same way as when
two distinct pairs of registers having the same
contents are specified, and, in the absence of
dynamic modification of the operand area by
another CPU or by a channel program, condi­
tion code 0 is set. However, it is unpredictable
whether access exceptions are recognized for
the operand since the operation can be com­
pleted without storage being accessed.

3. Special precautions should be taken when
COMPARE LOGICAL LONG is made the target of
EXECUTE. See the programming note con­
cerning interruptible instructions under
EXECUTE.

4. Other programming notes concerning interrup­
tible instructions are included in the section
"Interruptible Instructions" in Chapter 5,
"Program Execution."

5. In the access-register mode, access register 0
designates the primary address space regardless
of the contents of access register O.

Chapter 7. General Instructions 7 -23

Convert to Binary

CVB Rl,02(X2,B2) [RX]

'4F' I R. I x. I B2 02

0 8 12 16 20 31

The second operand is changed from decimal to
binary, and the result is placed at the fust-operand
location.

The second operand occupies eight bytes in storage
and has the fonnat of packed decimal data, as
described in Chapter 8, "Decimal Instructions." It
is checked for valid sign and digit codes, and a data
exception is recognized when an invalid code is
detected.

The result of the conversion is a 32-bit signed
binary integer, which is placed in general register
Rio The maximum positive number that can be
converted and still be contained in a 32-bit register
is 2,147,483,647; the maximum negative number
(the negative number with the greatest absolute
value) that can be converted is -2,147,483,648. For
any decimal number outside this range, the opera­
tion is completed by placing the 32 rightmost bits
of the binary result in the register, and a fixed­
point-divide exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Data
• Fixed-point divide

Programming Notes:

1. An example of the use of the CONVERT TO

BINARY instruction is given in Appendix A.

2. When the second operand is negative, the result
is in two's-complement notation.

3. The storage-operand references for CONVERT

TO BINARY may be multiple-access references.
(See the section "Storage-Operand
Consistency" in Chapter 5, "Program
Execution. ")

7-24 ESA/370 Principles of Operation

Convert to Decimal

'4E' I R. I ~. I B. D.

o 8 12 16 20 31

The fust operand is changed from binary to
decimal, and the result is stored at the second­
operand location. The first operand is treated as a
32-bit signed binary integer.

The result occupies eight bytes in storage and is in
the fonnat for packed decimal data, as described in
Chapter 8, "Decimal Instructions." The rightmost
four bits of the result represent the sign. A positive
sign is encoded as 1100; a negative sign is encoded
as 1101.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)

Programming Notes:

1. An example of the use of the CONVERT TO

DECIMAL instruction is given in Appendix A.

2. The number to be converted is a 32-bit signed
binary integer obtained from a general register.
Since 15 decimal digits are available for the
result, and. the decimal equivalent of 31 bits
requires at most 10 decimal digits, an overflow
cannot occur.

3. The storage-operand references for CONVERT

TO DECIMAL may be multiple-access references.
(See the section "Storage-Operand
Consistency" m Chapter 5, "Program
Execution. ")

Copy Access

CPYA [RRE]

'8240' 1//////1/1 R.

o 16 24 28 31

The contents of access register R 2 are placed in
access register R 1 •

Bits 16-23 of the instruction are ignored.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Divide

DR [RR]

'10' I R, I R2 I
o 8 12 15

o [RX]

'50'

o 8 12 16 20 31

The doubleword frrst operand (the dividend) is
divided by the second operand (the divisor), and
the remainder and the quotient are placed at the
first-operand location.

The R 1 field designates an even-odd pair of general
registers and must designate an even-numbered reg­
ister; otherwise, a specification exception is recog­
nized.

The dividend is treated as a 64-bit signed binary
integer. The divisor, the remainder, and the quo­
tient are treated as 32-bit signed binary integers.
The remainder is placed in general register R 1, and
the quotient is placed in general register Rl + 1.

The sign of the quotient is determined by the rules
of algebra. The remainder has the same sign as the
dividend, except that a zero quotient or a zero
remainder is always positive.

When the divisor is zero, or when the magnitudes
of the dividend and divisor are such that the quo­
tient cannot be expressed by a 32-bit signed binary
integer, a fixed-point-divide exception is recognized.
This includes the case of division of zero by zero.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 of 0 only)
• Fixed-point divide
• Specification

Exclusive OR

XR R1,R2 [RR]

1171 I R, I R2 I
0 8 12 15

X R1,02(X2,B2) [RX]

'57 1 I R, I X2 I B2 02

o 8 12 16 20 31

XI [51]

'97 1 12 B1 01

o 8 16 20 31

XC [55]

'07' L I B, I &Hb~
~--~----~--~/ /
o 8 16 20 32 36 47

The EXCLUSIVE OR of the first and second oper­
ands is placed at the frrst-operand location.

The connective EXCLUSIVE OR is applied to the
operands bit by bit. A bit position in the result is
set to one if the corresponding bit positions in the
two operands are unlike; otherwise, the result bit is
set to zero.

For EXCLUSIVE OR (XC), each operand is processed
left to right. When the operands overlap, the result
is obtained as if the operands were processed one
byte at a time and each result byte were stored
immediately after fetching the necessary operand
bytes.

Chapter 7. General Instructions 7 -25

For EXCLUSIVE OR (XI), the first operand IS one
byte in length, and only one byte is stored.

Resulting Condition Code:

o Result zero
1 Result not zero
2
3

Program Exceptions:

• Access (fetch, operand 2, X and XC; fetch and
store, operand 1, XI and xc)

Programming Notes:

1. An example of the use of the EXCLUSIVE OR
instruction is given in Appendix A.

2. EXCLUSIVE OR may be used to invert a bit, an
operation particularly useful in testing and
setting programmed binary bit switches.

3. A field EXCLUSlvE-oRed with itself becomes all
zeros.

4. For EXCLUSIVE OR (XR), the sequence A

EXCLUSIVE-OR B, B EXCLUSIVE-OR A, A

EXCLUSIVE-OR B results in the exchange of the
contents of A and B without the use of an addi­
tional general register.

5. Accesses to the frrst operand of EXCLUSIVE OR
(XI) and EXCLUSIVE OR (XC) consist in fetching
a frrst-operand byte from storage and subse­
quently storing the updated value. These fetch
and store accesses to a particular byte do not
necessarily occur one immediately after the
other. Thus, EXCLUSIVE OR cannot be safely
used to update a location in storage if the pos­
sibility exists that another CPU or a channel
program may also be updating the location.
An example of this effect is shown for OR (01)
in the section "Multiprogramming and Multi­
processing Examples" in Appendix A.

Execute

, 44 ' I R 1 I x 2 I B 2 02

o 8 12 16 20 31

7 -26 ESA/370 Principles of Operation

The single instruction at the second-operand
address is modified by the contents of general reg­
ister R 1, and the resulting instruction, called the
target instruction, is executed.

When the Rl field is not zero, bits 8-15 of the
instruction designated by the second-operand
address are 0 Red with bits 24-31 of general register
R 1. The 0 Ring does not change either the· contents
of general register R 1 or the instruction in storage,
and it is effective only for the interpretation of the
instruction to be executed. When the R 1 field is
zero, no oRing takes place.

The target instruction may be two, four, or six
bytes in length. The execution and exception han­
dling of the target instruction are exactly as if the
target instruction were obtained in normal sequen­
tial operation, except for the instruction address
and the instruction-length code.

The instruction address of the current psw is
increased by the length of EXECUTE. This updated
address and the instruction-length code of EXECUTE
are used, for example, as part of the link informa­
tion when the target instruction is BRANCH AND
LINK. When the target instruction is a successful
branching instruction, the instruction address of the
current psw is replaced by the branch address spec­
ified by the target instruction.

When the target instruction is in tum EXECUTE, an
execute exception is recognized.

The effective address of EXECUTE must be even;
otherwise, a specification exception is recognized.
When the target instruction is two or three
halfwords in length but can be executed without
fetching its second or third halfword, it is unpre­
dictable whether access exceptions are recognized
for the unused halfwords. Access exceptions are
not recognized for the second-operand address
when the address is odd.

The second-operand address of EXECUTE is an
instruction address rather than a logical address;
thus, the target instruction is fetched from the
primary address space when in the primary-space,
secondary-space, or access-register mode.

Condition Code: The code may be set by the
target instruction.

Program Exceptions:

• Access (fetch, target instruction)
• Execute
• Specification

Programming Notes:

1. An example of the use of the EXECUTE instruc­
tion is given in Appendix A.

2. The oRing of eight bits from the general reg­
ister with the designated instruction permits the
indirect specification of the length, index, mask,
immediate-data, register, or extended-op-code
field.

3. The fetching of the target instruction is consid­
ered to be an instruction fetch for purposes of
program-event recording and for purposes of
reporting access exceptions.

4. An access or specification exception may be
caused by EXECUTE or by the target instruc­
tion.

5. When an interruptible instruction is made the
target of EXECUTE, the program normally
should not designate any register updated by
the interruptible instruction as the R 1, X 2, or B 2

register for EXECUTE. Otherwise, on
resumption of execution after an interruption,
or if the instruction is ref etched without an
interruption, the updated values of these regis­
ters will be used in the execution of EXECUTE.

Similarly, the program should normally not let
the destination field in storage of an interrup­
tible instruction include the location of
EXECUTE, since the new contents of the
location may be interpreted when resuming
execution.

Extract Access

EAR [RRE]

'B24F'

o 16 24 28 31

The contents of access register R 2 are placed in
general register R 1.

Bits 16-23 of the instruction are ignored.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Insert Character

'43' I R. I X2 I B2 02

o 8 12 16 20 31

The byte at the second-operand location is inserted
into bit positions 24-31 of general register Rl. The
remaining bits in the register remain unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)

Insert Characters under Mask

'BF' I R. I M, I B2 02

o 8 12 16 20 31

Bytes from contiguous locations beginning at the
second-operand address are inserted into general
register Rl under control of a mask.

The contents of the M 3 field are used as a mask.
These four bits, left to right, correspond one for
one with the four bytes, left to right, of general reg­
ister R 1. The byte positions corresponding to ones
in the mask are filled, left to right, with bytes from
successive storage locations beginning at the
second-operand address. When the mask is not
zero, the length of the second operand is equal to
the number of ones in the mask. The bytes in the
general register corresponding to zeros in the mask
remain unchanged.

Chapter 7. General Instructions 7 -27

The'resulting .condition code is based on the mask
and on the value of the bits inserted. When the
mask is zero or when all inserted bits are zeros, the
condition code is set to O. When the inserted bits
are not all zeros, the code is set according to the
leftmost bit of the storage operand: if this bit is
one, the code is set to 1; if this bit is zero, the code
is set to 2.

When the mask is not zero, exceptions associated
with storage-operand access are recognized only for
the number of bytes specified by the mask. When
the mask is zero, access exceptions are recognized
for one byte at the second-operand address.

Resulting Condition Code:

o All inserted bits zeros, or mask bits all zeros
1 Leftmost inserted bit one
2 Leftmost inserted bit zero, and not all inserted

bits zeros
3

Program Exceptions:

• Access (fetch, operand 2)

Programming Notes:

1. Examples of the use of the INSERT CHARAC­

TERS UNDER MASK instruction are given in
AppendixA.

2. The condition code for INSERT CHARACTERS

UNDER MASK is defmed such that, when the
mask is 1111, the instruction causes the same
condition code to be set as for LOAD AND

TEST. Thus, the instruction may be used as a
storage-to-register load-and-test operation.

3. INSERT CHARACTERS UNDER MASK with a
mask of 1111 or 0001 performs a function
similar to that of a LOAD (L) or INSERT CHAR­

ACTER (IC) instruction, respectively, with the
exception of the condition -code setting.
However, the performance of INSERT CHARAC­

TERS UNDER MASK may be slower.

Insert Program Mask

IPM [RRE]

182221 I11111111I R. I1111I
o 16 24 28 31

7-28 ESA/370 Principles of Operation

The condition code and program mask from the
current psw are inserted into bit positions 2-3 and
4-7, respectively, of general register R 1. Bits 0 and
1 of the register are set to zeros; bits 8-31 are left
unchanged.

Bits 16-23 and 28-31 of the instruction are ignored.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Load

LR [RR]

'18' I R. I R2 I
o 8 12 15

'58' I R. I X2 I B2 02

o 8 12 16 20 31

The second operand is placed unchanged at the
frrst-operand location.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 of L only)

Programming Note: An example of the use of the
LOAD instruction is given in Appendix A.

Load Access Multiple

LAM [RS]

, 9A ' I R. I R3 I B 2

o 8 12 16 20 31

The set of access registers starting with access reg­
ister R 1 and ending with access register R3 is loaded
from the locations designated by the second­
operand address.

The storage area from which the contents of the
access registers are obtained starts at the location
designated by the second-operand address and con­
tinues through as many storage words as the
number of access registers specified. The access
registers are loaded in ascending order of their reg­
ister numbers, starting with access register Rl and
continuing up to and including access register R3,

with access register 0 following access register 15.

The second operand must be designated on a word
boundary; otherwise, a specification exception is
recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Specification

Load Address

o 8 12 16 20 31

The address specified by the X 2, B 2, and D 2 fields is
placed in general register Rl. The address computa­
tion follows the rules for address arithmetic.

In the 24-bit addressing mode, the address is placed
in bit positions 8-31, and bits 0-7 are set to zeros.
In the 31-bit addressing mode, the address is placed
in bit positions 1-31, and bit 0 is set to zero.

No storage references for operands take place, and
the address is not inspected for access exceptions.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Programming Notes:

1. An example of the use of the LOAD ADDRESS

instruction is given in Appendix A.

2. LOAD ADDRESS may be used to increment the
rightmost bits of a general register, other than
register 0, by the contents of the D2 field of the
instruction. The register to be incremented
should be designated by R 1 and by either x 2

(with B2 set to zero) or B2 (with X2 set to
zero). The instruction updates 24 bits in the
24-bit addressing mode and updates 31 bits in
the 31-bit addressing mode.

Load Address Extended

LAE [RX]

'51' Rl I X2 I B2

o 8 12 16 20 31

The address specified by the X 2, B 2, and D 2 fields is
placed in general register R 1. Access register R 1 is
loaded with a value that depends on the current
value of the address-space-contro1 bits, bits 16 and
17 of the psw. If the address-space-control bits are
01 binary, the value placed in the access register
also depends on whether the B 2 field is zero or
nonzero.

The address computation follows the rules for
address arithmetic. In the 24-bit addressing mode,
the address is placed in bit positions 8-31 of general
register Rl, and bits 0-7 are set to zeros. In the
31-bit addressing mode, the address is placed in bit
positions 1-31 of general register Rl, and bit 0 is set
to zero.

The value placed in access register R 1 is as shown
in the following table:

PSW Bits
16 and 17

00

10

01

Value Placed in Access Register R 1

00000000 hex (zeros in bit positions
0-31)

00000001 hex (zeros in bit positions
0-30 and one in bit position 31)

If B 2 field is zero: 00000000 hex
(zeros in bit positions 0-31)

If B 2 field is nonzero: Contents of
access register B 2

11 00000002 hex (zeros in bit positions
0-29 and 31, and one in bit position
30)

However, when psw bits 16 and 17 are 01 binary
and the B2 field is nonzero, bit positions 0-6 of
access register B 2 must contain all zeros; otherwise,

Chapter 7. General Instructions 7 -29

the results in general register R 1 and access register
Rl are unpredictable.

No storage references for operands take place, and
the address is not inspected for access exceptions.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Programming Notes:

I. When DAT is on, the different values of the
address-space-control bits correspond to trans­
lation modes as follows:

PSW Bits
16 and 17

00
10
01
11

Translation Mode

Primary-space mode
Secondary-space mode
Access-register mode
Home-space mode

2. In the access-register mode, the value 00000000
hex in an access register designates the primary
address space, and the value 0000000 I hex des­
ignates the secondary address space. The value
00000002 hex designates the home address
space if the control program assigns access-list
entry 2 as designating the home address space
and places a zero access-list-entry sequence
number (ALESN) in access-list entry 2.

Load and Test

LTR [RR]

'12' I R. I R2 I
o 8 12 15

The second operand is placed unchanged at the
frrst-operand location, and the sign and magnitude
of the second operand, treated as a 32-bit signed
binary integer, are indicated in the condition code.

Resulting Condition Code:

o Result zero
I Result less than zero
2 Result greater than zero
3

7-30 ESAj370 Principles of Operation

Program Exceptions: None.

Programming Note: When the Rl and R2 fields
designate the same register, the operation is equiv­
alent to a test without data movement.

Load Complement

LCR [RR]

'13' I R. I R2 I

o 8 12 15

The two IS complement of the second operand is
placed at the frrst-operand location. The second
operand and result are treated as 32-bit signed
binary integers.

When there is an overflow, the result is obtained by
allowing any carry into the sign-bit position and
ignoring any carry out of the sign-bit position, and
condition code 3 is set. If the fixed-point-overflow
mask is one, a program interruption for fixed-point
overflow occurs.

Resulting Condition Code:

o Result zero; no overflow
I Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

Program Exceptions:

• Fixed-point overflow

Programming Note: The operation complements
all numbers. Zero and the maximum negative
number remain unchanged. An overflow condition
occurs when the maximum negative number is
complemented.

Load Halfword

[RX]

'48' IRI I X21 B2 02

o 8 12 16 20 31

The second operand is considered to be extended to
a 32-bit signed binary integer and is placed at the

first-operand location. The second operand is two
bytes in length and is considered to be a 16-bit
signed binary integer. The second operand is
extended to 32 bits by setting each of the 16 left­
most bit positions equal to the sign bit of the
storage operand.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)

Programming Note: An example of the use of the
LOAD HALFWORD instruction is given in Appendix
A.

Load Multiple

[RS]

I ' 98 ' I R 1 I R3 I B,

o 8 12 16 20 31

The set of general registers starting with general reg­
ister R 1 and ending with general register R3 is
loaded from storage beginning at the location desig­
nated by the second-operand address and contin­
uing through as many locations as needed.

The general registers are loaded in the ascending
order of their register numbers, starting with general
register R 1 and continuing up to and including
general register R3, with general register 0 following
general register 15.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)

Programming Note: All combinations of register
numbers specified by R 1 and R3 are valid. When
the register numbers are equal, only four bytes are
transmitted. When the number specified by R3 is
less than the number specified by Rl, the register
numbers wrap around from 15 to o.

Load Negative

LNR [RR]

o 8 12 15

The two's complement of the absolute value of the
second operand is placed at the frrst-operand
location. The second operand and result are
treated as 32-bit signed binary integers.

Resulting Condition Code:

o Result zero
1 Result less than zero
2
3

Program Exceptions: None.

Programming Note: The operation complements
positive numbers; negative numbers remain
unchanged. The number zero remains unchanged.

Load Positive

LPR Rl,R2 [RR]

'le' I Rli R, I
o 8 12 15

The absolute value of the second operand is placed
at the fust-operand location. The second operand
and the result are treated as 32-bit signed binary
integers.

When there is an overflow, the result is obtained by
allowing any carry into the sign-bit position and
ignoring any carry out of the sign-bit position, and
condition code 3 is set. If the fixed-point-overflow
mask is one, a program interruption for fixed-point
overflow occurs.

Resulting Condition Code:

o Result zero; no overflow
I
2 Result greater than zero; no overflow
3 Overflow

Chapter 7. General Instructions 7 -31

Program Exceptions:

• Fixed-point overflow

Programming Note: The operation complements
negative numbers; positive numbers and zero
remain unchanged. An overflow condition occurs
when the maximum negative number is comple­
mented; the number remains unchanged.

Monitor Call

MC [51]

IAFI

o 8 16 20 31

A program interruption is caused if the appropriate
monitor-mask bit in control register 8 is one.

The monitor-mask bits are in bit positions 16-31 of
control register 8, which correspond to monitor
classes 0-15, respectively.

Bit positions 12-15 in the 12 field contain a binary
number specifying one of 16 monitoring classes.
When the monitor-mask bit corresponding to the
class specified by the 12 field is one, a monitor­
event program interruption occurs. The contents
of the 12 field are stored at location 149, with zeros
stored at location 148. Bit 9 of the program­
interruption code is set to one.

The frrst-operand address is not used to address
data; instead, the address specified by the Bland D 1

fields forms the monitor code, which is placed in
the word at location 156. Address computation
follows the rules of address arithmetic; in the 24-bit
addressing mode, bits 0-7 are set to zeros; in the
31-bit addressing mode, bit 0 is set to zero.

When the monitor-mask bit corresponding to the
class specified by bits 12-15 of the instruction is
zero, no interruption occurs, and the instruction is
executed as a no-operation.

Bit positions 8-11 of the instruction must contain
zeros; otherwise, a specification exception is recog­
nized.

Condition Code: The code remains unchanged.

7 -32 ESAj370 Principles of Operation

Program Exceptions:

• Monitor event
• Specification

Programming Notes:

1. MONITOR CALL provides the capability for
passing control to a monitoring program when
selected points are reached in the monitored
program. This is accomplished by implanting
MONITOR CALL instructions at the desired
points in the monitored program. This func­
tion may be useful in performing various meas­
urement functions; specifically, tracing informa­
tion can be generated indicating which
programs were executed, counting information
can be generated indicating how often partic­
ular programs were used, and timing informa­
tion can be generated indicating how long a
particular program required for execution.

2. The monitor masks provide a means of disal­
lowing all monitor-event program interruptions
or allowing monitor-event program inter­
ruptions for all or selected classes.

3. The monitor code provides a means of associ­
ating descriptive information, in addition to the
class number, with each MONITOR CALL.

Without the use of a base register, up to 4,096
distinct monitor codes can be associated with a
monitoring interruption. With the base register
designated by a nonzero value in the B 1 field,
each monitoring interruption can be identified
by a 24-bit code in the 24-bit addressing mode
or a 3l-bit code in the 31-bit addressing mode.

Move

[51]

1921 12

o 8 16 20 31

MVC [55]

~ID_21~ __ L_I~B_l~I~~~J
o 8 16 20 32 36 47

The second operand is placed at the frrst-operand
location.

For MOVE (MVC), each operand is processed left to
right. When the operands overlap, the result is
obtained as if the operands were processed one byte
at a time and each result byte were stored imme­
diately after fetching the necessary operand byte.

For MOVE (MVI), the frrst operand is one byte in
length, and only one byte is stored.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 of MVC; store,
operand I, MVI and MVC)

Programming Notes:

1. Examples of the use of the MOVE instruction
are given in Appendix A.

2. It is possible to propagate one byte through an
entire field by having the frrst operand start one
byte to the right of the second operand.

Move Inverse

[SS]

L....--

1E
_
81

-----L-_L---LI_B_1 ..1.-1 ~H~~
o 8 16 20 32 36 47

The second operand is placed at the frrst-operand
location with the left-to-right sequence of the bytes
inverted.

The frrst-operand address designates the leftmost
byte of the frrst operand. The second-operand
address designates the rightmost byte of the second
operand. Both operands have the same length.

The result is obtained as if the second operand
were processed from right to left and the frrst
operand from left to right. The second operand
may wrap around from -location 0 to location
224 - 1 in the 24-bit addressing mode, or, in the
31-bit addressing mode, to location 231

- 1. The
frrst -operand may, in the 24-bit addressing mode,
wrap around from location 224 - 1 to location 0,
or, in the 31-bit addressing mode, from location
231

- 1 to location O.

When the operands overlap by more than one byte,
the contents of the overlapped portion of the result
field are unpredictable.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2; store, operand 1)
• Operation (if the move-inverse facility is not

installed)

Programming Notes:

1. An example of the use of the MOVE INVERSE

instruction is given in Appendix A.

2. The contents of each byte moved remain
unchanged.

3. MOVE INVERSE is the only ss-format instruc­
tion for which the second-operand address des­
ignates the rightmost, instead of the leftmost,
byte of the second operand.

4. The storage-operand references for MOVE

INVERSE may be multiple-access references.
(See the section "Storage-Operand
Consistency" in Chapter 5, "Program
Execution. ")

Move Long

MVCL Rl,R2 [RR]

, 0E ' 1 R 1 1 R 2
1

o 8 12 15

The second operand is placed at the frrst-operand
location, provided overlapping of operand locations
would not affect the fmal contents of the frrst­
operand location. The remaining rightmost byte
positions, if any, of the frrst-operand location are
filled with padding bytes.

The R1 and R2 fields each designate an even-odd
pair of general registers and must designate an
even-numbered register; otherwise, a specification
exception is recognized.

The location of the leftmost byte of the frrst
operand and second operand is designated by the
contents of general registers R1 and R2, respectively.
The number of bytes in the frrst-operand and
second-operand locations is specified by bits 8-31

Chapter 7. General Instructions 7 -33

of general registers Rl + 1 and R2 + 1, respectively.
Bit positions 0-7 of register R2 + 1 contain the
padding byte. The contents of bit positions 0-7 of
register Rl + 1 are ignored.

The handling of the addresses in general registers
Rl and R2 is dependent on the addressing mode.
In the 24-bit addressing mode, the contents of bit
positions 8-31 of registers Rl and R2 constitute the

24-Bit Addressing Mode

Rl First-Operand Address Itl
e 8 31 e 1

address, and the contents of bit positions 0-7 are
ignored. In the 31-bit addressing mode, the con­
tents of bit positions 1-31 of registers Rl and R2

constitute the address, and the contents of bit posi­
tion 0 are ignored.

The contents of the registers just described are
shown in Figure 7-5.

31-Bit Addressing Mode

First-Operand Address

31

R. + 1 I11111111I First-Operand Length I 1""""1 First-Operand Length

e 8 31 e 8 31

R2 Itl Second-Operand Address

e 8 31 e 1 31

R, + 1 I Pad I Second-Operand Length I Pad Second-Operand Length

e 8 31 e 8 31

Figure 7-5. Register Contents for MOVE LONG

7 -34 ESAj370 Principles of Operation

The movement starts at the left end of both fields
and proceeds to the right. The operation is ended
when the number of bytes specified by bit positions
8-31 of general register Rl + 1 have been moved
into the frrst-operand location. If the second
operand is shorter than the frrst operand, the
remaining rightmost bytes of the frrst-operand
location are filled with the padding byte.

As part of the execution of the instruction, the
values of the two length fields are compared for the
setting of the condition code, and a check is made
for destructive overlap of the operands. Operands
are said to overlap destructively when the frrst­
operand location is used as a source after data has
been moved into it, assuming the inspection for
overlap is performed by the use of logical operand
addresses. When the operands overlap
destructively, no movement takes place, and condi­
tion code 3 is set.

Operands do not overlap destructively, and move­
ment is performed, if the leftmost byte of the frrst
operand does not coincide with any of the second­
operand bytes participating in the operation other
than the leftmost byte of the second operand.
When an operand wraps around from location
224 - 1 (or 231

- 1) to location 0, operand bytes in
locations up to and including 224 - 1 (or 231

- 1)
are considered to be to the left of bytes in locations
from 0 up.

In the 24-bit addressing mode, wraparound is from
location 224 - I to location 0; in the 31-bit
addressing mode, wraparound is from location
231

- 1 to location o.

In the access-register mode, the contents of access
register Rl and access register R2 are compared. If
the Rl or R2 field is zero, 32 zeros are used rather
than the contents of access register o. If all 32 bits
of the compared values are equal, then the destruc­
tive overlap test is made. If all 32 bits of the com­
pared values are not equal, destructive overlap is
declared not to exist. If, for this case, the operands
actually overlap in real storage, it is unpredictable
whether the result reflects the overlap condition.

When the length specified by bit positions 8-31 of
general register Rl + 1 is zero, no movement takes
place, and condition code 0 or I is set to indicate
the relative values of the lengths.

The execution of the instruction is interruptible.
When an interruption occurs other than one that

causes termination, the contents of general registers
Rl + 1 and R2 + 1 are decremented by the number
of bytes moved, and the contents of general regis­
ters Rl and R2 are incremented by the same
number, so that the instruction, when reexecuted,
resumes at the point of interruption. The leftmost
bits which are not part of the address in general
registers Rl and R2 are set to zeros; the contents of
bit positions 0-7 of general registers Rl + 1 and
R2 + 1 remain unchanged; and the condition code
is unpredictable. If the operation is interrupted
during padding, the length field in general register
R2 + 1 is 0, the address in general register R2 is
incremented by the original contents of general reg­
ister R2 + 1, and general registers R 1 and Rl + 1

reflect the extent of the padding operation.

When the frrst-operand location includes the
location of the instruction or of EXECUTE, the
instruction may be ref etched from storage and rein­
terpreted even in the absence of an interruption
during execution. The exact point in the execution
at which such a ref etch occurs is unpredictable.

As observed by other CPus and by channel pro­
grams, that portion of the frrst operand which is
filled with the padding byte is not necessarily stored
into in a left-to-right direction and may appear to
be stored into more than once.

At the completion of the operation, the length in
general· register Rl + 1 is decremented by the
number of bytes stored at the frrst-operand
location, and the address in general register R 1 is
incremented by the same amount. The length in
general register R2 + 1 is decremented by the
number of bytes moved out of the second-operand
location, and the address in general register R2 is
incremented by the same amount. The leftmost
bits which are not part of the address in general
registers Rl and R2 are set to zeros, including the
case when one or both of the original length values
are zeros or when condition code 3 is set. The
contents of bit positions 0-7 of general registers
Rl + 1 and R2 -+ 1 remain unchanged. When con­
dition code 3 is set, no exceptions associated with
operand access are recognized. When the length of
an operand is zero, no access exceptions for that
operand are recognized. Similarly, when the second
operand is longer than the frrst operand, access
exceptions are not recognized for the part of the
second-operand field that is in excess of the frrst­
operand field. For operands longer than 2K bytes,
access exceptions are not recognized for locations
more than 2K bytes beyond the current location

Chapter 7. General Instructions 7 -35

being processed. Access exceptions are not recog­
nized for an operand if the R field associated with
that operand is odd. Also, when the Rl field is
odd, PER storage-alteration events are not recog­
nized, and no change bits are set.

Resulting Condition Code:

o Operand lengths equal; no destructive overlap
I First-operand length low; no destructive

overlap
2 First-operand length high; no destructive

overlap
3 No movement performed because of destruc­

tive overlap

Program Exceptions:

• Access (fetch, operand 2; store, operand I)
• Specification

Programming Notes:

1. An example of the use of the MOVE LONG

instruction is given in Appendix A.

2. MOVE LONG may be used for clearing storage
by setting the padding byte to zero and the
second-operand length to zero. On most
models, this is the fastest instruction for
clearing storage areas in excess of 256 bytes.
However, the stores associated with this
clearing may be multiple-access stores and
should not be used to clear an area if the possi­
bility exists that another CPU or a channel
program will attempt to access and use the area
as soon as it appears to be zero. For more
details, see the section "Storage-Operand
Consistency" in Chapter 5, "Program
Execution. "

3. The program should avoid specification of a
length for either operand which would result in
an addressing exception. Addressing (and also
protection) exceptions may result in termi­
nation of the entire operation, not just the
current . unit of operation. The termination
may be such that the contents of all result
fields are unpredictable; in the case of MOVE

LONG, this includes the condition code and the
two even-odd general-register pairs, as well as
the frrst-operand location in main storage. The
following are situations that have actually
occurred on one or more models:

a. When a protection exception occurs on a
4K-byte block of a fIrst operand which is

7-36 ESA/370 Principles of Operation

several blocks in length, stores to the pro­
tected block are suppressed. However, the
move continues into the subsequent blocks
of the frrst operand, which are not pro­
tected. Similarly, an addressing exception
on a block does not necessarily suppress
processing of subsequent blocks which are
available.

b. Some models may update the general regis­
ters only when an external, 1/0, repressible
machine-check, or restart interruption
occurs, or when a program interruption
occurs for which it is required to nullify or
suppress a unit of operation. Thus, if, after
a move into several blocks of the fIrst
operand, an addressing or protection excep­
tion occurs, the general registers may
remain unchanged.

4. When the frrst-operand length is zero, the oper­
ation consists in setting the condition code and
setting the leftmost bits of general registers R 1

and R2 to zero.

5. When the contents of the Rl and R2 fields are
the same, the operation proceeds the same way
as when two distinct pairs of registers having
the same contents are designated. Condition
code 0 is set.

6. The following is a detailed description of those
cases in which movement takes place, that is,
where destructive overlap does not exist.

In the access-register mode, the contents of the
access registers used are called the effective
space designations. When the effective space
designations are not equal, destructive overlap
is declared not to exist and movement occurs.
When the effective space designations are the
same or when not in the access-register mode,
then the following cases apply.

Depending on whether the second operand
wraps around from location 224 - I to location
0, or, in the 31-bit addressing mode, from
location 231

- I to location 0, movement takes
place in the following cases:

a. When the second operand does not wrap
around, movement is performed if the left­
most byte of the frrst operand coincides
with or is to the left of the leftmost. byte of
the second operand, or if the leftmost byte
of the frrst operand is to the right of the
rightmost second-operand byte partic­
ipating in the operation.

b. When the second operand wraps· around,
movement is performed if the leftmost byte
of the fust operand coincides with or is to
the left of the leftmost byte of the second
operand, and if the leftmost byte of the fust
operand is to the right of the rightmost
second-operand byte participating in the
operation.

The rightmost second-operand byte is deter­
mined by using the smaller of the fust-operand
and second-operand lengths.

When the second-operand length is one or
zero, destructive overlap cannot exist.

7. Special precautions should be taken if MOVE

LONG is made the target of EXECUTE. See the
programming note concerning interruptible
instructions under EXECUTE.

8. Since the execution of MOVE LONG is interrup­
tible, the instruction cannot be used for situ­
ations where the program must rely on uninter­
rupted execution of the instruction. Similarly,
the program should normally not let the first.
operand of MOVE LONG include the location of
the instruction or of EXECUTE because the new
contents of the location may be interpreted for
a resumption after .an interruption, or the
instruction may be ref etched without an inter­
ruption.

9. Further programming notes concerning inter­
ruptible instructions are included in the section
"Interruptible Instructions" in Chapter 5,
"Program Execution."

10. In the access-register mode, access register 0
designates the primary address space regardless
of the contents of access register O.

Move Numerics

MVN [SS]

~'D_11-",--_L -",--I B_1 -,--I ~H~~
9 8 16 29 32 36 47

The rightmost four bits of each byte in the second·
operand are placed in the rightmost bit positions of
the corresponding bytes in the fITst operand. The
leftmost four bits of each byte in the fust operand
remain unchanged. .

Each operand is processed left to right. When the
operands overlap, the result is obtained as if the
operands were processed one byte at a time and
each result byte were stored immediately after
fetching the necessary operand bytes.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2; fetch and store,
operand 1)

Programming Notes:

1. An example of the use of the MOVE NUMERICS

instruction is given in Appendix A.

2. MOVE NUMERICS moves the numeric portion
of a decimal-data field that is in the zoned
format. The zoned-decimal format is described
in Chapter 8, "Decimal Instructions." The
operands are not checked for valid sign and
digit codes.

3. Accesses to the fust operand of' MOVE

NUMERICS consist in fetching the rightmost
four bits of each byte in the frrst operand and
subsequently storing the updated value of the
byte. These fetch and store accesses to a par­
ticular byte do not necessarily occur one imme­
diately after the other. Thus, this instruction
cannot be safely used to update a location in
storage if the possibility exists that another CPU

or a channel program may also be updating the
location. An example of this effect is shown
for OR (01) in the section "Multiprogramming
and Multiprocessing Examples" in Appendix
A.

Move with Offset

MVO [SS]

~'Fl_' ..L.-.-IL---&' I_L2--,-I_B1--,--I~H~~
9 8 12 16 29 32 36 47

The second operand is placed to the left of and
adjacent to the rightmost four bits of the frrst
operand.

The rightmost four bits of the fust operand are
attached as the rightmost bits to the second
operand, the second operand bits are offset by four

Chapter 7. General Instructions 7 -37

bit positions, and the result is placed at the frrst­
operand location.

The result is obtained as if the operands were proc­
essed right to left. When necessary, the second
operand is considered to be extended on the left
with zeros. If the frrst operand is too short to
contain all of the second operand, the remaining
leftmost portion of the second operand is ignored.
Access exceptions for the unused portion of the
second operand mayor may not be indicated.

When the operands overlap, the result is obtained
as if the operands were processed one byte at a
time, as if each result byte were stored immediately
after fetching the necessary operand bytes, and as if
the left digit of each second-operand byte were to
remain available for the next result byte and need
not be refetched.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2; fetch and store,
operand 1)

Programming Notes:

1. An example of the use of the MOVE WITH

OFFSET instruction is given in Appendix A.

2. MOVE WITH OFFSET may be used to shift
packed decimal data by an odd number of digit
positions. The packed-decimal format is
described in Chapter 8, "Decimal Instructions."
The operands are not checked for valid sign
and digit codes. In many cases, however,
SHIFT AND ROUND DECIMAL may be more
convenient to use.

3. Access to the rightmost byte of the first
operand of MOVE WITH OFFSET consists in
fetching the rightmost four bits and subse­
quently storing the updated value of this byte.
These fetch and store accesses to the rightmost
byte of the first operand do not necessarily
occur one immediately after the other. Thus,
this instruction cannot be safely used to update
a location in storage if the possibility exists that
another CPU or a channel program may also be
updating the location. An example of this
effect is shown for OR (01) in the section
"Multiprogramming and Multiprocessing
Examples" in Appendix A.

4. The storage-operand references for MOVE WITH

OFFSET may be multiple-access references. (See

7-38 ESAj370 Principles of Operation

the section "Storage-Operand Consistency" in
Chapter 5, "Program Execution.")

Move Zones

MVZ [55]

L..--' 0_3 ,--'-_L-----LI_B_l .L-1 ~H~~
o 8 16 20 32 36 47

The leftmost four bits of each byte in the second
operand are placed in the leftmost four bit posi­
tions of the corresponding bytes in the frrst
operand. The rightmost four bits of each byte in

. the frrst operand remain unchanged.

Each operand is processed left to right. When the
operands overlap, the result is obtained as if the
operands were processed one byte at a time and
each result byte were stored immediately after the
necessary operand byte'is fetched.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2; fetch and store,
operand 1)

Programming Notes:

1. An example of the use of the MOVE ZONES

instruction is given in Appendix A.

2. MOVE ZONES moves the zoned portion of a
decimal field in the zoned format. The zoned
format is described in Chapter 8, "Decimal
Instructions. " The operands are not checked
for valid sign and digit codes.

3. Accesses to the frrst operand of MOVE ZONES

consist in fetching the leftmost four bits of each
byte in the frrst operand and subsequently
storing the updated value of the byte. These
fetch and store accesses to a particular byte do
not necessarily occur one immediately after the
other. Thus, this instruction cannot be safely
used to update a location in storage if the pos­
sibility exists that another CPU or a channel
program may also be updating the location.
An example of this effect is shown for the OR

(01) instruction in the section "Multiprogram­
ming and Multiprocessing Examples" in
AppendixA.

Multiply

MR [RR]

, IC ' I R, I R2 I

o 8 12 15

'5C' I R, I X2 I B2 D 2

o 8 12 16 20 31

The second word of the frrst operand (multipli­
cand) is multiplied by the second operand (multi­
plier), and the doubleword product is placed at the
frrst-operand location.

The R1 field designates an even-odd pair of general
registers and must designate an even-numbered reg­
ister; otherwise, a specification exception is recog­
nized.

Both the multiplicand and multiplier are treated as
32-bit signed binary integers. The multiplicand is
taken from general register Rl + 1. The contents
of general register R 1 are ignored. The product is a
64-bit signed binary integer, which replaces the
contents of the even -odd pair of general registers
designated by R 1. An overflow cannot occur.

The sign of the product is determined by the rules
of algebra from the multiplier and multiplicand
sign, except that a zero result is always positive.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 of M only)
• Specification '

Programming Notes:

1. An example of the use of the MULTIPLY

instruction is given in Appendix A.

2. The significant part of the product usually
occupies 62 bits or fewer. Only when two
maximum negative numbers are multiplied are
63 significant product bits formed.

Multiply Halfword

MH [RX]

'4C' I R 1 I X 2 I B2

o 8 12 16 20 31

The frrst operand (multiplicand) is multiplied ty
the second operand (multiplier), and the product is
placed at the frrst-operand location. The second
operand is two bytes in length and is considered to
be a 16-bit signed binary integer.

The multiplicand is treated as a 32-bit signed binary
integer and is replaced by the rightmost 32 bits of
the signed-binary-integer product. The bits to the
left of the 32 rightmost bits of the product are not
tested for significance; no overflow indication is
given.

The sign of the product is determined by the rules
of algebra from the multiplier and multiplicand
sign, except that a zero result is always positive.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)

Programming Notes:

1. An example of the use of the MULTIPLY

HALFWORD instruction is given in Appendix A.

2. The significant part of the product usually
occupies 46 bits or fewer. Only when two
maximum negative numbers are multiplied are
47 significant product bits formed. Since the
rightmost 32 bits of the product are stored
unchanged, ignoring all bits to the left, the sign
bit of the result may differ from the true sign of
the product in the case of overflow. For a neg­
ative product, the 32 bits placed in register Rl

are the rightmost part of the product in two I s­
complement notation.

Chapter 7. General Instructions 7-39

OR

OR R1,R2 [RR]

'16' I R, I R2 I
0 8 12 15

0 R1,02(X2,B2) [RX]

'56' I R, I X2 I B2 02

0 8 12 16 20 31

01 01 (B1) ,12 [SI]

'96' "12 B1 D1

0 8 16 20 31

OC [SS]

'D6' L I B, I bHb~
~--~----~---~/ /
o 8 16 20 32 36 47

The OR of the first and second operands is placed
at the first-operand location.

The connective OR is applied to the operands bit
by bit. A bit position in the result is set to one if
the corresponding bit position in one or both oper­
ands contains a one; otherwise, the result bit is set
to zero.

For OR (oe), each operand is processed left to
right. When the operands overlap, the result is
obtained as if the operands were processed one byte
at a time and each result byte were stored imme­
diately after fetching the necessary operand bytes.

For OR (01), the fust operand is only one byte in
length, and only one byte is stored.

Resulting Condition Code:

o Result zero
I Result not zero

7 -40 ESAj370 Principles of Operation

2
3

Program Exceptions:

• Access (fetch, operand 2, 0 and oe; fetch and
store, operand 1,01 and oe)

Programming Notes:

1. Examples of the use of the OR instruction are
given in Appendix A.

2. OR may be used to set a bit to one.

3. Accesses to the fust operand of OR (01) and OR

(oe) consist in fetching a fust-operand byte
from storage and subsequently storing the
updated value. These fetch and store accesses
to a particular byte do not necessarily occur
one immediately after the other. Thus, OR

cannot be safely used to update a location in
storage if the possibility exists that another CPU

or a channel program may also be updating the
location. An example of this effect is shown in
the section "Multiprogramming and Multiproc­
essing Examples" in Appendix A.

Pack

PACK

'F2' I L, I L2 IB' I ~H~~
o 8 12 16 20 32 36 47

The format of the second operand is changed from
zoned to packed, and the result is placed at the
fust-operand location. The zoned and packed
formats are described in Chapter 8, "Decimal
Instructions. "

The second operand is treated as though it had the
zoned format. The numeric bits of each byte are
treated as a digit. The zone bits are ignored, except
the zone bits in the rightmost byte, which are
treated as a sign.

The sign and digits are moved unchanged to the
fust operand and are not checked for valid codes.
The sign is placed in the rightmost four bit posi­
tions of the rightmost byte of the result field, and
the digits are placed adjacent to the sign and to
each other in the remainder of the result· field.

The result is obtained as if the operands were proc­
essed right to left. When necessary, the second
operand is considered to be extended on the left
with zeros. If the frrst operand is too short to
contain all digits of the second operand, the
remaining leftmost portion of the second operand is
ignored. Access exceptions for the unused portion
of the second operand mayor may not be indi­
cated.

When the operands overlap, the result is obtained
as if each result byte were stored immediately after
fetching the necessary operand bytes. Two second­
operand bytes are needed for each result byte,
except for the rightmost byte of the result field,
which requires only the rightmost second-operand
byte.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2; store, operand 1)

Programming Notes:

1. An example of the use of the PACK instruction
is given in Appendix A.

2. PACK may be used to interchange the two
hexadecimal digits in one byte by specifying a
zero in the L 1 and L2 fields and the same
address for both operands.

3. To remove the zone bits of all bytes of a field,
including the rightmost byte, both operands
must be extended on the right with a dummy
byte, which subsequently is ignored in the
result field.

4. The storage-operand references for PACK may
be multiple-access references. (See the section
"Storage-Operand Consistency" in Chapter 5,
"Program Execution.")

Set Access

SAR [RRE]

'B24E'

e 16 24 28 31

The contents of general register R2 are placed in
access register R 1.

Bits 16-23 of the instruction are ignored.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Set Program Mask

SPM [RR]

'84' Rl I1111I
e 8 12 15

The frrst operand is used to set the condition code
and the program mask of the current psw.

Bits 12-15 of the instruction are ignored.

Bits 2 and 3 of general register R 1 replace the con­
dition code, and bits 4-7 replace the program mask.
Bits 0, 1, and 8-31 of general register Rl are
ignored.

Condition Code: The code is set as specified by
bits 2 and 3 of general register R 1.

Program Exceptions: None.

Programming Notes:

1. Bits 2-7 of the general register may have been
loaded from the psw by execution of BRANCH

AN 0 LI N K in the 24-bit addressing mode or by
execution of INSERT PROGRAM MASK in either
the 24-bit or 31-bit addressing mode.

2. SET PROGRAM MASK pennits setting of the
condition code and the mask bits in either the
problem state or the supervisor state.

3. The program should take into consideration
that the setting of the program mask can have
a significant effect on subsequent execution of
the program. Not only do the four mask bits
control whether the corresponding inter­
ruptions occur, but the exponent-underflow
and significance masks also determine the result
which is obtained.

Chapt.er 7. General Instructions 7 -4 t

Shift Left Double

[RS]

'SF' I Rl I1111I B2 02

o 8 12 16 20 31

The 63-bit numeric part of the signed frrst operand
is shifted left the number of bits specified by the
second-operand address, and the result is placed at
the frrst-operand location.

Bits 12-15 of the instruction are ignored.

The R 1 field designates an even -odd pair of general
registers and must designate an even-numbered reg­
ister; otherwise, a specification exception is recog­
nized.

The second-operand address is not used to address
data; its rightmost six bits indicate the number of
bit positions to be shifted. The remainder of the
address is ignored.

The frrst operand is treated as a 64-bit signed
binary integer. The sign position of the even­
numbered register remains unchanged. The left­
most bit position of the odd-numbered register
contains a numeric bit, which participates in the
shift in the same manner as the other numeric bits.
Zeros are supplied to the vacated bit positions on
the right.

If one or more bits unlike the sign bit are shifted
out of bit position 1 of the even-numbered register,
an overflow occurs, and condition code 3 is set. If
the fixed-point-overflow mask bit is one, a program
interruption for fixed-point overflow occurs.

Resulting Condition Code:

o Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

Program Exceptions:

• Fixed-point overflow
• Specification

7 -42 ESAj370 Principles of Operation

Programming Notes:

1. An example of the use of the SHIFf LEFf

DOUBLE instruction is given in Appendix A.

2. The eight shift instructions provide the fol­
lowing three pairs of alternatives: left or right,
single or double, and signed or logical. The
signed shifts differ from the logical shifts in
that, in the signed shifts, overflow is recognized,
the condition code is set, and the leftmost bit
participates as a sign.

3. A zero shift amount in the two signed double­
shift operations provides a double-length sign
and magnitude test.

4. The base register participating in the generation
of the second-operand address permits indirect
specification of the shift amount. A zero in the
B 2 field indicates the absence of indirect shift
specification.

Shift Left Double Logical

'SO' I Rl I1111I B2 D2

o 8 12 16 20 31

The 64-bit frrst operand is shifted left the number
of bits specified by the second-operand address, and
the result is placed at the first-operand location.

Bits 12-15 of the instruction are ignored.

The R 1 field designates an even -odd pair of general
registers and must designate an even-numbered reg­
ister; otherwise, a specification exception is recog­
nized.

The second-operand address is not used to address
data; its rightm~st six bits indicate the number of
bit positions to be shifted. The remainder of the
address is ignored.

All 64 bits of the frrst operand participate· in the
shift. Bits shifted out orbit position 0 of the even­
numbered register are not inspected and are lost.
Zeros are supplied to the vacated bit positions on
the right.

Condition Code: The code remains unchanged.

Program Exceptions:

• Specification

Shift Left Single

SLA Rl ,02 (B2) [RS]

'8B' I Rl 111111 82 02

0 8 12 16 20 31

The 31-bit numeric part of the signed frrst operand
is shifted left the number of bits specified by the
second-operand address, and the result is placed at
the first-operand location.

Bits 12-15 of the instruction are ignored.

The second-operand address is not used to address
data; its rightmost six bits indicate the number of
bit positions to be shifted. The remainder of the
address is ignored.

The frrst operand is treated as a 32-bit signed
binary integer. The sign of the frrst operand
remains unchanged. All 31 numeric bits of the
operand participate in the left shift. Zeros are sup­
plied to the vacated bit positions on the right.

If one or more bits unlike the sign bit are shifted
out of bit position 1, an overflow occurs, and con­
dition code 3 is set. If the fixed-point-overflow
mask bit is one, a program interruption for fixed­
point overflow occurs.

Resulting Condition Code:

o Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

Program Exceptions:

• Fixed-point overflow

Programming Notes:

1. An example of the use of the SHIFf LEFf

SINGLE instruction is given in Appendix A.

2. For numbers with a value greater than or equal
to _230 and less than 2 30 , a left shift of one bit
position is equivalent to multiplying the
number by 2.

3. Shift amounts from 31 to 63 cause the entire
numeric part to be shifted out of the register,
leaving a result of the maximum negative
number or zero, depending on whether or not
the initial contents were negative.

Shift Left Single Logical

8 12 16 20 31

The 32-bit first operand is shifted left the number
of bits specified by the second-operand address, and
the result is placed at the frrst-operand location.

Bits 12-15 of the instruction are ignored.

The second-operand address is not used to address
data; its rightmost six bits indicate the number of
bit positions to be shifted. The remainder of the
address is ignored.

All 32 bits of the first operand participate in the
shift. Bits shifted out of bit position 0 are not
inspected and are lost. Zeros are supplied to the
vacated bit positions on the right.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Shift Right Double

'BE' I Rl I1111I B2 02

8 12 16 20 31

The 63-bit numeric part of the signed fust operand
is shifted right the number of bits specified by the
second-operand address, and the result is placed at
the frrst-operand location.

Bits 12-15 of the instruction are ignored.

The R 1 field designates an even -odd pair of general
registers and must designate an even-numbered reg-

Chapter 7. General Instructions 7 -43

ister; otherwise, a specification exception is recog­
nized.

The second-operand address is not used to address
data; its rightmost six bits indicate the number of
bit positions to be shifted. The remainder of the
address is ignored.

The frrst· operand is treated as a 64-bit signed
binary integer. The sign position of the even­
numbered register remains unchanged. The left­
most bit position of the odd-numbered register
contains a numeric bit; which participates in the
shift in the same manner as the other numeric bits.
Bits shifted out of bit position 31 of the odd­
numbered register are not inspected and are lost.
Bits equal to the sign are supplied to the vacated
bit positions on the left.

Resulting Condition Code:

o Result zero
1 Result less than zero
2 Result greater than zero
3

Program Exceptions:

• Specification

Shift Right Double Logical

SRDL Rl,02(B2) [RS]

8 12 16 213 31

The 64-bit frrst operand is shifted right the number
of bits specified by the second-operand address, and
the result is placed at the frrst-operand location.

Bits 12-15 of the instruction are ignored.

The Rl field designates an even-odd pair of general
registers and must designate an even-numbered reg­
ister; otherwise, a specification exception is recog­
nized.

The second-operand address is not used to address
data; its rightmost six bits indicate the number of

7-44 ESAj370 Principles of Operation

bit positions to be shifted; The remainder of the
address is ignored.

All 64 bits of the frrst operand participate in the
shift. Bits shifted out of bit position 31 of the odd­
numbered register are not inspected and are lost.
Zeros are supplied to the vacated bit positions on
the left.

Condition Code: The code remains unchanged.

Program Exceptions:

• Specification

Shift Right Single

SRA

'8A' I RII //111 B,

[RS]

13 8 12 16 213 31

The 31-bit numeric part of the signed first operand
is shifted right the number of bits specified by the
second-operand address, and the result is placed at
the frrst-operand location.

Bits 12-15 of the instruction are ignored.

The second-operand address is not used to address
data; its rightmost six bits indicate the number of
bit positions to be shifted. The remainder of the
address is ignored.

The frrst operand is treated as a 32-bit signed
binary integer. . The sign of the frrst operand
remains unchanged. All 31 numeric bits of the
operand participate in the right shift. Bits shifted
out of bit position 31 are not inspected and are
lost. Bits equal to the sign are supplied to the
vacated bit positions on the left.

Resulting Condition Code:

o Result zero
1 Result less than zero
2 Result greater than zero
3

Program Exceptions: None.

Programming Notes:

1. A right shift of one bit position is equivalent to
division by 2 with rounding downward. When
an even number is shifted right one position,
the result is equivalent to dividing the number
by 2. When an odd number is shifted right one
position, the result is equivalent to dividing the
ne~t lower number by 2. For example, + 5
shifted right by one bit position yields + 2,
whereas -5 yields -3.

2. Shift amounts from 31 to 63 cause the entire
numeric part to be shifted out of the register,
leaving a result of -lor zero, depending on
whether or not the initial contents were nega­
tive.

Shift Right Single Logical

'BB' I Rl IIIIII B2 D2

o 8 12 16 20 31

The 32-bit frrst operand is shifted right the number
of bits specified by the second-operand address, and
the result is placed at the frrst-operand location.

Bits 12-15 of the instruction are ignored.

The second-operand address is not used to address
data; its rightmost six bits indicate the number of
bit positions to be shifted. The remainder of the
address is ignored.

All 32 bits of the first operand participate in the
shift. Bits shifted out of bit position 31 are not
inspected and are lost. Zeros are supplied to the
vacated bit positions on the left.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Store

'59 ' I R 1 I X2 I B2 D2

o 8 12 16 20 31

The frrst operand is placed unchanged at the
second-operand location.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)

Store Access Multiple

o 8 12 16 20 31

The contents of the set of access registers starting
with access register R 1 and ending with access reg­
ister RJ are stored at the locations designated by the
second-operand address.

The storage area where the contents of the access
registers are placed starts at the location designated
by the second-operand address and continues
through as many storage. words as the number of
access registers specified. The contents of the
access registers are stored in ascending order of
their register numbers, starting with access register
R 1 and continuing up to and including access reg­
~ster RJ, with access register 0 following access reg-
1ster 15. The contents of the access registers remain
unchanged.

The second operand must be designated on a word
/boundary; otherwise, a specification exception is
recognized.

Condition Code: The. code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
-Specification

Chapter 7. General Instructions 7-45

Store Character

STC [RX]

, 42 ' 1 R. 1 x 21 B 2

13 8 12 16 213 31

Bits 24-31 of general register Rl are placed
unchanged at the second-operand location. The
second operand is one byte in length.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)

Store Characters under Mask

'BE' 1 R. 1 M, I B2 02

13 8 12 16 213 31

Bytes selected from general register Rl under
control of a mask are placed at contiguous byte
locations beginning at the second-operand address.

The contents of the M 3 field are used as a mask.
These four bits, left to right, correspond one for
one with the four bytes, left to right, of general reg­
ister R 1.' The bytes corresponding to ones in the
mask are placed in the same order at successive and
~ontiguous storage locations beginning at the
second-operand address. When the mask is not
zero, the length of the second operand is equal to
the number of ones in the mask. The contents of
the general register remain unchanged.

"When the mask is not zero, exceptions associated
with storage-operand accesses are recognized only
for the number of bytes specified by the mask.

When the mask is zero, the. single byte designated
by the second~operand address remains unchanged;
however, on some models, the value may be
fetched and subsequently stored back unchanged at
the same storage location. This update appears to

7 -46 ESAj370 Principles of Operation

be an interlocked-update reference as observed by
other CPUs.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)

Programming Notes:

1. An example of the use of the STORE CHARAC­
TERS UNDER MASK instruction is given in
AppendixA.

2. STORE CHARACTERS UNDER MASK with a mask
of 0111 may be used to store a three-byte
address, for example, in modifying the address
in a ccw.

3. STORE CHARACTERS UNDER MASK with a mask
of 1111, 0011, or 0001 performs the same func­
tion as STORE, STORE HALFWORD, or STORE
CHARACTER,' respectively. However, on most
models, the. performance of STORE CHARAC­
TERS UNDER MASK is slower.

4. Using STORE CHARACTERS UNDER MASK with
a zero mask should be avoided since this
instruction,. depending on the model, may
perform a fetch and store of the single byte des­
ignated by the second-operand address. This
reference is not interlocked against accesses by
channel programs. In addition, it may cause
any of the following to occur for the byte des­
ignated by the second-operand address: a PER
storage-alteration event may be recognized;
access exceptions may be recognized; and, pro­
vided no access exceptions exist, the change bit
may be set to one.

Store Clock

[S]

IB2e5 1

13 16 213 31

The current value of the TO D clock is stored at the
eight-byte field designated by the second-operand
address, provided the clock is in the set, stopped, or
not-set state.

Zeros are stored for the rightmost bit positions that
are not provided by the clock.

Zeros are stored at the operand location when the
. clock is in the error state or in the not-operational
state.

The quality of the clock value stored by the
instruction is indicated by the resultant condition­
code setting.

A serialization function is performed before the
value of the clock is fetched and again after the
value is placed in storage.

Resulting Condition Code:

o Clock in set state
I Clock in not-set state
2 Clock in error state
3 Clock in stopped state or not-operational state

Program Exceptions:

• Access (store, operand 2)

Programming Notes:

1. Bit position 31 of the clock is incremented
every 1.048576 seconds; hence, for timing
applications involving human responses, the
leftmost clock word may provide sufficient
resolution.

2. Condition code 0 normally indicates that the
clock has been set by the control program.
Accordingly, the value may be used in elapsed­
time measurements and as a valid time-of-day
and calendar indication. Condition code I
indicates that the clock value is the elapsed
time since the power for the clock was turned
on. In this case, the value may be used in
elapsed-time measurements but is not a valid
time-of-day indication. Condition codes 2 and
3 mean that the value provided by STORE
CLOCK cannot be used for time measurement
or indication.

3. Condition code 3 indicates that the clock is in
either the stopped state or the not-operational
state. These two states can normally be distin­
guished because an all-zero value is stored
when the clock is in the not-operational state.

4. If a problem program written for ESA/370 is to
be executed also on a system in the System/370
mode, then the program should take into
account that, in the System/370 mode, the

value stored when the condition code is 2 is
not necessarily zero.

Store Halfword

[RX]

, 49 ' I R 1 I x 2 I B 2

o 8 12 15 20 31

Bits 16-31 of general register Rl are placed
unchanged at the second-operand location. The
second operand is two bytes in length.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)

Store Multiple

'90' I Rl I R, I B2 02

o 8 12 15 20 31

The contents of the set of general registers starting
with general register R 1 and ending with general
register R3 are placed in the storage area beginning
at the location designated by the second-operand
address and continuing through as many locations
as needed.

The general registers are stored in the ascending
order of register numbers, starting with general reg­
ister R 1 and continuing up to and including general
registerR3, with general register 0 following general
register 15.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)

Programming Note: An example of the use of the
STORE MULTIPLE instruction is given in Appendix
A.

Chapter 7. General Instructions 7-47

Subtract

SR [RR]

'lB' I Rl I R. I
o 8 12 15

'5B' I Rl I X2 I B2 02

o 8 12 16 20 31

The second operand is subtracted from the frrst
operand, and the difference is placed at the frrst­
operand location. The operands and the difference
are treated as 32-bit signed binary integers.

When there is an overflow, the result is obtained by
allowing any carry into the sign-bit position and
ignoring any carry out of the sign-bit position, and
condition code 3 is set. If the fixed-point-overflow
mask is one, a program interruption for fixed-point
overflow occurs.

Resulting Condition Code:

o Result zero; no overflow
I Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

Program Exceptions:

• Access (fetch, operand 2 of s only)
• Fixed-point overflow

Programming Notes:

1. When, in the RR fonnat, Rl and R2 designate
the same register, subtracting is equivalent to
clearing the register.

2. Subtracting a maximum negative number from
another maximum negative number gives a
zero result and no overflow.

7-48 ESA/370 Principles of Operation

Subtract Halfword

SH [RX]

'4B' I RI I X2 I B2

o 8 12 16 20 31

The second operand is subtracted from the frrst
operand, and the difference is placed at the frrst­
operand location. The second operand is two bytes
in length and is treated as a 16-bit signed binary
integer. The frrst operand and the difference are
treated as 32-bit signed binary integers.

When there is an overflow, the result is obtained by
allowing any carry into the sign-bit position and
ignoring any carry out of the sign-bit position, and
condition code 3 is set. If the fixed-point-overflow
mask is one, a program interruption for fixed-point
overflow occurs.

Resulting Condition Code:

o Result zero; no overflow
I Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

Program Exceptions:

• Access (fetch, operand 2)
• Fixed-point overflow

Subtract Logical

SLR [RR]

'IF' I Rl I R2 I
o 8 12 15

'5F' I Rl I X2 I B2 02

o 8 12 16 20 31

The second operand is subtracted from the first
operand, and the difference is placed at the frrst-

operand location. The operands and the difference
are treated as 32-bit unsigned binary integers.

Resulting Condition Code:

o
1 Result not zero; no carry
2 Result zero; carry
3 Result not zero; carry

Program Exceptions:

• Access (fetch, operand 2 of SL only)

Programming Notes:

1. Logical subtraction is perfonned by adding the
one's complement of the second operand and a
value of one to the frrst operand. The use of
the one's complement and the value of one
instead of the two's complement of the second
operand results in a carry when the second
operand is zero.

2. SUBTRACT LOGICAL differs from SUBTRACT
only in the meaning of the condition code and
in the absence of the interruption for overflow.

3. A zero difference is always accompanied by a
carry out of bit position O.

4. The condition-code setting for SUBTRACT
LOGICAL can also be interpreted as indicating
the presence and absence of a borrow, as
follows:

I Result not zero; borrow
2 Result zero; no borrow
3 Result not zero; no borrow

Supervisor Call

5VC [RR]

'0A'

8 15

The instruction causes a supervisor-call inter­
ruption, with the I field of the instruction providing
the rightmost byte of the interruption code.

Bits 8-15 of the instruction, '- with eight zeros
appended on the left, are placed in the supervisor­

., call interruption code that is stored in the course of
the interruption. See "Supervisor-Call
Interruption" in Chapter 6, "Interruptions."

A serialization and checkpoint-synchronization
function is perfonned.

Condition Code: The code remains unchanged
and is saved as part of the old psw. A new condi­
tion code is loaded as part of the supervisor-call
interruption.

Program Exceptions: None.

Test and Set

T5 D2 (B2) [5]

'93' 1////////1 B2 D2

0 8 16 20 31

The leftmost bit (bit position 0) of the byte located
at the second-operand address is used to set the
condition code, and then the byte is set to all ones.

Bits 8-15 of the instruction are ignored.

The byte in storage is set to all ones as it is fetched
for the testing of bit position O. This update
appears to be an interlocked-update reference as
observed by other CPUs.

A serialization function is perfonned before the
byte is fetched and again after the storing of all
ones.

Resulting Condition Code:

o Leftmost bit zero
I Leftmost bit one
2
3

Program Exceptions:

• Access (fetch and store, operand 2)

Programming Notes:

1. TEST AND SET may be used for controlled
sharing of a common storage area by programs
operating on different cpus. This instruction is
provided primarily for compatibility with pro­
grams written for System/360. The instructions
COMPARE AND SWAP and COMPARE DOUBLE
AND SWAP provide functions which are more
suitable for sharing among programs on a

Chapter 7. General Instructions 7 -49

single cPU or for programs that may be inter­
rupted. See the description of these
instructions and the associated programming
notes for details.

2. TEST AND SET does not interlock against
storage accesses by channel programs. There­
fore, the instruction should not be used to
update a location. into which a channel
program may store, since the channel-program
data may be lost.

Test under Mask

TM [SI]

1911

o 8 16 20 31

A mask is used to select bits of the frrst operand,
and the result is indicated in the condition code.

The byte of immediate data, 12, is used as an
eight-bit mask. The bits of the mask are made to
correspond one for one with the bits of the byte in
storage designated by the frrst-operand address.

A mask bit of one indicates that the storage bit is
to be tested. When the mask bit is zero, the
storage bit is ignored. When all storage bits thus
selected are zero, condition code 0 is set. Condi­
tion code 0 is also set when the mask is all zeros.
When the selected bits are all ones, condition code
3 is set; otherwise, condition code lis set.

Access exceptions associated with the storage
operand are recognized for one byte even when the
mask is all zeros.

Resulting Condition Code:

o Selected bits all zeros; or mask bits all zeros
1 Selected bits mixed zeros and ones
2
3 Selected bits all ones

Program Exceptions:

• Access (fetch, operand 1)

Programming Note: An example of the use of the
TEST UNDER MASK instruction is given in Appendix
A.

7-50 ESAj370 Principles of Operation

Translate

[SS]

'DC' L I B. I bHb~
~--~----~~I /
o 8 16 20 32 36 47

The bytes of the frrst operand are used as eight-bit
arguments to reference a list designated by the
second-operand address. Each function byte
selected from the list replaces the corresponding
argument in the frrst operand.

The L field specifies the length of only the frrst
operand.

The bytes of the frrst operand are selected one by
one for translation, proceeding left to right. Each
argument byte is added to the initial secc.aJ­
operand address. The addition is performed fol­
lowing the rules fo~ address arithmetic, with the
argument byte treated as an eight-bit unsigned
binary integer and extended with zeros on the left.
The sum is used as the address of the function
byte, which then replaces the original argument
byte.

The operation proceeds until the frrst-operand field
is exhausted. The list is not altered unless an
overlap occurs.

When the operands overlap, the result is obtained
as if each result byte were stored immediately after
fetching the corresponding function byte.

Access exceptions are recognized only for those
bytes in the second operand which are actually
required.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2; fetch and store,
operand 1)

Programming Notes:

1. An example of the use of the TRANSLATE

instruction is given in Appendix A.

2. TRANSLATE may be used to convert data from"
one code to another code.

3. The instruction may also be used to rearrange

data. This may be accomplished by placing a
pattern in the destination area, by designating
the pattern as the first operand of TRANSLATE,

and by designating the data that is to be rear­
ranged as the second operand. Each byte of
the pattern contains an eight-bit number speci­
fying the byte destined for this position. Thus,
when the instruction is executed, the pattern
selects the bytes of the second operand in the
desired order.

4. Because each eight-bit argument byte is added
to the initial second -operand address to obtain
the address of a functiqh byte, the list may
contain 256 bytes. In cases where it is known
that not all eight-bit argument values will
occur, it is possible to reduce the size of the
list. .

5. Significant performance degradation is possible
when, with OAT on, the second-operand
address of TRANSLATE designates a location
that is less than 256 bytes to the left of a
4K-byte boundary. This is because the
machine may perform a trial execution of the
instruction to determine if the second operand
actually crosses the boundary.

6. The fetch and subsequent store accesses to a
particular byte in the frrst-operand field do not
necessarily occur one immediately after the
other. Thus, this instruction cannot be safely
used to update a location in storage if the pos­
sibility exists that another CPU or a channel
program may also be updating the location.
An example of this effect is shown for OR (01)

in the section "Multiprogramming and Multi­
processing Examples" in Appendix A.

7. The storage-operand references of TRANSLATE

may be multiple-access references. (See the
section "Storage-Operand Consistency" in
Chapter 5, "Program Execution.")

Translate and Test

TRT

'----'D_D,---'-_L-LI_B_l ...0.-1 ~H~~
o 8 16 20 32 36 47

The bytes of the frrst operand are used as eight-bit
arguments to select function bytes from a list desig­
nated by the second-operand address. The frrst
nonzero function byte is inserted in general register

2, and the related argument address in general reg­
ister 1.

The L field specifies the length of only the frrst
operand.

The bytes of the frrst operand are selected one by
one for translation, proceeding from left to right.
The frrst operand remains unchanged in storage.
Calculation of the. address of the function byte is
performed as in the TRANSLATE instruction. The
function byte retrieved from the list is inspected for
a value of zero.

When the function byte is zero, the operation pro­
ceeds with the next byte of the frrst operand.
When the frrst-operand field is exhausted before a
nonzero function byte is encountered, the operation
is completed by setting condition code O. The con­
tents of general registers 1 and 2 remain unchanged.

When the function byte is nonzero, the operation is
completed by inserting the function byte in general
register 2 and the related argument address in
general register 1. This address points to the argu­
ment byte last translated. The function byte
replaces bits 24-31 of general register 2. In the
24-bit addressing mode, the address replaces bits
8-31, and bits 0-7 of general register 1 remain
unchanged. In the 31-bit addressing mode, the
address replaces bits 1-31, and bit 0 of general reg­
ister 1 is set to zero. In both modes, bits 0-23 of
general register 2 remain unchanged.

When the function byte is nonzero, either condition
code I or 2 is set, depending on whether the argu­
ment byte is the rightmost byte of the frrst operand.
Condition code 1 is set if one or more argument
bytes remain to be translated. Condition code 2 is
set if no more argument bytes remain.

The contents of access register 1 always remain
unchanged.

Access ex.ceptions are recognized only for those
bytes in the second operand which are actually
required. Acce~s exceptions are not recognized for
those bytes in the frrst operand which are to the
right of the frrst byte for which a nonzero function
byte is obtained.

Resulting Condition Code:

o All function bytes zero
1 Nonzero function byte; frrst-operand field not

exhausted

. Chapter 7. General Instructions 7 -51

2 Nonzero function byte; frrst-operand field
exhausted

3

Program Exceptions:

• Access (fetch, operands 1 and 2)

Programming Notes:

1. An example of the use of the TRANSLATE AND

TEST instruction is given in Appendix A.

2. TRANSLATE AND TEST may be used to scan the
frrst operand for characters with special
meaning. The second operand, or list, is set up
with all-zero function bytes for those characters
to be skipped over and with nonzero function
bytes for the characters to be detected.

Unpack
"

The format of the second operand is changed from
packed to zoned, and the result is placed at the
frrst-operand location. The packed and zoned
formats are described in Chapter 8, "Decimal
Instructions. "

The second operand is treated as though it had the
packed format. Its digits and sign are placed
unchanged in the frrst-operand location, using the
zoned format. Zone bits with coding of 1111 are
supplied for all bytes except the rightmost byte, the
zone of which receives the sign of. the second
operand. The sign and digits are not checked for
valid codes.

The result is obtained as if the operands were proc­
essed right to left. When necessary, the second
operand is considered to be extended on the left
with zeros. If the frrst-operand field is too short to
contain all digits of the second operand, the
remaining leftmost portion of the second operand is
ignored. Access exceptions for the unused portion
of the second operand mayor may not be indi­
cated.

When the operands overlap, the result is obtained
as if the operands were processed one byte at a

7-52 ESAj370 Principles of Operation

time and as if the frrst result byte were stored
immediately after fetching the frrst operand byte.
The entire rightmost second-operand byte is used
in forming the frrst result byte. For the remainder
of the field, information for two result bytes is
obtained from a single second-operand byte, and
execution proceeds as if the leftmost four bits of the
byte were to remain available for the next result
byte and need not be refetched. Thus, the result is
as if two result bytes were to be stored immediately
after fetching a single operand byte.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2; store, operand 1)

Programming Notes:

1. An example of the use of the UNPACK instruc­
tion is given in Appendix A.

2. A field that is to be unpacked can be destroyed
by improper overlapping. To save storage
space for unpacking by overlapping the oper­
ands, the rightmost byte of the fust operand
must be to the right of the rightmost byte of
the second operand by the number of bytes in
the second operand minus 2. If only one or
two bytes are to be unpacked, the rightmost
bytes of the two operands may coincide.

3. The storage-operand references of UNPACK

may be multiple-access references. (See the
section "Storage-Operand Consistency" in
Chapter 5, "Program Execution.")

Update Tree

UPT [E]

'0102'

o 15

The doubleword nodes of a tree in storage are
examined successively on a path toward the base of
the tree, and the contents of general-register pair
0-1 are conditionally interchanged with the contents
of the nodes so as to give a unique maximum
logical value in general register O.

General register 4 contains the base address of the
tree, and general register 5 contains the index of a

node whose parent node will be examined fIrst.
The initial contents of general registers 4 and 5
must be a multiple of 8; otherwise, a specifIcation
exception is recognized.

In the access-register mode, access register 4 speci­
fies the address space containing the tree.

This instruction may be interrupted between units
of operation. The condition code is unpredictable
if the instruction is interrupted.

A unit of operation begins by shifting the contents
of general register 5 right logically one position and
then setting bit 29 to zero. However, general reg­
ister 5 remains unchanged if the execution of a unit
of "operation is nullifIed or suppressed. If after
shifting and setting bit 29 to zero, the contents of
general register 5 are zero, the instruction is com­
pleted' and condition code 1 is set; otherwise, the
unit of operation continues.

Bit 0 of general register 0 is tested. If bit 0 of reg­
ister 0 is one, the instruction is completed, and con­
dition code 3 is set.

If bit 0 of general register 0 is zero, the sum of the
contents of general registers 4 and 5 is used as the
intennediate value for nonnal operand address gen­
eration. The generated address is the address of a
node in storage.

The contents of general register 0 are logically com­
pared with the contents of the fust word of the cur­
rently addressed node. If the register operand is
low, the contents of general-register pair 0-1 are
interchanged with those of the node, and a unit of
operation is completed. If the register operand is
high, no additional action is taken, and the unit of
operation is completed. If the compare values are
equal, general-register pair 2-3 is loaded from the
currently addressed node, the instruction is com­
pleted, and condition code 0 is set.

In those cases when the value in the fust word of
the node is less than or equal to the value in the
register, the contents of the node remain
unchanged. However, in some models, these con­
tents may be fetched and subsequently stored back.

Access exceptions are recognized only for one
doubleword node at a time. Access exceptions,
change-bit action, and PER storage alteration do
not occur for· subsequent nodes until the previous
node has been successfully compared and updated.

Access exceptions, change-bit action, and PER

storage alteration do not occur if a specification
exception exists.

Resulting Condition Code:

o Equal compare values at currently addressed
node

2

No equal compare values found on path, or no
comparison made

3 General register 5 nonzero and general register
o negative

Program Exceptions:

• Access (fetch and store, nodes of tree)
• Specification

Programming Notes:

1. For use in sorting, when equal compare values
have been found, the contents of general regis­
ters 1 and 3 can be appropriate (depending on
the contents of the tree) for the subsequent
execution of COMPARE AND FORM CODEWORD.

The contents of general register 2, shifted right
16 bit positions, can be similarly appropriate,
and they can provide for minimal recomparison
of partially equal keys.

2. The program should avoid placing a nonzero
value in bit positions 0-6 of general register 5
when in the 24-bit addressing mode. If any bit
in bit positions 0-6 is a one, the nodes of the
tree will not be examined successively.

3. The storage-operand references for UPDATE

TREE may be multiple-access references. (See
the section "Storage-Operand Consistency" in
Chapter 5, "Program Execution.")

4. In those cases when the value in the fust word
of the node is less than or equal to the value in
the register, depending on the model, the con­
tents of the node may be fetched and subse­
quently stored back. As a result, any of the
following may occur for the storage location
containing the node: a PER storage-alteration
event may be recognized; a protection excep­
tion for storing may be recognized; and, pro­
vided no access exceptions exist, the change bit
may be set to one.

5. Special precautions should be taken when
UPDATE TREE is made the target of EXECUTE.

See the programming note concerning interrup­
tible instructions under EXECUTE.

Chapter 7. General Instructions 7 -53

6. Further programming notes concerning inter­
ruptible instructions are included in the section
"Interruptible Instructions" in Chapter 5,
"Program Execution."

7. Figure 7-6 is a summary of the operation of
UPDATE TREE.

Bits 29-31 of GR4 and GRS all zeros

Yes
Unit-of-
operati on 1--------_1
boundary

GRS shifted ri ght one positi on - TEMPWORD1

B - 8i t 29 of TEMPWORD1

.---------, Yes

Specification Exception

1-------.... 9 - GRS

No 1 - Cond Code

Yes
8i t B of GRB one 1-----------,

No

GR4 + TEMPWORD1 - TEMPADDRESS

Fetch doub1eword from location in
storage designated by TEMPADDRESS;

8i ts 9-31 - TEMPWORD2

8i ts 32-64 - TEMPWORD3

l

GRB hi gh ,...-------------, GR9 equal

GR9 low

Store contents of GRe and GR1 in
doub1eword designated by TEMPADDRESS

TEMPWORD2 - GRB

TEMPWORD3 - GR1

Figure 7-6. Execution of UPDATE TREE

7 -54 ESA/370 Principles of Operation

TEMPWORD1 - GRS

3 - Cond Code

End operation

TEMPWORD2 - GR2

TEMPWORD3 - GR3

9 - Cond Code

End operati on

Chapter 8. Decimal Instructions

Decimal-Number Formats 8-1
Zoned Format 8-1
Packed Format 8-1
Decimal Codes 8-2

Decimal Operations 8-2
Decimal-Arithmetic Instructions 8-2
Editing Instructions 8-3
Execution of Decimal Instructions 8-3
Other Instructions for Decimal Operands 8-3

Instructions 8-3

The decimal instructions of this chapter perform
arithmetic and editing operations on decimal data.
Additional operations on decimal data are provided
by several of the instructions in Chapter 7,
"General Instructions." Decimal operands always
reside in storage, and all decimal instructions use
the ss instruction format. Decimal operands
occupy storage fields that can start on any byte
boundary.

Decimal-Number Formats
Decimal numbers may be represented in either the
zoned or packed format. Both decimal-number
formats are of variable length; the instructions used
to operate on decimal data each specify the length
of their operands and results. Each byte of either
format consists of a pair of four-bit codes; the
four-bit codes include decimal-digit codes, sign
codes, and a zone code.

Zoned Format

I liN I liN I ; I liN Il/sl N I

In the zoned format, the rightmost four bits of a
byte are called the numeric bits (N) and normally
consist of a code representing a decimal digit. The
leftmost four bits of a byte are called the zone bits
(z), except for the rightmost byte of a decimal
operand, where these bits may be treated either as a
zone or as a sign (s).

Add Decimal ... 8-5
Compare Decimal 8-5
Divide Decimal 8-6
Edit 8-6
Edit and Mark 8-10
Multiply Decimal 8-10
Shift and Round Decimal 8-11
Subtract Decimal 8-12
Zero and Add 8-12

Decimal digits in the zoned format may be part of
a larger character set, which includes also alpha­
betic and special characters. The zoned format is,
therefore, suitable for input, editing, and output of
numeric data in human-readable form. There are
no decimal-arithmetic instructions which operate
directly on decimal numbers in the zoned format;
such numbers must frrst be converted to the packed
format.

The editing instructions produce a result of up to
256 bytes; each byte may be a decimal digit in the
zoned format, a message byte, or a fill byte.

Packed Format

I 0 I 0 I 0 I 0 I ; I 0 I 0 I 0 I s I

In the packed format, each byte contains two
decimal digits (0), except for the rightmost byte,
which contains a sign to the right of a decimal
digit. Decimal arithmetic is performed with oper­
ands in the packed format and generates results in
the packed format.

The packed-format operands and results of
decimal-arithmetic instructions may be up to 16
bytes (31 digits and sign), except that the maximum
length of a multiplier or divisor is eight bytes (15
digits and sign). In division, the sum of the lengths
of the quotient and remainder may be from two to
16 bytes. The editing instructions can fetch as
many as 256 decimal digits from one or more
decimal numbers of variable length, each in the
packed format.

Chapter 8. Decimal Instructions 8-1

Decimal Codes

The decimal digits 0-9 have the binary encoding
0000-1001.

The preferred sign codes are 1100 for plus and 1101
for minus. These are the sign codes generated for
the results of the decimal-arithmetic instructions
and the CONVERT TO DECIMAL instruction.

Alternate sign codes are also recognized as valid in
the sign position: 1010, 1110, and 1111 are alter­
nate codes for plus, and 1011 is an alternate code
for minus. Alternate sign codes are accepted for
any decimal source operand, but are not generated
in the completed result of a decimal-arithmetic
instruction or CONVERT TO DECIMAL. This is true
even when an operand remains otherwise
unchanged, such as when adding zero to a number.
An alternate sign code is, however, left unchanged
by MOVE NUMERICS, MOVE WITH OFFSET, MOVE

ZONES, PACK, and UNPACK.

When an invalid sign or digit code is detected, a
data exception is recognized. For the decimal­
arithmetic instructions and CONVERT TO BINARY,

the action taken for a data exception depends on
whether a sign code is invalid. When a sign code is
invalid, the operation is suppressed regardless of
whether any other condition causing a data excep­
tion exists. When an invalid digit code is detected
but no sign code is invalid, the operation is termi­
nated.

For the editing instructions EDIT and EDIT AND

MARK, an invalid sign code is not recognized. The
operation is terminated for a data exception due to
an invalid digit code. No validity checking is per­
formed by MOVE NUMERICS, MOVE WITH OFFSET,

MOVE ZONES, PACK, and UNPACK.

The zone code 1111 is generated in the left four bit
positions of each byte representing a zone and a
decimal digit in zoned-fonnat results. Zoned­
format results are produced by EDIT, EDIT AND

MARK, and UNPACK. For EDIT and EDIT AND

MARK, each result byte representing a zoned-fonnat
decimal digit contains the zone code 1111 in the left
four bit positions and the decimal-digit code in the
right four bit positions. For UNPACK, zone bits
with a coding of 1111 are supplied for all bytes
except the rightmost byte, the zone of which
receives the sign.

8·2 ESAj370 Principles of Operation

The meaning of the decimal codes is summarized in
Figure 8-1

Programming Note: Since 1111 is both the zone
code and an alternate code for plus, unsigned (posi­
tive) decimal numbers may be represented in the
zoned format with 1111 zone codes in all byte posi­
tions. The result of the PACK instruction con­
verting such a number to the packed format may
be used directly as an operand for decimal
instructions.

Recognized As

Code Digit Sign

0000 0 Invalid
0001 1 Invalid
0010 2 Invalid
0011 3 Invalid
0100 4 Invalid
0101 5 Invalid
0110 6 Invalid
0111 7 Invalid
1000 8 Invalid
1001 9 Invalid
1010 Invalid Pl us
1011 Invalid Minus
1100 Invalid Plus (preferred)
1101 Invalid Minus (preferred)
1110 Invalid Plus
1111 Invalid Plus (zone)

Figure 8-1. Summary of Digit and Sign Codes

Decimal Operations
The decimal instructions in this chapter consist of
two classes, the decimal-arithmetic instructions and
the editing instructions.

Decimal-Arithmetic Instructions

The decimal-arithmetic instructions perform addi­
tion, subtraction, multiplication, division, compar­
ison, and shifting.

Operands of the decimal-arithmetic instructions are
in the packed format and are treated as signed
decimal integers. A decimal integer is represented
in true form as an absolute value with a separate
plus or minus sign. It contains an odd number of
decimal digits, from one to 31, and the sign; this
corresponds to an operand length of one to 16
bytes.

A decimal zero nonnally has a plus sign, but multi­
plication, division, and overflow may produce a
zero value with a minus sign. Such a negative zero
is.a valid operand and is treated as equal to a posi­
tive zero by COMPARE DECIMAL.

The lengths of the two operands specified in the
instruction need not be the same. If necessary, the
shorter operand is considered to be extended with
zeros on the left. Results, however, cannot exceed
the frrst-operand length as specified in the instruc­
tion.

When a carry or leftmost nonzero digits of the
result are lost because the frrst-operand field is too
short, the result is obtained by ignoring the over­
flow digits, condition code 3 is set, and, if the
decimal-overflow mask bit is one, a program inter­
ruption for decimal overflow occurs. The operand
lengths alone are not an indication of overflow;
nonzero digits must have been lost during the oper­
ation.

The operands of decimal-arithmetic instructions
should not overlap at all or should have coincident
rightmost bytes. In ZERO AND ADD, the operands
may also overlap in such a manner that the right­
most byte of the frrst operand (which becomes the
result) is to the right of the rightmost byte of the
second operand. For these cases of proper overlap,
the result is obtained as if operands were processed
right to left. Because the codes for digits and signs
are verified during the perfonnance of the arith­
metic, improperly overlapping operands are recog­
nized as data exceptions.

Programming Note: A packed decimal number in
storage may be designated as both the frrst and
second operand of ADD DECIMAL, COMPARE

DECIMAL, DIVIDE DECIMAL, MULTIPLY DECIMAL,

SUBTRACT DECIMAL, or ZERO AND ADD. Thus, a
decimal number may be added to itself, compared
with itself, and so forth; SUBTRACT DECIMAL may
be used to set a decimal field in storage to zero,
and, for MULTIPLY DECIMAL, a decimal number
may be squared in place.

Editing Instructions

The editing instructions are ED IT and EDIT AND

MARK. For these instructions, only the frrst
operand (the pattern) has an explicitly specified
length. The second operand (the source) is consid­
ered to have as many digits as necessary for the
completion of the operation.

Overlapping operands for the editing instructions
yield unpredictable results.

Execution of Decimal Instructions

During the execution of a decimal instruction, all
bytes of the operands are not necessarily accessed
concurrently, and the fetch and store accesses to a
single location do not necessarily occur one imme­
diately after the other. Furthermore, for decimal
instructions, data in source fields may be accessed
more than once, and intermediate values may be
placed in the result field that may differ from the
original operand and fmal result values. (See the
section "Storage-Operand Consistency" in Chapter
5, "Program Execution.") Thus, in a multiproc­
essing configuration, an instruction such as ADD

DECIMAL cannot be safely used to update a shared
storage location when the possibility exists that
another CPU may also be updating that location.

Other Instructions for Decimal
Operands

In addition to the decimal instructions in this
chapter, MOVE NUMERICS and MOVE ZONES are
provided for operating on data of lengths up to 256
bytes in the zoned format. Two instructions are
provided for converting data between the zoned
and packed formats: PACK transforms zoned data
of lengths up to 16 bytes into packed data, and
UNPACK performs the reverse transformation.
MOVE WITH OFFSET can operate on packed data of
lengths up to 16 bytes. Two instructions are pro­
vided for conversion between the packed-decimal
and signed-binary-integer formats. CONVERT TO

BINARY converts packed decimal to binary, and
CONVERT TO DECIMAL converts binary to packed
decimal; the length of the packed decimal operand
of these instructions is eight bytes (15 digits and
sign). These seven instructions are not considered
to be decimal instructions and are described in
Chapter 7, "General Instructions." The editing
instructions in this chapter may also be used to
change data from the packed to the zoned format.

Instructions
The decimal instructions and their mnemonics,
formats, and operation codes are listed in
Figure 8-2 on page 8-4. The figure also indicates
when the condition code is set, the instruction
fields that designate access registers, and the excep-

Chapter 8. Decimal Instructions 8-3

tional conditions in operand designations, data, or
results that cause a program interruption.

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic

Mne-
Name monic

.

ADD DECIMAL AP SS C
COMPARE DECIMAL CP SS C
DIVIDE DECIMAL DP SS
EDIT ED SS C
EDIT AND MARK EDMK SS C

MULTIPLY DECIMAL MP SS
SHIFT AND ROUND DECIMAL SRP SS C
SUBTRACT DECIMAL SP SS C
ZERO AND ADD ZAP SS C

Explanation:

A Access exceptions for logical addresses.

A
A
A
A
A

A
A
A
A

operand designation for the assembler language are
shown with each instruction. For ADD DECIMAL,

for . example, AP is the mnemonic and
Dl{Ll,Bl),D2{L2.B2) the operand designation.

Op
Characteristics Code

D DF ST Bl B2 FA
D Bl B2 F9

SP D DK ST Bl B2 FD
D ST Bl B2 DE
D G1 R ST Bl B2 OF

SP D ST Bl B2 FC
D DF ST Bl Fe
D DF ST Bl B2 FB
D DF ST Bl B2 Fa

Bl B1 field designates an access register in the access-register mode.
B2 B2 field designates an access register in the access-register mode.
C Condition code is set.
0 Data exception.
OF Decimal-overflow exception. .
OK Decimal-divide exception.
G1 Instruction execution includes the implied use of general register 1.
R PER general-register-alteration event.
SP Specification exception.
SS SS instruction format.
ST PER storage-alteration event.

Figure 8-2. Summary of Decimal Instructions

8-4 ESAj370 Principles of Operation

Add Decimal

AP [SS]

L---'FA_' ..1..-1 L----I' I_L2--LI_Bl--1-1 ~H~;]
o 8 12 16 20 32 36 47

The second operand is added to the frrst operand,
and the resulting sum is placed at the frrst-operand
location. The operands and result are in the
packed format.

Addition is algebraic, taking into account the signs
and all digits of both operands. All sign and digit
codes are checked for validity.

If the frrst operand is too short to contain all left­
most nonzero digits of the sum, decimal overflow
occurs. The operation is completed. The result is
obtained by ignoring the overflow digits, and condi­
tion code 3 is set. If the decimal-overflow mask is
one, a program interruption for decimal overflow
occurs.

The sign of the sum is determined by the rules of
algebra. In the absence of overflow, the sign of a
zero result is made positive. If overflow occurs, a
zero result is given either a positive or negative
sign, as determined by what the sign of the correct
sum would have been.

Resulting Condition Code:

o Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

Program Exceptions:

• Access (fetch, operand 2; fetch and store,
operand 1)

• Data
• Decimal overflow

Programming Note: An example of the use of the
ADD DECIMAL instruction is given in Appendix A.

Compare Decimal

CP [SS]

~'F9_' ..1..-1 L--I,' I_L2---,-I_Bl--,--1 ~H~;]
o 8 12 16 20 32 36 47

The first operand is compared with the second
operand, and the result is indicated in the condition
code. The operands are in the packed format.

Comparison is algebraic and follows the procedure
for decimal subtraction, except that both operands
remain unchanged. When the difference is zero, the
operands are equal. When a nonzero difference is
positive or negative, the frrst operand is high or
low, respectively.

Overflow cannot occur because the difference is dis­
carded.

All sign and digit codes are checked for validity.

Resulting Condition Code:

o Operands equal
1 First operand low
2 First operand high
3

Program Exceptions:

• Access (fetch, operands 1 and 2)
• Data

Programming Notes:

1. An example of the use of the COMPARE
DECIMAL instruction is given in Appendix A.

2. The preferred and alternate sign codes for a
particular sign are treated as equivalent for
comparison purposes.

3. A negative zero and a positive zero compare
equal.

Chapter 8. Decimal Instructions 8-5

Divide Decimal

DP

,----I FD_' --I-I_L 1---,--I_L2 --,--I _B 1 -,--I ~H~~
8 8 12 16 28 32 36 47

The fIrst operand (the dividend) is divided by the
second operand (the divisor). The resulting quo­
tient and remainder are placed at the fIrst-operand
location. The operands and results are in the
packed format.

The quotient is placed leftmost in the fIrst-operand
location. The number of bytes in the quotient field
is equal to the difference between the dividend and
divisor lengths (Ll - L2). The remainder is placed
rightmost in the fIrst-operand location and has a
length equal to the divisor length. Together, the
quotient and remainder fields occupy the entire fIrst
operand; therefore, the address of the quotient is
the address of the fIrst operand.

The divisor length cannot exceed 15 digits and sign
(L2 not greater than seven) and must be less than
the dividend length (L2 less than Ll); otherwise, a ~
specification exception is recognized.

The dividend, divisor, quotient, and remainder are
each signed decimal integers in the packed format
and are right-aligned in their fields. All sign and
digit codes of the dividend and divisor are checked
for validity.

The sign of the quotient is determined by the rules
of algebra from the dividend and divisor signs. The
sign of the remainder has the same value as the div­
idend sign. These rules hold even when the quo­
tient or remainder is zero.

Overflow cannot occur. If the divisor is zero or the
quotient is too large to be represented by the
number of digits specified, a decimal-divide excep­
tion is recognized. This includes the case of divi­
sion of zero by zero. The decimal-divide exception
is indicated only if the sign codes of both the divi­
dend and divisor are valid, and only if the digit or
digits used in establishing the exception are valid.

Condition Code: The code remains unchanged.

8-6 ESA/370 Principles of Operation

Program Exceptions:

• Access (fetch, operand 2; fetch and store,
operand 1)

• Data
• Decimal divide
• Specification

Programming Notes:

1. An example of the use of the DIVIDE DECIMAL

instruction is given in Appendix A.

2. The dividend cannot exceed 31 digits and sign.
Since the remainder cannot be shorter than one
digit and sign, the quotient cannot exceed 29
digits and sign.

3. The condition for a decimal-divide exception
can be determined by a trial comparison. The
leftmost digit of the divisor is aligned one digit
to the right of the leftmost dividend digit.
When the divisor, so aligned, is less than or
equal to the dividend, ignoring signs, a divide
exception is indicated.

4. If a data exception does not exist, a decimal­
divide exception occurs when the leftmost divi­
dend digit is not zero.

Edit

ED

'---ID_EI--'-_L----'-I_B_l ..L.-I ~H~~
8 8 16 28 32 36 47

The second operand (the source), which normally
contains one or more decimal numbers in the
packed format, is changed to the zoned format and
modified under the control of the fIrst operand (the
pattern). The edited result replaces the first
operand~

The length field specifies the length of· the fIrst
operand, which may contain bytes of any value.

The length of the source is determined by the oper­
ation according to the contents of the pattern. The
source normally consists of one or more decimal
numbers, each in the packed format. The leftmost
four bits of each source byte must specify a
decimal-digit code (0000-1001); a sign code
(1010-1111) is recognized as a data exception. The
rightmost four bits may specify either a sign code

or a decimal-digit code. Access and data exceptions
are recognized only for those bytes in the second
operand which are actually required.

The result is obtained as if both operands were
processed left to right one byte at a time. Overlap­
ping pattern and source fields give unpredictable
results.

During the editing process, each byte of the pattern
is affected in one of three ways:

1. It is left unchanged.

2. It is replaced by a source digit expanded to the
zoned fonnat.

3. It is replaced by the frrst byte in the pattern,
called the fill byte.

Which of the three actions takes place is deter­
mined by one or more of the following: the type of
the pattern byte, the state of the significance indi­
cator, and whether the source digit examined is
zero.

Pattern Bytes: There are four types of pattern
bytes: digit selector, significance starter, field sepa­
rator, and message byte. Their coding is as follows:

Name Code

Digit selector eele eeee
Significance starter eele eeel
Field separator eele eele
Message byte Any other

The detection of either a digit selector or a signif­
icance starter in the pattern causes an examination
to be made of the significance indicator and of a
source digit. As a result, either the expanded
source digit or the fill byte, as appropriate, is
selected to replace the pattern byte. Additionally,
encountering a digit selector or a significance starter
may cause the significance indicator to be changed.

The· field separator identifies individual fields in a
multiple-field editing operation. It is always
replaced in the result by the fill byte, and the signif­
icance indicator is always off after the field sepa­
rator is encountered.

Message bytes in the pattern are either replaced by
the fill byte or remain unchanged in the result,
depending on the state of the significance indicator.
They may thus be used for padding, punctuation,

or text in the significant portion of a field or for the
insertion of sign-dependent symbols.

Fill Byte: The first byte of the pattern is used as
the fill byte. The fill byte can have any code and
may concurrently specify a control function. If this
byte is a digit selector or significance starter, the
indicated editing action is taken after the code has
been assigned to the fill byte.

Source Digits: Each time a digit selector or signif­
icance starter is encountered in the pattern, a new
source digit is examined for placement in the
pattern field. Either the source digit is disregarded,
or it is expanded to the zoned fonnat, by
appending the zone code 1111 on the left, and
stored in place of the pattern byte.

Execution is as if the source digits were selected
one byte at a time and as if a source byte were
fetched for inspection only once during an editing
operation. Each source digit is examined only once
for a zero value. The leftmost four bits of each
byte are examined frrst, and the rightmost four bits,
when they represent a decimal-digit code, remain
available for the next pattern byte that calls for a
digit examination. When the leftmost four bits
contain an invalid digit code, a data exception is
recognized, and the operation is terminated.

At the time the left digit of a source byte is exam­
ined' the rightmost four bits are checked for the
existence of a sign code. When a sign code is
encountered in the rightmost four bit positions,
these bits are not treated as a decimal-digit code,
and a new source byte is fetched from storage when
the next pattern byte calls for a source-digit exam­
ination.

When the pattern contains no digit selector or sig­
nificance starter, no source bytes are fetched and
examined.

Significance Indicator: The significance indicator
is turned on or off to indicate the significance or
nonsignificance, respectively, of subsequent source
digits or message bytes. Significant source digits
replace their corresponding digit selectors or signif­
icance starters in the result. Significant message
bytes remain unchanged in the result.

The significance indicator, by its on or off state,
indicates also the negative or positive value, respec­
tively, of a completed source field and is used as
one factor in the setting of the condition code~

Chapter 8. Decimal Instructions 8-7

The significance indicator is set to off at the start of
the editing operation, after a field separator is
encountered, or after a source byte is examined that
has a plus code in the rightmost four bit positions.

The significance indicator is set to on when a sig­
nificance starter is encountered whose sOJlrce digit
is a valid decimal digit, or when a digit selector is
encountered whose source digit is a nonzero
decimal digit, provided that in both instances the
source byte does not have a plus code in the right­
most four bit positions.

In all other situations, the significance indicator is
not changed. A minus sign code has no effect on
the significance indicator.

Result Bytes: The result of an editing operation
replaces and is equal in length to the pattern. It is
composed of pattern bytes, fill bytes, and zoned
source digits.

If the pattern byte is a message byte and the signif­
icance indicator is on, the message byte remains
unchanged in the result. If the pattern byte is a
field separator or if the significance indicator is off
when a message byte is encountered in the pattern,
the fill byte replaces the pattern byte in the result.

If the digit selector or significance starter is
encountered in the pattern with the significance
indicator off and the source digit zero, the source
digit is considered nonsignificant, and the fill byte
replaces the pattern byte. If the digit selector or
significance starter is encountered with either the
significance indicator on or with a nonzero decimal
source digit, the source digit is considered signif­
icant, is changed to the zoned format, and replaces
the pattern byte in the result.

Condition Code: The sign and magnitude of the
last field edited are used to set the condition code.
The term "last field" refers to those source digits, if
any, in the second operand selected by digit selec­
tors or significance starters after the last field sepa­
rator; if the pattern contains no field separator,
there is only one field, which is considered to be
the last field. If no such source digits are selected,
the last field is considered to be of zero length.

Condition code 0 is set when the last field edited is
zero or of zero length.

Condition· code I is set when the last field edited is
nonzero and the significance indicator is on. (This

8-8 ESA/370 Principles of Operation

indicates a result less than zero if the last source
byte examined contained a sign code in the right­
most four bits.)

Condition code 2 is set when the last field edited is
nonzero and the significance indicator is off. (This
indicates a result greater than zero if the last source
byte examined contained a sign code in the right­
most four bits.)

Figure 8-3 on page 8-9 summarizes the functions
of the EDIT and EDIT AND MARK operations. The
leftmost four columns list all the significant combi­
nations of the four conditions that can be encount­
ered in the execution of an editing operation. The
rightmost two columns list the action taken for
each case -- the type of byte placed in the result
field and the new setting of the significance indi­
cator.

Resulting Condition Code:

o Last field zero or zero length
1 Last field less than zero
2 Last field greater than zero
3

Program Exceptions:

• Access (fetch, operand 2; fetch and store,
operand 1)

• Data

Programming Notes:

1. Examples of the use of the EDIT instruction are
given in Appendix A.

2. Editing includes sign and punctuation control,
and the suppression and protection of leading
zeros by replacing them with blanks or aster­
isks. It also facilitates programmed blanking of
all-zero fields. Several fields may be edited in
one operation, and numeric information may
be combined with text.

3. In most cases, the source is shorter than the
pattern because each four-bit source digit
produces an eight-bit byte in the result.

4. The total number of digit selectors and signif­
icance starters in the pattern always equals the
number of source digits edited.

S. If the fill byte is a blank, if no significance
starter exists in the pattern, and if the source
digit examined for each digit selector is zero,
the editing operation blanks the result field.

6. The resulting condition code indicates whether
or not the last field is all zeros and, if nonzero,
reflects the state of the significance indicator.
The significance indicator reflects the sign of
the source field only if the last source byte
examined contains a sign code in the rightmost
four bits. For multiple-field editing operations,
the condition code reflects the sign and value
only of the field following the last field sepa­
rator.

Conditions

Previous
State of Right Four
Significance Source Source Bits

7. Significant perfonnance degradation is possible
when, with DAT on, the second-operand
address of an ED IT instruction designates a
location that is closer to the left of a 4K-byte
boundary than the length of the fll'st operand
of that instruction. This is because the
machine may perfonn a trial execution of the
instruction to detennine if the second operand
actually crosses the boundary. The second
operand of ED IT, while nonnally shorter than
the frrst operand, can in the extreme case have
the same length as the fll'st.

Results

Pattern Byte Indicator Digit Are Plus Code Result Byte

State of
Significance
Indicator at
End of Digit
Examination

Digit selector Off

On

Significance starter Off

Field separator

Message byte

Explanation:

On

*

Off
On

0
1-9
1-9
0-9
0-9

0
0
1-9
1-9
0-9
0-9

**

**
**

* Fill byte
No Source digit#
Yes Source digit#
No Source digit
Yes Source digit

No Fill byte
Yes Fill byte
No Source digit#
Yes Source digiti
No Source digit
Yes Source digit

** Fill byte

** Fill byte
** Message byte

* No effect on result byte or on new state of significance indicator.
** Not applicable because source is not examined.

Off
On
Off
On
Off

On
Off
On
Off
On
Off

Off

Off
On

For EDIT AND MARK only, the address of the rightmost such result byte is
placed in general register 1.

Figure 8-3. Summary of Editing Functions

Chapter 8. Decimal Instructions 8-9

Edit and Mark

[SS]

~'D_F'~ __ L~I_B_l~I~~~~
o 8 16 20 32 36 47

The second operand (the source), which normally
contains one or more decimal numbers in the
packed format, is changed to the zoned format and
modified under the control of the first operand (the
pattern). The address of the frrst significant result
byte is inserted in general register 1. The edited
result replaces the pattern.

EDIT AND MARK is identical to EDIT, except for the
additional function of inserting the address of the
result byte in general register 1 if the result byte is a
zoned source digit and the significance indicator
was off before the examination. If no result byte
meets the criteria, general register 1 remains
unchanged; if more than one result byte meets the
criteria, the address of the rightmost such result
byte is inserted.

In the 24-bit addressing mode, the address replaces
bits 8-31 of general register 1, and bits 0-7 of the
register are not changed. In the 31-bit addressing
mode, the address replaces bits 1-31 of general reg­
ister 1, and bit 0 of the register is set to zero.

The contents of access register 1 remain unchanged.

See Figure 8-3 on page 8-9 for a summary of the
EDIT and EDIT AND MARK operations.

Resulting Condition Code:

o Last field zero or zero length
1 Last field less than zero
2 Last field greater than zero
3

Program Exceptions:

• Access (fetch, operand 2; fetch and store,
operand 1)

• Data

8-10 ESAj370 Principles of Operation

Programming Notes:

1. Examples of the use of the EDIT AND MARK

instruction are given in Appendix A.

2. EDIT AND MARK facilitates the programming of
floating currency-symbol insertion. Using
appropriate source and pattern data, the
address inserted .in general register 1 is one
greater than the address where a floating
currency-sign would be inserted. BRANCH ON

COUNT (BCTR), with zero in the R2 field, may
be used to reduce the inserted address by one.

3. No address is inserted in general register 1
when the significance indicator is turned on as
a result of encountering a significance starter
with the corresponding source digit zero. To
ensure that general register 1 contains a proper
address when this occurs, the address of the
pattern byte that immediately follows the
appropriate significance starter could be placed
in the register beforehand.

4. When multiple fields are edited with one exe­
cution of the EDIT AND MARK instruction, the
address, if any, inserted in general register 1
applies to the rightmost field edited for which
the criteria were met.

s. See also the programming, note under EDIT

regarding performance degradation due to a
possible trial execution.

Multiply Decimal

MP [SS] .

'Fe' I L. I L2 I B. I b~b~
. I I

o 8 12 16 20 32 36 47

The product of the frrst operand (the multiplicand)
and the second operand (the multiplier) is placed at
the frrst-operand location. The operands and result
are in the packed format.

The multiplier length cannot exceed 15 digits and
sign (L2 not greater than seven) and must be less
than the multiplicand length (L2 less than Ll); oth­
erwise, a specification exception is recognized.

The multiplicand must have at least as many bytes
of leftmost zeros as the number of bytes in the
multiplier; otherwise, a data exception is recog-

nized. This restriction ensures that no product
overflow occurs.

The multiplicand, multiplier, and product are each
signed decimal integers in the packed format and
are right-aligned in their fields. All sign and digit
codes of the multiplicand and multiplier are
checked for validity. The sign of the product is
determined by the rules of algebra from the multi­
plier and multiplicand signs, even if one or both
operands are zeros.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2; fetch and store,
operand 1)

• Data
• Specification

Programming Notes:

1. An example of the use of the MULTIPLY

DECIMAL instruction is given in Appendix A.

2. The product cannot exceed 31 digits and sign.
The leftmost digit of the product is always
zero.

Shift and Round Decimal

5RP [55]

,---'F0_' ~I L----,' 1_13--,-I_B1--,--1 ~H~~
o 8 12 16 20 32 36 47

The first operand is shifted in the direction and for
the number of decimal-digit positions specified by
the second-operand address, and, when shifting to
the right is specified, the absolute value of the fITst
operand is rounded by the rounding digit, 13. The
fITst operand and the result are in the packed
format.

The first operand is considered to be in the packed­
decimal format. Only its digit portion is shifted;
the sign position does not participate in the
shifting. Zeros are supplied for the vacated digit
positions. The result replaces the fITst operand.
Nothing is stored outside of the specified fITst­
operand location.

The second-operand address, specified by the B2

and D2 fields, is not used to address data; bits 26-31
of that address are the shift value, and the leftmost
bits of the address are ignored.

The shift value is a six-bit signed binary integer,
indicating the direction and the number of decimal­
digit positions to be shifted. Positive shift values
specify shifting to the left. Negative shift values,
which are represented in two's complement nota­
tion, specify shifting to the right. The following are
examples of the interpretation of shift values:

5hift Value Amount and Direction

011111 31 digits to the left
000001 One digit to the left
000000 No shift
111111 One digit to the right
100000 32 digits to the right

For a right shift, the 13 field, bits 12-15 of the
instruction, are used as a decimal rounding digit.
The fITst operand, which is treated as positive by
ignoring the sign, is rounded by decimally adding
the rounding digit to the leftmost of the digits to be
shifted out and by propagating the carry, if any, to
the left. The result of this addition is then shifted
right. Except for validity checking and the partic­
ipation in rounding, the digits shifted out of the
rightmost decimal-digit position are ignored and are
lost.

If one or more nonzero digits are shifted out during
a left shift, decimal overflow occurs. The operation
is completed. The result is obtained by ignoring
the overflow digits, and condition code 3 is set. If
the decimal-overflow mask is one, a program inter­
ruption for decimal overflow occurs. Overflow
cannot occur for a right shift, with or without
rounding, or when no shifting is specified.

In the absence of overflow, the sign of a zero result
is made positive. If overflow occurs, the sign of the
result is the same as the original sign but with the
preferred sign code.

A data exception is recognized when the fITst
operand does not have valid sign and digit codes or
when the rounding digit is not a valid digit code.
The validity of the fITst-operand codes is checked
even when no shift is specified, and the validity of
the rounding digit is checked even when no addi­
tion for rounding takes place.

Chapter 8. Decimal Instructions 8-11

Resulting Condition Code:

o Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

Program Exceptions:

• Access (fetch and store, operand 1)
• Data
• Decimal overflow

Programming Notes:

1. Examples of the use of the SHIFT AND ROUND
DECIMAL instruction are given in Appendix A.

2. SHIFT AND ROUND DECIMAL can be used for
shifting up to 31 digit positions left and up to
32 digit positions right. This is sufficient to
clear all digits of any decimal number even with
rounding.

3. For right shifts, the rounding digit 5 provides
conventional rounding of the result. The
rounding digit 0 specifies truncation without
rounding.

4. When the B2 field is zero, the six-bit shift value
is obtained directly from bits 42-47 of the
instruction.

Subtract Decimal

[SS]

,----I FB_I ..L.-...I L--...I' I,---L2---L.I_B l--L-I ~H~~
9 B 12 16 29 32 36 47

The second operand is subtracted from the ftrst
operand, and the reSUlting difference is placed at the
ftrst-operand location. The operands and result are
in the packed format.

SUBTRACT DECIMAL is executed the same as ADD

DECIMAL, except that the second operand is con­
sidered to have a sign opposite to the sign in
storage. The second operand in storage remains
unchanged.

Resulting Condition Code:

o Result zero; no overflow

8-12 ESA/370 Principles of Operation

1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

Program Exceptions:

• Access (fetch, operand 2; fetch and store,
operand 1)

• Data
• Decimal overflow

Zero and Add

ZAP [SS]

,---I FB_I -,--I L---I' I ___ L2---L.I_B 1--,--1 ~H~~
9 B 12 16 29 32 36 47

The second operand is placed at the first-operand
location. The operation is equivalent to an addi­
tion to zero. The operand and result are in the
packed format.

Only the second operand is checked for valid sign
and digit codes. Extra zeros are supplied on the left
for the shorter operand if needed.

If the ftrst operand is too short to contain all left­
most nonzero digits of the second operand, decimal
overflow occurs. The operation is completed. The
result is obtained by ignoring the overflow digits,
and condition code 3 is set. If the decimal­
overflow mask is one, a program interruption for
decimal overflow occurs.

In the absence of overflow, the sign of a zero result
is made positive. If overflow occurs, a zero result is
given the sign of the second operand but with the
preferred sign code.

The two operands may overlap, provided the right­
most byte of the ftrst operand is coincident with or
to the right of the rightmost byte of the second
operand. In this case the result is obtained as if the
operands were processed right to left.

Resulting Condition Code:

o Result zero; no overflow
1 Result less than zero; no overflow
2 Result greater than zero; no overflow
3 Overflow

Program Exceptions:

• Access (fetch, operand 2; store, operand 1)
• Data

• Decimal overflow

Programming Note: An example of the use of the
ZERO AND ADD instruction is given in Appendix A.

" Chapter 8. Decimal Instructions 8-13

Chapter 9. Floating-Point Instructions

Floating-Point Number Representation
Normalization
Floating-Point-Data Format
Instructions

Add Normalized .
Add Unnormalized
Compare
Divide
Halve
Load

9-1
9-2
9-2
9-4
9-7
9-8
9-9
9-9

9-11
9-12

Floating-point instructions are used to perform cal­
culations -on operands with a wide range of magni­
tude and to yield results scaled to preserve preci­
sion.

The floating-point instructions provide for loading,
rounding, adding, ~ubtracting, comparing, multi­
plying, dividing, and storing, as well as controlling
the sign of short, long, and extended operands.
Short operands generally permit faster processing
and require less storage than long or extended oper­
ands. On the other hand, long and extended oper­
ands permit greater precision in computation.

_ Four floating-point registers are provided.
Instructions may perform either register-to-register
or storage-and-register operations. _

Most of the instructions generate normalized
results, which preserve the highest precision in the
operation. For addition and 'subtraction,
instructions are also provided that generate unnor­
malized results. Either normalized or unnormalized
numbers may be used as operands for any floating­
point operation.

Floating-Point Number
Representation
A floating-point number consists of a signed
hexadecimal fraction and an unsigned seven-bit
binary integer called the characteristic. The charac­
teristic represents a signed exponent and is obtained
by adding 64 to the exponent value (excess-64
notation). The range of the characteristic is 0 to
127, which corresponds to an exponent range of
-64 to + 63. The value of a floating-point number
is the product of its fraction and the number 16

Load and Test
Load Complement
Load Negative
Load Positive
Load Rounded
Multiply
Store
Subtract Normalized
Subtract Unnormalized

9-12
9-12
9-13
9-13
9-14
9-14
9-16
9-16
9-17

raised to the power of the exponent which is
represented by its characteristic.

The fraction of a floating-point number is treated
as a hexadecimal number because it is considered
to be multiplied by a number which is a power of
16. The name, fraction, indicates that the radix
point is assumed to be immediately to the left of
the leftmost fraction digit. The fraction is repres­
ented by its absolute value and a separate sign bit.
The entire number is positive or negative,
depending on whether the sign bit of the fraction is
zero or one, respectively.

When a floating-point operation would cause the
result exponent to exceed 63, the characteristic
wraps around- from 127 to 0, and an exponent­
overflow condition exists. The result characteristic
is then too small by 128. When an operation
would cause the exponent to be less than -64, the
characteristic wraps around from 0 to 127, and an
exponent-underflow condition exists. The result
characteristic is then too large by 128, except that a
zero characteristic is produced when a true zero is
forced.

A true zero is a floating-point number with a zero
characteristic, zero fraction, and plus sign. A true
zero may arise as the normal result of an arithmetic
operation because of the particular magnitude of
the operands. The result is forced to be a true zero
when:

1. An exponent underflow occurs and the
exponent-underflow mask bit in the psw is
zero,

2. The result fraction of an addition or sub­
traction operation is zero and the significance
mask bit in the psw is zero, or

Chapter 9. Floating-Point Instructions 9-1

3. The operand of the HALVE instruction, one or
both operands of the MULTIPLY instruction, or
the dividend in the DIVIDE instruction has a
zero fraction.

When a program interruption for exponent under­
flow occurs, a true zero is not forced; instead, the
fraction and sign remain correct, and the character­
istic is too large by 128. When a program inter­
ruption for significance occurs, the fraction remains
zero, the sign is positive, and the characteristic
remains correct.

The sign of a sum, difference, product, or quotient
with a zero fraction is positive. The sign of a zero
fraction resulting from other operations is estab­
lished from the operand sign, the same as for
nonzero fractions.

Normalization
A quantity can be represented with the greatest pre­
cision by a floating-point number of a given frac­
tion length when that number is normalized. A
normalized floating-point number has a nonzero
lefttllost hexadecimal fraction digit. If one or more
leftmost fraction digits are zeros, the number is said
to be unnormalized.

Unnormalized numbers are normalized by shifting
the fraction left, one digit at a time, until the left­
most hexadecimal digit is nonzero and reducing the
characteristic by the number of hexadecimal digits
shifted. A number with a zero fraction cannot be
normalized; its characteristic either remains
unchanged, or it is made zero when the result is
forced to be a true zero.

Addition and subtraction with extended operands,
as well as the MULTIPLY, DIVIDE, and HALVE oper­
ations, are performed only with normalization.
Addition and subtraction with short or long oper-_
ands may be specified as either normalized or
unnormalized. For all other operations, the result
is produced without normalization.

With unnormalized operations, leftmost zeros in
the result fraction are not eliminated. The result
mayor may not be in normalized fonn, depending
upon the original operands.

In both normalized and unnormalized operations,
the initial operands need not be in normalized
form. The operands for multiplication and division
are normalized before the arithmetic process. For

9-2 ESAj370 Principles of Operation

other normalized operations, normalization takes
place when the intermediate arithmetic result is
changed to the fmal result.

When the intermediate result of addition, sub­
traction, or rounding causes the fraction to over­
flow, the fraction is shifted right by one
hexadecimal-digit position and the value one is sup­
plied to the vacated leftmost digit position. The
fraction is then truncated to the fmal result length,
while the characteristic is increased by one. This
adjustment is made for both normalized and
unnormalized operations.

Programming Note: Up to three leftmost bits of
the fraction of a normalized number may be zeros,
since the nonzero test applies to the entire leftmost
hexadecimal digit.

Floating-Point-Data Format
Floating-point numbers have a 32-bit (short)
format, a 64-bit (long) format, or a 1 28-bit
(extended) format. Numbers in the short and long
formats may be designated as operands both in
storage and in the floating-point registers, whereas
operands having the extended format can be desig­
nated only in the floating-point registers.

The floating-point registers contain 64 bits each
and are numbered 0, 2, 4, and 6. A short or long
floating-point number requires a single floating­
point register. An extended floating-point number
requires a pair of these registers: either registers 0
and 2 or registers 4 and 6; the two register pairs are
designated as 0 or 4, respectively. When the Rl or
R2 field of a floating-point instruction designates
any register number other than 0, 2, 4, or 6 for the
short or long format, or any register number other
than 0 or 4 for the extended format, a program
interruption for specification exception occurs.

Short Floating-Point Number

l'-s l_ch_a_r_a_c_te_r_i_s_t 1_· C--,I_5_-_D_i_9_i t_~ract i on I

e 1 8 31

Long Floating-Point Number

l~s~1 ~ch~a~r~a~c t~e~r~i s~t~i~c~1 ~~1~4~-D~i~9~i ~~F~r~a~ct~i~o~n~=
e 1 8 53

Extended Floating-Point Number

High-Order Part
------------~----/'--------~

High-Order Leftmost 14 Digits
S Characteristic of 28-Digit Fraction
LL _________ ~ _____ /

o 1 8 63

Low-Order Part
--------------~--------/'----------~

Low-Order Rightmost 14 Digits
S Characteristic of 28-Digit Fraction
LL ___________ ~ ______ /

64 72 127

In all formats, the frrst bit (bit 0) is the sign bit (S).
The next seven bits are the characteristic. In the
short and long formats, the remaining bits consti­
tute the fraction, which consists of six or 14
hexadecimal digits, respectively.

A short floating-point number occupies only the
leftmost 32 bit positions of a floating-point register.
The rightmost 32 bit positions of the register are
ignored when used as an operand in the short
format and remain unchanged when a short result
is placed in the register.

An extended floating-point number has a 28-digit
fraction and consists of two long floating-point
numbers which are called the high-order and low­
order parts. The high-order part may be any long
floating-point number. The fraction of the high­
order part contains the leftmost 14 hexadecimal
digits of the 28-digit fraction. The characteristic
and sign of the high-order part are the characteristic
and sign of the extended floating-point number. If
the high-order part is normalized, the extended
number is considered normalized. The fraction of
the low-order part contains the rightmost 14 digits
of the 28-digit fraction. The sign and characteristic
of the low-order part of an extended operand are
ignored.

When a result in the extended format is placed in a
register pair, the sign of the low-order part is made
the same as that of the high-order part, and, unless
the result is a true zero, the low-order characteristic
is made 14 less than the high-order characteristic.
When the subtraction of 14 would cause the low­
order characteristic to become less than zero, the
characteristic is made 128 greater than its correct
value. Exponent underflow is indicated only when
the high-order characteristic underflows.

When an extended result is made a true zero, both
the high-order and low-order parts are made a true
zero.

The range covered by the magnitude (M) of a nor­
malized floating-point number depends on the
format.

In the short format:

16-65 s M s (1 - 16-6) X 1663

In the long format:

16-65 :s M s (1 - 16-14) x 1663

In the extended format:

16-65 s M s (1 - 16-28) X 1663

In all fonnats, approximately:

5.4 x 10-79 s M s 7.2 x 1075

Although the fmal result of a floating-point opera­
tion has six hexadecimal fraction digits in the short
format, 14 fraction digits in the long format, and 28
fraction digits in the extended format, intermediate
results have one additional hexadecimal digit on the
right. This digit is called the guard digit. The
guard digit may increase the precision of the fmal
result because it participates in addition, sub­
traction, and comparison operations and in the left
shift that occurs during normalization.

The entire set of floating-point operations is avail­
able for both short and long operands. The
instructions generate a result that has the same
format as the operands, except that for MULTIPLY,

a long product is produced from a short multiplier
and multiplicand. Floating-point operations in the
extended format are available only for normalized
addition, subtraction, multiplication, and division.
MULTIPLY can also generate an extended product
from a long multiplier and multiplicand. LOAD

ROUNDED provides for rounding from extended to
long format or from long to short format.

Programming Notes:

1. A long floating-point number can be converted
to the extended format by appending any long
floating-point number having a zero fraction,
including a true zero. Conversion from the
extended to the long format can be accom­
plished by truncation or by means of the LOAD

ROUNDED instruction.

2. In the absence of an exponent overflow or
exponent underflow, the long floating-point
number constituting the low-order part of an

Chapter 9. Floating-Point Instructions 9-3

extended result correctly expresses the value of
the low-order part or the extended result when
the characteristic of the high-order part is 14 or
higher. This applies also when the result is a
true zero. When the high-order characteristic is
less than 14 but the number is not a true zero,
the low-order part, when considered as a long
floating-point number t does not express the
correct characteristic value.

3. The entire fraction of an extended result partic­
ipates in normalization. The low-order part
alone mayor may not appear to be a normal­
ized long floating-point number, depending on
whether the 15th digit of the normalized
28-digit fraction is nonzero or zero.

Instructions
The floating-point instructions and their mne­
monics, fonnats, and operation codes are listed in
Figure 9-1 on page 9 ... 5. The figure also indicates
when the condition code is set, the instruction
fields that designate access registers, and the excep-

9-4 ESA/370 Principles of Operation

tional conditions in: operand designations, data, or '
results that cause a,program interruption.

Mnemonics for the floating-point instructions have
an R as the last letter when the instruction is in the
RR format. For instructions where all operands are
the same length, certain letters are used to represent
operand-format length and normalization, as
follows:

E Short normalized
U Short unnormalized
D Long normalized
W Long unnormalized
X Extended normalized

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic
operand designation for the assembler language are
shown with each instruction. For a register-to­
register operation using LOAD (short), for example,
LER is the mnemonic and Rl,R2 the operand desig-
nation. '

Mne- Op
Name monic Characteristics Code

ADD NORMALIZED (extended) AXR RR C XP SP EU EO LS 36
ADD NORMALIZED (long) ADR RR C SP EU EO LS 2A
ADD NORMALIZED .(long) AD RX C A SP EU EO LS 82 6A
ADD NORMALIZED (short) AER RR C SP EU EO LS 3A
ADD NORMALIZED (short) AE RX C A SP EU EO LS 82 7A

ADD UNNORMALIZED (long) AWR RR C SP EO LS 2E
ADD UNNORMALIZED (long) AW RX C A SP EO LS 82 6E
ADD UNNORMALIZED (short) AUR RR C SP EO LS 3E
ADD UNNORMALIZED (short) AU RX C A SP EO LS 82 7E
COMPARE (long) CDR RR C SP 29

COMPARE (long) CD RX C A SP 82 69
COMPARE (short) CER RR C SP 39
COMPARE (short) CE RX C A SP 82 79
DIVIDE (extended) DXR RRE SP EU EO FK 8220
DIVIDE (1ong) DDR RR SP EU EO FK 20

DIVIDE (long) DO RX A SP EU EO FK 82 60
DIVIDE (short) DER RR SP EU EO FK 3D
DIVIDE (short) DE RX A SP EU EO FK 82 70
HALVE (long) HDR RR SP EU 24
HALVE (short) HER RR SP EU 34

LOAD (long) LOR RR SP 28
LOAD (long) LD RX A SP 82 68
LOAD (short) LER RR SP 38
LOAD (short) LE RX A SP 82 78
LOAD AND TEST (long) LTDR RR C SP 22

LOAD AND TEST (short) LTER RR C SP 32
LOAD COMPLEMENT (long) LCDR RR C SP 23
LOAD COMPLEMENT (short) LCER RR C SP 33
LOAD NEGATIVE (long) LNDR RR C SP 21
LOAD NEGATIVE (short) LNER RR C SP 31

LOAD POSITIVE (long) LPDR RR C SP 20
LOAD POSITIVE (short) LPER RR C SP 30
LOAD ROUNDED (ext. to long) LRDR RR SP EO 25
LOAD ROUNDED (long to short) LRER RR SP EO 35
MULTIPLY (extended) MXR RR SP EU EO 26

MULTIPLY (long) MDR RR SP EU EO 2C
MUL TIPLY (long) MD RX A SP EU EO 82 6C
MULTIPLY (long to extended) MXDR RR SP EU EO 27
MULTIPLY (long to extended) MXD RX A SP EU EO 82 67
MULTIPLY (short to long) MER RR SP EU EO 3C

Figure 9-1 (Part 1 of 2). Summary of Floating-Point Instructions

Chapter 9. Floating-Point Instructions 9-5

Mne- Op
Name monic Characteristics Code

MULTIPLY (short to long) ME RX A SP EU EO B2 7C
STORE (long) STD RX A SP ST B2 60
STORE (short) STE RX A SP ST B2 70
SUBTRACT NORMALIZED (ext.) SXR RR C SP EU EO LS 37
SUBTRACT NORMALIZED (long) SDR RR C SP EU EO LS 2B

SUBTRACT NORMALIZED (long) SO RX C A SP EU EO LS B2 6B
SUBTRACT NORMALIZED (short) SER RR C SP EU EO LS 3B
SUBTRACT NORMALIZED (short) SE RX C A SP EU EO LS B2 7B
SUBTRACT UNNORMALIZED (long) SWR RR C SP EO LS 2F
SUBTRACT UNNORMALIZED (long) SW RX C A SP EO LS B2 6F

SUBTRACT UNNORMALIZED (short) SUR RR C SP EO LS 3F
SUBTRACT UNNORMALIZED (short) SU RX C A SP EO LS B2 7F

Ex~lanation:

A Access exceptions for logical addresses.
B2 B2 field designates an access register in the access-register mode.
C Condition code is set.
EO Exponent-overflow exception.
EU Exponent-underflow exception.
FK Floating-point-divide exception.
LS Significance exception.
RR RR instruction format.
RRE RRE instruction format.
RX RX instruction format.
SP Specification exception.
ST PER storage-alteration event.

Figure 9-1 (Part 2 of 2). Summary of Floating-Point Instructions

9-6 ESA/370 Principles of Operation

Add Normalized

AER Rl,R2 [RR, Short Operands]

'JA' I Rl I R.

o 8 12 15

AE Rl,D2(X2,B2) [RX, Short Operands]

o 8 12 16 20 31

ADR [RR, Long Operands]

'2A' I Rl I R.

o ,8 12 15

AD [RX, Long Operands]

, 6A ' I R 1 I x. lB. D.

o 8 12 16 20 31

AXR [RR, Extended Operands]

'36' l Rl I R. I
o 8 12 15

The second operand is added to the fIrst operand,
and the normalized sum is placed at the frrst­
operand location.

Addition of two floating-point numbers consists in
characteristic comparison, fraction alignment, and
signed fraction addition. The characteristics of the
two operands. are compared, and the fraction
accompanying the smaller characteristic is aligned
with the other fraction by a right shift, with its
characteristic increased by one for each hexadecimal
digit of shift until the two characteristics agree.

When a fraction is shifted right during alignment,
the leftmost hexadecimal digit shifted out is

retained as a guard digit. The fraction that is not
shifted is considered to be extended with a zero in
the guard-digit position. When no alignment shift
occurs, both operands are considered to be
extended with zeros in the guard-digit position.
The fractions with signs are then added algebra­
ically to fonn a signed intermediate sum.

The intermediate-sum fraction consists of seven
(short format), 15 (long format), or 29 (extended
format) hexadecimal digits, including the guard
digit, and a possible carry. If a carry is present, the
sum is shifted right one digit position so that the
carry becomes the leftmost digit of the fraction, and
the characteristic is increased by one.

If the addition produces no carry, the
intermediate-sum fraction is shifted left as necessary
to eliminate any leading hexadecimal zero digits
resulting from the addition, provided the fraction is
not zero. Zeros are supplied to the vacated right­
most digits, and the characteristic is reduced by the
number of hexadecimal digits of shift. The fraction
thus normalized is then truncated on the right to
six (short fonnat), 14 (long format), or 28
(extended format) hexadecimal digits. In the
extended format, a characteristic is generated for the
low-order part, which is 14 less than the high-order
characteristic.

The sign of the sum is determined by the rules of
algebra, unless all digits of the intermediate-sum
fraction are zero, in which case the sign is made
plus.

An exponent-overflow exception is recognized
when a carry from the leftmost position of the
intermediate-sum fraction would cause the charac­
teristic of the normalized sum to exceed 127. The
operation is completed by making the result charac­
teristic 128 less than the correct value, and a
program interruption for exponent overflow takes
place. The result sign and fraction remain correct,
and, for AXR, the characteristic of the low-order
part remains correct.

An exponent-underflow exception is recognized
when the characteristic of the normalized sum
would be less than zero and the fraction is not zero.
If the exponent-underflow mask bit is one, the
operation is completed by making the result charac­
teristic 128 greater than the correct value. The
result sign and fraction remain correct, and a
program interruption for exponent underflow takes
place. When exponent underflow occurs and the

Chapter 9. Floating-Point Instructions 9-7

exponent-underflow mask bit is zero, a program
interruption does not take place; instead, the opera­
tion is completed by making the result a true zero.
For AXR, no exponent underflow is recognized
when the characteristic of the low-order part would
be less than zero but the characteristic of the high­
order part is zero or greater.

The result fraction is zero when the
intermediate-sum fraction, including the guard digit,
is zero. With a zero result fraction, the action
depends on the setting of the significance mask bit.
If the significance mask bit is one, no normalization
occurs, the intermediate and fmal result character­
istics are the same, and a program interruption for
significance takes place. If the significance mask bit
is zero, the program interruption does not occur;
instead, the result is made a true zero.

The Rl field for AER, AE, ADR, and AD, and the R2

field for AER and ADR must designate register 0, 2,
4, or 6. The R 1 and R2 fields for AXR must desig­
nate register 0 or 4. Otherwise, a specification
exception is recognized.

Resulting Condition Code:

o Result fraction zero
1 Result less than zero
2 Result greater than zero
3

Program Exceptions:

• Access (fetch, operand 2 of AE and AD only)
• Exponent overflow
• Exponent underflow
• Significance
• Specification

Programming Notes:

1. An example of the use of the ADD NORMAL­
I ZED instruction is given in Appendix A.

2. Interchanging the two operands in a floating­
point addition does not affect the value of the
sum.

3. The ADD NORMALIZED instruction normalizes
the sum but not the operands. Thus, if one or
both operands are unnonnalized, precision may
be lost during fraction alignment.

9-8 ESA/370 Principles of Operation

Add Unnormalized

[RR, Short Operands]

• 3E' I Rl I R,

o 8 12 15

AU Rl,02(X2,B2) [RX, Short Operands]

'7E' I Rl I X, I B, I 02

0 8 12 16 20 31

AWR Rl,R2 [RR, Long Operands]

'2E' I Rl I R2

0 8 12 15

AW Rl,02(X2,B2) [RX, Long Operands]

• fiE • I R 1 I X, I B,

o 8 12 16 20 31

The second operand is added to the fIrst operand,
and the unnormalized sum is placed at the fIrst­
operand location ..

The execution of ADD UN NORMALIZED is identical
to that of ADD NORMALIZED, except that:

1. When no carry is present after the addition, the
intennediate-sum fraction is truncated to the
proper result-fraction length without a left shift
to eliminate leading hexadecimal zeros and
without the corresponding reduction of the
characteristic.

2. Exponent underflow cannot occur.

3. The guard digit does not participate in the
recognition of a zero result fraction. A zero
result fraction is recognized when the fraction
(that is, the intennediate-sum fraction,
excluding the guard digit) is zero.

The Rl and R2 fields must designate register 0, 2,4,
or 6; otherwise, a specification exception is recog­
nized.

Resulting Condition Code:

o Result fraction zero
I Result less than zero
2 Result greater than zero
3

Program Exceptions:

• Access (fetch, operand 2 of AU and A W only)
• Exponent overflow
• Significance
• Specification

Programming Notes:

1. An example of the use of the ADD UNNORMAL­

IZED instruction is given in Appendix A.

2. Except when the result is made a true zero, the
characteristic of the result of ADD UNNORMAL­

IZED is equal to the greater of the two operand
-characteristics, increased by one if the fraction
addition produced a carry, or set to zero if
exponent overflow occurred.

Compare

o

CE

o

o

co

o

[RR, Short Operands]

'39' I R. I R,

8 12 15

Rl,02(X2,B2) [RX, Short Operands]

8 12 16 20 31

[RR, Long Operands]

'29' I R. I R,

8 12 15

Rl,02(X2,B2) [RX, Long Operands]

'69' I R. I X, I B, D.

8 12 16 20 31

The fIrst operand is compared with the second
operand, and the condition code is set to indicate
the result.

The comparison is algebraic and follows the proce­
dure for normalized floating-point subtraction,
except that the difference is discarded after setting
the condition code and both operands remain
unchanged. When the difference, including the
guard digit, is zero, the operands are equal. When
a nonzero difference is positive or negative, the fIrst
operand is high or low, respectively.

An exponent-overflow, exponent-underflow, or sig­
nificance exception cannot occur.

The R 1 and R2 fields must designate register 0, 2, 4,
or 6; otherwise, a specification exception is recog­
nized.

Resulting Condition Code:

o Operands equal
1 First operand low
2 First operand high
3

Program Exceptions:

• Access (fetch, operand 2 of CE and CD only)
• Specification

Progr~mming Notes:

1. Examples of the use of the COMPARE instruc­
tion are given in Appendix A.

2. An exponent inequality alone is not sufficient
to determine the inequality of two operands
with the same sign, because the fractions. may
have different numbers of leading hexadecimal
zeros.

3. Numbers with zero fractions compare equal
even when they differ in sign or characteristic.

Divide

[RR, Short Operands]

'3D' I R. I R.

o 8 12 15

Chapter 9. Floating-Point Instructions 9-9

DE Rl,D2(X2,B2) [RX, Short Operands]

'70' I Rl I X2 I B2 I 02

e 8 12 16 20 31

OOR Rl,R2 [RR, Long Operands]

120 1 I Rll R2

e 8 12 15

DO Rl,02(X2,B2) [RX, Long Operands]

160 1 I Rl I X2 I B2 D2

9 8 12 16 20 31

OXR Rl,R2 [RRE, Extended Operands]

182201 I11111111I Rl I R2 I
o 16 24 28 31

The frrst operand (the dividend) is divided by the
second operand (the divisor), and the normalized
quotient is placed at the fJtst-operand location. No
remainder is preserved.

Floating-point division consists in characteristic
subtraction and fraction division. The operands are
frrst normalized to eliminate leading hexadecimal
zeros. The difference between the dividend and
divisor characteristics of the normalized operands,
plus 64, is used as the characteristic of an interme­
diate quotient.

All dividend and divisor fraction digits participate
in fonning the fraction of the intermediate quotient.
The intermediate-quotient fraction can have no
leading hexadecimal zeros, but a right shift of one
digit position may be necessary with an increase of
the characteristic by one. The fraction is then trun­
cated to the proper result-fraction length.

An exponent-overflow exception is recognized
when the characteristic of the fmal quotient would
exceed 127 and the fraction is not zero. The opera­
tion is completed by making the characteristic 128

9-10 ESA/370 Principles of Operation

less than the correct value. If, for the DIVIDE

(DXR) instruction, the low-order characteristic
would also exceed 127, it, too, is decreased by 128.
The result is normalized, and the sign and fraction
remain correct. A program interruption for expo­
nent overflow occurs.

An exponent-underflow exception exists when the
characteristic of the final quotient would be less
than zero and the fraction is not zero. If the
exponent-underflow mask bit is one, the operation
is completed by making the characteristic 128
greater than the correct value, and a program inter­
ruption for exponent underflow occurs. The result
is normalized, and the sign and fraction remain
correct. If the exponent-underflow mask bit is
zero, a program interruption does not take place;
instead, the operation is completed by making the
quotient a true zero. For the DXR instruction,
exponent underflow is not recognized when the
low-order characteristic is less than zero but the
high-order characteristic is equal to or greater than
zero.

Exponent underflow does not occur when an
operand characteristic becomes less than zero
during normalization of the operands or when the
intermediate-quotient characteristic is less than
zero, as long as the fmal quotient can be repres­
ented with the correct characteristic.

When the divisor fraction is zero, a floating-point­
divide exception is recognized. This includes the
case of division of zero by zero.

When the dividend fraction is zero, but the divisor
fraction is nonzero, the quotient is made a true
zero. No exponent overflow or exponent under­
flow occurs.

The sign of the quotient is determined by the rules
of algebra, except that the sign is always plus when
the quotient is made a true zero.

The Rl field for DER, DE, DDR, and DD, and the R2

field for DER and DDR, must designate register 0, 2,
4, or 6. The Rl and R2 fields for DXR must desig­
nate register 0 or 4. Otherwise, a specification
exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 of DD and DE only)
• Exponent overflow

• Exponent underflow
• Floating-point divide
• Specification

Programming Note: Examples of the use of the
DIVIDE instruction are given in Appendix A.

Halve

[RR, Short Operands]

'34' I Rl I R,

o 8 12 15

[RR, Long Operands]

'24' I Rl I R,

o 8 12 15

The second operand is divided by 2, and the nor­
malized quotient is placed at the fust-operand
location.

The fraction of the second operand is shifted right
one bit position, placing the contents of the right­
most bit position in the leftmost bit position of the
guard digit, and a zero is supplied to the leftmost
bit position of the fraction. The intermediate
result, including the guard digit, is then normalized,
and the fmal result is truncated to the proper
length.

An exponent-underflow exception exists when the
characteristic of the fmal result would be less than
zero and the fraction is not zero. If the exponent­
underflow mask bit is one, the operation is com­
pleted by making the characteristic 128 greater than
the correct value, and a program interruption for
exponent underflow occurs. The result is normal­
ized, and the sign and fraction remain correct. If

the exponent-underflow mask bit is zero, a program
interruption does not take place; instead, the opera­
tion is completed by making the result a true zero.

When the fraction of the second operand is zero,
the result is made a true zero, and no exponent
underflow occurs.

The sign of the result is the same as that of the
second operand, except that the sign is always plus
when the quotient is made a true zero.

The Rl and R2 fields must designate register 0, 2, 4,
or 6; otherwise, a specification exception is recog­
nized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Exponent underflow
• Specification

Programming Notes:

1. An example of the use of the HALVE instruc­
tion is given in Appendix A.

2. With short and long operands, the halve opera­
tion is identical to a divide operation with the
number 2 as divisor. Similarly, the result of
HDR is identical to that of MD or MDR with
one-half as a multiplier. No multiply operation
corresponds to HER, since no multiply opera­
tion produces short results.

3. The result of HALVE is zero only when the
second-operand fraction is zero, or when expo­
nent underflow occurs with the exponent­
underflow mask set to zero. A fraction with
zeros in every bit position, except for a one in
the rightmost bit position, does not become
zero after the right shift. This is because the
one bit is preserved in the guard-digit position
and,· when the result is not made a true zero
because of exponent underflow, becomes the
leftmost bit after normalization of the result.

Chapter 9. Floating-Point Instructions 9-11

Load

[RR, Short Operands]

'38' I R. I R2

o 8 12 15

LE Rl,02(X2,S2) [RX, Short Operands]

o 8 12 16 20 31

LOR Rl,R2 [RR, Long Operands]

'28' I R. I R2

o 8 12 15

LO Rl,02(X2,B2) [RX, Long Operands]

'68' I R. I X2 I B2

o 8 12 16 20 31

The second operand is placed unchanged at the
frrst-operand location.

The Rl and R2 fields must designate register 0, 2, 4,
or 6; otherwise, a specification exception is recog­
nized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 of LE and LD only)
• Specification

9-12 ESAj370 Principles of Operation

Load and Test

o

'32' I R. I·R2

8 12 15

LTOR Rl,R2

o

'22' I R. I R2

8 12 15

[RR, Short Operands]

[RR, Long Operands]

The second operand is placed unchanged at the
frrst-operand location, and its sign and magnitude
are tested to determine the setting of the condition
code. '

The Rl and R2 fields must designate register 0, 2, 4,
or 6; otherwise, a specification exception is recog­
nized.

Resulting Condition Code:

° Result fraction zero
I Result less than zero
2 Result greater than zero
3

Program Exceptions:

• Specification

Programming Note: When the same register is
designated as the frrst-operand and second-operand
location, the operation is equivalent to a test
without data movement.

Load Complement

LeER Rl,R2 [RR, Short Operands]

'33' I R. I R2

o 8 12 15

[RR, Long Operands]

'23' I R, I R,

e 8 12 15

The second operand is placed at the first-operand
location with the sign bit inverted. .

The sign bit is inverted, even if the fraction is zero.
The characteristic and fraction are not changed.

The Rl and R2 fields must designate regi&ter 0, 2, 4,
or 6; otherwise, a specification exception is recog­
nized.

Resulting Condition Code:

o Result fraction zero
1 Result less than zero
2 Result greater than zero
3

Program Exceptions:

• Specification

Load Negative

LNER Rl,R2

'31' I R, I R,

e 8 12 15

LNDR Rl,R2

'21' I R, I R,

e 8 12 15

[RR, Short Operands]

[RR, Long Operands]

The second operand is placed at the frrst-operand
location with the sign made minus.

The sign bit is made one, even if the fraction is
zero. The characteristic and fraction are not
changed.

The Rl and R2 fields must designate register 0, 2, 4,
or 6; otherwise, a specification exception is recog­
nized.

Resulting Condition Code:

o Result fraction zero
1 Result less than zero
2
3

Program Exceptions:

• Specification

Load Positive

'38' I R, I R,

e 8 12 15

LPDR Rl,R2

'28' I R, I R,

o 8 12 15

[RR, Short Operands]

[RR, Long Operands]

The second operand is placed at the frrst-operand
location with the sign made plus.

The sign bit is made zero. The characteristic and
fraction are not changed.

The Rl and R2 fields must designate register 0, 2, 4,
or 6; otherwise, a specification exception is recog­
nized.

Resulting Condition Code:

o Result fraction zero
1
2 Result greater than zero
3

Program Exceptions:

• Specification

Chapter 9. Floating-Point Instructions 9-13

Load Rounded

LRER Rl,R2

[RR, Long Operand 2, Short Operand 1]

'35' Rl I R2 I
o 8 12 15

LROR Rl,R2

[RR, Extended Operand 2, Long Operand 1]

'25' I Rl I R2 I
o 8 12 15

The second operand is rounded to the next shorter
format, and the result is placed at the first-operand
location.

Rounding consists in adding a one in bit position
32 or 72 of the long or extended second operand,
respectively, and propagating any carry to the left.
The sign of the fraction is ignored, and addition is
performed as if the fractions were positive.

If rounding causes a carry out of the leftmost
hexadecimal digit position of the fraction, the frac­
tion is shifted right one digit position so that the
carry becomes the leftmost digit of the fraction, and
the characteristic is increased by one.

The intermediate fraction is then truncated to the
proper result-fraction length.

The sign of the result is the same as the sign of the
second operand. There is no normalization to
eliminate leading zeros.

An exponent-overflow exception exists when
shifting the fraction right would cause the charac­
teristic to exceed 127. The operation is completed
by loading a number whose characteristic is 128
less than the correct value, and a program inter­
ruption for exponent overflow occurs. The result is
normalized, and the sign and fraction remain
correct.

9-14 ESA/370 Principles of Operation

Exponent-underflow and significance exceptions
cannot occur.

The R 1 field must designate register 0, 2, 4, or 6;
the R2 field of LRER must designate register 0, 2, 4,
or 6; and the R2 field of LRDR must designate reg­
ister ° or 4. Otherwise, a specification exception is
recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Exponent overflow
• Specification

Multiply

MER Rl,R2

[RR, Short Multiplier and Multiplicand,
Long Product]

'3C' I Rl I R2

o 8 12 15

[RX, Short Multiplier and Multiplicand,
Long Product]

, 7C ' I R 1 I X 2 B 2 D 2

o 8 12 16 20 31

MOR Rl,R2 [RR, Long Operands]

'2C' I Rl I R2

0 8 12 15

MO Rl,02(X2,B2) [RX, Long Operands]

'6C' I Rl I X2 I B2 02

0 8 12 16 20 31

[RR, long Multiplier and Multiplicand,
Extended Product]

'27' I Rl I R2 I
e 8 12 15

e

[RX, long Multiplier and Multiplicand,
Extended Product]

'67' I Rl I X2 I B2 02

8 12 16 20 31

MXR Rl,R2 [RR, Extended Operands]

'26' I Rl I R2 I
o 8 12 15

The nonnalized product of the second operand (the
multiplier) and the frrst operand (the multiplicand)
is placed at the frrst-operand location.

Multiplication of two floating-point numbers con­
sists in exponent addition and fraction multipli­
cation. The operands are frrst nonnalized to elimi­
nate leading hexadecimal zeros. The sum of the
characteristics of the nonnalized operands, less 64,
is used as the characteristic of the intennediate
product.

The fraction of the intennediate product is the
exact product of the nonnalized operand fractions.
When the intennediate-product fraction has one
leading hexadecimal zero digit, the fraction is
shifted left one digit position, bringing the contents
of the guard-digit position into the rightmost posi­
tion of the result fraction, and the intennediate­
product characteristic is reduced by one. The frac­
tion is then truncated to the proper result-fraction
length.

For MER and ME, the mUltiplier and multiplicand
fractions have six hexadecimal digits; the product
fraction has the full 14 digits of the long fonnat,
with the two rightmost fraction digits always zeros.

For MDR and MD, the multiplier and multiplicand
fractions have 14 digits, and the fmal product frac­
tion is truncated to 14 digits. For MXDR and MXD,

the multiplier and multiplicand fractions have 14
digits, with the multiplicand occupying the high­
order part of the frrst operand; the fmal product
fraction contains 28 digits and is an exact product
of the operand fractions. For MXR, the multiplier
and multiplicand fractions have 28 digits, and the
fmal product fraction is truncated to 28 digits.

An exponent-overflow exception is recognized
when the characteristic of the fmal product would
exceed 127 and the fraction is not zero. The opera­
tion is completed by making the characteristic 128
less than the correct value. If, for extended results,
the low-order characteristic would also exceed 127,
it, too, is decreased by 128. The result is nonnal­
ized, and the sign and fraction remain correct. A
program interruption for exponent overflow occurs.

Exponent overflow is not recognized when the
intermediate-product characteristic is initially 128
but is brought back within range by nonnalization.

An exponent-underflow exception exists when the
characteristic of the fmal product would be less
than zero and the fraction is not zero. If the
exponent-underflow mask bit is one, the operation
is completed by making the characteristic 128
greater than the correct value, and a program inter­
ruption for exponent underflow occurs. The result
is nonnalized, and the sign and fraction remain
correct. If the exponent-underflow mask bit is
zero, program interruption does not take place;
instead, the operation is completed by making the
product a true zero. For extended results, expo­
nent underflow is not recognized when the low­
order characteristic would be less than zero but the
high-order characteristic is equal to or greater than
zero.

Exponent underflow does not occur when the char­
acteristic of an operand becomes less than zero
during normalization of the operands, as long as
the final product can be represented with the
correct characteristic.

When either or both operand fractions are zero, the
result is made a true zero, and no exponent over­
flow or exponent underflow occurs.

The sign of the product is detennined by the rules
of algebra, except that the sign is always zero when
the result is made a true zero.

Chapter 9. Floating-Point Instructions 9-15

The Rl field for MER, ME, MDR, and MD, and the
R2 field for MER, MDR, and MXDR must designate
register 0,2,4, or 6. The Rl field for MXDR, MXD,
and MXR, and the R2 field for MXR must designate
register 0 or 4. Otherwise, a specification exception'
is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2 of ME, MD, and MXD
only)

• Exponent overflow
• Exponent underflow
• Specification

Programming Notes:

1. An example of the use of the MULTIPLY

instruction is given in Appendix A.

2. Interchanging the two operands in a floating­
point multiplication does not affect the value of
the product.

Store

STE Rl t D2(X2 t B2) [RX t Short Operands]

170 1

o 8 12 16 20 31

STD Rl t D2(X2 t B2) [RX t Long Operands]

160 1

o 8 12 16 20 31

The frrst operand is placed unchanged at the
second-operand location.

The Rl field must designate register 0, 2, 4, or 6;
otherwise, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Specification

9-16 ESA/370 Principles of Operation

Subtract Normalized

[RR t Short Operands]

'3B' I R. I R,

o 8 12 15

SE Rl t D2(X2 t B2) [RX t Short Operands]

'7B' I R. I X, I B, I 0,

o 8 12 16 20 31

SDR Rl t R2 [RR t Long Operands]

'2B' I R. IR'
o 8 12 15

SD Rl t D2(X2 t B2) [RX t Long Operands]

o 8 12 16 20 31

[RR t Extended Operands]

'37' I R. I R, I
o 8 12 15

The second operand is subtracted from the frrst
operand, and the normalized difference is placed at
the frrst-operand location.

The execution of SUBTRACf NORMALIZED is iden­
tical to that of ADD NORMALIZED, except that the
second operand participates in the operation with
its sign bit inverted.

The Rl field of SER, SE, SDR, and SD, and the R2
field OfSER and SDR must designate register 0, 2, 4,
or 6. The Rl and R2 fields of SXR must designate
register 0 or 4. Otherwise, a specification exception
is recognized.

Resulting Condition Code:

o Result fraction zero
1 Result less than zero
2 Result greater than zero
3

Program Exceptions:

• Access (fetch, operand 2 of SE and so only)
• Exponent overflow
• Exponent underflow
• Significance
• Specification

Subtract Unnormalized

SUR Rl,R2 [RR, Short Operands]

'3F' I R. I R2

o 8 12 15

SU Rl,D2(X2,B2) [RX, Short Operands]

o 8 12 16 20 31

[RR, Long Operands]

'2F' I R. I R2

e 8 12 15

SW Rl,D2(X2,B2) [RX, Long Operands]

'6F' I R. I X21 82 1 ::02
o 8 12 16 20 31

The second operand is subtracted from the fust
operand, and the unnormalized difference is placed
at the first-operand location.

The execution of SUBTRAcr UNNORMALIZEO is
identical to that of ADD UNNORMALIZEO, except
that the second operand participates in the opera­
tion with its sign bit inverted.

The Rl and R2 fields must designate register 0, 2, 4,
or 6; otherwise, a specification exception is recog­
niud.

Resulting Condition Code:

o Result fraction zero
1 Remit less than zero
2 Retult greater than zero
3

Program Exceptions:

• Acce.ss (fetch, operand 2 of su and sw only)
• Exponent overflow
• Significance
• Specification

Chapter 9. Pleating-Point Instructions 9-17

Chapter 10. Control Instructions

Branch and Stack
Diagnose
Extract Primary ASN
Extract Secondary ASN
Extract Stacked Registers
Extract Stacked State
Insert Address Space Control
Insert PSW Key
Insert Storage Key Extended
Insert Virtual Storage Key
Invalidate Page Table Entry
Load Address Space Parameters
Load Control
Load PSW
Load Real Address
Load Using Real Address
Modify Stacked State
Move to Primary
Move to Secondary
Move with Destination Key
Move with Key
Move with Source Key
Program Call ..
Program Return
Program Transfer
Purge ALB '"

10-5
10-7
10-7
10-8
10-8

10-10
10-12
10-12
10-13
10-13
10-14
10-16
10-24
10-24
10-25
10-27
10-27
10-29
10-29
10-30
10-31
10-32
10-34
10-44
10-47
10-53

This chapter includes all privileged and semiprivi­
leged instructions described in this publication,
except the input/output instructions, which are
described in Chapter 14, "I/O Instructions."

Privileged instructions may be executed only when
the CPU is in the supervisor state. An attempt to
execute a privileged instruction in the problem state
generates a privileged-operation exception.

The semiprivileged instructions are those
instructions that can be executed in the problem
state when certain authority requirements are met.
An attempt to execute a semiprivileged instruction
in the problem state when the authority require­
ments are not met generates a privileged-operation
exception or some other program -interruption con­
dition depending on the particular requirement
which is violated. Those requirements which cause
a privileged-operation exception to be· generated in
the problem state are not enforced when execution
is attempted in the supervisor state.

Purge TLB
Reset Reference Bit Extended
Set Address Space Control
Set Clock
Set Clock Comparator
Set CPU Timer
Set Prefix
Set PSW Key from Address
Set Secondary ASN ...
Set Storage Key Extended
Set System Mask
Signal Processor
Store Clock Comparator
Store Control
Store CPU Address
Store CPU ID
Store CPU Timer
Store Prefix
Store Then AND System Mask
Store Then OR System Mask
Store Using Real Address
Test Access ..
Test Block
Test Protection
Trace

10-53
10-53
10-54
10-55
10-56
10-56
10-56
10-57
10-58
10-61
10-61
10-61
10-63
10-63
10-63
10-64
10-64
10-65
10-65
10-65
10-66
10-66
10-69
10-71
10-73

The control instructions and their mnemonics,
formats, and operation codes are listed in
Figure 10-1 on page 10-2. The figure also indi­
cates when the condition code is set, the instruction
fields that designate access registers, and the excep­
tional conditions in operand designations, data, or
results that cause a program interruption.

For those control instructions which have special
rules regarding the handling of exceptional situ­
ations, a section called "Special Conditions" is
included. This section indicates the type of ending
(suppression, nullification, or completion) only for
those exceptions for which the ending may vary.

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic
operand designation for the assembler language are
shown with each instruction. For LOAD psw, for
example, LPSW is the mnemonic and D2(B2) the
operand designation.

Chapter 10. Control Instructions 10-1

Programming Note: The following additional
instructions are available in ESA/370 as compared to
370-XA:

• BRANCH AND STACK

• EXTRACT STACKED REGISTERS

• EXTRACTSTACKEDSTATE

• LOAD USING REAL ADDRESS

Mne-

• MODIFY STACKED STATE

• MOVE WITH DESTINATION KEY

• MOVE WITH SOURCE KEY

• PROGRAM RETURN

• PURGE ALB

• STORE USING REAL ADDRESS

• TEST ACCESS

Op
Name monic Characteristics Code

BRANCH AND STACK BAKR RRE Al SF T B ST B240
DIAGNOSE DM P DM MD 83
EXTRACT PRIMARY ASN EPAR RRE Q SO R B226
EXTRACT STACKED REGISTERS EREG RRE Al SE R Ul U2 B249
EXTRACT STACKED STATE ESTA RRE C Al SP SE R B24A

EXTRACT SECONDARY ASN ESAR RRE Q SO R B227
INSERT ADDRESS SPACE CONTROL lAC RRE C Q SO R B224
INSERT PSW KEY IPK S Q G2 R B20B
INSERT STORAGE KEY EXTENDED ISKE RRE P Al B229
INSERT VIRTUAL STORAGE KEY IVSK RRE Q Al SO R R2 B223

INVALIDATE PAGE TABLE ENTRY IPTE RRE P Al $ B221
LOAD ADDRESS SPACE PARAMETERS LASP SSE C P Al SP AS Bl E500
LOAD CONTROL LCTL RS P ASP B2 B7
LOAD PSW LPSW S L P A SP ¢ B2 82
LOAD REAL ADDRESS LRA RX C P Al AT R BP B1

LOAD USING REAL ADDRESS LURA RRE P Al SP R B24B
MODIFY STACKED STATE MSTA RRE Al SP SE ST B247
MOVE TO PRIMARY MVCP SS C Q A SO ¢ ST DA
MOVE TO SECONDARY MVCS SS C Q A SO ¢ ST DB
MOVE WITH DESTINATION KEY MVCDK SSE MK Q A GM ST B1 B2 E50F

MOVE WITH KEY MVCK SS C Q A ST Bl B2 D9
MOVE WITH SOURCE KEY MVCSK SSE MK Q A GM ST Bl B2 E50E
PROGRAM CALL PC S Q Al ZI T ¢ GM B R ST B218
PROGRAM RETURN PR E U Al Z4 T ¢2 B R ST 0101
PROGRAM TRANSFER PT RRE Q Al SP Z2 T ¢ B B228

PURGE ALB PALB RRE P $ B248
PURGE TLB PTLB S P $ B20D
RESET REFERENCE BIT EXTENDED RRBE RRE C P Al B22A
SET ADDRESS SPACE CONTROL SAC S Q SP SW ¢ B219
SET CLOCK SCK S C P A SP B2 B204

Figure 10-1 (Part 1 of 3). Summary of Control Instructions

10-2 ESA/370 Principles of Operation

)

Mne- Op
Name monic Characteristics Code

SET CLOCK COMPARATOR SCKC S P A SP B2 B206
SET CPU TIMER SPT S P A SP B2 B208
SET PREFIX SPX S P A SP $ B2 B210
SET PSW KEY FROM ADDRESS SPKA S Q B20A
SET SECONDARY ASN SSAR RRE Al Z3 T ¢ B225

SET STORAGE KEY EXTENDED SSKE RRE P Al ¢ B22B
SET SYSTEM MASK SSM S P A SP SO B2 80
SIGNAL PROCESSOR SIGP RS C P $ R AE
STORE CLOCK COMPARATOR STCKC S P A SP ST B2 B207
STORE CONTROL STCTL RS P A SP ST B2 B6

STORE CPU ADDRESS STAP S P A SP ST B2 B212
STORE CPU ID STIDP S P A SP ST B2 B202
STORE CPU TIMER STPT S P A SP ST B2 B209
STORE PREFIX STPX S P A SP ST B2 B211
STORE THEN AND SYSTEM MASK STNSM SI P A ST Bl AC

STORE THEN OR SYSTEM MASK STOSM SI P A SP ST Bl AD
STORE USING REAL ADDRESS STURA RRE P Al SP SU B246
TEST ACCESS TAR RRE C Al AS Ul B24C
TEST BLOCK TB RRE C P Al II $ G0 R B22C
TEST PROTECTION TPROT SSE C P Al Bl E501
TRACE TRACE RS P A SP T It 99

Explanation:

¢ Causes serialization and checkpoint synchronization.
¢2 Causes serialization and checkpoint synchronization when the state entry to

be unstacked is a program-call state entry.
$ Causes serialization.
A Access exceptions for logical addresses.
Al Access exceptions; not all access exceptions may occur; see instruction

description for details.
AS ASN-translation-specification and special-operation exceptions.
AT ASN-translation-specification exception.
B PER branch event.
Bl Bl field designates an access register in the access-register mode.
B2 B2 field designates an access register in the access-register mode.
BP B2 field designates an access register when PSW bits 16 and 17 have the

val ue 01.
C Condition code is set.
DM Depending on the model, DIAGNOSE may generate various program exceptions

and may change the condition code.
G0 Instruction execution includes the implied use of general register 0.
G2 Instruction execution includes the implied use of general register 2.
GM Instruction execution includes the implied use of multiple general

registers:
General registers 0 and 1 for MOVE WITH DESTINATION KEY and MOVE
WITH SOURCE KEY.
General registers 3, 4, and 14 for PROGRAM CALL.

Figure 10-1 (Part 2 of 3). Summary of Control Instructions

Chapter 10. Control Instructions 10-3

Explanation (Continued):

II Interruptible instruction.
L New condition code is loaded.
MD Designation of access registers in the access-register mode is model-

dependent.
MK Move-with-source-or-destination-key facility.
P Privileged-operation exception.
Q Privileged-operation exception for semiprivileged instructions.
R PER general-register alteration event.
Rl Rl field designates an access register in the access-register mode.
R2 R2 field designates an access register in the access-register mode.
RRE RRE instruction format.
RS RS instruction format.
RX RX instruction format.
S S instruction format.
SE Special operation, stack-empty, stack-specification, and stack-type ex-

ceptions.
SF Special-operation, stack-full, and stack-specification exceptions.
SI SI instruction format.
SO Special-operation exception.
SP Specification exception.
SS SS instruction format.
SSE SSE instruction format.
ST PER storage-alteration event.
SU PER store-using-real-address event.
SW Special-operation exception and space-switch event.
T Trace exceptions (which include trace table, addressing, and low-address

protection).
U Condition code is unpredictable.
Ul Rl field designates an access register unconditionally.
U2 R2 field designates an access register unconditionally.
Zl Additional exceptions and events for PROGRAM CALL (which include AFX-trans­

lation, ASN-translation-specification, ASX-translation, EX-translation,
LX-translation, PC-translation-specification, special-operation, stack-full,
and stack-specification exceptions and space-switch event).

Z2 Additional exceptions and events for PROGRAM TRANSFER (which include AFX­
translation, ASN-translation-specification, ASX-translation, primary­
authority, and special-operation exceptions and space-switch event).

Z3 Additional exceptions for SET SECONDARY ASN (which include AFX translation,
ASN-translation specification, ASX translation, secondary authority, and
special operation). .

Z4 Additional exceptions and events for PROGRAM RETURN (which i.nclude AFX­
translation, ASN-translatiQn-specification, ASX-translation, secondary­
authority, special-operation, stack-empty, stack-operation, stack-specifi­
cation, and stack-type exceptions and space-switch event).

Figure 10-1 (Part 3 of 3). Summary of Control Instructions

t 0-4 ESA/370 Principles of Operation

Branch and Stack

BAKR [RRE]

IB240 1

o 16 24 28 31

A linkage-stack branch state entry is fonned, and
the current PSW, except with an unpredictable PER

mask and an addressing-mode bit and instruction
address from the frrst operand substituted for bits
32-63, is placed in the state entry. Subsequently,
the updated instruction address in the current psw
is replaced from the second operand. The new
value of psw bits 32-63 and the psw-key mask,
PASN, SAsN, EAX, and contents of general registers
0-15 and access registers 0-15 also are placed in the
state entry. The action associated with an operand
is not performed if the R field designating the
operand is zero.

Bits 16-23 of the instruction are ignored.

When the R 1 field is nonzero, the contents of
general register R 1 specify an address referred to as
the return address. The return address is generated
from the contents of the register under the control
of the addressing mode specified by bit 0 of the reg­
ister: 24-bit mode if bit 0 is zero, or 31-bit mode if
bit 0 is one. Bit 0 of the register and the return
address are substituted for the addressing-mode bit
and the updated instruction address, respectively, in
the current psw when the contents of that psw are
placed in the state entry. The contents of the
current psw are not changed.

When the R 1 field is zero, there is no substitution
for the addressing-mode bit and instruction address
in the current psw when that psw is placed in the
state entry.

Subsequently, when the R 2 field is nonzero, the
instruction address in the current psw is replaced
by the branch address. The branch address is gen­
erated from the contents of general register R2

under the control of the current addressing mode.
When the R2 field is zero, the operation is per­
fonned without branching.

The branch state entry is formed and information is
placed in it as described in the section "Stacking
Process" in Chapter 5, "Program Execution." The
entry-type code in the state entry is 0000100 binary.

Key-controlled protection does not apply to
accesses to the linkage stack, but low-address and
page protection do apply.

Special Conditions

The CPU must be in the primary-space mode or
access-register mode, and the address-space­
function control, bit 15 of control register 0 must
be one; otherwise, a special-operation exception is
recognized.

A stack-full or stack-specification exception may be
recognized during the stacking process.

The operation is suppressed on all addressing and
protection exceptions.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-2 on
page 10-6.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch or store, except for key-controlled
protection, linkage-stack entry)

• Special operation
• Stack full
• Stack specification
• Trace

Chapter 10. Control Instructions 10-5

1.-6. Exceptions with the same priority as the priority of program­
interruption conditions for the general case.

7.A Access exceptions for second instruction halfword.

7.B Special-operation exception due to OAT being off, the CPU
being in secondary-space mode or home-space mode, or the
address-space-function control, bit 15 of control register 0,
being zero.

8.A Trace exceptions (only if R2 is nonzero).

8.B.1 Access exceptions (fetch) for entry descriptor of the current
linkage-stack entry.

Note: Exceptions 8.B.2-8.B.7 can occur only if there is not
enough remalnlng free space in the current linkage-stack
section.

8.B.2 Stack-specification exception due to remaining-free-space
value in current linkage-stack entry not being a multiple of
8.

8.B.3 Access exceptions (fetch) for second word of the trailer
entry of the current section. The entry is presumed to bea
trailer entry; its entry-type field is not examined.

8.B.4 Stack-full exception due to forward-section validity bit in
the trailer entry being zero.

8.B.5 Access exceptions (fetch) for entry descriptor of the header
entry of the next section. This entry is presumed to be a
header entry; its entry-type field is not examined.

8.B.6 Stack-specification exception due to not enough remaining
free space in the next section.

8.B.7 Access exceptions (store) for second word of the header entry
of the next section. If there is no exception, the header is
now called the current entry.

8.B.8 Access exceptions (store) for entry descriptor of the current
entry and for the new state entry.

Figure 10-2. Priority of Execution: BRANCH AND STACK

Programming Notes:'

1. Examples of the use of the BRANCH AND

STACK instruction are given in Appendix A.

2. In no case does BRANCH AND STACK change
the current addressing mode.

3. The effect when the Rl field is zero is that the
return address, which would otherwise be speci­
fied by the R 1 general register, is the address of
the next sequential instruction. In this case,

10-6 ESA/370 Principles of Operation

BRANCH AND STACK provides a program­
linkage function that is comparable to the func­
tion of BRANCH AND SAVE.

4. BRANCH AND STACK with a nonzero Rl field is
intended for use at or near the entry point of a
called program. The program may be called by
means of BRANCH AND LINK (BALR),. BRANCH

AND SAVE (BAS or BASR) , or BRANCH AND

SAVE AND SET MODE, or by means of a
BRANCH AND SET MODE instruction located in

a "glue module." In all of these cases, even
when the addressing mode was changed during
the calling linkage, BRANCH AND STACK cor­
rectly saves the addressing mode and 24-bit or
31-bit return address of the calling program so
that the subsequent execution of PROGRAM

RETURN will return correctly to the calling
program.

Diagnose

'83'

o 8 31

The CPU performs built-in diagnostic functions, or
other model-dependent functions. The purpose of
the diagnostic functions is to verify proper func­
tioning of equipment and to locate faulty compo­
nents. Other model-dependent functions may
include disabling of failing buffers, reconfiguration
of cpus, storage, and channel paths, and modifica­
tion of control storage.

Bits 8-31 may be used as in the SI or RS formats, or
in some other way, to specify the particular diag­
nostic function. The use depends on the model.

The execution of the instruction may affect the
state of the CPU and the contents of a register or
storage location, as well as the progress of an I/O

operation. Some diagnostic functions may cause
the test indicator to be turned on.

Condition Code: The code is unpredictable.

Program Exceptions:

• Privileged operation
• Depending on the model, other exceptions may

be recognized.

Programming Notes:

1. Since the instruction is not intended for
problem-state-program or control-program use,
DIAGNOSE has no mnemonic.

2. DIAGNOSE, unlike other instructions, does not
follow the rule that programming errors are dis­
tinguished from equipment errors. Improper
use of DIAGNOSE may result in false machine­
check indications or may cause actual machine
malfunctions to be ignored. It may also alter

other aspects of system operation, including
instruction execution and channel-program
operation, to an extent that the operation does
not comply with that specified in this publica­
tion. As a result of the improper use of DIAG­

NOSE, the system may be left in such a condi­
tion that the power-on reset or
initial-micro program-loading (IML) function
must be performed. Since the function per­
formed by DIAGNOSE may differ from model to
model and between versions of a model, the
program should avoid issuing DIAGNOSE unless
the program recognizes both the model number
and version code stored by STORE CPU ID.

Extract Primary ASN

EPAR Rl [RRE]

'8226'

o 16 24 28 31

The 16-bit PASN, bits 16-31 of control register 4, is
placed in bit positions 16-31 of general register Rl.

Bits 0-15 of the general register are set to zeros.

Bits 16-23 and 28-31 of the instruction are ignored.

Special Conditions

The instruction must be executed with DAT on;
otherwise, a special-operation exception is recog­
nized. The special-operation exception is recog­
nized in both the problem and supervisor states.

In the problem state, the extraction-authority
control, bit 4 of control register 0, must be one;
otherwise, a privileged-operation exception is recog­
nized. In the supervisor state, the extraction­
authority-control bit is not examined.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-3 on
page 10-8.

Condition Code: The code remains unchanged.

Program Exceptions:

• Privileged operation (extraction-authority
control is zero in the problem state)

• Special operation

Chapter 10. Control Instructions 10-7

1.-6. Exceptions with the same priority es
the priority of program-interruption
conditions for the general case.

7.A Access exceptions for second instruc­
tion halfword.

7.B

8.

Special-operation exception due to
OAT being off.

Privileged-operation exception due to
extraction-authority control, bit 4 of
control register 0, being zero in
problem state.

Figure 10-3. Priority of Execution: EXTRAcr
PRIMARY ASN

Extract Secondary ASN

ESAR Rl [RRE]

IB2271

o 16 24 28 31

The 16-bit SASN, bits 16-31 of control register 3, is
placed in bit positions 16-31 of general register Rl.

Bits 0-15 of the general register are set to zeros.

Bits 16-23 and 28-31 of the instruction are ignored.

Special Conditions

The instruction must be executed with DAT on;
otherwise, a special-operation exception is recog­
nized. The special-operation exception is recog­
nized in both the problem and supervisor states.

In the problem state, the extraction-authority
control, bit 4 of control register 0, must be one;
otherwise, a privileged-operation exception is recog­
nized. In the supervisor state, the extraction­
authority-control bit is not examined.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-4.

Condition Code: The code remains unchanged.

10-8 ESA/370 Principles of Operation

Program Exceptions:

• Privileged operation (extraction -authority
control is zero in the problem state)

• Special operation

1.-6. Exceptions with the same priority as
the priority of program-interruption
conditions for the general case.

7.A Access exceptions for second instruc­
tion halfword.

7.B Special-operation exception due to
OAT being off.

8. Privileged-operation exception due to
extraction-authority control bit 4 of
control register 0, being zero in
problem state.

Figure 10-4. Priority of Execution: EXTRACT SEC­
ONDARY ASN

Extract Stacked Registers

EREG [RRE]

IB249 1 I11111111I Rl R2

o 16 24 28 31

The contents of a set of general registers and a set
of access registers that were saved in the last state
entry in the linkage stack are restored to the regis­
ters. Each set of registers begins with register R 1

and ends with register R2.

For each of the general registers and the access reg­
isters, the registers are loaded in ascending order of
their register numbers, starting with register Rl and
continuing up to and including register R2, with
register 0 following register 15. Each register is
loaded from the position in the state entry where
the contents of the register were saved when the
state entry was created. The contents of the state
entry remain unchanged.

The last state entry is located as described in the
section "Unstacking Process" in Chapter 5,
"Program Execution." The state entry remains in
the linkage stack, and the linkage-stack-entry
address in control register 15 remains unchanged.

Key-controlled protection does not apply to refer­
ences to the linkage stack.

Bits 16-23 of the instruction are ignored.

Special Conditions

The CPU must be in the primary-space mode,
access-register mode, or home-space mode, and the
address-space-function control, bit 15 of control
register 0, must be one; otherwise, a special­
operation exception is recognized.

A stack-empty, stack-specification, or stack-type
exception may be recognized during the unstacking
process.

The operation IS suppressed on all addressing
exceptions.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-5.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, except for protection, linkage-
stack entry)

• Special operation
• Stack empty
• Stack specification
• Stack type

1.-6. Exceptions with the same priority as the priority of program­
interruption conditions for the general case.

7.A Access exceptions for second instruction halfword.

7.B Special-operation exception due to the CPU being in the real
mode or secondary-space mode or the address-space-function
control, bit 15 of control register 0, being zero.

8. Access exceptions for entry descriptor of the current linkage­
stack entry.

9. Stack-type exception due to current entry not being a state
entry or header entry.

Note: Exceptions 10-14 can occur only if the current entry
is a header entry.

10. Access exceptions for second word of the header entry.

11. Stack-empty exception due to backward stack-entry validity
bit in the header entry being zero.

12. Access exceptions for entry descriptor of preceding entry,
which is the entry designated by the backward stack-entry
address in the current (header) entry.

13. Stack-specification exception due to preceding entry being a
header entry.

14. Stack-type exception due to preceding entry not being a state
entry.

15. Access exceptions for the selected contents of the state
entry.

Figure 10-5. Priority of Execution: EXTRACf STACKED REGISTERS

Chapter 10. Control Instructions 10-9

Extract Stacked State

ESTA [RRE]

'B24A' I11111111I R. R2

o 16 24 28 31

The contents of one of the four eight-byte fields
immediately preceding the entry descriptor of the
last state entry in the linkage stack are placed in the
pair of general registers designated by the Rl field.
The condition code is set to indicate whether the
state entry is a branch state entry or a program-call
state entry.

The Rl field designates the even-numbered register
of an even-odd pair of general registers.

Bits 24-31 of general register R2 are an unsigned
binary integer that is used to select the state-entry
byte positions from which information is to be
extracted, as follows:

Value of Bits 24-31 of
Gen. Reg. R2

o
1
2
3

State-Entry Byte Posi­
tions Selected

128-135
136-143
144-151
152-159

The format of byte positions 128-159 of the state
entry is as follows:

PKM SASN EAX PASN

128 130 132 134 135

PSW

136 143

In a Branch State Entry

144 148 151

10-10 ESA/370 Principles of Operation

In a Program-Call State Entry

PC Number

144 148 151

Modifiable Area

152 159

The contents of the state entry remain unchanged.

The last state entry is located as described in the
section "Unstacking Process" in Chapter 5,
"Program Execution." The state entry remains in
the linkage stack, and the linkage-stack-entry
address in control register 15 remains unchanged.

When the entry-type code in the entry descriptor of
the state entry is 0000100 binary ,indicating a
branch state entry, the condition code is set to O.
When the entry-type code is 0000101 binary, indi­
cating a program-call state entry, the condition
code is set to 1.

Key-controlled protection does not apply to refer­
ences to the linkage stack.

Bits 16-23 of the instruction and bits 0-23 of
general register R2 are ignored.

Special Conditions

A specification exception is recognized when R 1 is
odd or the value of bits 24-31 of general register R2

is greater than three.

The CPU must be in the primary-space mode,
access-register mode, or home-space mode, and the
address-space-function control, bit 15 of control
register 0, must be one; otherwise, a special­
operation exception is recognized.

A stack-empty, stack-specification, or stack-type
exception may be recognized during the un stacking
process.

The operation is suppressed on all addressing
exceptions.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-6 on
page 10-11.

Resulting· Condition Code:

o Branch state entry

Program Exceptions:

• Access (fetch, except for protection, linkage-
1 Program-call state entry stack entry)
2
3

• Special operation
• Specification
• Stack empty
• Stack specification
• Stack type

1.-6. Exceptions with the same priority as the priority of program­
interruption conditions for the general case.

7.A Access exceptions for second instruction halfword.

7.B Special-operation exception due to the CPU being in the real
mode or secondary-space mode or the address-space-function
control, bit 15 of control register 0, being zero.

8.A Specification exception due to Rl being odd or bits 24-31 of
general register R2 having a value greater than three.

8.B.1 Access exceptions for entry descriptor of the current linkage­
stack entry.

8.B.2 Stack-type exception due to current entry not being a state
entry or header entry.

Note: Exceptions 8.B.3-8.B.7 can occur only if the current
entry is a header entry.

8.B.3 Access exceptions for second word of the header entry.

8.B.4 Stack-empty exception due to backward stack-entry validity
bit in the header entry being zero.

8.B.5 Access exceptions for entry descriptor of preceding entry,
which is the entry designated by the backward stack-entry
address in the current (header) entry.

8.B.6 Stack-specification exception due to preceding entry being a
header entry.

8.B.7 Stack-type exception due to preceding entry not being a state
entry.

8.B.8 Access exceptions for the selected contents of the state
entry.

Figure 10-6. Priority of Execution: EXTRACT STACKED STATE

Chapter 10. Control Instructions 10-11

Insert Address Space Control

lAC [RRE]

IB2241

e 16 24 28 31

The address-space-control bits, bits 16 and 17 of
the current PSW, are placed in reversed order in bit
positions 22 and 23 of general register Rl; that is,
bit 16 is placed in bit position 23, and ·bit 17 is
placed in bit position 22. Bits 16-21 of the register
are set to zeros, and bits 0-15 and 24-31 of the reg­
ister remain unchanged. The address-space-control
bits are also used to set the condition code.

Bits 16-23 and 28-31 of the instruction are ignored.

Special Conditions

The instruction must be executed with OAT on;
otherwise, a special-operation exception is recog­
nized. The special-operation exception is recog­
nized in both the problem and supervisor states.

In the problem state, the extraction-authority
control, hit 4 of control register 0, must be one;
otherwise, a privileged-operation exception is recog­
nized. In the supervisor state, the extraction­
authority-control bit is not examined.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-7.

Resulting Condition Code:

o psw bits 16 and 17 zeros (indicating primary­
space mode)
psw bit 16 one and bit 17 zero (indicating
secondary-space mode)

2 psw bit 16 zero and bit 17 one (indicating
access-register mode)

3 psw bits 16 and 17 ones (indicating home­
space mode)

Program Exceptions:

• Privileged operation (extraction -authority
control is zero in the problem state)

• Special operation

10-12 ESA/370 Principles of Operation

1~-6. Exceptions with the same priority as
the priority of program-interruption
conditions for the general case.

7.A Access exceptions for second instruc­
tion halfword.

7.B Special-operation exception due to
DAT being off.

8. Privileged-operation exception due to
extraction-authority control, bit 4
control register 0, being zero in
problem state.

Figure 10-7. Priority of Execution: INSERT
ADDRESS SPACE CONTROL

Programming Notes:

1. Bits 16-21 of general register R 1 are reserved for
expansion for use with possible future facilities.
The program should not depend on these bits
being set to zeros.

2. INSERT ADDRESS SPACE CONTROL and SET

ADDRESS SPACE CONTROL are dermed to
operate on the third byte of a general register
so that the address-space-control bits can be
saved in the same general register as the psw
key, which is placed in the fourth byte of
general register 2 by INSERT PSW KEY.

Insert PSW Key

JPK [S]

IB20B' 1////////////////1

o 16 31

The four-bit psw-key, bits 8-11 of the current PSW,

is inserted in bit positions 24-27 of general register
2, and bits 28-31 of that register are set to zeros.
Bits 0-23 of general register 2 remain unchanged.

Bits 16-31 of the instruction are ignored.

Special Conditions

In the problem state, the extraction-authority
control, bit 4 of control register 0, must be one;
otherwise, a privileged-operation exception is recog-

nized. In the supervisor state, the extraction-
authority-control bit is not examined.

Condition Code: The code remains unchanged.

Program Exceptions:

• Privileged operation (extraction-authority
control is zero in the problem state)

Insert Storage Key Extended

[RRE]

IB229 1

e 16 24 28 31

The storage key for the block that is addressed by
the contents of general register R2 is inserted in
general register R 1.

Bits 16-23 of the instruction are ignored.

In the 24-bit addressing mode, bits 8-19 of general
register R2 designate a 4K -byte block in real
storage, and bits 0-7 and 20-31 of the register are
ignored. In the 31-bit addressing mode, bits 1-19
of general register R2 designate a 4K-byte block in
real storage, and bits 0 and 20-31 of the register are
ignored.

The address designating the storage block, being a
real address, is not subject to dynamic address
translation. The reference to the storage key is not
subject to a protection exception.

The seven-bit storage key is inserted in bit positions
24-30 of· general register R 1, and bit 31 is set to
zero. The contents of bit positions 0-23 of the reg­
ister remain unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:

• Addressing (address specified by general register
R2)

• Privileged operation

Insert Virtual Storage Key

[RRE]

IB223 1 I11111111I Rl I R. I
e 16 24 28 31

The storage key for the location designated by the
virtual address in general register R2 is inserted in
general register R 1.

Bits 16-23 of the instruction are ignored.

Selected bits of general register R2 are used as a
virtual address. In the 24-bit addressing mode, the
address is designated by bits 8-31 of the register,
and bits 0-7 are ignored. In the 31-bit addressing
mode, the address is designated by bits 1-31, and
bit 0 is ignored.

The address is a virtual address and is subject to
the address-space-control bits, bits 16 and 17 of the
current psw. The address is treated as a primary
virtual address in the primary-space mode, as a sec­
ondary virtual address in the secondary-space
mode, as an AR-specified virtual address in the
access-register mode, or as a home virtual address
in the home-space mode. The reference to the
storage key is not subject to a protection exception.

Bits 0-4 of the storage key, which are the access­
control bits and the fetch-protection bit, are placed
in bit positions 24-28 of general register R 1, with
bits 29-31 set to zeros. The contents of bit posi­
tions 0-23 of the register remain unchanged. The
change and reference bits in the storage key are not
inspected. The change bit is not affected by the
operation. The reference bit, depending on the
model, mayor may not be set to one as a result of
the operation.

The following diagram shows the storage key and
the register positions just described.

Chapter 10. Control Instructions 10-13

Storage Key
for the
Location

IACC IFI+I

Teros
I I ~

Rl IACC IFl e0e l
a 24 28 31

Special Conditions

The instruction must be executed with DAT on;
otherwise, a special-operation exception is recog­
nized. The special-operation exception is recog­
nized in both the problem and supervisor states.

In the problem state, the extraction-authority
control, bit 4 of control register 0, must be one;
otherwise, a privileged-operation exception is recog­
nized. In the supervisor state, the extraction­
authority-control bit is not examined.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-8.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (except for protection, address specified
by general register R2)

• Privileged operation (extraction -authority
control is zero in the problem state)

• Special operation

10-14 ESA/370 Principles of Operation

1.-6. Exceptions with the same priority as
the priority of program-interruption
conditions for the general case.

7.A Access exceptions for second instruc­
tion halfword.

7.B Special-operation exception due to OAT
being off.

8. Privileged-operation exception due to
extraction-authority control, bit 4 of
control register a, being zero.

9. Access exceptions (except for protec­
tion) for address specified by general
register R2.

Figure 10-8. Priority of Execution: INSERT
VIRTUAL STORAGE KEY

Programming Notes:

1. Since all bytes in a 4K-byte block are associ­
ated with the same page and the same storage
key, bits 20-31 of general register R2 essentially
are ignored.

2. In the access-register mode, access register 0
. designates the primary address space regardless
of the contents of access register O.

Invalidate Page Table Entry

[RRE]

'B221' 1111111111 R. I R,

16 24 28 31

The designated page-table entry is invalidated, and
the translation-Iookaside buffers (TLBS) in all CPUs
in the configuration are cleared of the associated
entries.

Bits 16-23 of the instruction are ignored.

The contents of general register Rl have the format
of a segment-table entry with only the page-table
origin used. The contents of general register R2

have the format of a virtual address with only the
page index used. The contents of fields that are not
part of the page-table origin or page index are
ignored.

The contents of the general registers just described
are as follows:

"I Page-Table Origin

9 1 26 31

1/1//1/ /1//1/1 PX 1/1/ //I //I //II
12 29 31

The page-table origin and the page index designate
a page-table entry, following the dynamic-address­
translation rules for page-table lookup. The page­
table origin is treated as a 31-bit address, and the
addition is performed by using the rules for 31-bit
address' arithmetic, regardless of the setting of the
addressing mode, which is specified by bit 32 of the
current psw. Carries into bit position 0 as a result
of the addition of the page index and page-table
origin are ignored. The address formed from these
two components is a real address. The page-invalid
bit of this page-table entry is set to one. During
this procedure, no page-table-length check is made,
and the page-table entry is not inspected for avail­
ability or format errors. Additionally, the page­
frame/ real address contained in the entry is not
checked for an addressing exception.

The entire page-table entry is fetched concurrently
from storage. Subsequently the byte containing the
page-invalid bit is stored. The fetch access to the
page-table entry is subject to key-controlled pro­
tection, and the store access is subject to key­
controlled protection and low-address protection.

A serialization function is performed before the
operation begins and again after the operation is
completed. As is the case for all· serialization oper­
ations, this serialization applies only to this cpu;

. other cpus are not necessarily serialized.

If it is successful in setting the page-invalid bit to
one, this cpu clears selected entries from its TLB
and signals all CPUs in the configuration to clear
selected entries from their TLBs. Each TLB is cleared
of at least those entries that have been formed
using all of the following:

• The page-table origin designated by the fIrst
operand

• The page index designated by the second
operand

• The page-frame real address contained in the
designated page-table entry

The execution of INVALIDATE PAGE TABLE ENTRY
is not completed on the cpu which executes it until
(1) all entries corresponding to the specified param­
eters have been cleared from the TLB on this cpu
and (2) all other CPus in the configuration have
completed any storage accesses, including the
updating of the change and reference bits, by using
TLB entries corresponding to the specified parame­
ters.

Special Conditions

When bit positions 8-12 of control register 0
contain an invalid code, a translation-specification
exception is recognized. The exception is recog­
nized regardless of whether DAT is on or off.

The operation is suppressed on all addressing and
protection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

• Addressing (page-table entry)
• Privileged operation
• . Protection (fetch and store, page-table entry,

key-controlled protection, and low-address pro­
tection)

• Translation specification (bits 8-12 in control
register 0 only)

Programming Notes:

1. The selective clearing of entries may be imple­
mented in different ways, depending on the
model, and, in general,. more entries may be
cleared than the minimum number required.
Some models nlay clear all entries which
contain the designated page-frame real address.
Others may clear all entries which contain the
designated page index, and some implementa­
tions may clear precisely the minimum number
of entries required. Therefore, in order for a
program to operate on all models, the program
should not take advantage of any properties
obtained by a less selective· clearing on a partic­
ular model.

2. The clearing of TLB entries may make use of
the page-frame real address in the page-table
entry. Therefore, if the page-table entry, when

Chapter 10. Control Instructions 10-15

in the attached state, ever contained a page­
frame real address that is different from the
current value, copies of the previous values
may remain in the TLB.

3. INVALIDATE PAGE TABLE ENTRY cannot be
safely used to update a shared location in main
storage if the possibility exists that another CPU
or a channel program may also be updating the
location.

4. The address of the page-table entry for INV ALI­
DATE PAGE TABLE ENTRY is a 3 I-bit real
address, and the address arithmetic is performed
by following the normal rules for 31-bit address
arithmetic with wraparound at 231

- I. Con­
trast this with implicit translation and the
translation for LOAD REAL ADDRESS, both of
which, depending on the model, may treat
addresses of OAT-table entries as either real or
absolute and may result either in wraparound
or in an addressing exception when a carry
occurs into bit position O. Accordingly, the
OAT tables should not be specified to wrap
from maximum storage locations to location 0
and should not be placed at storage locations
whose real and absolute addresses are different.

Load Address Space Parameters

LASP 01 (81) ,02 (82) [SSE]

I&H&~ I Bl 'E500 1

/ /
0 16 20 32 36 47

The contents of the doubleword at the frrst­
operand location contain values to be loaded into
control registers 3 and 4, including a secondary ASN
and a primary ASN. Execution of the instruction
consists in performing four major steps: P ASN
translation, SASN translation, SASN authorization,
and control-register loading. Each of these steps
mayor may not be performed, depending on the
outcome of certain tests and on the setting of bits
29-31 of the second-operand address. These steps,
when successful, obtain additional values, which are
loaded into control registers 1, 5, and 7. When the
steps are not successful, no control registers are

10-16 ESAj370 Principles of Operation

changed, and the reason is indicated in the condi­
tion code.

When the address-space-function (ASP) control, bit
15 of control register 0, is zero, control register 5
contains the linkage-table designation (LTD), and
this instruction may place a new LTD in control
register 5. When the ASP control is one, control
register 5 contains the primary-AsN-second-table­
entry origin (PASTEO), and this instruction may
place a new PASTEO in control register 5. For sim­
plicity, this defmition sometimes frrst describes an
operation as if the AS F control were zero and then
describes the different operation that occurs when
the ASP control is one.

The doubleword frrst operand contains a psw-key
mask (PKM), a secondary ASN (SASN), an authori­
zation index (AX), and a primary ASN (PASN). The
primary ASN is translated by means of the
ASN-translation tables to obtain a PSTD, LTD or
PASTEO, and, optionally, an AX. The secondary
ASN is translated by means of the ASN-translation
tables to obtain an SSTD, and, optionally, an
authority check is made to ensure that the new AX
is authorized to establish the new SASN.

The doubleword at the frrst-operand location has
the following format:

PKM-d I SASN-d AX-d PASN-d

0 16 32 48 63

The "d" stands for designated doubleword and is
used to distinguish these fields from other fields
with similar names which are referred to in the defi­
nition. The current contents of the corresponding
fields in the control registers are referred to as
PKM -old, SASN -old, etc. The updated. contents of
the control registers are referred to as PKM -new,
SASN-new, etc.

The second-operand address is not used to address
data; instead, the rightmost three bits are used to
control portions of the operation. The remainder
of the second-operand address is ignored. Bits
29-31 of the second -operand address are used as
follows:

Function Specified in Second Operand

Bit When Bit Is Zero When Bit Is One

29 ASN translation per- ASN translation per-
formed only when new formed. *
ASN and old ASN are
different.

3e AX associated with AX from first oper-
PASN used. and used.

31 SASN authorization SASN authorization
performed. * not performed.

* SASN translation and SASN authorization
are performed only when SASN-d is not
not equal to PASN-d. When SASN-d is equal
to PASN-d, the SSTD is loaded from the
PSTD, and no authorization is performed.

The operation of LOAD ADDRESS SPACE PARAME­
TERS is depicted in Figure 10-12 on page 10-23.

P ASN Translation

In the PAsN-translation process, the PAsN-d is
translated by means of the ASN frrst table and the
ASN second table. The STD and LTD fields, and
optionally the AX field, obtained from the
ASN-second-table entry are subsequently used to
update the corresponding control registers.
However, when the ASP control is one, the LTD is
not obtained, and the PASTEO resulting from PASN
translation is used to update control register 5.

When bit 29 of the second-operand address is one,
PASN translation is always performed. When bit 29
is zero, PASN translation is performed only when
PASN-d is not equal to PASN-old. When bit 29 is
zero and PAsN-d is equal to PAsN-old, the PSTD-old
and the LTD-old or PASTEO-old are left unchanged
in the control registers and become the pSTD-new
and the LTD-new or PASTEo-new, respectively. In
this case, if bit 30 is zero, then the AX -old is left
unchanged in the control register and becomes the
Ax-new.

The PASN translation follows the normal rules for
ASN translation, except that the invalid bits, bit 0 in
the ASN-frrst-table entry and bit 0 in the
ASN-second-table entry, when ones, do not result in
an ASN-translation exception, and the space-switch­
event-control bit in the ASN-second-table entry,

when one, does not result in a space-switch event.
When either of the invalid bits is one, condition
code 1 is set. When the ASN-second-table entry is
valid and either the current primary space-switch­
event-control bit in control register 1 is one or the
space-switch-event-control bit in the ASN-second­
table entry is one, condition code 3 is set. When
condition code 1 or 3 is set, the control registers
remain unchanged.

The contents of the AX, STD, and LTD fields in the
ASN-second-table entry which is accessed as a result
of the PASN translation are referred to as AX-p,
STD-p, and LTD-p, respectively.· The origin of the
ASN-second-table entry is referred to as PASTEO-p.

SASN Translation

In the sAsN-translation process, the SASN-d is
translated by means of the ASN frrst table and the
ASN second table. The STD field obtained from the
ASN-second-table entry is subsequently used to
update the secondary-segment-table designation
(SSTD) in control register 7. The ATO and ATL
fields obtained are used in the SASN authorization,
if it occurs.

SASN translation is performed only when SASN-d is
not equal to PASN -d. When SASN -d is equal to
PASN -d, the SSTD-new is set to the same value as
PSTD-new. When sAsN-d is equal to sAsN-old, bit
29 (force ASN translation) is zero, and bit 31 (skip
SASN authorization) is one, SASN translation is not
performed, and sSTD-old becomes SSTD-new.

The SASN translation follows the normal rules for
ASN translation, except that the invalid bits, bit 0 in
the ASN-frrst-table entry and bit 0 in the
ASN-second-table entry, when ones, do not result in
an ASN-translation exception. When either of the
invalid bits is one, condition code 2 is set, and the
control registers remain unchanged.

The contents of the STD, A TO, and ATL fields in the
ASN-second-table entry which is accessed as a result
of the SASN translation are referred to as STD-S,
ATO-S, and ATL-S, respectively.

SASN Authorization

SASN authorization is performed when bit 31 of the
second-operand address is zero and sAsN-d is not
equal to PASN-d. When sAsN-d is equal to PAsN-d
or when bit 31 of the second-operand address is
one, SASN authorization is not performed.

Chapter 10. Control Instructions 10-17

SASN authorizatjon is performed by using ATO-S,
ATL-S, and the intended value for AX-new. When
bit 30 of the second-operand address is zero and
PASN translation was performed, the intended value
for Ax-new is AX-p. When bit 30 of that address is
zero and PASN translation was not performed, the
AX is not changed, and AX -new is the same as
AX -old. When bit 30 of that address is one, the
intended value for AX-new is Ax-d. SASN authori­
zation follows the rules for secondary authorization
as described in the section "AsN-Authorization
Process" in Chapter 3, "Storage." If the SASN is not
authorized (that is, the authority-table length is
exceeded, or the selected bit is zero), condition code
2 is set, and none of the control registers is
updated.

Control-Register Loading

When the PAsN-translation, sAsN-translation, and
SASN -authorization functions, if called for in the
operation, are performed without encountering any
exceptions, the operation is completed by replacing
the contents of control registers 1, 3, 4, 5, and 7
with the new values, and condition code 0 is set.
The control registers are loaded as follows:

The psw-key-mask and SASN fields in control reg­
ister 3 are replaced by the PKM-d and sAsN-d fields
from the first-operand location.

The PASN, bits 16-31' of control register 4, is
replaced by the PASN-d field from the frrst-operand
location.

The authorization index, bits 0-15 of control reg­
ister 4, is replaced as follows:

• When bit 30 of the second -operand address is
one, from AX -d.

• When bit 30 of the second-operand address is
zero and PASN translation is performed, from
AX-p.

• When bit 30 of the second-operand address is
zero and PASN translation is not performed, the
authorization index is not changed.

The primary segment-table designation in control
register 1 and the linkage-table designation or
primary-AsN-second-table-entry origin (PASTEO) in
control register 5 are replaced as follows:

• When PASN translation is performed, the
primary segment-table designation in control
register 1 is replaced from the STD-P field,
which is obtained during PASN translation.

10-18 ESA/370 Principles of Operation

Also, the linkage-table designation in control
register 5 is replaced from the LTD-p field if the
ASF control is zero, or the primary-AsN-second­
table origin (p ASTEO) in control register 5 is
replaced by the PASTEO-p if the ASF control is
one. When the ASF control is one, the
P ASTEO-p is placed in bit positions 1-25 of
control register 5, and zeros are placed in bit
positions 0 and 26-31.

• When PASN translation is not performed, the
contents of control registers 1 and 5 remain
unchanged.

The contents of the secondary segment-table desig­
nation in control register 7 are replaced as follows:

• When sAsN-d equals PAsN-d, by the new con­
tents of control register 1, the primary segment-
table designation. '

• When SASN translation is performed, by the
contents of the STD-S.

When SASN-d does not equal PAsN-d and SASN
translation is not performed, the secondary
segment-table designation remains unchanged.

Other Condition-Code Settings

When PASN translation is called for and cannot b~
completed because bit 0 is one in either the
ASN-frrst-table entry or the ASN-second-tableentry,
condition code 1 is set, and the control registers are
not changed.

When PASN translation is called for and completed
and either (1) the current primary space-switch­
event-control bit, bit 0 of control register I is one
or (2) the space-switch-event-control bit in the
ASN-second-table entry is one, condition code 3 is
set, and the control registers are not changed.

When SASN translation is called for and the trans­
lation cannot be completed because either (1) bit 0
is one in either the ASN -frrst-tableentry or the
ASN-second-table entry, or (2) SASN authorization
is called for and the SASN is not authorized, condi­
tion code 2 is set, and the control registers are not
changed.

Special Conditions

The instruction can be executed only when the
ASN-translation control, bit 12 of control register
14, is one. If the ASN-translation-control bit is
zero, a special-operation exception is recognized.

The frrst operand must be designated on a
doubleword boundary; otherwise, a specification
exception is recognized.

The operation is suppressed on all addressing and
protection exceptions.

Figure 10-10 on page 10-21 and Figure 10-9 on
page 10-20 summarize the functions of the instruc­
tion and the priority of recognition of exceptions
and condition codes.

Resulting Condition Code:

o Translation and authorization complete;
parameters loaded

Primary ASN not available; parameters not
loaded

2 Secondary ASN not available or not authorized;
parameters not loaded

3 Space-switch event specified; parameters not
loaded

Program Exceptions:

• Access (fetch, operand I)
• Addressing (AsN-frrst-table entry, ASN-second-

table entry, authority-table entry)
• ASN-translation specification
• Privileged operation
• Special operation
• Specification

Chapter 10. Control Instructions 10-19

1.-6. Exceptions with the same priority as the priority of program­
interruption conditions for the general case.

7.A Access exceptions for second and third instruction halfwords.

7.B.1 Privileged-operation exception.

7.B.2 Special-operation exception due to the ASN-translation control,
bit 12 of control register 14, being zero.

8. Specification exception.

9. Access exceptions for the first operand.

19. Execution of PASN translation (when performed).

19.1 Addressing exception for access to ASN-first-table entry.

19.2 Condition code 1 due to I bit (bit 9) in ASN-first-table entry
being one.

19.3 ASN-translation-specification exception due to invalid ones (bits
28-31) in ASN-first-table entry.

19.4 Addressing exception for access to ASN-second-table entry.

19.5 Condition code 1 due to I bit (bit 9) in ASN-second-table entry
being one.

19.6 ASN-translation-specification exception due to invalid ones (bits
39, 31, 69-63) in ASN-second-table entry.

19.7 Condition code 3 due to either the old or new space-switch-event­
control bit being one.

11. Execution of SASN translation (when performed).

11.1 Addressing exception for access to ASN-first-table entry.

11.2 Condition code 2 due to I bit (bit 9) in ASN-first-table entry
being one.

11.3 ASN-translation-specification exception due to invalid ones (bits
28-31) in ASN-first-table entry.

11.4 Addressing exception for access to ASN-second-table entry.

11.5 Condition code 2 due to I bit (bit 9) in ASN-second-table entry
being one.

11.6 ASN-translation-specification exception due to invalid ones (bits
39, 31, 69-63) in ASN-second-table entry.

12. Execution of secondary authorization (when performed).

12.1 Condition code 2 due to authority-table entry being outside table.

12.2 Addressing exception for access to authority-table entry.

12.3 Condition code 2 due to S bit in authority-table entry being zero.

Figure 10-9. Priority of Execution: LOAD ADDRESS SPACE PARAMETERS

10-20 ESA/370 Principles of Operation

Second-
Operand-
Address

PASN-d Bitsl PASN Result Field
Equals Translation
PASN-old 29 30 Performed PSTD-new AX-new CR5-new2 PKM-new SASN-new PASN-new

Yes 0 0 No PSTD-old AX-old CR5-old PKM-d SASN-d PASN-d
Yes 0 1 No PSTD-old AX-d CR5-old PKM-d SASN-d PASN-d
Yes 1 0 Yes STD-p AX-p CR5-p PKM-d SASN-d PASN-d
Yes 1 1 Yes STD-p AX-d CR5-p PKM-d SASN-d PASN-d
No - 0 Yes STD-p AX-p CR5-p PKM-d SASN-d PASN-d
No - 1 Yes STD-p AX-d CR5-p PKM-d SASN-d PASN-d

Figure 10-10 (Part 1 of 2). Summary of Actions: LOAD ADDRESS SPACE PARAMETERS

Second-Operand-
SASN-d SASN-d Address Bitsl SASN SASN
Equals Equals Translation Authorization Result Field
PASN-d SASN-old 29 31 Performed Performed 3 SSTD-new

Yes - - - No No PSTD-new
No Yes 0 1 No No SSTD-old
No Yes 1 1 Yes No STD-s
No Yes - 0 Yes Yes STD-s
No No - 1 Yes 'No STD-s
No No - 0 Yes Yes STD-s

Ex~lanation:

- Action in this case is the same regardless of the outcome of this
comparison or of the setting of this bit.

1 Second-operand-address bits:
29 Force ASN translation.
30 Use AX from first operand.
31 Skip secondary authority test.

2 "CR5" stands for "LTD" if the ASF control, bit 15 of control
register 0, is zero or for "PASTEO" if the ASF control is one.

3 SASN authorization is performed using ATO-s, ATL-s, and AX-new.

Figure 10-10 (Part 2 of 2). Summary of Actions: LOAD ADDRESS SPACE PARAMETERS

Chapter 10. Control Instructions 10-21

Programming Notes:

1. Bits 29 and 31 in the second-operand address
are intended primarily to provide improved per­
fonnance for those cases where the associated
action is unnecessary.

When bit 29 is set to zero, the action of the
instruction is based on the assumption that the
current values for PSTD-old, LTD-old or
PASTEO-old, and AX -old are consisient with
PASN-old and that SSTD-old is consistent with
SASN -old. When this is not the case, bit 29
should be set to one.

Bit 31, when one, eliminates the sASN-authori­
zation test. The program may be able to deter­
mine in certain cases that the SASN is author­
ized, either because of prior use or because the
AX being loaded is authorized to access all
address spaces.

2. The sASN-translation and sAsN-authorization
steps are not perfonned when sAsN-d is equal
to PAsN~d. This is consistent with the action in
SET SECONDARY ASN to current primary
(SSAR-Cp), which does not perfonn the trans­
lation or ASN authorization.

3. See Figure 10-11 for a listing of abbreviations
used in this instruction description.

10-22 ESA/370 Principles of Operation

Control-
Register

Number. Bit

1. 0-31
3.0-15
3.16-31
4.0-15
4.16-31
5.0-31
5.1-25
7.0-31

First-Operand
Bit Positions

0-15
16-31
32-47
48-63

Field in ASN-
Second-Table

Entry

1-29
32-47
48-59
64-95
96-127

Explanation:

Abbreviation for

Previous Subsequent
Contents Contents

PSTD-old PSTD-new
PKM-old PKM-new
SASN-old SASN-new
AX;..old AX-new
PASN-old PASN-new
LTD-old LTD-new
PASTEO-old PASTEO-new
SSTD-old SSTD-new

Abbreviation

PKM-d
SASN-d
AX-d
PASN-d

Abbreviation Used for
the Field When Accessed

as Part of

PASN SASN
Translation Translation

- ATO-s
AX-p -

- ATL-s
STD-p STD-s
LTD-pI -

- The field is not used in this case.

1 LTD-p is accessed only when the ASF con­
trol is zero. When the ASF control is
one, PASTEO-p is used in the operation,
and it is bits 1-25 of the address of the
ASN-second-table entry.

Figure 10-11. Summary of Abbreviations for LOAD
ADDRESS SPACE PARAMETERS

I Fetch op-l dou~~ord

PASN-d = PASN-old
AND No

Op-2-addr bit 29 = 8
?

Yes

PSTD-old ~ PSTD-tmp
LTD-old ~ LTD-tmp Note
AX-old -. AX-tmp

SASN-d = SASN-old
AND

Op-2-addr bit 29 = 8 No
AND

Op-2-addr bit 31 = 1
?

\ Yes

PSTD-tmp~ SSTD-tmp

~
o

Op-2-addr bit 38 =~ ?

Yes

AX-tmp ~ AX-new

'--_---,,.--_---Jf--

N
°---.ll ~ Cond Code I

Either old or new Yes
space-switch-event- \3 ~ Cond COde\
control bit = 1 ? .

No

STD-p ~ PSTD-tmp
LTD-p ~ LTD-tmp Note

AX-p ~ AX-tmp

I ASN ava il~t--_NO_-'·12 ~ Cond. Code I
TVe,

STD-s ~ SSTD-tmp
---,-----'

No ---
.-~p-2-addr bit 31 = 8 ?

-~Authorize~.-NO--•• 12 -~ con~

PSTD-tmp ~ PSTD-n~~ I PKM-d ~ PKM-new F~
Note LTD-tmp ~ LTD-new 1-----I~iISASN-d ~ SASN-new~ ~~J

SSTD-tmp ~ SSTD-new PASN-d ~ PASN-new

Note: Replace "LTD" with "PASTED" when the ASF control is one.

Figure 10-12. Execution of LOAD ADDRESS SPACE PARAMETERS

Chapter 10. Control Instructions 10-23

Load Control

[RS]

'B7' I R. I R, I B2 02

o 8 12 16 20 31

The set of control registers starting with control
register Rl and ending with control register RJ is
loaded from the locations designated by the second­
operand address.

The storage area from which the contents of the
control registers are obtained starts at the location
designated by the second-operand address and con­
tinues through as many storage words as the
number of control registers specified. The control
registers are loaded in ascending order of their reg­
ister numbers, starting with control register Rl and
continuing up to and including control register R3,

with control register 0 following control register 15.
The second operand remains unchanged.

Special Conditions

The second operand must be designated on a word
boundary; otherwise, a specification exception is
recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Privileged operation
• Specification

Programming Notes:

1. To ensure that existing programs operate cor­
rectly if and when new facilities using addi­
tional control-register positions are defmed,
only zeros should be loaded in unassigned
control-register positions.

2. Loading of control registers on some models
may require a significant amount of time. This
is particularly true for changes in significant
parameters.

For example, the TLB may be cleared of entries
as a result of changing or . enabling the
program-event-recording parameters in control

10-24 ESA/370 Principles of Operation

registers 9-11. Where possible, the program
should avoid unnecessary loading of control
registers. In loading control registers 9-11,
most models attempt to optimize for the case
when the bits of control register 9 are zeros.

As another example, the translation format,
bits 8-12 of control register 0, is initialized to
all zeros by initial CPU reset. An all-zero value
is an invalid translation format, and, on some
models, results in purging the TLB even though
DAT may be off. Thus, the program should
avoid loading invalid values for this field.

Load PSW

'82' I11111111I B2 02

o 8 16 20 31

The current psw is replaced by the contents of the
doubleword at the location designated by the
second-operand address.

Bits 8-15 of the instruction are ignored.

A serialization and checkpoint-synchronization
function is performed before or after the operand is
fetched and again after the operation is completed.

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized.

The value which is to be loaded by the instruction
is not checked for validity before it is loaded.
However, immediately after loading, a specification
exception is recognized and a program interruption
occurs when any of the following is true for the
newly loaded pSW:

• A one is introduced into an unassigned bit
position of the psw (that is, any of bit positions
0, 2-4, or 24-31).

• A zero is introduced into bit position 32 of the
PSW, but bits 33-39 are not all zeros.

• A zero is introduced into bit position 12 of the
psw.

In these cases, the operation is completed, and the
resulting instruction-length code is zero.

The test for a specification exception after the psw
is loaded is described in the section "Early Excep­
tion Recognition" in Chapter 6, "Interruptions." It
may be considered as occurring early in the process
of preparing to execute the subsequent instruction.

The operation is suppressed on all addressing and
protection exceptions.

Condition Code: The code is set as specified in
the new psw loaded.

Program Exceptions:

• Access (fetch, operand 2)
• Privileged operation
• Specification

Load Real Address

LRA [RX]

'B1' I RI I X2 I B2

o 8 12 16 20 31

The real address corresponding to the second­
operand virtual address is placed in general register
Rl.

The virtual address specified by the X 2, B 2, and 02
fields is translated by means of the dynamic­
address-translation facility, regardless of whether
OAT is on or off.

DAT is performed by using a segment-table desig­
nation that depends on the current value of the
address-space-control bits, bits 16 and 17 of the
PSW, as shown in the following table:

PSW Bits
16 and 17

00

10

01

Segment-Table Designation
Used by DAT

Contents of control register 1

Contents of control register 7

The segment-table designation
obtained by applying the access-
register-translation (ART) process to
the access register designated by the
B2 field

II Contents of control register 13

ART may be performed with the use of the
ART-lookaside buffer (ALB).

OAT is performed without the use of the
translation-lookaside buffer (TLB). A zero is
appended on the left of the resultant 31-bit real
address to produce a 32-bit result, which is then
placed in general register R 1. The translated
address is not inspected for boundary alignment or
for addressing or protection exceptions.

The virtual-address computation is performed
according to the current addressing mode, specified
by bit 32 of the current PSW.

The addresses of the segment-table entry and page­
table entry are treated as 31-bit addresses, regardless
of the current addressing mode specified by bit 32
of the current psw. It is unpredictable whether the
addresses of these entries are treated as real or abso­
lute addresses.

Condition code 0 is set when both ART, if appli­
cable, and DAT can be completed, that is, when a
segment-table designation can be obtained and the
entry in each OAT table lies within the specified
table length and has a zero I bit.

When psw bits 16 and 17 are 0 I binary and a
segment-table designation cannot be obtained
because of a situation that would normally cause
one of the exceptions shown in the following table,
(1) the interruption code assigned to the exception
is placed in bit positions 16-31 of general register
R 1, and bit 0 of this register is set to one and bits
1-15 are set to zeros, and (2) the instruction is
completed by setting condition code 3.

Chapter 10. Control Instructions 10-25

Exception Code
Name Cause (in hex)

ALET specifi- Access-list-entry- 0028
cation token (ALET) bits

0-6 not zeros

ALEN trans- Access-list entry 0029
lation- (ALE) outside list or

invalid (bit 0 is one)

ALE sequence ALE sequence 002A
number (ALESN) in
ALET not equal to
ALESN in ALE

ASTE validity ASN-second-table 002B
entry (ASTE) invalid
(bit 0 is one)

ASTE sequence ASTE sequence 002C
number (ASTESN) in
ALE not equal to
ASTESN in ASTE

Extended ALE private bit not 002D
authority zero, ALB authori-

zation index
(ALEAX) not equal
to extended authori-
zation index (EAX),
and secondary bit
selected by EAX
either outside
authority table or
zero

When ART is completed normally, the operation is
continued through the performance of DAT.

When the I bit in the segment-table entry is one,
condition code I is set, and the real address of the
segment-table entry is placed in general register Rl.
When the I bit in the page-table entry is one, con­
dition code 2 is set, and the real address of the
page-table entry is placed in general register Rl.
When either the segment-table entry or the page­
table entry is outside the table, condition code 3 is
set, and general register R 1 is loaded with the real
address of the entry that would have been fetched if
the length violation had not occurred. In all these
cases, a' zero is appended on the left of the resultant
31-bit real address to produce a 32-bit result, and
the 32-bit result is placed in the register.

10-26 ESAj370 Principles of Operation

Special Conditions

An addressing exception is recognized when the
address used by ART to fetch the effective access-list
designation or the ALE, ASTE, or authority-table
entry designates a location which is not available in
the configuration. When it is necessary to access
the authority table ,.- when the private bit is not
zero and the ALEAX is not equal to the EAX -- an
ASN-translation-specification exception is recog­
nized when bits 30, 31, and 60-63 of the ASTE are
not all zeros.

An addressing exception is recognized when the
address used to fetch the segment-table entry or
page-table entry designates a location which is not
available in the configuration. A translation­
specification exception is recognized when bits 8-12
of control register 0 contain an invalid code, or the
segment-table entry or page-table entry has a zero I

bit and a format error.

A carry into bit position 0 as a result of the addi­
tion done to compute the address of either the
segment-table entry or the page-table entry may be
ignored or may result in an addressing exception.

The operation is suppressed on all addressing
exceptions.

Resulting Condition Code:

o Translation available
I Segment-table entry invalid (I bit is one)
2 Page-table entry invalid (I bit is one)
3 Segment-table designation not available or

segment- or page-table length exceeded

Program Exceptions:

• Addressing (effective access-list designation,
access-list entry, ASN-second-table entry,
authority-table entry, segment-table entry, or
page-table entry)

• ASN-translation specification
• Privileged operation
• Translation specification

Programming Note: Caution must be exercised in
the use of LOAD REAL ADDRESS in a multiproc­
essing configuration. Since INVALIDATE PAGE
TABLE ENTRY may set the I bit in storage to one
before causing the corresponding entries in TLBS of
other CPUs to be cleared, the simultaneous exe­
cution of LOAD REAL ADDRESS on this CPU and
INVALIDATE PAGE TABLE ENTRY on another CPU
may produce inconsistent results. Because LOAD

REAL ADDRESS accesses the tables in storage, the
page-table entry may appear to be invalid (condi­
tion code 2) even though the corresponding TLB

entry has not yet been cleared, and the TLB entry
may remain in the TLB until the completion of
INVALIDATE PAGE TABLE ENTRY on the other CPU.

There is no guaranteed limit to the number of
instructions which may occur between the com­
pletion of LOAD REAL ADDRESS and the TLB being
cleared of the entry.

Load Using Real Address

LURA [RRE]

18248 1

(:) 16 24 28 31

The word at the real-storage location addressed by
the contents of general register R2 is placed in
general register R 1.

Bits 16-23 of the instruction are ignored.

In the 24-bit addressing mode, bits 8-31 of general
register R2 designate a real-storage location on a
word boundary, and bits 0-7 of the register are
ignored. In the 31-bit addressing mode, bits 1-31
of general register R2 designate a real-storage
location on a word boundary, and bit 0 of the reg­
ister is ignored.

Because it is a real address, the address designating
the storage word is not subject to dynamic address
translation.

Special Conditions

The contents of general register R2 must designate a
location on a word boundary; otherwise, a specifi­
cation exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Addressing (address specified by general register
R2)

• Privileged operation
• Protection (fetch, operand 2, key-controlled

protection)
• Specification

Modify Stacked State

MSTA [RRE]

182471

(:) 16 24 28 31

The contents of the pair of general registers desig­
nated by the Rl field are placed in the modifiable
area, byte positions 152-159, of the last state entry
in the linkage stack.

The Rl field designates the even-numbered register
of an even-odd pair of general registers.

The last state entry is located as described in the
section "Unstacking Process" in Chapter 5,
"Program Execution." The state entry remains in
the linkage stack, and the linkage-stack-entry
address in control register 15 remains unchanged.

Key-controlled protection does not apply to the
references to the linkage stack, but low-address and
page protection do apply.

Bits 16-23 and 28-31 of the instruction are ignored.

Special Conditions

A specification exception is recognized when Rl ·is
odd.

The CPU must be in the primary-space mode,
access-register mode, or home-space mode, and the
address-space-function control, bit 15 of control
register 0, must be one; otherwise, a special­
operation exception is recognized.

A stack-empty, stack-specification, or stack-type
exception may be recognized during the un stacking
process.

The operation is suppressed on all addressing and
protection exceptions.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-13 on
page 10-28.

Condition Code: The code remains unchanged.

Chapter 10. Control Instructions 10-27

Program Exceptions:

• Access (fetch and' store, except for key­
controlled protection, linkage-stack entry)

• Special operation

• Specification
• Stack empty
• Stack specification
• Stack type

1.-6. Exceptions with the same priority as the priority of program­
interruption conditions for the general case.

7.A Access exceptions for second instruction halfword.

7.B Special-operation exception due to the CPU being in the real
mode or secondary-space mode or the address-space-function
control, bit 15 of control register 0, being zero.

8.A Specification exception due to Rl being odd.

8.B.1 Access exceptions for entry descriptor of the current linkage­
stack entry.

8.B.2 Stack-type exception due to current entry not being a state
entry or header entry.

Note: Exceptions 8.B.3-8.B.7 can occur only if the current
entry ;s a header entry.

8.B.3 Access exceptions for second word of the header entry.

8.B.4 Stack-empty exception due to backward stack-entry validity
bit in the header entry being zero.

8.B.5 Access exceptions for entry descriptor of preceding entry,
which is the entry designated by the backward stack-entry
address in the current (header) entry.

8.B.6 Stack-specification exception due to preceding entry being a
header entry.

8.B.7 Stack-type exception due to preceding entry not being a state
entry.

8.B.8 Access exceptions for the modifiable area of the state entry.

Figure 10-13. Priority of Execution: MODIFY STACKED STATE

10-28 ESA/370 Principles of Operation

Move to Primary

[SS]

IDAI I R. I R. I B. I &~&~
/ /~

o 8 12 16 20 32 36 47

Move to Secondary

[SS]

I R·I R. I B. I &~&~
/ /

lOBI

o 8 12 16 20 32 36 47

The frrst operand is replaced by the second
operand. One operand is in the primary address
space, and the other is in the secondary address
space. The accesses to the operand in the primary
space are perfonned by using the psw key; the
accesses to the operand in the secondary space are
performed by using the key specified by the third
operand.

The addresses of the frrst and second operands are
virtual, one operand address being translated by
means of the primary segment-table designation
and the other by means of the secondary segment­
table designation. Operand-address translation is
performed in the same way when the address-space­
control bits in the current psw specify either the
primary-space mode or the secondary-space mode.

For MOVE TO PRIMARY, movement is to the
primary space from the secondary space. The frrst­
operand address is translated by using the primary
segment table, and the second-operand address is
translated by using the secondary segment table.

For MOVE TO SECONDARY, movement is to the
secondary space from the primary space. The frrst­
operand address is translated by using the sec­
ondary segment table, and the .second-operand
address is translated by using the primary segment
table.

Bit positions 24-27 of general register R3 are used
as the secondary-space access key. Bit positions
0-23 and 28-31 of the register are ignored.

The contents of general register Rl are a 32-bit
unsigned value called the true length.

The contents of the general registers just described
are as follows:

True Length

o 31

R3

o 24 28 31

The frrst and second operands are the same length,
called the effective length. The effective length is
equal to the true length, or 256, whichever is less.
Access exceptions for the frrst and second operands
are recognized only for that portion of the operand
within the effective length. When the effective
length is zero, no access exceptions are recognized
for the frrst and second operands, and no move­
ment takes place.

Each storage operand is processed left to right.
The storage-operand -consistency rules are the same
as for MOVE (MVC), except that when the operands
overlap in real storage, the use of the common real­
storage locations is not necessarily recognized.

As part of the execution of the instruction, the
value of the true length is used to set the condition
code. If the true length is 256 or less, including
zero, the true length and effective length are equal,
and condition code 0 is set. If the true length is
greater than 256, the effective length is 256, and
condition code 3 is set.

For both MOVE TO PRIMARY and MOVE TO SEC­

ONDARY, a serialization and checkpoint­
synchronization function is performed before the
operation begins and again after the operation is
completed.

Chapter 10. Control Instructions 10-29

Special Conditions

Since the secondary space is accessed, the operation
is performed only when the secondary-space
control, bit 5 of control register 0, is one and OAT

is on. When either the secondary-space control is
zero or OAT is off, a special-operation exception is
recognized. A special-operation exception is also
recognized when the address-space-control bits in
the current psw specify the access-register or home­
space mode. The special-operation exceptions are
recognized in both the problem and supervisor
states.

In the problem state, the operation is performed
only if the secondary-space access key is valid, that
is, if the corresponding psw-key-mask bit in control
register 3 is one. Otherwise, a privileged-operation
exception is recognized. In the supervisor state,
any value for the secondary-space access key is
valid.

The priority of the recognition of exceptions and
condition codes is shown in Figure 10-14.

Resulting Condition Code:

o True length less than or equal to 256
1
2
3 True length greater than 256

Program Exceptions:

• Access (fetch, primary virtual address, operand
2, MVCS; fetch, secondary virtual address,
operand 2, MVCP; store, secondary virtual
address, operand I, MVCS; store, primary
virtual address, operand 1, MVCP)

• Privileged operation (selected psw-key-mask bit
is zero in the problem state)

• Special operation

10-30 ESA/370 Principles of Operation

1.-6. Exceptions with the same priority as
the priority of program-interruption
conditions for the general case.

7.A Access exceptions for second and third
instruction halfwords.

7.B Special-operation exception due to the
secondary-space control, bit 5 of con­
trol register 0, being zero, to OAT
being off, or to the CPU being in the
access-register or home-space mode.

8.

9.

10.

Privileged-operation exception due to
selected PSW-key-mask bit being zero
in the problem state.

Completion due to length zero.

Access exceptions for operands.

Figure 10-14. Priority of Execution: MOVE TO
PRIMARY and MOVE TO SEC­
ONDARY

Programming Notes:

1. MOVE TO PRIMARY and MOVE TO SECONDARY

can be used in a loop to move a variable
number of bytes of any length. See the pro­
gramming note under MOVE WITH KEY.

2. MOVE TO PRIMARY and MOVE TO SECONDARY

should be used only when movement is
between different address spaces. The perform­
ance of these instructions on most models may
be significantly slower than that of MOVE WITH

KEY, MOVE (MVC), or MOVE LONG. In addi­
tion, the defInition of overlapping operands for
MOVE TO PRIMARY and MOVE TO SECONDARY

is not compatible with the more precise defi­
nitions for MOVE (MVC), MOVE WITH KEY, and
MOVE LONG.

Move with Destination Key

MVCOK 01 (B1) ,02 (B2) [SSE]

~ __ I_E5_0F_I __ ~I_Bl~I~~~~
o 16 20 32 36 47

The frrst operand is replaced by the second
operand. The accesses to the destination-operand

location are performed by using the key specified in
general register 1, and the accesses to the source­
operand location are performed by using the psw
key.

The frrst and second operands are of the same
length, which is specified by bits 24-31 of general
register O. Bits 0-23 of general register 0 are
ignored.

Bits 24-27 of general register 1 are used as the spec­
ified access key. Bits 0-23 and 28-31 of general reg­
ister 1 are ignored.

The contents of general registers 0 and 1 are as
follows:

GR0 1////////////////////////11 L

o 24 31

o 24 28 31

L specifies the number of bytes to the right of the
frrst byte of each operand. Therefore, the length in
bytes of each operand is 1-256, corresponding to a
length code in L of 0-255.

The fetch accesses to the second-operand location
are performed by using the psw key, and the store
accesses to the first-operand location are performed
by using the key specified in general register 1.

Each of the operands is processed left to right.
When the operands overlap in real storage, the
results in the frrst-operand location are unpredict­
able. Except for this unpredictability in the case of
overlap, the storage-operand-consistency rules are
the same as for the MOVE (MVC) instruction.

Special Conditions

In the problem state, the operation is performed
only if the access key specified in general register I
is valid, that is, if the corresponding psw-key~mask
bit in control register 3 is one. Otherwise, a
privileged-operation exception is recognized. In the
supervisor state, any value for the specified access
key is valid.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2; store, operand 1)
• Operation (if the move-with-source-or-

destination-key facility is not installed)
• Privileged operation (selected psw-key-mask bit

is zero in the problem state)

Programming Note: See the programming notes
for the MOVE WITH SOURCE KEY instruction.

Move with Key

[55]

,---' D9_' ..1--1 R---..I' I_R3----l-I_B 1--1..-1 ~H~~
o 8 12 16 20 32 36 47

The frrst operand is replaced by the second
operand. The fetch accesses to the second-operand
location are performed by using the key specified in
the third operand, and the store accesses to the
frrst-operand location are performed by using the
pswkey.

Bit positions 24-27 of general register R3 are used
as the source access key. Bit positions 0-23 and
28-31 of the register are ignored.

The contents of general register Rl are a 32-bit
unsigned value called the true length.

The contents of the general registers just described
are as follows:

Rl True Length

o 31

R3

o 24 28 31

The frrst and second operands are the same length,
called the effective length. The effective length is
equal to the true length, or 256, whichever is less.
Access exceptions for the first and second operands
are recognized only for that portion of the operand

Chapter 10. Control Instructions 10-31

within the effective length. When the effective
length is zero, no access exceptions are recognized
for the frrst and second operands, and no move­
ment takes place.

Each storage operand is processed left to right.
When the storage operands overlap, the result is
obtained as if the operands were processed one byte
at a time and each result byte were stored imme­
diately after the necessary operand byte was
fetched. The storage-operand-consistency rules are
the same as for the MOVE (MVC) instruction.

As part of the execution of the instruction, the
value of the true length is used to set the condition
code. If the true length is 256 or less, including
zero, the true length and effective length are equal,
and condition code 0 is set. If the true length is
greater than 256, the effective length is 256, and
condition code 3 is set.

Special Conditions

In the problem state, the operation is performed
only if the source access key is valid, that is, if the
corresponding psw-key-mask bit in control register
3 is one. Otherwise, a privileged-operation excep­
tion is recognized. In the supervisor state, any
value for the source access key is valid.

The priority of the recognition of exceptions and
condition codes is shown in Figure 10-15.

Resulting Condition Code:

o True length less than or equal to 256
1
2
3 True length greater than 256

Program Exceptions:

• Access (fetch, operand 2; store, operand 1)
• Privileged operation (selected psw-key-mask bit

is zero in the problem state)

10-32 ESA/370 Principles of Operation

1.-6. Exceptions with the same priority as
the priority of program-interruption
conditions for the general case.

7.A Access exceptions for second and third
instruction halfwords.

8. Privileged-operation exception due to
selected PSW-key-mask bit being zero
in the problem state.

9. Completion due to length zero.

10. Access exceptions for operands.

Figure 10-15. Priority of Execution: MOVE WITH
KEY

Programming Notes:

1. MOVE WITH KEY can be used in a loop to
move a variable number of bytes of any length,
as follows:

LA RW,256
LOOP MVCK Dl(Rl,Bl},D2(B2},R3

BC 8,END
AR Bl,RW
AR B2,RW
SR Rl,RW
B LOOP)

END

2. The performance of MOVE WITH KEY on most
models may be significantly slower than that of
the MOVE (MVC) and MOVE LONG instructions.
Therefore, MOVE WITH KEY should not ~.e used
if the keys of the source and the target are the
same.

Move with Source Key

MVCSK

~ __ I_E5_0_EI __ ~_B_l~I~~~~~
o 16 20 32 36 47

The frrst operand is replaced by the second
operand. The accesses to the source-operand
location are performed by using the key specified in
general register 1, and the accesses to the
destination-operand location are performed by
using the psw key.

The fIrst and second operands are of the same
length, which is specified by bits 24-31 of general
register o. Bits 0-23 of general register 0 are
ignored.

Bits 24-27 of general register 1 are used as the spec­
ified access key. Bits 0-23 and 28-31 of general reg­
ister 1 are ignored.

The contents of general registers 0 and 1 are as
follows:

GRB 1/////////////////////////1 L

24 31

24 28 31

L specifies the number of bytes to the right of the
fIrst byte of each operand. Therefore, the length in
bytes of each operand is 1-256, corresponding to a
length code in L of 0-255.

The fetch accesses to the second-operand location
are performed by using the key specified in general
register I, and the store accesses to the fIrst-operand
location are performed by using the psw key.

Each of the operands is processed left to right.
When the operands overlap in real storage, the
results in the fIrst-operand location are unpredict­
able. Except for this unpredictability in the case of
overlap, the storage-operand-consistency rules are
the same as for the MOVE (MVC) instruction.

Special Conditions

In the problem state, the operation is performed
only if the access key specified in general register 1
is valid, that is, if the corresponding psw-key-mask
bit in control register 3 is one. Otherwise, a
privileged-operation exception is recognized. In the
supervisor state, any value for the specified access
key is valid.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2; store, operand 1)
• Operation (if the move-with-source-or-

destination-key facility is not installed)
• Privileged operation (selected psw-key-mask bit

is zero in the problem state)

Programming Notes:

1. When data is to be moved alternately in both
directions between two storage areas that are
fetch protected by means of different keys, then
MOVE WITH SOURCE KEY and MOVE WITH DES­

TINATION KEY can be used while leaving the
psw key unchanged; and this may be, on most
models, significantly faster than using MOVE

WITH KEY along with SET PSW KEY FROM

ADDRESS to change the psw key.

2. MOVE WITH SOURCE KEY and MOVE WITH DES­

TINATION KEY should be used only when
movement is between storage areas having dif­
ferent keys. The performance of these
instructions on most models may be signif­
icantly slower than that of the MOVE (MVC)

instruction.

3. MOVE WITH SOURCE KEY or MOVE WITH DES­

TINATION KEY can be used in a loop to move a
variable number of bytes as shown in the fol­
lowing example. In the example, the specified
access key, the fIrst-operand address, the
second-operand address, and the length of each
operand are assumed to be in general registers
1-4, respectively, at the beginning of the
example. The length of each operand is treated
as a 32-bit signed value, and a negative value is
treated as zero.

LOOP

LAST

END

LTR
BC
S
BC
LA
MVCSK
LA
LA
S
BC
LA
MVCSK

4,4
12,END
4,=F'256 1

12,LAST
O,255
O(2),O(3)
2,256(2)
3,256(3)
4,=F'256 1

2,LOOP
0,255(4)
O(2) ,O(3)

Chapter 10. Control Instructions 10-33

Program Call

[S]

'B218 1

o 16 20 ,31

A program-call number specified .by the second­
operand address is used in a two-level lookup to
locate an entry-table entry (ETE). When the
address-space-function (AS F) control, bit 15 of
control register 0, is zero, a 16-byte ETE is located;
otherwise, when the ASF control is one, a 32-byte
ETE is located.

The program is authorized to use the ETE when the
AND of the psw-key mask in control register 3 and
the authorization key mask in the ETE is. nonzero
or when the CPU is in the supervisor state.

When a l6-byte ETE is located, or when a 32-byte
ETE is located but the pc-type bit, bit 128 of the
ETE, is zero, an operation called basic PROGRAM
CALL is performed. When a 32-byte ETE is located
and the pc-type bit is one, an operation called
stacking PROGRAM CALL is performed.

Basic PROGRAM CALL loads the addressing-mode
bit, updated instruction address, and problem-state
bit from the psw into general register 14, and it
places the psw-key mask and PASN in general reg­
ister 3.

Stacking PROGRAM CALL places the entire psw
contents, except with an unpredictable PER mask,
and also the psw-key mask, PASN, SASN, and EAX
in a linkage-stack program-call state entry that it
forms. The program-call number and the contents
of general registers 0-15 and access registers 0-15
also are placed in the state entry.

Basic and stacking PROGRAM CALL both replace
the addressing-mode bit, instruction address, and
problem-state bit in the psw from the ETE, and.
both load the entry parameter from' the ETE into
general register 4.

Basic PROGRAM CALL ORs the entry key mask
from the ETE into the psw-key mask in control reg­
ister 3. Stacking PROGRAM CALL does the same, or
it replaces the psw-key mask with the entry key
mask, as determined by the psw-key-mask control
in the ETE.

10-34 ESAj370 Principles of Operation

Stacking PROGRAM CALL optionally replaces the
psw key in the psw and the· EAX in control register
8 from the ETE, and it sets the address-space­
control bits in the psw, as determined by control
bits in the ETE.

The ETE causes a space-switching operation to
occur if it contains a nonzero ASN. When the ETE
contains a zero ASN, the operation is. called
PROGRAM CALL to current primary (pc-cp);when
the ETE contains a nonzero ASN, the operation is
called PROGRAM CALL with space switching
(pc-ss). When space switching is specified, the new
PASN is loaded into control register 4 from the ErE
and is used in a two-level lookup to locate an.
ASN-second-table entry (ASTE). However, when the
ASF control is one, the address of the ASTE may be
obtained directly from the ETE. From this ASTE, a
new PSTD and AX are loaded into control registers 1
and 4, respectively. When the ASF control is zero,
a new LTD is loaded into control register 5 from the
ASTE. When the ASF control is one, bits 1-25 of
the address of the ASTE are loaded into control reg­
ister 5 as the new primary-AsTE origin.

In both Pc-cp and Pc-ss, the SASN and SSTD are set
equal to the original PASN and PSTD, respectively.
However, the space-switching stacking PROGRAM
CALL operation may set the SASN and SSTD equal
to the new PAS N and PSTD, respectively, as deter­
mined by a control bit in the ETE.

PROGRAM CALL PC-Number Translation

The second-operand address is not used to· address
data; instead, the rightmost 20 bits of the address
are used as a PC number and have the following
format:

Second-Operand Address

,...----pc Number----.

111//////////1 LX EX

o 12 24 31

Linkage Index (LX): Bits 12-23 of the second­
operand address are the linkage index and are used
to select an entry from the linkage table designated
by the linkage-table designation. When the ASF
control, bit 15 of control register 0, is zero, the
linkage-table designation is in . control register 5.
When the ASF control is one, the linkage-table des-

ignation is in the primary ASN-second-table entry
(primary ASTB), and the primary-ASTB origin is in
control register 5.

Entry Index (EX): Bits 24-31 of the second­
operand address are the entry index and are used to
select an entry from the entry table designated by
the linkage-table entry.

Bits 0-11 of the second-operand address are
ignored.

The linkage-table and entry-table lookup process is
depicted in part 1 of Figure 10-17 on page 10-40.
The detailed defmition of this table-lookup process
is in the section "pc-Number Translation" in
Chapter 5, "Program Execution." The 16-byte
entry-table entry (ETB) is identical to the fust 16
bytes of the 32-byte BTB. The 32-byte BTH has the
following format:

AKM ASN H EIA

o 16 32 63

Entry Parameter EKM

64 96 112 127

ICntrl/EKI EEAX

128 144 160 186 191

192 255

Bits 128-143 of the HTH have the following detailed
format:

128 131 136 143

When bit 32 of the HTH is zero (24-bit addressing
mode), then bits 33-39 of the HTH must be zeros;

otherwise, a pc-translation-specification exception
is recognized.

Mter the ETE has been fetched, if the current psw
specifies the problem state, the current psw-key
mask in control register 3 is tested against the AKM
field in the ETE to determine whether the program
is authorized to access this entry. The AKM and
psw-key mask are AN oed, and if the result is zero,
a privileged-operation exception is recognized. The
psw-key mask in control register 3 remains
unchanged. When PROGRAM CALL is executed in
the supervisor state, the AKM field is ignored.

If the result of the AND of the AKM and the
psw-key mask is not zero, or if the CPU is in the
supervisor state, the execution of the instruction
continues.

If a 16-byte ETE has been fetched, or if a 32-byte
BTE has been fetched but bit 128 of the ETE (T) is
zero, the basic PROGRAM CALL operation is speci­
fied. If a 32-byte ETE has been fetched and bit 128
of the ETE is one, the stacking PROGRAM CALL
operation is specified.

Basic PROGRAM CALL: The following opera­
tions are performed when basic PROGRAM CALL is
specified.

Bits 32-62 of the current psw (the addressing-mode
bit and the updated instruction address) are placed
in bit positions 0-30 of general register 14. Bit 15
of the psw (the problem-state bit) is placed in bit
position 31 of general register 14.

Bits 32-62 of the ETE (A and the EIA), with a zero
appended on the right, are placed in psw bit posi­
tions 32-63 (the addressing-mode bit and the
instruction address). Bit 63 of the ETE (p) is placed
in psw bit position 15 (the problem-state bit).

The psw-key mask, bits 0-15 of control register 3,
is placed in bit positions 0-15 of general register 3,
and the current PASN, bits 16-31 of control register
4, is placed in bit positions 16-31 of general register
3.

Bits 96-111 of the ETE (the EKM) are oRed with the
psw-key mask, bits 0-15 of control register 3, and
the result replaces the psw-key mask in control reg­
ister 3.

Bits 64-95 of the ETE (the entry parameter) are
loaded into general register 4.

Chapter 10. Control Instructions 10-35

Stacking PROGRAM CALL: The following opera­
tions are perfonned when stacking PROGRAM CALL
is specified.

The stacking process is perfonned to fonn a
linkage-stack program-call state entry and place the
following infonnation in the state entry: current
psw (with an unpredictable PER mask), psw-key
mask, PASN, SASN, EAX, program-call number, con­
tents of general registers 0-15, and contents of
access registers 0-15. This is described in the
section "Stacking Process" in Chapter 5, "Program
Execution." The entry-type code in the state· entry
is 0000101 binary.

Bits 32-62 of the ETE (A and the EIA), with a zero
appended on the right, are placed in psw bit posi­
tions 32-63 (the addressing-mode bit and the
instruction address). Bit 63 of the ETE (p) is placed
in psw bit position 15 (the problem-state bit).

When bit 131 of the ETE (K) is zero, bits 8-11 of
the psw (the psw key) remain unchanged. When
bit 131 of the ETE is one, bits 136-139 of the ETE
(the EK) replace the psw key in the psw.

When bit 132 of the ETE (M) is zero, bits 96-111 of
the ETE (the EKM) are oRed with the psw-key
mask, bits 0-15 of control register 3, and the result
replaces the psw-key mask in control register 3.
When bit 132 of the ETE is one, bits 96-111 of the
ETE replace the psw-key mask in control register 3.

When bit 133 of the ETE (E) is zero, the EAX, bits
0-15 of control register 8, remains unchanged.
When bit 133 of the ETE is one, bits 144-159 of the
ETE (the EEAX) replace the EAX in control register
8.

When bit 134 of the ETE (c) is zero, bits 16 and 17
of the psw (the address-space-control bits) are set
to 00 binary (primary-space mode). When bit 134
of the ETE is one, the address-space-control bits in
the psw are set to 01 binary (access-register mode).

Bits 64-95 of the ETE (the entry parameter) are
loaded into general register 4.

Key-controlled protection does not apply to refer­
ences to the linkage stack, but low-address and
page protection do apply.

10-36 ESA/370 Principles of Operation

PROGRAM CALL to Current Primary (PC-cp)

If bits 16-31 of the ETE (the ASN) are zeros,
PROGRAM CALL to current primary (pc-cp) is spec­
ified, and the execution of the instruction is com­
pleted after the operations described above and the
following operations have been perfonned.

The current PASN, bits 16-31 of control register 4,
is placed in bit positions 16-31 of control register 3
to become the current SASN.

The current PSTD, bits 0-31 of control register 1, is
placed in control register 7 to become the current
SSTD.

The basic pc-cp operation is depicted in parts 1
and 2 of Figure 10-17 on page 10-40. The
stacking pc-cp operation is depicted in parts 1 and
3 of the figure.

PROGRAM CALL with Space Switching (PC-ss)

If the ASN in the ETE is nonzero, PROGRAM CALL
with space switching (pc-ss) is specified, and the
execution of the instruction is completed after the
operations described in "PROG RAM CALL
pc-Number Translation" and the following opera­
tions have been perfonned.

When the ASP control is zero, the ASN in the ETE is
translated by means of a two-level table lookup to
locate an ASN-second-table entry (ASTE). Other­
wise, when the ASP control is one, the ASTE may be
located either by means of ASN translation or by
means of obtaining its address directly from the
ETE, and which of these occurs is unpredictable.

When ASN translation occurs, bits 16-25 of the ETE
are used as a 10-bit APX to index into the ASN fust
table, and bits 26-31 are used as a 6-bit ASX to
index into the ASN second table specified by the
APX. The ASN table-lookup process is described in
the section "ASN Translation" in Chapter 3,
"Storage." The exceptions associated with ASN
translation are collectively called ASN-translation
exceptions. These exceptions and their priority are
described in Chapter 6, "Interruptions."

When ASN translation does not occur, bits 161-185
of the ETE, with six zeros appended on the right,
are used as the real address of the ASTE. An
Asx-trans1ation exception is recognized if bit 0 of
the ASTE is one, or an ASN-translation-specification
exception is recognized if any of bits 30, 31, and

60-63 of the ASTE is one. (These exceptions are a
subset of the ASN-translation exceptions.)

Bits 16-31 of the ETE (the ASN) are placed in bit
positions 16-31 of control register 4 as the new
PASN.

Bits 64-95 of the ASTE (the STD) are placed in
control register 1 as the new PSTD.

Bits 32-47 of the ASTE (the AX) are placed in bit
positions 0-15 of control register 4 as the new
authorization index.

When the ASF control is zero, bits 96-127 of the
ASTE (the LTD) are placed in control register 5 as
the new linkage-table designation. When the ASF
control is one, bits 1-25 of the ASTE address are
placed in bit positions 1-25 of control register 5 as
the new primary-ASTE origin, and zeros are placed
in bit positions 0 and 26-31.

In basic PROGRAM CALL, or in stacking PROGRAM
CALL when bit 135 of the ETE (s) is zero, the PASN
existing before the PASN is replaced from the ETE is
placed in bit positions 16-31 of control register 3 to
become the current SASN, and the PSTD existing
before the PSTD is replaced from the ASTE is placed
in control register 7 to become the current SSTD.
(The SASN and SSTD are set equal to the old PASN
and PSTD, respectively.)

In stacking PROGRAM CALL when bit 135 of the
ETE (s) is one, the SASN is replaced by the PASN
after the PASN is replaced from the ETE, and the
SSTD is replaced by the PSTD after the PSTD is
replaced from the ASTE. (The SASN and SSTD are
set equal to the new PASN and PSTD, respectively.)

The pc-ss operation is depicted in parts 1, 2, 3, and
4 of Figure 10-17 on page 10-40.

PROGRAM CALL Serialization

For both the pc-cp and pc-ss operations, a serial­
ization and checkpoint-synchronization function is
performed before the operation begins and again
after the operation is completed.

Special Conditions

The basic PROGRAM CALL operation can be per­
formed successfully only when the CPU is in the
primary-space mode at the beginning of the opera­
tion and the subsystem-linkage control, bit 0 of the
linkage-table designation, is one. Stacking

PROGRAM CALL can be performed successfully only
when the CPU is in the primary-space mode or
access-register mode at the beginning of the opera­
tion and the subsystem-linkage control is one. In
addition, pC-ss can be performed successfully only
when the ASN-translation control, bit 12 of control
register 14, is one. If any of these rules is violated,
a special-operation exception is recognized in both
the problem and supervisor states.

A stack-full or stack-specification exception may be
recognized during the stacking process.

When, for Pc-ss, the primary space-switch-event­
control bit, bit 0 of control register 1, is one either
before or after the execution of the instruction, a
space-switch-event program interruption occurs
after the operation is completed. A space-switch­
event program interruption also occurs after the
completion of a pc-ss operation if a PER event is
reported.

The operation is suppressed on all addressing and
protection exceptions.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-16 on
page 10-38.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch or store, except for key-controlled
protection, linkage-stack entry)

• Addressing (linkage-table designation in
primary ASN-second-table entry, only when
address-space-function control is one; linkage­
table entry; entry-table entry; ASN-frrst-table
entry, pc-ss only, and only when ASN trans­
lation occurs; ASN-second-table entry, pc-ss
only)

• AFX translation (pc-ss only, and only when
ASN translation occurs)

• ASN -translation specification (pc-ss only)
• ASX translation (pc-ss only)
• EX translation
• LX translation
• pc-translation specification
• Privileged operation (AND of AKM and psw-key

mask is zero in the problem state)
• Space-switch event (pc-ss only)
• Special operation
• Stack full (stacking PC only)
• Stack specification (stacking PC only)
• Trace

Chapter 10. Control Instructions 10-37

1.-6. Exceptions with the same priority as the priority of program­
interruption conditions for the general case.

7.A Access exceptions for second instruction halfword.

7.B Special-operation exception due to the CPU being in real mode,
secondary-space mode, or home-space mode.

7.C Special-operation exception due to the CPU being in access­
register mode (only when address-space-function control is
zero, and may be recognized instead at 8.B.2).

7.0 Special-operation exception due to subsystem-linkage control
in linkage-table designation in control register 5 being zero
(only when address-space-function control is zero).

8.A Trace exceptions.

8.B.1 Addressing exception for access to linkage-table designation
in primary ASN-second-table entry (only when address-space­
function control is one).

8.B.2 Special-operation exception due to subsystem-linkage control
in linkage.-table designation in primary ASN-second-table entry
being zero (only when address-space-function control is one).

8.B.3 LX-translation exception due to linkage-table entry being
outside table.

8.B.4 Addressing exception for access to linkage-table entry.

8.B.5 LX-translation exception due to I bit (bit e) in linkage-table
entry being one.

8.B.6 EX-translation exception due to entry-table entry being out­
side table.

8.B.7 Addressing exception for access to entry-table entry.

8.B.8 Special-operation exception due to the CPU being in access­
register mode (basic PC only, and may be recognized at 7.C if
address-space-function control is zero).

8.B.9 PC-translation-specification exception due to invalid combina­
tion (bit 32 is zero and bits 33-39 not zeros) in entry-table
entry.

8.B.1e Privileged-operation exception due to zero result from ANDing
PSW-key mask and AKM in the problem state.

8.B.11 Special-operation exception due to ASN-translation control,
bit 12 of control register 14, being zero (PC-ss only).

Figure 10-16 (Part 1 of 2). Priority of Execution: PROGRAM CALL

10-38 ESA/370 Principles of Operation

8.B.12 Addressing exception for access to ASN-first-table entry
(PC-ss only, and only when ASN translation occurs).

8.B.13 AFX-translation exception due to I bit (bit 0) in ASN-first­
table entry being one (PC-ss only, and only when ASN
translation occurs).

8.B.14 ASN-translation-specification exception due to invalid ones
(bits 28-31 or 26-31, depending on address-space-function
control) in ASN-first-table entry (PC-ss only).

8.B.15 Addressing exception for access to ASN-second-table entry
(PC-ss only).

8.B.16 ASX-translation exception due to I bit (bit 0) in ASN-second­
table entry being one (PC-ss only).

8.B.17 ASN-translation-specification exception due to invalid ones
(bits 30, 31, 60-63) in ASN-second-table entry (PC-ss only).

8.B.18 Access exceptions (fetch) for entry descriptor of the current
linkage-stack entry (stacking PC only).

Note: Exceptions 8.B.19-8.B.24 can occur only if there is
not enough remaining free space in the current linkage-stack
section.

8.B.19 Stack-specification exception due to remaining-free-space
value in current linkage-stack entry not being a multiple of
8.

8.B.20 Access exceptions (fetch) for second word of the trailer entry
of the current section. The entry is presumed to be a trailer
entry; its entry-type field is not examined (stacking PC
only).

8.B.21 Stack-full exception due to forward-section validity bit in
the trailer entry being zero (stacking PC only).

8.B.22 Access exceptions (fetch) for entry descriptor of the header
entry of the next section (stacking PC only). This entry is
presumed to be a header entry; its entry-type field is not
examined.

8.B.23 Stack-specification exception due to not enough remaining free
space in the next section (stacking PC only).

8.B.24 Access exceptions (store) for second word of the header entry
of the next section. If there is no exception, the header is
now called the current entry.

8.B.25 Access exceptions (store) for entry descriptor of the current
entry and for the new state entry (stacking PC only).

9. Space-switch event (PC-ss only).

Figure 10-16 (Part 2 of 2). Priority of Execution: PROGRAM CALL

Chapter 10. Control Instructions t 0-39

PC-Number Translation

CR5 if CRe.15 = e

Primary-ASTE bits 96-127
if CRe.15 = 1

~ Linkage Table

R I ETO ETL

(x64)

~ Entry Table

R

R: Address is real

PROGRAM CALL Instruction

'B218' H d. I

'::nd-2 ! ~~~~~ss

(x16 if CRe.15 = e)

(x32 if CRe.15 = 1)

EIA EP

ASTE Adr.

*: In stacking PC, PC number is placed in linkage stack
**: Second 16 bytes of ETE exist only if CRe.15 = I

Figure 10-17 (Part 1 of 4). Execution of PROGRAM CALL

10-40 ESA/370 Principles of Operation

**

Basic PC-cp and PC-ss

Entry-Table Entry

,

Q-priv Op
~if zero in

~ problem state

CR3 ~
before ~

.+'41---'.

a

~
lei

GR4
afterl

CR4
before

,
EP I

AX PASN I
I \

I \

r~\~~N/~~
PC-cp _1 PC-ss

instruction
complete

ASN trans-
lation

+r-----.'--------------~

CR3 .----r------,

afterl PKM SASN

GR3 .----r------,

afterl PKM PASN

PSW
before

CRI
before PSTD

CR7 r---------,
after L-I __ SS_T_D_---'

GR14 ,...."T'----r--.
afterlAI IA

Figure 10-17 (Part 2 of 4). Execution of PROGRAM CALL

Chapter 10. Control Instructions 10-41

Stacking PC-cp and PC-ss

Entry-Table Entry

K=1

Q--.Priv Op
~if zero in

problem state

1
M=0

LS

•

o

~

GR4 r-------,

afterlL-__ EP_--,

CR4
before

PC-cp, or Stkg.
PC-ss and S=0 *

I \
LS I \

E=1

EAX

CRa after

~
~
CRa before

~~\~~N/~~
PC-cp _1 PC-ss

instruction ASN trans-
complete lation

CR3 CR1
after I PKM SASN before '---__ PS...,T_D_--'

PSW
before I PSW ~LS

PC-cp, or Stkg.
PC-ss and S=0 *

CR7 r-------,

afterl SSTD

*: If stacking PC-ss and S=1, SASN is replaced by new PASN, and SSTD is
replaced by new PSTD

Figure 10-17 (Part 3 of 4). Execution of PROGRAM CALL

10-42 ESA/370 Principles of Operation

ASN Translation for PC-ss

Entry-Table Entry

L--__ l...--T-----lL-.l.-. ____ -l.-~ __ E_P __ -,--_EK_H--LI }m Adr·l~l AKH ASN IAI EIA Ipl

CR14

~ ASN First Table

~--~

!
(x4) (xl6 1 f eRa. IS • a)

(x64 if CRa.lS • 1)

R I ASTO 9

*

~
ASN Second Table

-.+
."

1/ ATO lei AX / All /a/ STD
R--'

L....

• CRI

I afterL PSTD

CRe.IS • 1

/
LTD **

--

[
.-

1
CR4 1---
after AX I ASN -] P

CRe.lS = a

CR5 ~
afte~1 ~

'-------------------------. LTD or. P~

R: Address is real
*: If CRa.IS • 1, ASTE address may be obtained by ASN translation or directly from ETE

**: ASTE is 64 bytes if and CRe.IS • 1; last 48 bytes are not shown

Figure 10-17 (Part 4 of 4). Execution of PROGRAM CALL

Chapter 10. Control Instructions 10-43

Programming Note: To ensure predictable opera­
tion of pc-ss when the address-space-function
control is one, the ASN-second-table-entry address
in the entry-table entry must be the same as the
one that would result from ASN translation of the
ASN in the entry-table entry.

Program Return

PR [E]

'0101'

o 15

The PSW, except for the PER-mask bit and the con­
dition code, saved in the last linkage-stack state
entry is restored as the current psw. The PER mask
in the current psw remains unchanged. The
resulting value of the condition code in the current
psw is unpredictable. The contents of general reg­
isters 2-14 and access registers 2-14 also are restored
from the state entry. When the entry-type code in
the entry descriptor of the state entry is 0000101
binary, indicating a program-call state entry, the
primary ASN (PASN), secondary ASN (SASN),
psw-key mask (PKM), and extended authorization
index (EAX) in the control registers also are restored
from the state entry. When the entry-type code is
0000100 binary, indicating a branch state entry, the
current PASN, SASN, PKM, and EAX remain
unchanged.

The last state entry is located, and information in it
is restored, as described in the section "Unstacking
Process" in Chapter 5, "Program Execution." The
state entry is logically deleted from the linkage
stack, and the linkage-stack-entry address in control
register 15 is replaced by the address of the next
preceding state or header entry. This also 1S
described in the section "Unstacking Process."

When the state entry is a program-call state entry,
it causes a space-switching operation I to occur if it
contains a PASN that is not equal to the current
PASN. When the state entry contains a PASN that
is equal to the current PASN, the operation is called
PROGRAM RETURN to current primary (PR-Cp);
when the state entry contains a PASN that is not
equal to the current PASN, the operation is called
PROGRAM RETURN with space switching (PR-SS).
PASN translation occurs in PR-sS. SASN translation
and authorization may occur in either PR-CP or

10-44 ESAj370 Principles of Operation

PR-SS. The terms PR-CP and PR-SS do not apply
when the state entry is a branch state entry.

Key-controlled protection does not apply to
accesses to the linkage stack, but low-address and
page protection do apply.

The sections "PASN Translation," "SASN
Translation," "SASN Authorization," and
"PROGRAM RETURN Serialization" apply only
when the unstacked state entry is a program-call
state entry. The functions described in those
sections are not performed when the state entry is a
branch state entry.

P ASN Translation

If the new PASN is equal to the old PASN in bits
16-31 of control register 4, PASN translation is not
performed, and the authorization index (AX), PASN,
PSTD, and . primary-AsN-second-table-entry
(primary-AsTE) origin in the control registers are
not changed.

If the new PASN is not equal to the old PASN, the
new PASN is translated to locate a 64-byte ASTE.
The ASN table-lookup process is described in the
section "ASN Translation" in Chapter 3, "Storage."
The exceptions associated with ASN translation are
collectively called ASN-translation exceptions.
These exceptions and their priority are described in
Chapter 6, "Interruptions."

Bits 64-95 of the ASTE are placed in control register
1 as the new PSTD. Bits 32-47 of the ASTE are
placed in bit positions 0-15 of control register 4 as
the new AX. Bits 1-25 of the ASTE address are
placed in bit positions 1-25 of control register 5 as
the new primary-AsTE origin, and zeros are placed
in bit positions 0 and 26-31.

SASN Translation

If the new SASN is equal to the new PASN, the SSTD
in control register 7 is set equal to the new PSTD in
control register 1. If the new SASN is not equal to
the new PASN, the new SASN is translated to locate
a 64-byte ASTE. Bits 64-95 of the ASTE are placed
in bit positions 0-31 of control register 7 as the new
SSTD.

SASN Authorization

If the new SASN is not equal to the new PASN, the
authority-table origin (ATO) from the ASTE for the

new SASN is used as the base for a third table
lookup. The new authorization index, bits 0-15 of
control register 4, is used, after it has been checked
against the authority-table length, as the index to
locate the entry in the authority table. The
authority-table lookup is described in the section
"ASN Authorization" in Chapter 3, "Storage."

PROGRAM RETURN Serialization

A serialization and checkpoint-synchronization
function is performed before the operation begins
and again after the operation is completed (only
when the un stacked state entry is a program-call
state entry).

Special Conditions

The instruction can be executed successfully only
when the CPU is in the primary-space mode or
access-register mode at the beginning of the opera­
tion and the address-space-function control, bit 15
of control register 0, is one. In addition, the
ASN -translation process can be performed, for
either the PASN or the SASN, only when the
ASN-translation control, bit 12 of control register
14, is one. If any of these rules is violated, a
special-operation exception is recognized.

A stack -empty, stack -operation, stack -specification,
or stack-type exception may be recognized during
the un stacking process.

When, for PR-SS, the primary space-switch-event
control, bit 0 of control register 1, is one either
before or after the execution of the instruction, a
space-switch-event program interruption occurs
after the operation is completed. A space-switch­
event program interruption also occurs after the
completion of a PR -ss operation if a PER event is
reported.

The psw which is to be loaded by the instruction is
not checked for validity before it is loaded.

However, after loading, a specification exception is
recognized, and a program interruption occurs,
when the newly loaded psw contains a zero in bit
position 12, or when the contents of bit positions
0, 2-4, and 24-31 are not all zeros, or when bit
position 32 contains a zero and the contents of bit
positions 33-39 are not all zeros. In these cases,
the operation is completed, and the resulting
instruction-length code is zero. The specification
exception, which in this case is listed as a program
exception in this instruction, is described in the
section "Early Exception Recognition" in Chapter
6, "Interruptions." It may be considered as occur­
ring early in the process of preparing to execute the
following instruction.

The operation is suppressed on all addressing and
protection exceptions.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-18 on
page 10-46.

Resulting Condition Code: The code is unpredict­
able.

Program Exceptions:

• Access (fetch and store, except key-controlled
protection, linkage-stack entry)

• Addressing (authority-table entry, if SASN trans­
lation occurs)

• ASN translation (if PASN or SASN translation
occurs)

• Secondary authority (if SASN translation
occurs)

• Space-switch event
• Special operation
• Specification
• Stack empty
• Stack operation
• Stack specification
• Stack type
• Trace

Chapter 10. Control Instructions 10-45

1.-6. Exceptions with the same priority as the priority of program­
interruption conditions for the general case.

7. Special-operation exception due to the CPU'being in real
mode, secondary-space mode, or home-space mode or the
address-space-function control, bit 15 of control register 0,
being zero.

8.A Trace exceptions.

8.B.1 Access exceptions (fetch) for entry descriptor of the current
linkage-stack entry.

Note: Exceptions 8.B.2-8.B.6 can occur only if the current
entry is a header entry.

8.B.2 Stack-operation exception due to unstack-suppression bit
in the header entry being one.

8.B.3 Access exceptions (fetch) for second word of the header
entry.

8.B.4 Stack-empty exception due to backward stack-entry validity
bit in the header entry being zero.

8.B.5 Access exceptions (fetch) for entry descriptor of the entry
designated by the backward stack-entry address in the header
entry.

8.B.6 Stack-specification exception due to the designated entry
being a header entry. If there is no exception, the designa­
ted entry is now called the current entry.

8.B.7 Stack-type exception due to the current entry not being a
state entry.

8.B.8 Stack-operation exception due to unstack-suppression bit
being one in the current entry.

8.B.9 Access exceptions (fetch) for current entry, and access ex­
ceptions (store) for entry descriptor of the preceding entry.

Note: Exceptions 8.8.10-8.8.14 and the event 9 can occur
only if the current entry is a program-call state entry.

8.B.10 Special-operation exception due to the ASN-translation con­
trol, bit 12 of control register 14, being zero (if PASN or
SASN translation occurs).

Figure 10-18 (Part 1 of 2). Priority of Execution: PROGRAM RETURN

10-46 ESA/370 Principles of Operation

8.B.11 ASN-translation exceptions (if PASN or SASN translation .
occurs).

8.B.12 Secondary-authority exception due to authority-table entry
being outside table (if SASN translation occurs).

8.B.13 Addressi·ng exception for access to authority-table entry (if
SASN translation occurs).

8.B.14 Secondary-authority exception due to S bit in authority­
table entry being zero (if SASN translation occurs).

9. Space-switch event (PR-ss only).

10. Specification exception due to any PSW error of the type that
causes an immediate interruption.

Figure 10-18 (Part 2 of 2). Priority of Execution: pROGRAM RETURN

Programming Note: Because PROGRAM CALL
cannot be executed successfully in the secondary­
space or home-space mode, PROGRAM RETURN is
not intended to load a psw specifying one of these
translation modes. PROGRAM RETURN, unlike SET
ADDRESS SPACE CONTROL, does not recognize a
space-switch event because of loading a psw that
specifies the home-space mode.

Program Transfer

. PT [RRE]

IB228 1

o 16 24 28 31

The contents of general register R 1 are used as the
new values for the psw-key mask, the PASN, and
the SASN. The contents of general register R2 are
used as the new values for the problem-state bit,
addressing-mode bit, and instruction address in the
current psw.

Bits 16-23 of the instruction are ignored.

General registers Rl and R2 have the following
fonnat:

PSW-Key Mask ASN

o 16 31

R21 LA~I _________ In_s_t_r_uc_t_i_on __ A_d_dr_e_s_s ______ ~lp~1
o 1 31

When the contents of bit positions 1'6-31 of general
register Rl are equal to the current PASN, the opera­
tion is called PROGRAM TRANSFER to current
primary (PT-Cp); when the fields are not equal, the
operation is called PROGRAM TRANSFER with space
switching (PT-SS).

The contents of general register R2 are used to
update the problem-state bit, the addressing-mode
bit, and the instruction address of the current psw.
Bit 31 of general register R2 is placed in the
problem-state bit position, psw bit position 15,
unless the operation would cause psw bit 15 to
change from one to zero (problem state to super­
visor state). If such a change would occur, a
privileged-operation exception is recognized. Bits
0-30 of general register R2 replace the addressing­
mode bit and the instruction address, bits 32-62 of
the current psw. Bit 63 of the psw is set to zero.

Bits 0-15 of general register R 1 are ANDed with the
psw-key mask, bits 0-15 of control register 3, and
the result replaces the psw-key mask.

In both the PT-ss and PT-CP instructions, the ASN
specified by bits 16-31 of general register R 1

replaces the SASN in control register 3, and the
SSTD in control register 7 is replaced by the fmal
contents of control register 1.

Chapter 10. Control Instructions 10-47

PROGRAM TRANSFER to Current Primary
(PT-cp)

The PROGRAM TRANSFER to current primary
(PT-cp) operation is depicted in part 1 of
Figure 10-20 on page 10-51. The PT-Cp operation
is completed when the common portion of the
PROGRAM TRANSFER operation, described above, is
completed. The authorization index, P ASN,
primary STD, and contents of control register 5
(linkage-table designation or primary-AsN-second­
table-entry origin) are not changed by PT-cp.

PROGRAM TRANSFER with Space Switching
(PT-ss)

If the ASN in bits 16-31 of general register Rl is not
equal to the current PASN, a PROGRAM TRANSFER
with space switching (PT-SS) is specified, and the
ASN is translated by means of a two-level table
lookup.

The PT-SS operation is depicted in parts 1 and 2 of
Figure 10-20 on page 10-51. The PT-SS operation
is completed as follows.

For a PT-SS, the contents of bit positions 16-31 of
general register Rl are used as an ASN, which is
translated by means of a two-level table lookup.

Bits 16-25 of general register Rl are a 10-bit AFX
which is used to select an entry from the ASN frrst
table. Bits 26-31 are a six-bit ASX which is used to
select an entry from the ASN second table. The
ASN table-lookup process is described in the section
"ASN Translation" in Chapter 3, "Storage." The
exceptions associated with ASN translation are col­
lectively called "AsN-translation exceptions." These
exceptions and their priority are described in
Chapter 6, "Interruptions."

The authority-table origin from the ASN-second­
table entry is used as the base for a third table
lookup. The current authorization index, bits 0-15
of control register 4, is used, after it has been
checked against the authority-table length, as the
index to locate the entry in the authority table.
The authority-table lookup is described in the
section "ASN Authorization" in Chapter 3,
"Storage. "

The PT-SS operation is completed by placing bits
64-95 of the ASN-second-table entry in both the
PSTD and SSTD positions, bit positions 0-31 of
control registers I and 7, respectively. The contents

10-48 ESA/370 Principles of Operation

of bit positions 32-47 of the ASN-second-table entry
replace the authorization index in bit positions 0-15
of control register 4. When the address-space­
function (ASF) control, bit 15 of control register 0,
is zero, the contents of bit positions 96-127 of the
ASN-second-table entry replace the LTD in bit posi­
tions 0-31 of control register 5. When the ASF
control is one, bits 1-25 of the ASN-second-table­
entry address are placed in bit positions 1-25 of
control register 5 as the new primary-AsN-second­
table-entry origin, and zeros are placed in bit posi­
tions 0 and 26-31. The AS N, bits 16-31 of general
register Rl, replaces the SASN and PASN in bit posi­
tions 16-31 of control registers 3 and 4.

For both the PT-Cp and PT-ss operations, a serial­
ization and checkpoint-synchronization function is
performed before the operation begins and again
after the operation is completed.

Special Conditions

The instruction can be executed only when the CPU
is in the primary-space mode and the subsystem­
linkage control, bit 0 of the linkage-table desig­
nation, is one. If the CPU is in the real mode,
secondary-space mode, access-register mode, or
home-space mode, or if the subsystem-linkage
control is zero, a special-operation exception is
recognized.

Bit 31 of general register R2 is placed in the
problem-state bit position, psw bit position 15,
unless the operation would cause psw bit 15 to
change from one to zero (problem state to super­
visor state). If such a change would occur, a
privileged-operation exception is recognized.

The instruction is completed only if bits 0-7 of
general register R 2 specify a valid combination for
psw bits 32-39. If bit 0 of general register R2 is
zero and bits 1-7 are not zeros, a specification
exception is recognized.

In addition to the above requirements, when a
PT-SS instruction is specified, the ASN-translation
control, bit 12 of control register 14, must be one;
otherwise, a special-operation exception is recog­
nized.

When, for PT-SS, the space-switch-event-control bit,
bit 0 of control register 1, is one either before or
after the execution of the instruction, a space­
switch-event program interruption occurs after the
operation is completed. A space-switch-event

program interruption also occ~s after the co~­
pletion of a PT-SS operation if a PER event IS
reported.

The operation is suppressed on all addressing
exceptions.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-19 on
page 10-50.

Condition Code: The code remains unchanged.

Program Exceptions:

• Addressing (linkage-table designation m
primary ASN-second-table entry, only when
address-space-function control is one;
authority-table entry, PT-ss only)

• ASN translation (PT-SS only) ,
• Primary authority (PT-SS only)
• . Privileged operation (attempt to set the super-

visor state when in the problem state)
• Space-switch event (PT-SS only)
• Special operation
• Specification
• Trace

Chapter 10. Control Instructions 10-49

1.-6. Exceptions with the same priority as the priority of program­
interruption conditions for the general case.

7.A Access exceptions for second instruction halfword.

7.B Special-operation exception due to OAT being off or the CPU
being in secondary-space mode, access-register mode, or home­
space mode.

7.C Special-operation exception due to subsystem-linkage control
in linkage-table designation in control register 5 being zero
(only when address-space-function control is zero).

8.A Trace exceptions.

8.B.1 Addressing exception for access to linkage-table designation
in primary ASN-second-table entry (only when address-space­
function control is one).

8.B.2 Special-operation exception due to subsystem-linkage control
in linkage-table designation in primary ASN-second-table entry
being zero (only when address-space-function control is one).

8.B.3 Privileged-operation exception due to attempt to set the
supervisor state when in the problem state.

8.B.4 Specification exception due to nonzero value in bits 0-7 of
general register R2.

8.B.5 Special-operation exception due to the ASN-translation con­
trol, bit 12 of control register 14, being zero (PT-ss only).

8.B.6 ASN-translation exceptions (PT-ss only).

8.B.7 Primary-authority exception due to authority-table entry
being outside table (PT-ss only).

8.B.8 Addressing exception for access to authority-table entry
(PT-ss only).

8.B.9 Primary-authority exception due to P bit in authority-table'
entry being zero (PT-ss only).

9. Space-switch event (PT-ss only).

Figure 10-19. Priority of Execution: PROGRAM TRANSFER

Programming Notes:

1. The operation of PROGRAM TRANSFER (PT) is
such that it may be used to restore the CPU to
the state saved by a previous PROGRAM CALL.
This restoration is accomplished by issuing PT
3,14. Though general registers 3 and 14 are not
restored to their original values, the PASN,
psw-key mask t problem-state bit, addressing
mode, and instruction address are restored, and

10-50 ESAj370 Principles of Operation

the authorization index, PSTD, and LTD or
primary-AsN-second-table-entry origin are
made consistent with the restored PASN.

2. With proper authority, and while executing in a
common area, PROGRAM TRANSFER may be
used to change ·the primary address space to
any desired space. The secondary address
space is also changed to be the same as the new
primary address space.

3. Unlike the RR-fonnat branch instructions, a
value of zero in the R2 field for PROGRAM

PT-cp and PT-ss

PROGRAM TRANSFER
Instruction

CR3
before

CR3
after

CR4
before

I
PKM SASN

PT-cp
Instruction
complete

I

PT-ss
See following
figure

CRl
before

CR7
afterl

TRANSFER designates general register 0, and
branching occurs.

El

~

PSTD

(PT-cp only)

SSTD

Figure 10-20 (Part 1 of 2). Execution of PROGRAM TRANSFER

Chapter 10. Control Instructions 10-51

PT-ss

CR14

~ ASH Fi rst Tab 10

~L
R I

(xI6)

~ ~ ASH Second Table

(x4) (x16 if
CRa.15 • a)

(x64 if
CRa.15 • 1)

R·--.I--r---·--..--,----,---,.-,------,,----------!
STD LTD

(x4)

CR4

*

t
AuthOrity Table

CRI
afterl P~ CR4 ,----~--....,

afterl AX

R P S

CR7
a fterl L.... __ S_S_TD __ ---'I

.Primary-authority exception if P bit is
zero or if table length is exceeded

PASN

CRa.15 = a

CR5
CRe.15 = 1 _after

l
L...-___________________ . LTD or PASTEO

R: Address is real
*: ASTE is 64 bytes if CRe.lS = 1: last 48 bytes are not $hown

Figure 10-20 (Part 2 of 2). Execution of PROGRAM TRANSFER

10-52 ESA/370 Principles of Operation

Purge ALB

PALB [RRE]

IB248' 1////////////////1

9 16 31

The ART-lookaside buffer (ALB) of this CPU is
cleared of entries. No change is made to the con­
tents of addressable storage or registers.

Bits 16-31 of the instruction are ignored.

The ALB appears cleared of its original contents
beginning with the execution of the next sequential
instruction. The operation is not signaled to any
other CPU.

A serialization function is performed.

Condition Code: The code remains unchanged.

Program Exceptions:

• Privileged operation

Purge TLB

PTLB [S]

IB290 1 111////////11/11/1

9 16 31

The translation-Iookaside buffer (TLB) of this CPU

is cleared of entries. No change is made to the
contents of addressable storage or registers.

Bits 16-31 of the instruction are ignored.

The TLB appears cleared of its original contents
beginning with the fetching of the next sequential
instruction. The operation is not signaled to any
other CPU.

A serialization function is performed.

Condition Code: The code remains unchanged.

Program Exceptions:

• Privileged operation

Reset Re(erence Bit Extended

[RRE]

IB22AI

9 16 24 28 31

The reference bit in the storage key for the 4K-byte
block that is addressed by the contents of general
register R2 is set to zero. The contents of general
register Rl are ignored.

Bits 16-23 of the instruction are ignored.

In the 24-bit addressing mode, bits 8-19 of general
register R2 designate a 4K-byte block in real
storage, and bits 0-7 and 20-31 of the register are
ignored. In the 31-bit addressing mode, bits 1-19
of general register R2 designate a 4K-byte block in
real storage, and bits 0 and 20-31 of the register are
ignored.

Because it is a real address, the address designating
the storage block is not subject to dynamic address
translation. The reference to the storage key is not
subject to a protection exception.

The remaining bits of the storage key, including the
change bit, are not affected.

The condition code is set to reflect the state of the
reference and change bits before the reference bit is
set to zero.

Resulting Condition Code:

o Reference bit zero; change bit zero
1 Reference bit zero; change bit one
2 Reference bit one; change bit zero
3 Reference bit one; change bit one

Program Exceptions:

• Addressing (address specified by general register
R2)

• Privileged operation

Chapter 10. Control Instructions 10-53

Set Address Space Control

SAC 02 (B2) [S]

IB219 1

a 16 2a 31

Bits 20-23 of the second-operand address are used
as a code to set the address-space-control bits in
the psw. The second-operand address is not used
to address data; instead, bits 20-23 fonn the code.
Bits 0-19 and 24-31 of the second-operand address
are ignored. Bits 20-21 of the second-operand
address must be zeros; otherwise, a specification
exception is recogriized.

The following figure summarizes the operation of
SET ADDRESS SPACE CONTROL:

Second-Operand Address

a 2a 24 31

Result in
PSW Bits

Code Name of Mode 16 and 17

aaaa Primary space ea
aaal Secondary space Ie
aa1a Access register e1
aall Home space 11
All others Invalid Unchanged

The address-space-function control, bit 15 of
control register 0, must be one when the operation
is to set the access-register mode; otherwise, a

10-54 ESA/370 Principles of Operation

special-operation exception is recognized. Also, the
CPU must be in the supervisor state when the oper­
ation is to set the home-space mode; otherwise, a
privileged-operation exception is recognized.

A serialization and checkpoint-synchronization
function is perfonned before the operation begins
and again after the operation is completed.

Special Conditions

The operation is perfonned only when the
secondary-space control, bit 5 of control register 0,
is one and OAT is on. When either the secondary­
space control is zero or OAT is off, a special­
operation exception is recognized. The special­
operation exception is recognized in both the
problem and supervisor states.

When the CPU is in the home-space mode either
before or after the operation, but not both before
and after the operation, a space-switch-event
program interruption occurs after the operation is
completed if any of the following is true: (I) the
primary space-switch-event control, bit 0 of control
register 1,· is one; (2) the home space-switch-event
control, bit 0 of control register 13, is one; or (3) a
PER event is to be indicated.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-21 on
page 10-55.

Condition Code: The code remains unchanged.

Program Exceptions:

• Privileged operation (attempt to set the home-
space mode in the problem state)

• Space-switch event
• Special operation
• Specification

1.-6. Exceptions with the same priority as
the priority of program-interruption
conditions for the general case.

7.A Access exceptions for second instruc­
tion halfword.

7.B Special-operation exception due to
OAT being off or the secondary-space
control, bit 5 of control register 0,
being zero.

8. Privileged-operation exception due to
attempt to set home-space mode when
in problem state.

9. Special-operation exception due to
the address-space-function control,
bit 15 of control register 0, being 0
on an attempt to set access-register
mode.

10. Specification exception due to non­
zero value in bit positions 20-21 of
second-operand address.

11. Space-switch event.

Figure 10-21. Priority of Execution: SET ADDRESS
SPACE CONTROL

Programming Note: SET ADDRESS SPACE
CONTROL is defmed in such a way that the mode to
be set can be placed directly in the displacement
field of the instruction or can be specified from the
same bit positions of a general register as those in
which the mode is saved by INSERT ADDRESS
SPACE CONTROL.

Set Clock

[S]

'B204'

o 16 20 31

The current value of the TOD clock is replaced by
the contents of the doubleword designated by the
second-operand address, and the clock enters the
stopped state.

The doubleword operand replaces the contents of
the clock, as determined by the resolution of the

clock. Only those bits of the operand are set in the
clock that correspond to the bit positions which are
updated by the clock; the contents of the remaining
rightmost bit positions of the operand are ignored
and are not preserved in the clock. In some
models, starting at or to the right of bit position 52,
the rightmost bits of the second operand are
ignored, and the corresponding positions of the
clock which are implemented are set to zeros.

After the clock value is set, the clock enters the
stopped state. The clock leaves the stopped state
to enter the set state and resume incrementing
under control of the TOD-clock-sync control (bit 2
of control register 0). When the bit is zero, the
clock enters the set state at the completion of the
instruction. When the bit is one, the clock remains
in the stopped state either until the bit is set to zero
or until any other running TO D clock in the config­
uration is incremented to a value of all zeros in bit
positions 32-63.

When the TO D clock is shared by another cPu, the
clock remains in the stopped state under control of
the TOD-dock-sync control bit of the CPU which
set the clock. If, while the clock is stopped, it is set
by another CPU, then the clock comes under
control of the TOD-clock-sync control bit of the
CPU which last set the clock.

The value of the clock is changed and the clock is
placed in the stopped state only if the manual
TOD-clock control of any CPU in the configuration
is set to the enable-set position. If the Too-clock
control is set to the secure position, the value and
the state of the clock are not changed. The two
results are distinguished by condition codes 0 and
I, respectively.

When the clock is not operational, the value and
state of the clock are not changed, regardless of the
setting of the TOD-clock control, and condition
code 3 is set.

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized.

Resulting Condition Code:

o Clock value set
I Clock value secure
2
3 Clock in not-operational state

Chapter 10. Control Instructions 10-55

Program Exceptions:

• Access (fetch, operand 2)
• Privileged operation
• Specification

Programming Note: In an installation with more
than one CPU, each CPU may have a separate TOO
clock, or more than one CPU may share a TOO
clock, depending on the model. When multiple
TOO clocks exist, special procedures are required to
synchronize the clocks. See the section
"Too-Clock Synchronization" in Chapter 4,
"Control. "

Set Clock Comparator

[S]

IB206 1

o 16 20 31

The current value of the clock comparator is
replaced by the contents of the doubleword desig­
nated by the second-operand address.

Only those bits of the operand are set in the clock
comparator that correspond to the bit poSitions to
be compared with the TOO clock; the contents of
the remaining rightmost bit positions of the
operand are ignored and are not preserved in the
clock comparator.

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized.

The operation is suppressed on all addressing and
protection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Privileged operation
• Specification

10-56 ESAj370 Principles of Operation

Set CPU Timer

SPT [S]

IB208 1

o 16 20 31

The current value of the CPU timer is replaced by
the contents of the doubleword designated by the
second-operand address.

Only those bits of the operand are set in the CPU

timer that correspond to the bit positions to be
updated; the contents of the remaining rightmost
bit positions of the operand are ignored and are not
preserved in the CPU timer.

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized.

The operation is suppressed on all addressing and
protection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Privileged operation
• Specification

Set Prefix

[S]

IB210 1

o 16 20 31

The contents of the prefix register are replaced by
the contents of bit positions 1-19 of the word at the
location designated by the second-operand address.
The ART-Iookaside buffer (ALB) and translation­
lookaside buffer (TLB) of this CPU are cleared of
entries.

After the second operand is fetched, the value is
tested for validity before it is used to replace the

contents ~he prefix register. Bits 1-19 of the
operand wi 12 rightmost zeros appended are used
as an absol te address of the 4K-byte new prefix
area in stor ge. The prefix value is treated as a
31-bit address, regardless of the addressing mode
specified by bit 32 of the current psw. The
4K-byte block within the new prefix area is
accessed; if it is not available in the configuration,
an addressing exception is recognized, and the oper­
ation is suppressed. The access to the block is not
subject to protection; however, the access may
cause the reference bits to be set to ones.

If the operation is completed, the new prefix is used
for any interruptions following the execution of the
instruction and for the execution of subsequent
instructions. The contents of bit positions 0 and
20-31 of the operand are ignored.

The ART-Iookaside buffer (ALB) and translation­
lookaside buffer (TLB) are cleared of entries. The
ALB and TLB appear cleared of their original con­
tents, beginning with the fetching of the next
sequential instruction.

A serialization function is perfonned before or after
the operand is fetched and again after the operation
is completed.

Special Conditions

The operand must be designated on a word
boundary; otherwise, a specification exception is
recognized.

The operation is suppressed on all addressing and
protection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Addressing (new prefix area)
• Privileged operation
• Specification

Set PSW Key from Address

SPKA D2 (B2) [S]

'B20A'

o 16 20 31

The four-bit psw key, bits 8-11 of the current PSW,
is replaced by bits 24-27 of the second -operand
address.

The second-operand address is not used to address
data; instead, bits 24-27 of the address fonn the
new psw key. Bits 0-23 and 28-31 of the second­
operand address are ignored.

Special Conditions

In the problem state, the execution of the instruc­
tion is subject to control by the psw-key mask in
control register 3. When the bit in the psw-key
mask corresponding to the psw-key value to be set
is one, the instruction is executed successfully.
When the selected bit in the PS w -key mask is zero,
a privileged-operation exception is recognized. In
the supervisor state, any value. for the psw key is
valid.

Condition Code: The code remains unchanged.

Program Exceptions:

• Privileged operation (selected psw-key-mask bit
is zero in the problem state)

Programming Notes:

1. The fonnat of SET PSW KEY FROM ADDRESS
permits the program to set the psw key either
from the general register designated by the B 2

field or from the D 2 field in the instruction
itself.

2. When one program requests another program
to access a location designated by the
requesting program, SET PSW KEY FROM
ADDRESS can be used by the called program to
verify that the requesting program is authorized
to make this access, provided the storage
location of the called program is not protected
against fetching. The called program can
perform the verification by replacing the psw
key with the requesting-program psw key
before making the access and subsequently

Chapter 10. Control Instructions 10-57

restoring the called-program psw key to its ori­
ginal value. Caution must be exercised,
however, in handling any resulting protection
exceptions since such exceptions may cause the
operation to be terminated. See TEST PRO­
TECTION and the associated programming notes
for an alternative approach to the testing of
addresses passed by a calling program.

Set Secondary ASN

SSAR Rl [RRE]

IB225 1

o 16 24 28 31

The ASN specified in bit positions 16-31 of general
register Rl replaces the secondary ASN in control
register 3, and the segment-table designation corre­
sponding to that ASN replaces the SSTD in control
register 7.

Bits 16-23 and 28-31 of the instruction are ignored.

The contents of bit positions 16-31 of general reg­
ister Rl are called the new ASN. The contents of
bit positions 0-15 of the register are ignored.

First the new ASN is compared with the current
PASN. If the new ASN is equal to the PASN, the
operation is called SET SECONDARY ASN to current
primary (SSAR-Cp). If the new ASN is not equal to
the current PASN, the operation is called SET SEC­
ONDARY ASN with space switching (SSAR-SS). The
SSAR-CP and SSAR-ss operations are depicted in
Figure 10-23 on page 10-60.

SET SECONDARY ASN to Current Primary
(SSAR-cp)

The new ASN replaces the SASN, bits 16-31 of
control register 3; the PSTD, bits 0-31 of control
register 1, replaces the SSTD, bits 0-31 of control
register 7; and the operation is completed.

SET SECONDARY ASN with Space Switching
(SSAR-ss)

The new ASN is translated by means of the ASN
translation tables, and then the current AX, bits
0-15 of control register 4, is used to test whether

10-58 ESA/370 Principles of Operation

the program is authorized to access the specified
ASN.

The new ASN is translated by means of a two-level
table lookup. Bits 0-9 of the new ASN (bits 16-25
of the register) are a 10-bit AFX which is used to
select an entry from the ASN fIrst table. Bits 10-15
of the new ASN (bits 26-31 of the register) are a
six-bit ASX which is used to select an entry from
the ASN second table. The two-level lookup is
described in the section "ASN Translation" in
Chapter 3, "Storage." The exceptions associated
with ASN translation are collectively called
"AsN-translation exceptions." These exceptions and
their priority are described in Chapter 6,
"Interruptions. "

The AST entry obtained as a result of the second
lookup contains the segment-table designation and
the authority-table origin and length associated
with the ASN.

The authority-table ongm from the ASN second­
table entry is used as a base for a third table
lookup. The current authorization index, bits 0-15
of control register 4, is used, after it has been
checked against the authority-table length, as the
index to locate the entry in the authority table.
The authority-table lookup is described in the
section "ASN Authorization" in Chapter 3,
"Storage."

The new ASN, bits 16-31 of general register Rl,
replaces the SASN, bits 16-31 of control register 3.
The segment-table designation, bits 64-95 of the
AST entry, replaces the SSTD, bits 0-31 of control
register 7.

For both the SSAR-Cp and SSAR-ss operations, a
serialization and checkpoint-synchronization func­
tion is performed before the operation begins and
again after the operation is completed.

Special Conditions

The operation is performed only when the
ASN-translation control, bit 12 of control register
14, is one and DAT is on. When either the
ASN-translation-control bit is zero or DAT is off, a
special-operation exception is recognized. The
special-operation exception is recognized in both
the problem and supervisor states.

The priority of recognition of program exceptions
for the instruction is shown in Figure 10-22.

Condition Code: The code remains unchanged. • Secondary authority (SSAR-SS only)
• Special operation

Program Exceptions: • Trace

• Addressing (authority-table entry, SSAR-ss only)
• ASN translation (SSAR-SS only)

1.-6. Exceptions with the same priority as the priority of program­
interruption conditions for the general case.

7.A Access exceptions for second instruction halfword.

7.B Special-operation exception due to OAT being off, or the ASN­
translation control, bit 12 of control register 14, being
zero.

8.A Trace exceptions.

8.B.1 ASN-translation exceptions (SSAR-ss only).

8.B.2 Secondary-authority exception due to authority-table entry
being outside table (SSAR-ss only).

8.B.3 Addressing exception for access to authority-table entry
(SSAR-ss only).

8.B.4 Secondary-authority exception due to S bit in authority­
table entry being zero (SSAR-ss only).

Figure 10-22. Priority of Execution: SET SECONDARY ASN

Chapter 10. Control Instructions 10-59

CR14

ASN First Table
(accessed for

(x4) (x16 if
CRa.1S .. a)

(x64 if
CRa.1S • 1)

SET SECONDARY ASN
Instruction

~ SSAR-ss onlyJ

L-________ ~~ •. ~ __ --~

R

(x16)
CR4
before

M
SSAR-cp SSAR-ss

ASN Second Table
~ (accessed for SSAR-ss onlyJ

R I ATO

(x4)

Authori ty Table
(accessed for

~
SSAR-ss only)

R P S

CR1
before PSTD

(SSAR-cp only)

STD

(SSAR-ss only)

CR3
before

LTD *

CR7 ,..--------,
after I '-__ SS_T_O __ --'

CR3 r----y-----,

afterl PKM

Secondary-authority exception if S bit is
zero or if table length is exceeded
(SSAR-ss only)

R: Address is real
*: ASTE is 64 bytes if CRa.1S • 1; last 48 bytes are not shown

SASN

Figure 10-23. Execution of SET SECONDARY ASN

10-60 ESAj370 Principles of Operation

Set Storage Key Extended

[RRE]

'B22B' I11111111I R. I R,

o 16 24 28 31

The storage key for the 4K-byte block that is
addressed by the contents of general register R2 is
replaced by bits from general register R 1.

Bits 16-23 of the instruction are ignored.

In the 24-bit addressing mode, bits 8-19 of general
register R2 designate a 4K-byte block in real
storage, and bits 0-7 and 20-31 of the register are
ignored. In the 31-bit addressing mode, bits 1-19
of general register R2 designate a 4K-byte block in
real storage, and bits 0 and 20-31 of the register are
ignored.

Because it is a real address, the address designating
the storage block is not subject to dynamic address
translation. The reference to the storage key is not
subject to a protection exception.

The new seven-bit storage-key value is obtained
from bit positions 24-30 of general register Rl. The
contents of bit positions 0-23 and 31 of the register
are ignored.

A serialization and checkpoint-synchronization
function is performed before the operation begins
and again after the operation is completed.

Condition Code: The code remains unchanged.

Program Exceptions:

• Addressing (address specified by general register
R2)

• Privileged operation

Set System Mask

SSM [S]

'80'

o 8 16 20 31

Bits 0-7 of the current PSW are replaced by the byte
at the location designated by the second-operand
address.

Bits 8-15 of the instruction are ignored.

Special Conditions

When the sSM-suppression-control bit, bit 1 of
control register 0, is one and the CPU is in the
supervisor state, a special-operation exception is
recognized.

The value to be loaded into the psw is not checked
for validity before loading. However, immediately
after loading, a specification exception is recog­
nized, and a program interruption occurs, if the
contents of bit positions 0 and 2-4 of the psw are
not all zeros. In this case, the instruction is com­
pleted, and the instruction-length code is set to 2.
The specification exception,which is listed as a
program exception for this instruction, is described
in the section "Early Exception Recognition" in
Chapter 6, "Interruptions." This exception may be
considered as caused by execution of this instruc­
tion or as occurring early in the process of pre­
paring to execute the subsequent instruction.

The operation is suppressed on all addressing and
protection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Privileged operation
• Special operation
• Specification

Signal Processor

, AE ' I R. I R3 I B, D,

o 8 12 16 20 31

An eight-bit order code and, if called for, a 32-bit
parameter are transmitted to the CPU designated by
the CPU address contained in the third operand.
The result is indicated by the condition code and
may be detailed by status assembled in the, frrst­
operand location.

Chapter 10. Control Instructions 10-61

The second-operand address is not used to address
data; instead, bits 24-31 of the address contain the
eight-bit order code. Bits 0-23 of the second­
operand address are ignored. The order code speci­
fies the function to be performed by the addressed
CPU. The assignment and defmition of order codes
appear in the section "CPU Signaling and
Response" in Chapter 4, "Control."

The 16-bit binary number contained in bit posi­
tions 16-31 of general register R3 forms the CPU

address. Bits 0-15 of the register are ignored.

The general register containing the 32-bit parameter
is Rl or Rl + 1, whichever is the odd-numbered reg­
ister. It depends on the order code whether a
parameter is provided and for what purpose it is
used.

The operands just described have the following
formats:

General register designated by R 1 :

Status

o 31

General register designated by Rl or Rl + 1, which­
ever is the odd-numbered register:

Parameter

o 31

General register designated by R3:

1////////////////1 CPU Address

o 16 31

Second -operand address:

Order
11/////1//////1////1//// Code

e 24 31

A serialization function is performed before the
operation begins and again after the operation is
completed.

10-62 ESA/370 Principles of Operation

When the order code is accepted and no nonzero
status is returned, condition code 0 is set. When
status information is generated by this CPU or
returned by the addressed CPU, the status is placed
in general register Rl, and condition code 1 is set.

When the access path to the addressed CPU is busy,
or the addressed CPU is operational but in a state
where it cannot respond to the order code, condi­
tion code 2 is set.

When the addressed CPU is not operational (that is,
it is not provided in the installation, it is not in the
configuration, it is in any of certain customer­
engineer test modes, or its power is oft), condition
code 3 is set.

Resulting Condition Code:

o Order code accepted
1 Status stored
2 Busy
3 Not operational

Program Exceptions:

• Privileged operation

Programming Notes:

1. A more detailed discussion of the condition­
code settings for SIGNAL PROCFSSOR is con­
tained in the section "CPU Signaling and
Response" in Chapter 4, "Control."

2. To ensure that presently written programs will
be executed properly when new facilities using
additional bits are installed, only zeros should
appear in the unused bit positions of the
second-operand address and in bit positions
0-15 of general register R3.

3. Certain SIGNAL PROCESSOR orders are provided
with the expectation that they will be ll;sed pri­
marily in special circumstances. Such orders
may be implemented with the aid of an auxil­
iary maintenance or service processor, and,
thus, the execution time may take several
seconds. Unless all of the functions provided
by the order are required, combinations of
other orders, in conjunction with appropriate
programming support, can be expected to
provide a specific function more rapidly. The
emergency-signal, external-call, and sense
orders are the only orders which are intended
for frequent use. The following orders are
intended for infrequent use, and performance
therefore may be much slower than for fre-

quently used orders: restart, set prefix, store
status at address, start, stop, stop and store
status, and all the reset orders. An alternative
to the set-prefix order, for faster performance
when the receiving CPU is not already stopped,
is the use of the emergency-signal or external­
call order, followed by the execution of a SET

PREFIX instruction on the addressed CPU.

Clearing the TLB of entries is ordinarily accom­
plished more rapidly through the use of the
emergency-signal or external-call order, fol­
lowed by execution of the PURGE TLB instruc­
tion on the addressed CPu, than by use of the
set-prefix order.

Store Clock Comparator

STCKC 02 (82) [S]

'8207'

o 16 20 31

The current value of the clock comparator is stored
at the doubleword location designated by the
second-operand address.

Zeros are provided for the rightmost bit positions
of the clock comparator that are not compared
with the TOO clock.

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Privileged operation
• Specification

Store Control

STCTl Rl,R3,02(82) [RS]

'86' I RI I R3 I 82 02

o 8 12 16 20 31

The set of control registers starting with control
register R 1 and ending with control register R3 is
stored at the locations designated by the second­
operand address.

The storage area where the contents of the control
registers are placed starts at the location designated
by the second-operand address and continues
through as m.any storage words as the number of
control registers specified. The contents of the
control registers are stored in ascending order of
their register numbers, starting with control register
R 1 and continuing up to and including control reg­
ister R3, with control register 0 following control
register 15. The contents of the control registers
remain unchanged.

Special Conditions

The second operand must be designated on a word
boundary; otherwise, a specification exception is
recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Privileged operation
• Specification

Store CPU Address

[S]

'8212'

o 16 20 31

The CPU address by which this CPU is identified in
a multiprocessing configuration is stored at the
halfword location designated by the second-operand
address.

Chapter 10. Control Instructions 10 ... 63

Special Conditions

The operand must be designated on a halfword
boundary; otherwise, a specification exception is
recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, pperand 2)
• Privileged operation
• Specification

Store CPU ID

[S]

'B2e2'

e 16 2e 31

Information identifying the CPU is stored at the
doubleword location designated by the second­
operand address.

The information stored has the following format:

e

Version
Code

8

Model
Number

32

CPU Identification
Number

31

eeeeeeeeeeeeeeee

48 63

Bit positions 0-7 contain the version code. The
format and significance of the version code depend
on the model.

Bit positions 8-31 contain the CPU identification
number, consisting of six four-bit digits. Some or
all of these. digits are selected from the physical
serial number stamped on the CPU. The contents
of the cpu-identification-number field, in conjunc­
tion with the model number, permit unique iden­
tification of the CPU.

t 0-64 ESA/370 Principles of Operation

Bit positions 32-47 contain the model number of
the CPU. Bit positions 48-63 contain zeros.

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Privileged operation
• Specification

Programming Notes:

I. The program should allow for the possibility
that the CPU identification number may
contain the digits A-F as well as the digits 0-9.

2. The CPU identification number, in conjunction
with the model number, provides a unique CPU

identification that can be used in associating
results with an individual machine, particularly
in regard to functional differences, performance
differences, and error handling.

Store CPU Timer

[S]

'B2e9'

e 16 2e 31

The current value of the CPU timer is stored at the
doubleword location designated by the second­
operand address.

Zeros are provided for the rightmost bit positions
that are not updated by the CPU timer.

Special Conditions

The operand must be designated on a doubleword
boundary; otherwise, a specification exception is
recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Privileged operation
• Specification

Store Prefix

[S]

IB2111

o 16 20 31

The contents of the prefix register are stored at the
word location designated by the second -operand
address. Zeros are provided for bit positions 0 and
20-31.

Special Conditions

The operand must be designated on a word
boundary; otherwise, a specification exception is
recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Privileged operation
• Specification

Store Then AND System Mask

STNSM 01(B1),12 [SI]

IAC I

o 8 16 20 31

Bits 0-7 of the current psw are stored at the frrst­
operand location. Then the contents of bit posi­
tions 0-7 of the current psw are replaced by the
logical AND of their original contents and the
second operand.

Special Conditions

The operation is suppressed on addressing and pro­
tection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 1)
• Privileged operation

Programming Note: STORE THEN AND SYSTEM

MASK permits the program to set selected bits in
the system mask to zeros while retaining the ori­
ginal contents for later restoration. For example, it
may be necessary that a program, which has no
record of the present status, disable program-event
recording for a few instructions.

Store Then OR System Mask

STOSM 01(B1),12 [SI]

IAOI 12 B1 01

o 8 16 20 31

Bits 0-7 of the current PSW are stored at the frrst­
operand location. Then the contents of bit posi­
tions 0-7 of the current psw are replaced by the
logical OR of their original contents and the second
operand.

Special Conditions

The value to be loaded into the psw is not checked
for validity before loading. However, immediately
after loading, a specification exception is recog­
nized, and a program interruption occurs, if the
contents of bit positions 0 and 2-4 of the psw are
not all zeros. In this case, the instruction is com­
pleted, and the instruction-length code is set to 2.
The specification exception, which is' listed as a
program exception for this instruction, is described
in the section "Early Exception Recognition" in
Chapter 6, "Interruptions." This exception may be
considered as caused by execution of this instruc­
tion or as occurring early in the process of pre­
paring to execute the subsequent instruction.

The operation is suppressed on addressing and pro­
tection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 1)
• Privileged operation
• Specification

Chapter 10. Control Instructions 10-65

Programming Note: STORE THEN OR SYSTEM
MASK permits the program to set selected bits in
the system mask to ones while retaining the original
contents for later restoration. For example, the
program may enable the CPU for 1/0 interruptions
without having available the current status of the
external-mask bit.

Store Using Real Address

STURA [RRE]

'B246'

16 24 28 31

The contents of general register R 1 are stored at the
real-storage location addressed by the contents of
general register R2.

Bits 16-23 of the instruction are ignored.

In the 24-bit addressing mode, bits 8-31 of general
register R2 field designate a real-storage location on
a word boundary, and bits 0-7 of the register are
ignored. In the 31-bit addressing mode, bits 1-31
of general register R2 field designate a real-storage
location on a word boundary, and bit 0 of the reg­
ister is ignored.

Because it is a real address, the address designating
the storage word is not subject to dynamic address
translation.

Special Conditions

The contents of general register R2 must designate a
location on a word boundary; otherwise, a specifi­
cation exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Addressing (address specified by general register
R2)

• Privileged operation
• Protection (store, operand 2, key-controlled

protection and low-address protection)
• Specification

10-66 ESA/370 Principles of Operation

Test Access

[RRE]

'B24C'

16 24 28 31

The access-list-entry token (ALET) in access register
. R 1 is tested for exceptions recognized during access­
register translation (ART). The extended authori­
zation index (EAX) used is bits 0-15 of general reg­
ister R2. The ALET is also tested for whether it
designates the dispatchable-unit access list or the
primary-space access list and for whether it is
00000000 or 00000001 hex.

When R 1 is 0, the actual contents of access register
o are used in ART, instead of the 00000000 hex that
is usually used.

Bits 16-31 of general register R2 are ignored. Bits
16-23 of th~ instruction are ignored.

The operation does not depend on the translation
mode -- bits 5, 16, and 17 of the psw are ignored.

When the ALET specified by means of the Rl field
is other than 00000000 or 00000001 hex, the ART
process is applied to the ALET. The EAX specified
by means of the R2 field is called the effective EAX,
and it is the EAX which is used by ART. When a
situation exists that would normally cause one of
the exceptions shown in the following table, the
instruction is completed by setting condition code
3.

Exception Name

ALET specification

ALEN translation

ALE sequence

ASTE validity

ASTE sequence

Cause

ALET bits 0-6 not zeros

Access-list entry (ALE)
outside list or invalid (bit 0
is one)

ALE sequence number
(ALESN) in ALET not equal
to ALESN in ALE

ASN-second-table entry
(ASTE) invalid (bit 0 is one)

ASTE sequence number
(ASTESN) in ALE not equal to
ASTESN in ASTE

Extended authority ALE private bit not zero, ALE
authorization index (ALEAX)
not equal to effective EAX,
and secondary bit selected by
effective EAX either outside
authority table or zero

When ART is completed without one of the above
situations being recognized, the instruction is com­
pleted by setting condition code 1 or 2, depending
on whether the effective access list is the
dispatchable-unit access list or the primary-space
access list, respectively. The effective access list is
the dispatchable-unit access list if bit 7 of the ALET
is zero, or it is the primary-space access list if bit 7
is one. ART, including the obtaining of the effective
access-list designation, is described in the section
"Access-Register-Translation Process" in Chapter
5, "Program Execution." During ART, the instruc­
tion can both use and form entries in the
ART-Iookaside buffer (ALB). The segment-table
designation that ART normally obtains is ignored. .

When the ALET is 00000000 hex, the instruction is
completed by setting condition code o. When the
ALET is 0000000 I hex, the instruction is completed
by setting condition code 3.

Special Conditions

The operation is performed only when the address­
space-function control, bit IS of control register 0,
is one. When the address-space-function control is
zero, a special-operation exception is recognized.

An addressing exception is recognized when the
address used by ART to fetch the effective access-list
designation or the ALE, ASTE, or authority-table
entry designates a location which is not available in
the configuration. When it is necessary to access
the authority table -- when the private bit in the
ALE is not zero and the ALEAX in the ALE is not
equal to the effective EAX -- an ASN-translation­
specification exception is recognized when bits 30,
31, and 60-63 of the ASTE are not all zeros.

The operation is suppressed on all addressing
exceptions.

The priority of recognition of program exceptions
for -the instruction is shown in Figure 10-24 on
page 10-68.

Resulting Condition Code:

o Access-list-entry token (ALET) is 00000000 hex
1 ALET designates the dispatch able-unit access

list and does not cause exceptions in access­
register translation (ART)

2 ALET designates the primary-space access list
and does not cause exceptions in ART

3 ALET is 00000001 hex or causes exceptions in
ART

Program Exceptions:

• Addressing (effective access-list designation,
access-list entry, ASN-second-table entry, or
authority-table entry)

• ASN-translation specification
• Special operation

Chapter 10. Control Instructions 10-67

1.-6. Exceptions with the same priority as the priority of program­
interruption conditions for the general case.

7.A Access exceptions for second instruction halfword.

7.B Special-operation exception due to address-space-function
control, bit 15 of control register 0, being zero.

8. Condition code 0 due to access-list-entry-token (ALET) being
00000000 hex.

9. Condition code 3 due to ALET being 00000001 hex or ALET bits
0-6 not being all zeros.

10. Addressing exception for access to effective access-list des­
ignation.

11. Condition code 3 due to access-list entry (ALE) being outside
the 1 i st.

12. Addressing exception for access to ALE.

13. Condition code 3 due to ALE being invalid (bit 0 is 1) or
access-list-entry sequence number (ALESN) in the ALET not
being equal to the ALESN in the ALE.

14. Addressing exception for access to ASN-second-table entry
(ASTE).

15. Condition code 3 due to ASTE being invalid (bit 0 is one) or
ASTE sequence number (ASTESN) in the ALE not being equal to
the ASTESN in the ASTE.

16. ASN-translation-specification exception due to bits 30, 31,
and 60-63 of ASTE not being all zeros (only if authority-table
access is required).

17. Addressing exception for access to authority-table entry.

18. Condition code 3 due to ALE private bit not being zero, ALE
authorization index (ALEAX) not being equal to effective ex­
tended authorization index (EAX), and secondary bit selected
by effective EAX being either outside the authority table or
zero.

19. Condition code 1 if ALET bit 7 is zero; otherwise, condition
code 2.

Figure 10-24. Priority of Execution: TEST ACCESS

Programming Notes:

1. TEST ACCESS pennits a called program to check
whether an ALET passed from the calling
program is authorized for use by means of the
calling program's EAX. The calling program's
EAX can be obtained from the last linkage-stack
state entry by means of EXTRACT STACKED

10-68 ESA/370 Principles of Operation

STATE. The called program can thus avoid per­
fonning an operation for the calling program,
through the use of the called program's EAX,

which the calling program is not authorized to
perform by means of its own EAX.

2. When an ALET equal to 00000000 hex is passed
during a program linkage performed by

PROGRAM CALL with space switching (pc-ss),
and the ALET conceptually designates the
calling program's primary address space and the
called program's secondary address space, the
ALET must be changed to 0000000 I hex before
it is used by the called program. Condition
code 0 of TEST ACCESS indicates a 00000000
hex ALET so that the ALET can be changed to
0000000 I hex by the called program.

3. PROGRAM CALL to current primary (pc-cp) sets
the secondary address space equal to the
primary address space. pc-ss sets the secondary
address space equal to the calling program's
primary address space, except that stacking
pc-ss sets it equal to the called program's
primary address space when the secondary-AsN
control in the entry-table entry used is one. In
all these cases, a passed 0000000 I hex ALET
that conceptually designates the calling pro­
gram's secondary address space is not usable by
the called program, even after any transforma­
tion (unless the operation was pc-cp and the
calling program's PASN and SASN are equal).
This is why TEST ACCESS sets condition code 3
when the tested ALET is 0000000 I hex.

4. After a Pc-ss, a passed ALET that conceptually
designates an entry in the primary-space access
list of the calling program is not usable by the
called program. This is why TEST ACCESS sets
condition code 2, instead of condition code I,
when the tested ALET designates the primary­
space access list.

S. The control program may manage the
ASN-second-table entry in a way that causes a
correctable ASTE-validity or ASTE-sequence
exception situation to exist; that is, a situation
which, if it were to cause a program inter­
ruption during access-register translation, would
be corrected by the control program so that
access-register translation could be completed
successfully. In this case, the program should
not use TEST ACCESS directly but should
instead use a control-program service that uses
TEST ACCESS and that corrects the situation, if
possible, when condition code 3 is set.
MVS/ESA TM provides the TEST ART macro
instruction for use instead of the direct use of
TEST ACCESS.

Test Block

[RRE]

'B22C'

o 16 24 28 31

The storage locations and storage key of a 4K-byte
block are tested for usability, and the result of the
test is indicated in the condition code. The test for
usability is based on the susceptibility of the block
to the occurrence of invalid checking-block code.

Bits 16-23 of the instruction are ignored.

The block tested is addressed by the contents of
general register R 2. The contents of general register
Rl are ignored.

A complete testing operation is necessarily per­
formed only when the initial contents of general
register 0 are zero. The contents of general register
o are set to zero at the completion of the operation.

If the block is found to be usable, the 4K bytes of
the block are cleared to zeros, the contents of the
storage key are unpredictable, and condition code 0
is set. If the block is found to be unusable, the
data and the storage key are set, as far as is possible
by the model, to a value such that subsequent
fetches to the area do not cause a machine-check
condition, and condition code lis set.

In the 24-bit addressing mode, bits 8-19 of general
register R2 designate a 4K-byte block in real
storage, and bits 0-7 and 20-31 of the register are
ignored. In the 31-bit addressing mode, bits 1-19
of general register R2 designate a 4K-byte block in
real storage, and bits 0 and 20-31 of the register are
ignored.

The address of the block is a real address, and the
accesses to the block designated by the second­
operand address are not subject to key-controlled
and page protection. Low-address protection d?es
apply. The operation is terminated on addressmg
and protection exceptions. If termination occurs,
the condition code and the contents of general reg­
ister 0 are unpredictable. The contents of the

MVS/ESA is a trademark of the International Business Machines Corporation.

Chapter 10. Control Instructions 10-69

storage block and its associated storage key are not
changed when these exceptions occur.

Depending on the model, the test for usability may
be performed (1) by alternately storing and reading
out test patterns to the data and storage key in the
block or (2) by reference to an internal record of
the usability of the blocks which are available in
the configuration, or (3) by using a combination of
both mechanisms.

In models in which an internal record is used, the
block is indicated as unusable if a solid failure has
been previously detected, or if intermittent failures
in the block have exceeded the threshold imple­
mented by the model. In such models, depending
on the criteria, attempts to store mayor may not
occur-. Thus, if block 0 is not usable, and no store
occurs, low-address protection mayor may not be
indicated.

In models in which test patterns are used, TFST

BLOCK may be interruptible. When an interruption
occurs after a unit of operation, other than the last
one, the condition code is unpredictable, and the
contents of general register 0 may contain a record
of the state of intermediate steps. When execution
is· resumed after an interruption, the condition code
IS ignored, but the contents of general register 0
may be used to determine the resumption point.

If (1) TFST BLOCK is executed with an initial value
other than zero in general register 0, or (2) the
interrupted instruction is resumed after an inter­
ruption with a value in general register 0 other than
the value which was present at the time of the
interruption, or (3) the block is accessed by
another CPU or by the channel subsystem during
the execution of the instruction, then the contents
of the storage block, its associated storage key, and
general register 0 are unpredictable, along with the
resultant condition -code setting.

Invalid checking-block-code errors initially found in
the block or encountered during the test do not
normally result in machine-check conditions. The
test-block function is implemented in such a way
that the frequency of machine-check interruptions
due to the instruction execution is not significant.
However, if, during the execution of TFST BLOCK

for an unusable block, that block is accessed by
another CPU (or by the channel subsystem), error
conditions may be reported both to this CPU and
to the other CPU (or to the channel subsystem).

10-70 ESA/370 Principles of Operation

A serialization function is performed before the
block is accessed and again after the operation is
completed (or _partially completed).

The priority of the recognition of exceptions and
condition codes is shown in Figure 10-25.

Resulting Condition Code:

o Block usable
1 Block not usable
2
3

Program Exceptions:

• Addressing (fetch and store, operand 2)
• Privileged operation
• Protection (store, operand 2, low-address pro­

tection only)

1.-6. Exceptions with the same priority as
the priority of program-interruption
conditions for the general case.

7.A Access exceptions for second instruc­
tion halfword.

7.B Privileged-operation exception.

8. Addressing exception due to block not
being available in the configuration.*

9.A Condition code 1, block not usable.

9.B Protection exception due to"low-address
protection.*

10. Condition code 0, block usable and set
to zeros.

Explanation:

* The operation is terminated on addressing
and protection exceptions, and the condi­
code may be unpredictable.

Figure 10-25. Priority of Execution: TEST B.LOCK

Programming Notes:

1. The execution of TFST BLOCK on most models
is significantly slower than that of the MOVE

LONG instruction with padding; therefore, the
instruction should not be used for the· normal
case of clearing storage.

2. The program should use TEST BLOCK at initial
program loading and as part of the vary­
storage-online procedure to determine if blocks
of storage exist which should not be used.

3. The program should use TEST BLOCK when an
uncorrected error is reported in either the data
or storage key of a block. This is because in
the execution of TEST BLOCK the attempt is
made, as far as is possible on the model, to
leave the contents of a block in a state such
that subsequent prefetches or unintended refer­
ences to the block do not cause machine-check
conditions. The program may use the resulting
condition code in this case to determine if the
block can be reused. (The block could be indi­
cated as usable if, for example, the error were
an externally generated error or an indirect
storage error.) This procedure should be fol­
lowed regardless of whether the indirect­
storage-error indication is reported.

4. The model mayor may not be successful in
removing the errors from a block when TEST
BLOCK is executed. The program therefore
should take every reasonable precaution to
avoid referencing an unusable block. For
example, the program should not place the
page-frame real address of an unusable block in
an attached and valid page-table entry.

5. On some models, machine checks may be
reported for a block even though the block is
not referenced by the program. When a
machine check is reported for a storage-key
error in a block which has been marked as
unusable by the program, it is possible that SET
STORAGE KEY EXTENOED may be more effec­
tive than TEST BLOCK in validating the storage
key.

6. The storage-operand references for TEST BLOCK
may be multiple-access references. (See the
section "Storage-Operand Consistency" m
Chapter 5, "Program Execution.")

Test Protection

[SSE]

~_'_E5_01_'~i~B_l~i~~~J
o 16 20 32 36 47

The location designated by the frrst-operand
address is tested for protection exceptions by using
the access key specified in bits 24-27 of the second­
operand address.

The second-operand address is not used to address
data; instead, bits 24-27 of the address form the
access key to be used in testing. Bits 0-23 and
28-31 of the second-operand address are ignored.

The frrst-operand address is a logical address.
When the CPU is in the access-register mode (when
OAT is on and psw bits 16 and 17 are 01 binary),
the frrst-operand address is subject to translation by
means of both the access-register-translation (ART)
and the dynamic-address-translation (OAT) proc­
esses. ART applies to the access register designated
by the Bl field, and it obtains the segment-table
designation to be used by OAT. When OAT is on
but the CPU is not in the access-register mode, the
frrst-operand address is subject to translation by
OAT. In this case, OAT uses the segment-table des­
ignation contained in control register 1, 7, or 13
when the CPU is in the primary-space, secondary­
space, or home-space mode, respectively. When
OAT is off, the frrst-operand address is a real
address not subject to translation by either ART or
OAT.

When the CPU is in the access-register mode and a
segment-table designation cannot be obtained by
ART because of a situation that would normally
cause one of the exceptions shown in the following
table, the instruction is completed by setting condi­
tion code 3.

Exception Name

ALET specification

ALEN translation

ALE sequence

ASTE validity

ASTE sequence

Cause

Access-list-entry -token
(ALET) bits 0-6 not zeros

Access-list entry (ALE)
outside list or invalid (bit 0
is one)

ALE sequence number
(ALESN) in ALET not equal
to ALESN in ALE

ASN-second-table entry
(ASTE) invalid (bit 0 is one)

ASTE sequence number
(ASTESN) in ALE not equal to
ASTESN in ASTE

Chapter 10. Control Instructions 10-71

Extended authority ALE private bit not zero, ALE
authorization index (ALEAX)
not equal to extended
authorization index (EAX),
and secondary bit selected by
EAX either outside authority
table or zero

When the access register contains 00000000 hex or
00000001 hex, ART obtains the segment-table desig­
nation from control register 1 or 7, respectively,
without accessing the access list. When the B 1 field
designates access register 0, ART treats the access
register as containing 00000000 hex and does not
examine the actual contents of the access register.

When ART is completed successfully, the operation
is continued through the performance of OAT.

When OAT is on and the frrst-operand address
cannot be translated because of a situation that
would normally cause a page-translation or
segment-translation exception, the instruction is
completed by setting condition code 3.

When translation of the frrst-operand address can
be completed, or when OAT is off, the storage key
for the block designated by the frrst-operand
address is tested against the access key specified in
bits 24-27 of the second-operand address, and the
condition code is set to indicate whether store and
fetch accesses are permitted, taking into consider­
ation all applicable proteGtion mechanisms. Thus,
for example, if low-address protection is active and
the frrst-operand effective address is less than 512,
then a store access is not permitted. Page pro­
tection and fetch -protection override are also taken
into account.

The contents of storage, including the change bit,
are not affected. Depending on the model, the ref­
erence bit for the frrst-operand address may be set
to one, even for the case in which the location is
protected against fetching.

Special Conditions

When the CPU is in the access-register mode, an
addressing exception is recognized when the address
used by ART to fetch the effective access-list desig­
nation or the ALE, ASTE, or authority-table entry
designates a location which is not available in the
configuration. When it is necessary to access the
authority table -- when the private bit in the ALE is
not zero and the ALEAX in the ALE is not equal to
the EAX -- an ASN-translation-specification excep-

t 0-72 ESAj370 Principles of Operation

tion is recognized when bits 30, 31, and 60-63 of
the ASTE are not all zeros.

When OAT is on, an addressing exception is recog­
nized when the address of the segment-table entry,
the page-table entry, or the operand real address
after translation designates a location which is not
available in the configuration. Also, a translation­
specification exception is recognized when the
segment-table entry or page-table entry has a
format error. When OAT is off, only the addressing
exception due to the operand real address applies.

For all of the above cases, the operation is sup­
pressed.

Resulting Condition Code:

o Fetching permitted; storing permitted
1 Fetching permitted; storing not permitted
2 Fetching not permitted; storing not permitted
3 Translation not available

Program Exceptions:

• Addressing (effective access-list designation,
access-list entry, ASN-second-table entry,
authority-table entry, or operand 1)

• ASN-translation specification
• Privileged operation
• Translation specification

Programming Notes:

1. TEST PROTECTION permits a program to check
the validity of an address passed from a calling
program without incurring program exceptions.
The instruction sets a condition code to indi­
cate whether fetching or storing is permitted at
the location designated by the frrst-operand
address of the instruction. The instruction
takes into consideration all of the protection
mechanisms in the machine: key-controlled,
page, and low-address protection and fetch­
protection override. Additionally, since
segment translation and page translation may
be a program substitute for a protection vio­
lation, these situations are used to set the con­
dition code rather than cause a program excep­
tion.

When the CPU is in the access-register mode,
TEST PROTECTION additionally permits the
program to check the usability of an access-list­
entry token (ALET) in an access register without
incurring program exceptions. The ALET is
checked for validity (absence of an ALET-spec-

ification, ALEN -translation, and ALE-sequence
situation) and for being authorized for use by
the program (absence of an ASTE-validity, ASTE
sequence, and extended-authority situation).

2. See the programming notes under SET PSW KEY
FROM ADDRESS for more details and for an
alternative approach to testing validity of
addresses passed by a calling program. The
approach using TEST PROTECTION has the
advantage of a test which does not result in
interruptions; however, the test and use are
separated in time and may not be accurate if
the possibility exists that the storage key of the
location in question can change between the
time it is tested and the time it is used.

3. In the handling of dynamic address translation,
TEST PROTECTION is similar to LOAD REAL
AD DRESS in that the instructions do not cause
page-translation and segment-translation
exceptions. Instead, these situations are indi­
cated by means of a condition -code setting.
Similarly, access-register translation sets a con­
dition code for certain situations when per­
formed during either of the two instructions.
Situations which result in condition codes 1, 2,
and 3 for LOAD REAL ADDRESS result in condi­
tion code 3 for TEST PROTECTION. The
instructions also differ in several other respects.
The frrst-operand address of TEST PROTECTION
is a logical address and thus is not subject to
dynamic address translation when DAT is off.
The second-operand address of LOAD REAL
ADDRESS is a virtual address which is always
translated. TEST PROTECTION may use the TLB
for translation of the address, whereas LOAD
REAL AD DRESS does not use the TLB. (LOAD
REAL AD DRESS is the only instruction which
must perform dynamic address translation
without use of the TLB.)

Access-register translation applies to TEST PRO­
TECTION only when the CPU is in the access­
register mode (DAT is on), whereas it applies to
LOAD REAL ADDRESS when psw bits 16 and 17
are 01 binary regardless of whether DAT is on
or off. When condition code 3 is set because of
an exception situation in access-register trans­
lation, LOAD REAL ADDRESS, but not TEST
PROTECTION, returns in a general register the
program-interruption code assigned to the
exception. When access-register translation is
performed, both TEST PROTECTION and LOAD
REAL ADDRESS may use the ART-Iookaside
'buffer (ALB).

When DAT is off for LOAD REAL ADDRESS, the
translation-specification exception for an
invalid value of bits 8-12 of control register 0
occurs after instruction fetching as part of the
execution portion of the instruction. This situ­
ation cannot occur for TEST PROTECTION since
the operand address is a logical address and
does not result in examination of control reg­
ister 0 when DAT is off. When DAT is on, the
exception would be recognized during instruc­
tion fetching. Since the instruction -fetching
portion of an instruction is common for all
instructions, descriptions of access exceptions
associated with instruction fetching do not
appear in the individual instruction defmitions.

Trace

'99' I Rl I R, I 82 02

o 8 12 16 20 31

When explicit tracing is on (bit 31 of control reg­
ister 12 is one), the second operand, which is a
32-bit word in storage, is fetched, and bit 0 of the
word is examined. If bit 0 of the second operand is
zero, a trace entry is formed at the real-storage
location designated by control register 12.

If explicit tracing is off (bit 31 of control register 12
is zero), or if bit 0 of the second operand is one, no
trace entry is formed, and no trace exceptions are
recognized.

The trace entry is composed of an entry-type iden­
tifier, a count of the number of general registers
whose contents are placed in the entry, bits 16-63
of the TOO clock, the second operand, and the con­
tents of a range of general registers. The general
registers are stored in ascending order of their reg­
ister numbers, starting with general register Rl and
continuing up to and including general register R3,
with general register 0 following general register 15.
The trace table and the trace-entry formats are
described in the section "Tracing" in Chapter 4,
"Control. "

When a trace entry is made, a serialization and
checkpoint-synchronization function is performed
before the operation begins and again after the
operation is completed.

Chapter 10. Control Instructions 10-73

Special Conditions

A privileged-operation exception is recognized in
the problem state, even when explicit tracing is off
or bit 0 of the second operand is one.

The second operand must be designated on a word
boundary; otherwise, a specification exception is
recognized. It is unpredictable whether the specifi­
cation exception is recognized when explicit tracing
is off.

It is unpredictable whether access exceptions are
recognized for the second operand when explicit
tracing is off.

10-74 ESA/370 Principles of Operation

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (fetch, operand 2)
• Privileged operation
• Specification
• Trace

Programming Note: Bits 1-15 of the second
operand are reserved for model-dependent functions
and should therefore be set to zeros.

Chapter 11. Machine-Check Handling

Machine-Check Detection
Correction of Machine Malfunctions

Error Checking and Correction
CPU Retry

Effects of CPU Retry
Checkpoint Synchronization
Handling of Machine Checks during

Checkpoint Synchronization
Checkpoint-Synchronization Operations
Checkpoint-Synchronization Action

Channel-Subsystem Recovery
Unit Deletion

Handling of Machine Checks
Validation
Invalid CBC in Storage .. .

Programmed Validation of Storage
Invalid CBC in Storage Keys
Invalid CBC in Registers

Check-Stop State
System Check Stop

Machine-Check Interruption
Exigent Conditions
Repressible Conditions
Interruption Action
Point of Interruption

Machine-Check-Interruption Code
Subclass

System Damage
Instruction -Processing Damage
System Recovery
Timing-Facility Damage
External Damage
Vector-Facility Failure
Degradation
Warning
Channel Report Pending
Service-Processor Damage
Channel-Subsystem Damage

Subclass Modifiers
Vector-Facility Source .. .
Backed Up
Delayed Access Exception

Synchronous
Machine-Check -Interruption Conditions

11-2
11-2
11-2
11-2
11-3
11-3

11-3
11-3
11-4
11-4
11-4
11-4
11-5
11-6
11-6
11-7

11-10
11-11
11-11
11-11
11-11
11-12
11-12
11-14
11-14
11-15
11-15
11-16
11-16
11-16
11-16
11-17
11-17
11-17
11-17
11-17
11-17
11-18
11-18
11-18
11··18

11-18

The machine-check-handling mechanism provides
extensive equipment-malfunction detection to
ensure the integrity of system operation and to
permit automatic recovery from some malfunctions.
Equipment malfunctions and certain external dis-

Processing Backup
Processing Damage

Storage Errors
Storage Error Uncorrected
Storage Error Corrected
Storage-Key Error Uncorrected
Storage Degradation
Indirect Storage Error

Machine-Check Interruption -Code
Validity Bits

PSW -MWP Validity
PSW Mask and Key Validity
PSW Program-Mask and

Condition-Code Validity "
PSW -Instruction-Address Validity
F ailing-Storage-Address Validity
External-Damage-Code Validity
Floating-Point-Register Validity
General-Register Validity
Control-Register Validity
Storage Logical Validity
Access-Register Validity
CPU -Timer Validity
Clock-Comparator Validity

Machine-Check Extended Interruption
Information

Register-Save Areas .. .
Extenlal-Damage Code
Failing-Storage Address

Handling of Machine-Check Conditions ..
Floating Interruption Conditions

Floating Machine-Check -Interruption
Conditions

Floating I/O Interruptions
Machine-Check Masking

Channel-Report-Pending Subclass
l\1ask

Recovery Subclass Mask
Degradation Subclass Mask ...
External-Damage Subclass Mask
Warning Subclass Mask

Machine-Check Logout
Summary of Machine-Check Masking

11-18
11-19
11-19
11-19
11-19
11-19
11-19
11-20

11-20
11-20
11-20

11-21
11-21
11-21
11-21
11-21
11-21
11-21
11-21
11-21
11-21
11-21

11-22
11-22
11-22
11-22
11-23
11-23

11-23
11-23
11-23

11-24
11-24
11-24
11-24
11-24
11-24
11-24

turbances are reported by means of a machine­
check interruption to assist in program-damage
assessment and recovery. The interruption supplies
the program with information about the extent of
the damage and the location and nature of the

Chapter 11. Machine-Check Handling 11-1

cause. Equipment malfunctions, errors, and other
situations which can cause machine-check inter­
ruptions are referred to as machine checks.

Machine-Check Detection
Machine-check-detection mechanisms may take
many forms, especially in control functions for
arithmetic and logical processing, addressing,
sequencing, and execution. For program­
addressable information, detection is normally
accomplished by encoding redundancy into the
information in such a manner that most failures in
the retention or transmission of the information
result in an invalid code. The encoding normally
takes the form of one or more redundant bits,
called check bits, appended to a group of data bits.
Such a group of data bits and the associated check
bits are called a checking block. The size of the
checking block depends on the model.

The inclusion of a single check bit in the checking
block allows the detection of any single-bit failure
within the checking block. In this arrangement, the
check bit is sometimes referred to as a "parity bit."
In other arrangements, a group of check bits is
included to permit detection of multiple errors, to
permit error correction, or both.

For checking purposes, the contents of the entire
checking block, including the redundancy, are
called the checking-block code (CBC). When a CBC

completely meets the checking requirements (that
is, no failure is detected), it is said to be valid.
When both detection and correction are provided
and a CBC is not valid bu, satisfies. the checking
requirements for correction (the failure is correc­
table), it is said to be near-valid. When a CBC does
not satisfy the checking requirements (the failure is
uncorrectable), it is said to be invalid.

Correction of Machine
Malfunctions
Fout mechanisms may be used to provide recovery
from machine-detected malfunctions: error
checking and correction, CPU retry, channel­
subsystem recovery, and unit deletion.

Machine failures which are corrected successfully
mayor may not be reported as machine-check
interruptions. If reported, they are system-recovery
conditions, which permit the program to note the

11-2 ESA/370 Principles of Operation

cause of CPU delay and to keep a log of such inci­
dents.

Error Checking and Correction

When sufficient redundancy is included in circuitry
or in a checking block, failures can be corrected.
For example, circuitry can be triplicated, with a
voting circuit to determine the correct value by
selecting two matching results out of three, thus
correcting a single failure. An arrangement for cor­
rection of failures of one order and for detection of
failures of a higher order is called error checking
and correction (BCC). Commonly, BCC allows cor­
rection of single-bit failures and detection of
double-bit failures.

Depending on the model and the portion of the
machine in which· BCC is applied, correction may be
reported as system recovery, or no report may be
given.

Uncorrected errors in storage and in the storage key
may be reported, along with a failing-storage
address, to indicate where the error occurred.
Depending on the situation, these errors may be
reported along with system recovery or with the
damage or backup condition resulting from the
error.

CPU Retry

In some models, information about some portion
of the state of the machine is saved periodically.
The point in the processing at which this informa­
tion is saved is called a checkpoint. The informa­
tion saved is referred to as the checkpoint informa­
tion. ,The action of saving the information is
referred to as establishing a checkpoint. The action
of discarding previously saved information is called
invalidation of the checkpoint information. The
length of the interval between establishing check­
points is model-dependent. Checkpoints may be
established at the beginning of each instruction or
several times within a single instruction, or check­
points may be established less frequently.

Subsequently, this saved information may be used'
to restore the machine to the state that existed at
the time when the checkpoint was established.
After restoring the appropriate portion of the
machine state, processing continues from the
checkpoint. The process of restoring to a check­
point and then continuing is called CPU retry.

CPU retry may be used for machine-check recovery,
to effect nullification and suppression of instruction
execution when certain program interruptions
occur, and in other model-dependent situations.

Effects of CPU Retry
CPU retry is, in general, performed so that there is
no effect on the program. However, change bits
which have been changed from zeros to ones are
not necessarily set back to zeros. As a result,
change bits may appear to be set to ones for blocks
which would have been accessed if restoring to the
checkpoint had not occurred. If the path taken by
the program is dependent on information that may
be changed by another CPU or by a channel
program or if an interruption occurs, then the fmal
path taken by the program may be different from
the earlier path; therefore, change bits may be ones
because of stores along a path apparently never
taken.

Checkpoint Synchronization
Checkpoint synchronization consists in the fol­
lowing steps.

1. The CPU operation is delayed until all concep­
tually previous accesses by this CPU to storage
have been completed, both for purposes of
machine-check detection and as observed by
other CPUs and by channel programs.

2. All previous checkpoints, if any, are canceled.

3. Optionally, a new checkpoint is established.
The CPU operation is delayed until all of these
actions appear to be completed, as observed by
other CPUs and by channel programs.

Handling of Machine Checks during
Checkpoint Synchronization
When, in the process of completing all previous
stores as part of the checkpoint-synchronization
action, the machine is unable to complete all stores
successfully but can successfully restore the
machine to a previous checkpoint, processing
backup is reported.

When, in the process of completing all stores as
part of the checkpoint-synchronization action, the
machine is· unable to complete all stores success­
fully and cannot successfully restore the machine to
a previous checkpoint, the type of machine-check­
interruption condition reported depends on the
origin of the store. Failure to successfully complete
stores associated with instruction execution may be
reported as instruction-processing damage, or some

less critical machine-check -interruption condition
may be reported with the storage-logical-validity bit
set to zero. A failure to successfully complete
stores associated with the execution of an inter­
ruption, other than program or supervisor call, is
reported as system damage.

When the machine check occurs as part of a
checkpoint-synchronization action before the exe­
cution of an instruction, the execution of the
instruction is nullified. When it occurs before the
execution of an interruption, the interruption con­
dition, if the interruption is external, I/O, or restart,
is held pending. If the checkpoint-synchronization
operation was a machine-check interruption, then
along with the originating condition, either the
storage-logical-validity bit is set to zero or
instruction-processing damage is also reported.
Program interruptions, if any, are lost.

Checkpoint-Synchronization Operations
All interruptions and the execution of certain
instructions cause a checkpoint-synchronization
action to be performed. The operations which
cause a checkpoint-synchronization action are
called checkpoint-synchronization operations and
include:

• CPU reset
• All interruptions: external, I/O, machine check,

program, restart, and supervisor call
• The BRANCH ON CONDITION (BCR) instruction

with the M 1 and R2 fields containing all ones
and all zeros, respectively

• The instructions LOAD PSW, SET STORAGE KEY
EXTENDED, and SUPERVISOR CALL

• All I/O instructions
• The instructions MOVE TO PRIMARY, MOVE TO

SECONDARY, PROGRAM CALL, PROGRAM
TRANSFER, SET ADDRESS SPACE CONTROL, and
SET SECONDARY ASN, and PROGRAM RETURN
when the state entry to be unstacked is a
program -call state entry

• The three trace functions: branch tracing, ASN
tracing, and explicit tracing

Programming Note: The instructions which are
defmed to cause the checkpoint-synchronization
action invalidate checkpoint information but do not
necessarily establish a new checkpoint. Addi­
tionally, the CPU may establish a checkpoint
between any two instructions or units of operation,
or within a single unit of operation. Thus, the
point of interruption for the machine check is not
necessarily at an instruction defmed to cause a
checkpoint-synchronization action.

Chapter 11. Machine-Check Handling t 1-3

Checkpoint-Synchronization Action
For all interruptions except I/O interruptions, a
checkpoint-synchronization action is performed at
the completion of the interruption. For I/O inter­
ruptions, a checkpoint-synchronization action may
or may not be performed at the completion of the
interruption. For an interruptions except program,
supervisor-call, and exigent machine-check inter­
ruptions, a checkpoint-synchronization action is
also performed before the interruption. The fetch
access to the new PSW may be performed either
before or after the fust checkpoint-synchronization
action. The store accesses and the changing of the
current psw associated with the interruption are
performed after the fust checkpoint-synchronization
action and before the second.

For all checkpoint-synchronization instructions
except BRANCH ON CONDITION (BCR), I/O
instructions, and SUPERVISOR CALL, checkpoint­
synchronization actions are performed before and
after the execution of the instruction. For BCR,
only one checkpoint-synchronization action is nec­
essarily performed, and it may be performed either
before or after the instruction address is updated.
For SUPERVISOR CALL, a checkpoint­
synchronization action is performed before the
instruction is executed, including the updating of
the instruction address in the psw. The
checkpoint-synchronization action taken after the
supervisor-can interruption is considered to be part
of the interruption action and not part of the
instruction execution. For I/O instructions, a
checkpoint-synchronization action is always per­
formed before the instruction is executed and may
or may not be performed after the instruction is
executed.

The three trace functions -- branch tracing, ASN
tracing, and explicit tracing -- cause checkpoint­
synchronization actions to be performed before the
trace action and after completion of the trace
action.

Channel-Subsystem Recovery

When errors are detected in the channel subsystem,
the channel subsystem attempts to analyze and
recover the internal state associated with the
'various channel-subsystem functions and the state
of the channel subsystem and various subchannels.
This process, which is called channel-subsystem
recovery, may result in a complete recovery or may
result in the termination of one or more I/O opera­
tions and the clearing of the affected subchannels.

11-4 ESAj370 Principles of Operation

Special channel-report-pending machine-check­
interruption conditions may be generated to indi­
cate to the program the status of the channel­
subsystem recovery.

Malfunctions associated with the I/O operations,
depending on the severity of the malfunction, may
be reported by means of the I/o-interruption mech­
anism or by means of the channel-report-pending
and channel-subsystem-damage machine-check­
interruption conditions.

Unit Deletion

In some models, malfunctions in certain units of
the system can be circumvented by discontinuing
the use of the unit. Examples of cases where unit
deletion may occur include the disabling of all or a
portion of a cache or of a translation-Iookaside
buffer (TLB). Unit deletion may be reported as a
degradation machine-check -interruption condition.

Handling of Machine Checks
A machine check is caused by a machine malfunc­
tion and not by data or instructions. This is
ensured during the power-on sequence by initial­
izing the machine controls to a valid state and by
placing valid CBC in the CPU registers, in the
storage keys, and in main storage.

Designation of an unavailable component, such as
a storage location, subchannel, or I/O device, does
not cause a machine-check indication. Instead,
such a condition is indicated by the appropriate
program or I/O interruption or condition-code
setting. In particular, an attempt to access a
storage location which is not in the configuration,
or which has power off at the storage unit, results
in an addressing exception when detected by the
CPU and does not generate a machine-check condi­
tion, even though'the storage location or its associ­
ated storage key has invalid CBC. Similarly, if the
channel subsystem attempts to access such a
location, an I/o-interruption condition indicating
program check is generated rather than a machine­
check condition.

A machine check is indicated whenever the result of
an operation could be affected by information with
invalid CBC, or when any other malfunction makes
it impossible to establish reliably that an operation
can be, or has been, performed correctly. When
information with invalid CBC is fetched but not

used, the condition mayor may not be indicated,
and the invalid cac is preserved.

When a machine malfunction is detected, the action
taken depends on the model, the nature of the mal­
function, and the situation in which the malfunc­
tion occurs. Malfunctions affecting operator-facility
actions may result in machine checks or may be
indicated to the operator. Malfunctions affecting
certain other operations such as SIGNAL
PROCESSOR may be indicated by means of a condi­
tion code or may result in a machine-check­
interruption condition.

A malfunction detected· as part of an I/O operation
may cause a machine-cheek-interruption condition,
an I/o-error condition, or both. I/o-error condi­
tions are indicated by an I/O interruption or by the
appropriate condition-code setting during the exe­
cution of an I/O instruction. When the machine
reports a failing-storage location detected during an
I/O operation, both I/o-error and machine-check
conditions may be indicated. The I/o-error condi­
tion is the primary indication to the program. The
machine-check condition is a secondary indication,
which is presented as system recovery together with
a failing-storage address.

Certain malfunctions detected as part of I/O
instructions and I/O operations are reported by
means of special . machine-check conditions called
I/O machine-check conditions. Thus, malfunctions
detected as part of an operation which is I/O related
may be reported, depending on the error, in any of
three ways: I/O-error condition, I/O machine-check
condition, or non-I/O machine-check condition. In
some cases the defmition requires the error to be
reported by only one of these mechanisms; in other
cases, anyone, or in some cases, more than one,
may be indicated.

Programming Note: Although the defmition for
machine-check conditions is that they are caused by
machine malfunctions and not by data and
instructions, there are certain unusual situations in
which machine-check conditions are caused by
events which are not machine malfunctions. Two
examples follow:

1. In some cases, the channel-report-pending
machine-check -interruption condition indicates
a non-error situation. For example, this·condi­
tion is generated at the completion of the func­
tion specified by RESET CHANNEL PATH.

2. Improper use of DIAGNOSE may result in
machine-check conditions.

Validation

Machine errors can be generally classified as solid
or intermittent, according to the persistence of the
malfunction. A persistent machine error is said to
be solid, and one that is not persistent is said to be
intermittent. In the case of a register or storage
location, a third type of error must be considered,
called externally generated. An externally generated
error is. one where no failure exists in the register or
storage location but invalid cac has been intro­
duced into the location by actions external to the
location. For example, the value could be affected
by a power transient, or an incorrect value may
have been introduced when the information was
placed at the location.

Invalid CBC is preserved ·as invalid when informa­
tion with invalid CBC is fetched or when an attempt
is made to update only a portion of the checking
block. When an attempt is made to replace the
contents of the entire checking block and the block
contains invalid CBC, it depends on the operation
and the model whether the block remains with
invalid CBC or is replaced. An operation which
replaces the contents of a checking block with valid
CBC, while ignoring the current contents, is called a
validation operation. Validation is used to place a
valid cac in a register or at a location which has an
interrillttent or externally generated error.

Validating a checking block does not ensure that a
valid CBe will be observed the next time the
checking block is accessed. If the failure is solid,
validation is effective only if the information placed
in the checking block is such that the failing bits
are set to the value to which they fail. If an
attempt is made to set the bits to the state opposite
to that in which they fail, then the validation will
not be effective. Thus, for a solid failure, validation
is only useful to eliminate the error condition, even
though the underlying failure remains, thereby
reducing the exposure to additional reports. The
locations, however, cannot be used, since invalid
cac will result from attempts to store other values
at the location. For an intermittent failure,
however, validation is useful to restore a valid CBC
such that a subsequent partial store into the
checking block will be permitted. (A. partial store
is a store into a checking block without replacing
the entire checking block.)

When a checking block consists of multiple bytes
in storage, or multiple bits in CPU registers, the

Chapter 11. Machine-Check Handling 11-5

invalid CBC can be made valid only when all of the
bytes or bits are replaced simultaneously.

For each type of field in the system, certain
instructions are defmed to validate the field.
Depending on the model, additional instructions
may also perform validation; or, in some models, a
register is automatically validated as part of the
machine-cheek-interruption sequence after the ori­
ginal contents of the register are placed in the
appropriate save area.

When an error occurs in a checking block, the ori­
ginal information contained in the checking block
should be considered lost even after validation.
Automatic register validation leaves the contents
unpredictable. Programmed and manual validation
of checking blocks causes the contents to be
changed explicitly.

Programming Note: The machine-check­
interruption handler must assume that the registers
require validation. Thus, each register should be
loaded, using an instruction defmed to validate,
before the register is used or stored.

Invalid eae in Storage

The size of the checking block in storage depends
on the model but is never more than 4K bytes.

When invalid CBC is detected in storage, a machine­
check condition may occur; depending on the cir­
cumstances, the machine-check condition may be
system damage, instruction-processing damage, or
system recovery. If the invalid CBC is detected as
part of the execution of a channel program, the
error is reported as an I/O-error condition. When a
ccw, indirect-data-address word, or data is pre­
fetched from storage, is found to have invalid CBC,
but is not used in the channel program, the condi­
tion is normally not reported as an I/o-error condi­
tion. The condition mayor may not be reported
as a machine-check-interruption condition. Invalid
CBC detected during accesses to storage for other
than CPU -related accesses may be reported as
system recovery with storage error uncorrected indi­
cated, since the primary error indication is reported
by some other means.

When the storage checking block consists of mul­
tiple bytes and contains invalid CBC, special
storage-validation procedures are generally neces-

11-6 ESAj370 Principles of Operation

sary to restore or place new information in the
checking block. Validation of storage is provided
with the manual load-clear and system-reset-clear
operations and is also provided as a program func­
tion. Programmed storage validation is done a
block at a time, by executing the privileged instruc­
tion TEST BLOCK. Manual storage validation by
clear reset validates all blocks which are available in
the configuration.

A checkitig block with invalid CBC is never vali­
dated unless the entire contents of the checking
block are replaced. An attempt to store into a
checking block having invalid CBC, without
replacing the entire checking block, leaves the data
in the checking block (including the check bits)
unchanged. Even when an instruction or a channel
program input operation specifies that the entire
contents of a checking block are to be replaced,
validation mayor may not occur, depending on the
operation and the model.

Programming Note: Machine-check conditions
may be reported for prefetched and unused data.
Depending on the model, such situations may, or
may not, be. successfully retried. For example, a
BRANCH AND LINK (BALR) instruction which speci­
fies an R2 field of zero will never branch, but on
some models a prefetch of the location designated
by register zero may occur: Access exceptions
associated with this prefetch will not be reported.
However, if an invalid checking-block code is
detected, CPU retry may be attempted. Depending
on the model, the prefetch may recur as part of the
retry, and thus the retry will not be successful.
Even when the CPU retry is successful, the perform­
ance degradation of such a retry is significant, and
system recovery may be presented, normally with a
failing-storage address. To avoid continued degra­
dation, the program should initiate proceedings to
eliminate use of the location and to validate the
location.

Programmed Validation of Storage
Provided that an invalid CBC does not exist in the
storage key associated with a 4K-byte block, the
instruction TEST BLOCK causes the entire 4K-byte
block to be set to zeros with a valid CBC, regardless
of the current contents of the storage. TEST BLOCK
thus removes an invalid CBC from a location in
storage which has an intermittent, or one-time,
failure. However, if a permanent failure exists in a
portion of the storage, a subsequent fetch may fmd
an invalid CBC.

Invalid cae in Storage Keys

Depending on the model, each storage key may be
contained in a single checking block, or the access­
control and fetch-protection bits and the reference
and change· bits may be in separate checking
blocks.

Figure 11-1 on page 11-8 describes the action
taken when the storage key has invalid CBC. The
figure indicates the action taken for the case when
the access-control and fetch-protection bits are in

one checking block and the reference and change
bits are in a separate checking block. In machines
where both fields are included in a single checking
block, the action taken is the combination of the
actions for each field in error, except that com­
pletion is pennitted only if an error in all affected
fields permits completion. References to main
storage to which key-controlled protection does not
apply are treated as if an access key of zero is used
for the reference. This includes such references as
channel-program references during initial program
loading and implicit references, such as interruption
action and DAT-table accesses.

Chapter 11. Machine-Check Handling 11-7

Action Taken on Invalid CBC

Type of Reference

SET STORAGE KEY
EXTENDED

INSERT STORAGE KEY
EXTENDED

RESET REFERENCE BIT
EXTENDED

For Access-Control and
Fetch-Protection Bits

Complete; validate.

PO; preserve.

PO or complete;
preserve.

INSERT VIRTUAL STORAGE PO; preserve.
KEY or TEST PROTEC­
TION

CPU pre fetch (informa- CPF; preserve.
tion not used)

Channel-program pre- IPF; preserve.
fetch (information
not used)

Fetch, nonzero access MC; preserve.
key

Store l , nonzero access MC2; preserve.
key

Fetch, zero access
key4

Store l , zero access
key2

Explanation:

MC or complete;
preserve.

MC or complete;
preserve.

For Reference and
Change Bits

Complete; validate.

PO; preserve.

PO; preserve.

CPF; preserve.

CPF; preserve.

IPF; preserve.

MC or complete;
preserve.

MC and preserve; or
comp1ete 3 and correct.

MC or complete;
preserve.

MC and preserve; or
comp1ete3 and correct.

1 CPU virtua1- and logical-address store accesses are sub­
ject to page protection. When the page-protection bit
is one, the location will not be changed; however, the
machine may indicate a machine-check condition if the
storage key or the data itself has invalid CBC.

2 The contents of the main-storage location are not changed.

3 The contents of the reference and change bits are set
to ones if the "complete" action is taken.

4 The action shown for an access key 6f zero is also appli­
cable to references to which key-controlled protection
does not apply.

Figure 11-1 (Part 1 of 2). Invalid CBC in Storage Keys

11-8 ESA/370 Principles of Operation

Explanation (Continued):

Complete The condition does not cause termination of the execution
of the instruction and, unless an unrelated condition pro­
hibits it, the execution of the instruction is completed,
ignoring the error condition. No machine-check-damage
conditions are reported, but system recovery may be re­
ported.

Correct The reference and change bits are set to ones with valid
CBC.

Preserve The contents of the entire checking block having invalid
CBC are left unchanged.

Validate The entire key is set to the new value with valid CBC.

CPF Invalid CBC in the storage key for a CPU prefetch which
is unused, or for instructions which do not examine the
reference and change bits, may result in any of the fol­
lowing situations:

The operation is completed; no machine-check condi­
tion is reported.
The operation is completed; system recovery, with
storage-key error uncorrected, is reported.
Instruction-processing damage, with or without backup
and with storage-key error uncorrected, is reported.

IPF Invalid CBC in the storage key for a channel-program pre-
fetch which is unused may result in any of the following:

The I/O operation is completed; no machine-check con­
dition is reported.
The I/O operation is completed; system recovery, with
storage-key error uncorrected, is reported.

MC Same as PO for CPU references, but a channel-subsystem
reference may result in the following combinations of
I/O-error conditions and machine-check conditions:

An I/O-error condition is reported; no machine-check
condition is reported.
An I/O-error condition is reported; system recovery,
with or without storage-key error uncorrected, is
reported.

PO Instruction-processing damage, with or without backup
and with or without storage-key error uncorrected, is
reported.

Note: When storage-key error uncorrected is reported, a failing­
storage address mayor may not also be reported.

Figure 11-1 (Part 2 of 2). Invalid CBC in Storage Keys

Chapter] 1. Machine-Check Handling 11-9

Invalid cae in Registers

When invalid CBC is detected in a CPU register, a
machine-check condition may be recognized. CPU
registers include the general, floating-point, access,
and control registers, the current PSW, the prefix
register, the TOD clock, the CPU timer, and the
clock comparator.

When a machine-check interruption occurs,
whether or not it is due to invalid CBC in a CPU
register, the following actions affecting the CPU reg­
isters, other than the prefix register and the
TOD-clock, are taken as part of the interruption.

/

1. The contents of the registers are saved in
assigned storage locations. Any register which
is in error is identified by a corresponding
validity bit of zero in the machine-check­
interruption code. Malfunctions detected
during register saving do not result in additional
machine-cheek-interruption conditions; instead,
the correctness of all the information stored is
indicated by the appropriate setting of the
validity bits.

2. On some models, registers with invalid CBC are
then validated, their actual contents being
unpredictable. On other models, programmed
validation is required.

The prefix register and the TO D clock are not stored
during a machine-check interruption, have no cor­
responding validity bit, and are not validated.

On those models in which registers are not auto­
matically validated as part of the machine-check
interruption, a register with invalid CBC will not
cause a machine-check -interruption condition
unless the contents of the register are actually used.
In these models, each register may consist of one or
more checking blocks, but multiple registers are not
included in a single checking block. When only a
portion of a register is accessed, invalid CBC in the
unused portion of the same register may cause a
machine-cheek-interruption condition. For
example, invalid CBC in the right half of a floating­
point register may cause a machine-check­
interruption condition if a LOAD (LE) operation
attempts to replace the left half, or short form, of
the register.

Invalid CBC associated with the prefix register
cannot safely be reported by the machine-check

11-10 ESA/370 Principles of Operation

interruption, since the interruption itself requires
that the prefix value be applied to convert real
addresses to the corresponding absolute addresses.
Invalid CBC in the prefix register causes the CPU to
enter the check-stop state immediately.

On those models which do not validate registers
during a machine-check interruption, the following
instructions will cause validation of a register, pro­
vided the information in the register is not used
before the register is validated. Other instructions,
although they replace the entire contents of a reg­
ister, do not necessarily cause validation.

General registers are validated by BRANCH AND
LINK (BAL, BALR) , BRANCH AND SAVE (BAS,
BASR) , LOAD (LR), and LOAD ADDRESS. LOAD (L)
and LOAD MULTIPLE validate if the operand is on a
word boundary, and LOAD HALFWORD validates if
the operand is on a half word boundary.

Floating-point registers are validated by LOAD
(LDR) and, if the operand is on a doubleword
boundary, by LOAD (LD).

Access registers are validated by LOAD ACCESS
MULTIPLE. Only the even-odd access-register pairs
that are included in the set of access registers speci­
fied for the LOAD ACCESS MULTIPLE are validated.
Thus, when a single access register is specified, or
when a pair of access registers starting with an odd­
numbered register is specified, no register is vali­
dated.

Control registers may be validated either singly or
in groups by using the instruction LOAD CONTROL.

The CPU timer, clock comparator, and prefix reg­
ister are validated by SET CPU TIMER, SET CLOCK
COMPARATOR, and SET PREFIX, respectively.

The TOD clock is validated by SET CLOCK if the
TOD-clock control is in the enable-set position.

Programming Note: Depending on the register,
and the model, the contents of a register may be
validated by the machine-check interruption or the
model may require that a program execute a vali­
dating instruction after the machine-check inter­
ruption has occurred. In the case of the CPU timer,
depending on the model, both the machine-check
interruption and validating instructions may be
required to restore the CPU timer to full working
order.

Check-Stop State
In certain situations it is impossible or undesirable
to continue operation when a machine error occurs.
In these cases, the CPU may enter the check-stop
state, which is indicated by the check-stop indi­
cator.

In general, the CPU may enter the check-stop state
whenever an uncorrectable error or other malfunc­
tion occurs and the machine is unable to recognize
a specific machine-check -interruption condition.

The CPU always enters the check-stop state if any
of the following conditions exists:

• psw bit 13 is zero, and an exigent machine­
check condition is generated.

• During the execution of an interruption due to
one exigent machine-check condition, another
exigent machine-check condition is detected.

• During a machine-check interruption, the
machine-check-interruption code cannot be
stored successfully, or the new psw cannot be
fetched successfully.

• Invalid CBC is detected in the prefix register.

• A malfunction in the receiving CPU, which is
detected after accepting the order, prevents the
successful completion of a SIGNAL PROCESSOR
order and the order was a reset, or the receiving
CPU cannot determine what the order was.
The receiving CPU enters the check-stop state.

There may be many other conditions for particular
models when an error may cause check stop.

When the CPU is in the check-stop state,
instructions and interruptions are not executed.
The TOO clock is normally not affected by the
check-stop state. The CPU timer mayor may not
run in the check-stop state, depending on the error
and the model. The start key and stop key are not
effective in this state.

The CPU may be removed from the check -stop
state by CPU reset.

In a multiprocessing configuration, a CPU entering
the check -stop state generates a request for a
malfunction-alert external interruption to all CPus
in the configuration. Except for the reception of a
malfunction alert, other CPus and the I/O system

are normally unaffected by the check-stop state in a
CPU. However, depending on the nature of the
condition causing the check stop, other CPus may
also be delayed or stopped, and channel subsystem
and I/O activity may be affected.

System Check Stop
In a multiprocessing configuration, some errors,
malfunctions, and damage conditions are of such
severity that the condition causes all CPUs in the
configuration to enter the check-stop state. This
condition is called a system check stop. The state
of the channel subsystem and I/O activity is unpre­
dictable.

Machine-Check Interruption
A request for a machine-check interruption, which
is made pending as the result of a machine check, is
called a machine-check -interruption condition.
There are two types of machine-check -interruption
conditions: exigent conditions and repressible con­
ditions.

Exigent Conditions

Exigent machine-check-interruption conditions are
those in which damage has or would have occurred
such that execution of the current instruction or
interruption sequence cannot safely continue.
Exigent conditions include two subclasses:
instruction-processing damage and system damage.
In addition to indicating specific exigent conditions,
system damage is used to report any malfunction or
error which cannot be isolated to a less severe
report.

Exigent conditions for instruction sequences can be
either nullifying exigent conditions or terminating
exigent conditions, according to whether the
instructions affected are nullified or terminated.
Exigent conditions for interruption sequences are
terminating exigent conditions. The terms
"nullification" and "termination" have the same
meaning as that used in Chapter 6, "Interruptions,"
except that more than one instruction may be
involved. Thus, a nullifying exigent condition indi­
cates that the CPU has returned to the beginning of
a unit of operation prior to the error. A termi­
nating exigent condition means that the results of
one or more instructions may have unpredictable
values.

Chapter 11. Machine-Check Handling 1 t -1 t

Repressible Conditions

Repressible machine-check -interruption conditions
are those in which the results of the instruction­
processing sequence have not been affected.
Repressible conditions can be delayed, until the
completion of the current instruction" or even
longer, without affecting the integrity of CPU opera­
tion. Repressible conditions are of three groups:
recovery, alert, and repressible damage. Each
group includes one or more subclasses.

A malfunction in the CPU, storage, or operator
facilities which has been successfully corrected or
circumvented internally without logical damage is
called a recovery condition. Depending on the
model and the type of malfunction, some or all
recovery conditions may be discarded and not
reported. Recovery conditions that are reported are
grouped in one subclass, system recovery.

A machine-cheek-interruption condition not
directly related to a machine malfunction is called
an alert condition. The alert conditions are
grouped in two subclasses: degradation and
warning.

A malfunction resulting in an incorrect state of a
portion of the system not directly affecting sequen­
tial CPU operation is called a repressible-damage
condition. Repressible-damage conditions are
grouped in six subclasses, according to the function
affected: timing-facility damage, external damage,
channel report pending, channel-subsystem damage,
service-processor damage, and vector-facility failure.

Programming Notes:

1. Even though repressible conditions are usually
reported only at normal points of interruption,
they may also be reported with exigent
machine-check conditions. Thus, if an exigent
machine-check condition causes an instruction
to" be abnormally terminated and a machine­
check interruption occurs to report the exigent
condition, any pending repressible conditions
may also be reported. The meaningfulness of
the validity bits depends on what exigent condi­
tion is reported.

2. Classification of damage as either exigent or
repressible does not imply the severity of the
damage. The distinction is whether action
must be taken as soon as the damage is
detected (exigent) or whether the CPU can con­
tinue processing (repressible). For a repressible

11-12 ESA/370 Principles of Operation

condition, the current instruction can be com­
pleted before taking the machine-check inter­
ruption if the CPU is enabled for machine
checks; if the CPU is disabled for machine
checks, the condition can safely be kept
pending until the CPU is again enabled for
machine checks.

For example, the CPU may be disabled for
machine-check interruptions because it is han­
dling an earlier instruction-processing-damage
interruption. If, during that time, an 1/0 opera­
tion encounters a storage error, that condition
can be kept pending because it is not expected
to interfere with the current machine-check
processing. If, however, the CPU also makes a
reference to the area of storage containing the
error before re-enabling machine-check inter­
ruptions, another instruction-processing­
damage condition is created, which is treated as
an exigent condition and causes the CPU to
enter the check-stop state.

3. A repressible condition may be a floating con­
dition. A floating repressible condition is eli­
gible to cause an interruption on any CPU in
the configuration. At the point when a CPU
performs an interruption for a floating
repressible condition, the condition is no longer
eligible to cause an interruption on the
remaining CPUs in the configuration.

Interruption Action

A machine-check interruption causes the following
actions to be taken. The psw reflecting the point
of interruption is stored as the machine-check old
psw at reallocation 48. The contents of other reg­
isters are stored in register-save areas at real
locations 216-231 and 288-511. Mter the contents
of the registers are stored in register-save areas,
depending on the model, the registers may be vali­
dated with the contents being unpredictable. A
failing-storage address may be stored at real
location 248, and an external-damage code may be
stored at real location 244. A machine-check­
interruption code (MCIC) of eight bytes is placed at
real location 232. The new psw is fetched from
real location 112. Additionally, a machine-check
logout may have occurred. The machine-generated
addresses to access the old and new PSW, the MCIC,
extended interruption information, and the fixed­
logout area are all real addresses.

The fields accessed during the machine-check inter­
ruption are summarized in Figure 11-2.

Starting Length
Information Stored (Fetched) Location* in Bytes

Old PSW 48 8
New PSW (fetched) 112 8
Machine-cheek-interruption code 232 8
Register-save areas

CPU timer 216 8
Clock comparator 224 8
Access registers 8-15 288 64
Floating-point registers 8, 2, 4, 6 352 32
General registers 8-15 384 64
Control registers 8-15 448 64

Extended interruption information
External-damage code 244 4
Failing-storage address 248 4

Fixed-logout area 256 16

Explanation:

* All locations are in real storage.

Figure 11-2. Machine-Cheek-Interruption Locations

If the machine-check -interruption code cannot be
stored successfully or the new PSW cannot be
fetched successfully, the CPU enters the check-stop
state.

A repressible machine-check condition can initiate
a machine-check interruption only if both psw bit
13 is one and the associated subclass mask bit, if
any, in control register 14 is also one. When it
occurs, the interruption does not terminate the exe­
cution of the current instruction; the interruption is
taken at a normal point of interruption, and no
program or supervisor-call interruptions are elimi­
nated. If the machine check occurs during the exe­
cution of a machine function, such as a cpu-timer
update, the tnachine-check interruption takes place
after the machine function has been completed.

When the CPU is disabled for a particular
repressible machine-check condition, the condition
remains pending. Depending on the model and the
condition, multiple repressible conditions may be
held pending for a particular subclass, or only one
condition may be held pending for a particular sub­
class, regardless of the number of conditions that
may have been detected for that subclass.

When a repressible machine-check interruption
occurs because the interruption condition is in a
subclass for which the CPU is enabled, pending
conditions in other subclasses may also be indicated
in the same interruption code, even though the CPU

is disabled for those subclasses. All indicated con­
ditions are then cleared.

If a machine check which is to be reported as a
system-recovery condition is detected during the
execution of the interruption procedure due to a
previous machine-check condition, the system­
recovery condition may be combined with the
other conditions, discarded, or held pending.

An exigent machine-check condition can cause a
machine-check interruption only when psw bit 13
is one. When a nullifying exigent condition causes
a machine-check interruption, the interruption is
taken at a normal point of interruption. When a
terminating exigent condition causes a machine­
check interruption, the interruption terminates the
execution of the current instruction and mayelimi­
nate the program and supervisor-call interruptions,
if any, . that would have occurred if execution had
continued. Proper execution of the interruption
sequence, including the storing of the old psw and
other information, depends on the nature of the
malfunction. When an exigent machine-check con­
dition occurs during the execution of a machine
function, such as a cpu-timer update, the sequence
is not necessarily completed.

If, during the execution of an interruption due to
one exigent machine-check condition, another
exigent machine check is detected, the CPU enters
the check-stop state. If an exigent machine check
is detected during an interruption due to a
repressible machine-check condition, system
damage is reported.

When psw bit 13 is zero, an exigent machine-check
condition causes the CPU to enter the check-stop
state.

Machine-cheek-interruption conditions are handled
in the same manner regardless of whether the wait­
state bit in the psw is one or zero: a machine­
check condition causes an interruption if the CPU is
enabled for that condition.

Machine checks which occur while the rate control
is set to the instruction-step position are handled in
the same manner as when the control is set to the
process position; that is, recovery mechanisms are
active, and machine-check interruptions occur
when allowed. Machine checks occurring during a
manual operation may be indicated to the operator,
may generate a system-recovery condition, may
result in system damage, or may cause a check
stop, depending on the model.

Chapter 11. Machine-Check Handling 11-13

Every reasonable attempt is made to limit the side
effects of any machine check and the associated
interruption. Normally, interruptions, as well as
the progress Or'I/O operations, remain unaffected.
The malfunction, however, may affect these activ­
ities, and, if the currently active psw has bit 13 set
to one, the machine-check interruption will indicate
the total extent of the damage caused, and not just
the damage which originated the condition.

Point of Interruption

The point in the processing which is indicated by
the interruption and used as a reference point by
the machine to determine and indicate the validity
of the status stored is referred to as the point of
interruption.

Because of the checkpoint capability in models
with CPU retry, the interruption resulting from an
exigent machine-cheek-interruption condition may
indicate a point in the CPU processing sequence
which is logically prior to the error. Additionally,
the model may have some choice as to which point
in the CPU processing sequence the interruption is
indicated, and, in some cases, the status which can
be indicated as valid depends on the point chosen.

Only certain points in the processing may be used
as a point of interruption. For repressible
machine-check interruptions, the point of inter­
ruption must be after one unit of operation is com­
pleted and any associated program or supervisor­
call interruption is taken, and before the next unit
of operation is begun.

Exigent machine-check conditions for instruction
sequences are those in which damage has or would
have occurred to the instruction stream. Thus, the
damage can normally be associated with a point
part way though an instruction, and this point is
called the point of damage. In some cases there
may be one or more instructions separating the
point of damage and the point of interruption, and
the processing associated with one or more
instructions may be damaged. When the point of
interruption is a point prior to the point of damage
due to a nullifiable exigent machine-check condi­
tion' the point of interruption can be only at the
same points as for repressible machine-check condi-
tions. .

11-14 ESAj370 Principles of Operation

In addition to the point of interruption permitted
for repressible machine-check conditions, the point
of interruption for a terminating exigent machine­
check condition may also be after the unit of oper­
ation is completed but before any associated
program or supervisor-call interruption occurs. In
this case, a valid psw instruction address is dermed
as that which would have been stored in the old
psw for the program or supervisor-call interruption.
Since the operation has been terminated, the values
in the result fields, other than the instruction
address, are unpredictable. Thus the validity bits
associated with fields which are due to be changed
by the instruction stream are meaningless when a
terminating exigent machine-check condition is
reported.

When the point of interruption and the point of
damage due to an exigent machine-check condition
are separated by a checkpoint-synchronization
function, the damage has not been isolated to a
particular program, and system damage is indicated.

Programming Note: When an exigent machine­
check-interruption condition occurs, the point of
interruption which is chosen affects the amount of
damage which must be indicated. An attempt is
made, when possible, to choose a point of inter­
ruption which permits the minimum indication of
damage. In general, the preference is the inter­
ruption point immediately preceding the error.

When all the status information stored as a result
of an exigent machine-cheek-interruption condition
does not reflect the same point, an attempt is made,
when possible, to choose the point of interruption
so that the instruction address which is stored in
the machine-check old psw is valid.

Machine-Check-Interruption
Code

"
On all machine-check interruptions, a machine-
check-interruption code (MCIC) is stored at the
doubleword starting at real location 232 and has
the format shown in Figure 11-3 on page 11-15.

Bits in the MCIC which are not assigned, or not
implemented by a particular model, are stored as
zeros.

S P S C E V D C S C v S S K D W M P I F E F G C S
D D R o D D F G W P P K o S B o E C ESP SMA A 0 CPR R o T

o 4 8 13 16 24 26 31

I A D C C
E R A 0 0 0 0 0 o 0 0 0 0 0 T C o 0 0 0 000 0 00000 e 0 0

;

32 40 46 48 56 63

Bits Name

o System damage (SD)
1 Instruction-processing damage (PD)
2 System recovery (SR)
4 Timing-facility damage (CD)
5 External damage (ED)
6 Vector-facility failure (VF)
7 Degradation (DG)
8 Warning (W)
9 Channel report pending (CP)

10 Service-processor damage (SP)
11 Channel-subsystem damage (CK)
13 Vector-facility source (VS)
14 Backed up (B)
16 Storage error uncorrected (SE)
17 Storage error corrected (SC)
18 Storage-key error uncorrected (KE)
19 Storage degradation (DS)
20 PSW-MWP validity (WP)
21 PSW mask and key validity (MS)
22 PSW program-mask and condition-code validity (PM)
23 PSW-instruction-address validity (IA)
24 Failing-storage-address validity (FA)
26 External-damage-code validity (EC)
27 Floating-point-register validity (FP)
28 General-register validity (GR)
29 Control-register validity (CR)
31 Storage logical validity (ST)
32 Indirect storage error (IE)
33 Access-register validity (AR)
34 Delayed-access exception (DA)
46 CPU-timer validity (CT)
47 Clock-comparator validity (CC)

Note: All other bits of the MCIC are unassigned and stored as zeros.

Figure 11-3. Machine-Check Interruption-Code Format

Subclass

Bits 0-2 and 4-11 are the subclass bits which iden­
tify the type of machine-check condition causing
the interruption. At least one of the subclass bits is
stored as a one. When multiple errors have
occurred, several subclass bits may be set to ones.

System Damage
Bit 0 (so), when one,· indicates that damage has
occurred which cannot be isolated to one or more
of the less severe machine-check subclasses. When
system damage is indicated, the remaining bits in
the machine-cheek-interruption code are not mean­
ingful, and information stored in the register-save

Chapter 11. Machine-Check Handling 11-15

areas and machine-check extended-interruption
fields is not meaningful.

System damage is a terminating exigent condition
and has no subclass-mask bit.

Instruction-Processing Damage
Bit 1 (PD), when one, indicates that damage has
occurred to the instruction processing of the CPU.

The exact meaning of bit 1 depends on the setting
of the backed-up bit, bit 14. When the backed-up
bit is one, the condition is called processing
backup. When the backed-up bit is zero, the con­
dition is called processing damage. These two con­
ditions are described in the section "Synchronous
Machine-Cheek-Interruption Conditions" in this
chapter.

Instruction-processing damage can be a nullifying
or a terminating exigent condition and has no
subclass-mask bit.

System Recovery
Bit 2 (SR), when one, indicates that malfunctions
were detected but did not result in damage or have
been successfully corrected. Some malfunctions
detected as part of an I/O operation may result in a
system-recovery condition in addition to an
I/o-error condition. The presence and extent of the
system-recovery capability depend on the model.

System recovery is a repressible condition. It is
masked by the recovery subclass-mask bit, which is
in bit position 4 of control register 14.

Programming Notes:

1. System recovery may be used to report a
failing-storage address detected by a CPU pre­
fetch or by an 110 operation.

2. Unless the corresponding validity bits are ones,
the indication of system recovery does not
imply storage logical validity, or that the fields
stored as a result of the machine-check inter­
ruption are valid.

Timing-Facility Damage
Bit 4 (CD), when one, indicates that damage has
occurred to the TOD clock, the CPU timer, the clock
comparator, or to the cpu-timer or clock­
comparator external-interruption conditions. The
timing~facility -damage machine-check condition IS

set whenever any of the following occurs:

11-16 ESAj370 Principles of Operation

1. The TO D clock accessed by this CPU enters the
error or not-operational state.

2. The CPU timer is damaged, and the CPU is
enabled for cpu-timer external interruptions.
On some models, this condition may be recog­
nized even when the CPU is not enabled for
cpu-timer interruptions. Depending on the
model, the machine-check condition may be
generated only as the CPU timer enters an error
state. Or, the machine-check condition may be
continuously generated whenever the CPU is
enabled for cpu-timer interruptions, until the
CPU timer is validated.

3. The clock comparator is damaged, and the CPU
is enabled for clock -comparator external inter­
ruptions. On some models, this condition may
be recognized even when the CPU is not
enabled for clock-comparator interruptions.

Timing-facility damage may also be set along with
instruction -processing damage when an instruction
which accesses the TOD clock, CPU timer, or clock
comparator produces incorrect results. Depending
on the model, the CPU timer or clock comparator
may be validated by the interruption which reports
the CPU timer or clock comparator as invalid.

Timing-facility damage is a repressible condition.
It is masked by the timing-facility subclass-mask
bit, which is in bit position 6 of control register 14.

Programming Note: Timing-facility-damage condi­
tions for the CPU timer and the clock comparator
are not recognized on most models when these
facilities are not in use. The facilities are consid­
ered not in use when the CPU is disabled for the
corresponding external interruptions (psw bit 7, or
the subclass-mask bits, bits 20 and 21 of control
register 0, are zeros), and when the corresponding
set and store instructions are not executed.
Timing-facility-damage conditions that are already
pending remain pending, however, when the CPU is
disabled for the corresponding external interruption.

Timing-facility-damage conditions due to damage
to the TOD clock are always recognized.

External Damage
Bit 5 (ED), when one, indicates that damage has
occurred during operations not directly associated
with processing the current instruction.

When bit 5, external damage, is one and bit 26,
external-damage-code validity, is also one, the
external-damage code has been stored to indicate,

in more detail, the cause of the external-damage
machine-check interruption. When the external
damage cannot be isolated to one or more of the
conditions as defmed in the external-damage code,
or when the detailed indication for the condition is
not implemented by the model, external damage is
indicated with bit 26 set to zero. The presence and
e'xtent of reporting external damage, depend on the
model.

External damage is a repressible condition. It is
masked by the external-damage subclass-mask bit,
which is in bit position 6 of conttol register 14.

Vector-Facility Failure
Bit 6 (VF) of the machine-check-interruption code,
when one, indicates that the vector facility has
failed to such an extent that the service processor
has made the facility not available.

This bit may be set to' one, regardless of whether
the vector-control bit, bit 14 of control register 0, is
one or zero.

Vector-facility failure is a repressible condition and
has no subclass-mask bit.

Degradation
Bit 7 (DG), when one, indicates that continuous
degradation of system performance, more serious
than that indicated by system recovery, has
occurred. Degradation may be reported when
system-recovery conditions exceed a machine­
preestablished threshold or when unit deletion has
occurred. The presence and extent of the
degradation-report capability depend on the model.

Degradation is a repressible condition. It is masked
by the degradation subclass-mask bit, which is in
bit position 5 of control register 14.

Warning
Bit 8 (w), when one, indicates that damage is
imminent in some part of the system (for example,
that power is about to fail, or that a loss of cooling
is. occurring). Whether warning conditions are
recognized depends on the model.

If the condition responsible for the imminent
damage is removed before the interruption request
is honored (for example, if power is restored), the
request does not remain pending, and no inter­
ruption occurs. Conversely, the request is not
cleared by the interruption, and, if the condition
persists; more than one interruption may result
from the same condition.

Warning is a repressible condition. It is masked by
the warning subclass-mask bit, which is in bit posi­
tion 7 of control register 14.

Channel Report Pending
Bit 9 (cP), when one, indicates that a channel
report, consisting of one or more channel-report
words, has been made pending, and the contents of
the channel-report words describe, in further detail,
the effect of the malfunction and the results of anal­
ysis or action performed. A channel report
becomes pending when one of the following condi­
tions has occurred:

1. Channel-subsysteln recovery has been com­
pleted. The channel-subsystem recovery may
have been initiated with no prior notice to the
program or may have been a result of a condi­
tion previously reported to the program.

2. The function specified by RESET CHANNEL
PATH has been completed.

The channel-report words which make up the
channel report may be cleared, one at a time, by
execution of the instruction STORE CHANNEL
REPORT WORD, which is described in Chapter 14,
"I/O Instructions."

Bit 9 is meaningless when channel-subsystem
damage is reported.

Channel report pending is a floating repressible
condition. It is masked by the channel-report­
pending subclass-mask bit, which is in bit position
3 of control register 14.

Service-Processor Damage
Bit 10 (sp), when one, indicates that damage ha~
occurred to the service processor. Service-processor
damage may be made pending at all CPus in the
configuration, or it may be detected independently
by each CPU. The presence and extent of reporting
service-processor damage depend on the model.

Service-processor damage is a repressible condition
and has no subclass-mask bit.

Channel-Subsystem Damage
Bit 11 (CK), when one, indicates that an error or
malfunction has occurred in the channel subsystem,
or that the channel subsystem is in the check-stop
state. The channel subsystem enters the check-stop
state when a malfunction occurs which is so severe
that the channel subsystem cannot continue, or if
power is lost in the channel subsystem.

Chapter 11. Machine-Check Handling 11-17

Channel-subsystem damage is a floating repressible
condition and has no subclass-mask bit.

Subclass Modifiers

Bits 13 (vs), 14 (B), and 34 (DA) of the machine­
check-interruption code act as modifiers to the sub­
class bits.

Vector-Facility Source
Bit 13 (vs) of the machine-check-interruption code,
when one, indicates that the vector facility is the
source of the reported machine-check condition.
Vector-facility source is reported together with
instruction-processing damage. When this bit is
one, the contents of vector-facility registers may
have been damaged.

This bit may be set to one regardless of whether
the vector-control bit, bit 14 of control register 0, is .
one or zero.

Bit 13 is not meaningful when vector-facility failure
is reported.

Backed Up
Bit 14 (B), when one, indicates that the point of
interruption is at a checkpoint before the point of
error. This bit is meaningful only when the
instruction-processing-damage bit, bit 1, is also set
to one. The presence and extent of the capabili~y
to indicate a backed-up condition depend on the
model.

Delayed Access Exception
Bit 34 (DA), when one, indicates that an access
exception was detected during a storage access
using DAT when no such exception was detected by
an earlier test for access exceptions.

Bit 34 is a modifier to instruction -processing
damage (bit 1) and is meaningful only when bit 1
of the machine-check-interruption code is one.
When bit 1 is zero, bit 34 has no meaning. The
presence and extent of reporting delayed access
exception depend on the model.

Programming Note: The occurrence of a delayed
access exception normally indicates that the
program is using an improper procedure to update
the DAT tables.

11-18 ESA/370 Principles of Operation

Synchronous
Machine-Check-Interruption
Conditions

The instruction-processing damage and backed-up
bits, bits 1 and 14 of the machine-check­
interruption code, identify, in combination, two
conditions.

Bit 1

1
1

Bit 14

o
1

Processing Backup

Name of Condition

Processing damage·
Processing backup

The processing-backup condition indicates that the
point of interruption is prior to the point, or
points, of error. This is a nullifying exigent condi­
tion. When all of the other CPU -related-damage
subclasses and modifiers of the machine-check­
interruption code are zero and all of the validity
bits associated with CPU status are indicated as
valid, the machine has successfully returned to a
checkpoint prior to the malfunction, and no
damage has yet occurred to the CPU.

The subclass bits which must be zero for this to be
the case are as follows:

MCIC
Bit Name
o System damage
4 Timing-facility damage
6 Vector-facility failure

The subclass-modifier bits which must be zero for
this to be the case are as follows:

MCIC
Bit Name
13 Vector-facility source
34 Delayed-access exception

The validity bits in the machine-check -interruption
code which must be one for this to be the case are
as follows:

MCIC
Bit Fields Covered by Bit
20 psw MWP bits
21 psw mask and key
22 psw program mask and condition code
23 psw instruction address
27 Floating-point registers
28 General registers
29 Control registers
31 Storage logical validity (result fields within

current checkpoint interval)

33 Access registers
46 CPU timer
47 Clock comparator

Programming Note: The processing-backup condi­
tion is reported rather than system recovery to indi­
cate that a malfunction or failure stands in the way
of continued operation of the Cpu. The malfunc­
tion has not been circumvented, and damage would
have occurred if instruction processing had con­
tinued.

Processing Damage
The processing-damage condition indicates that
damage has occurred to the instruction processing
of the cpu. The point of interruption is a point
beyond some or all of the points of damage. Proc­
essing damage is a terminating exigent condition;
therefore, the contents of result fields may be
unpredictable and still indicated as valid.

Processing damage may include malfunctions in
program-event recording, monitor call, tracing,
access-register translation, and dynamic address
translation. Processing damage causes any
supervisor-call-interruption condition and program­
interruption condition to be discarded. However,
the contents of the old psw and interruption-code
locations for these interruptions may be set to
unpredictable values.

Storage Errors

Bits 16-18 of the machine-cheek-interruption code
are used to indicate an invalid CBC or a near-valid
CBC detected in main storage or an invalid CBC in a
storage key. Bit 19, storage degradation, may be
indicated concurrently with bit 17. The failing­
storage-address field, when indicated as valid, iden­
tifies a location within the storage checking block
containing the error, or, for storage-key error
uncorrected, within the block associated with the
storage key. Bit 32, indirect storage error, may be
set to one to indicate that the location designated
by the failing-storage address is not the original
source of the error.

The storage-error-uncorrected and storage-key­
error-uncorrected bits do not in themselves indicate
the occurrence of damage because the error
detected may not have affected a result. The
portion of the configuration affected by an invalid
CBC is indicated in the subclass field of the
machine-cheek-interruption code.

Storage errors detected for a channel program,
when indicated as I/o-error conditions, may also be
reported as system recovery. CBC errors that occur
in storage or in the storage key and that are
detected on prefetched or unused data for a cpu

program mayor may not be reported, depending
on the model.

Storage Error Uncorrected
Bit 16 (SE) , when one, indicates that a checking
block in main storage contained invalid CBC and
that the information could not be corrected. The
contents of the checking block in main storage have
not been changed. The location reported may have
been accessed or 'prefetched for this cpu or another
CPU or a channel program, or it may have been
accessed as the result of a model-dependent storage
access.

Storage Error Corrected
Bit 17 (sc), when one, indicates that a checking
block in main storage contained near-valid CBC and
that the information has been corrected before
being used. Depending on the model, the contents
of the checking block in main storage mayor may
not have been restored to valid CBC. The location
reported may have been accessed or prefetched for
this CPU or for another CPU or for a channel
program, or it may have been accessed as the result
of a model-dependent storage access. The presence
and extent of the storage-error-correction capability
depend on the model. This indication mayor may
not be accompanied by an indication of storage
degradation, bit 19 (os).

Storage-Key Error Uncorrected
Bit 18 (KE), when one, indicates that a storage key
contained invalid CBC and that the information
could not be corrected. The contents of the
checking block in the storage key have not been
changed. The storage key may have been accessed
or prefetched for this CPU or for another cpu or for
a channel program, or it may have been accessed as
the result of a model-dependent storage access.

Storage Degradation
Bit 19 (os), when one, indicates that performance
degradation has occurred for the reported storage­
error-corrected condition.

Storage degradation indicates that although the
associated storage error has been corrected, the cor­
rection process involved a substantial amount of
time. Thus, this bit indicates that use of the associ­
ated block of storage should be avoided, if possible.

Chapter 11. Machine-Check Handling 11-19

The indication of storage degradation has meaning
only when bit 17, storage error corrected, is also
one. The presence and extent of reporting storage
degradation depend on the model.

Programming Note: Because storage degradation
is reported with storage error corrected and, further-,
more, because storage error corrected is normally
reported with system recovery, the recovery sub­
class mask, bit 4 of control register 14, should be
set to one in order for storage degradation to be
indicated.

Indirect storage Error
Bit 32 (IE), when one, indicates that the physical
main-storage location identified by the failing­
storage address is not the original source of the
error. Instead, the error originated in another level
of the storage hierarchy and has been propagated to
the current physical-storage portion of the storage
hierarchy. Bit 32 is meaningful only when bit 16 or
18 (storage error uncorrected or storage-key error
uncorrected) of the machine-check-interruption
code is one. When bits 16 and 18 are both zeros,
bit 32 has no meaning.

For errors originating outside the storage hierarchy,
the attempt to store is rejected, and the appropriate
error indication is presented. When an error is
detected during implicit movement of information
inside the storage hierarchy, the action is not
rejected and reported in this manner because the
movement may be asynchronous and may be initi­
ated as the result of an attempt to access com­
pletely unrelated information. Instead, errors in the
contents of the source during implicit moving of
information from one portion of the storage hier­
archy to another may be preserved in the target
area by placing a special invalid CBC in the
checking block associated with the target location.
These propagated errors, when detected later, are
reported as indirect storage errors. The original
source of such an error may have been in a cache
associated with an I/O processor or a CPU, or the
error may have been the result of a data-path
failure in transmitting data from one portion of the
storage hierarchy to another. Additionally, a prop­
agated error may be generated during the move­
ment of data from one physical portion of storage
to another as the result of a storage-reconfiguration
action.

The presence and extent of reporting indirect
storage error depend on the model.

11-20 ESA/370 Principles of Operation

Programming Note: See the programming notes
under TEST BLOCK in Chapter 10, "Control
Instructions," for the action which should be taken
after storage errors are reported.

Machine-Check Interruption-Code
Validity Bits

Bits 20-24, 26-29, 31, 33, 46, and 47 of the
machine-check-interruption code are validity bits.
Each bit indicates the validity of a particular field in
storage. With the exception of the storage-Iogical­
validity bit (bit 31), each bit is associated with a
field stored during the machine-check interruption.
When a validity bit is one, it indicates that the
saved value placed in the corresponding storage
field is valid with respect to the indicated point of
interruption and that no error was detected when
the data was stored.

When a validity bit is zero, one or more of the fol­
lowing conditions may have occurred: the original
information was incorrect, the original information
had invalid CBC, additional malfunctions were
detected while storing the information, or none or
only part of the information was stored. Even
though the information is unpredictable, the
machine attempts, when possible, to place valid
CBC in the storage field and thus reduce the possi­
bility of additional machine checks being caused.

The validity bits for the floating-point registers,
general registers, control registers, CPU timer, and
clock comparator indicate the validity of the saved
value placed in the corresponding save area. The
information in these registers after the machine­
check interruption is not necessarily correct even
when the correct value has been placed in the save
area and the validity bit set to one. The use of the
registers and the operation of the facility associated
with the control registers, CPU timer, and clock
comparator, are unpredictable until these registers
are, validated. (See the section "Invalid CBC in
Registers" earlier in this chapter.)

PSW-MWP Validity
Bit 20 (wP), when one, indicates that bits 12-15 of
the machine-check old psw are correct.

PSW Mask and Key Validity
Bit 21 (MS), when one, indicates that the system
mask, psw key, and miscellaneous bits of the
machine-check old psw are correct. Specifically,
this bit covers bits 0-11, 16, 17, and 24-31 of the
psw.

PSW Program-Mask and Condition-Code
Validity
Bit 22 (PM), when one, indicates that the program
mask and condition code of the machine-check old
psw are correct.

PSW-Instruction-Address Validity
Bit 23 (IA), when one, indicates that the addressing
mode and instruction address (bits 32-63) of the
machine-check old psw are correct.

Falling-Storage-Address Validity
Bit 24 (FA), when one, indicates that a correct
failing-storage address has been placed at real
location 248 after a storage-error-uncorrected,
storage-key-error-uncorrected, or storage-error­
corrected condition has occurred. The presence
and extent of the capability to identify the failing­
storage location depend on the model. When no
such errors are reported, that is, bits 16-18 of the
machine-check -interruption code are zeros, the
failing-storage address is meaningless, even though
it may be indicated as valid.

External-Damage-Code Validity
Bit 26 (EC) , when one, and provided that bit 5,
external damage, is also one, indicates that a valid
external-damage code has been stored in the word
at location 244. When bit 5 is zero, bit 26 has no
meaning.

Floating-Polnt-Register Validity
Bit 27 (FP), when one, indicates that the contents
of the floating-point-register save area at real
locations 352-383 reflect the correct state of the
floating-point registers at the point of interruption.

General-Register Validity
Bit 28 (OR), when one, indicates that the contents
of the general-register save area at real locations
384-447 reflect the correct state of the general regis­
ters at the point of interruption.

Control-Register Validity
Bit 29 (CR), when one, indicates that the contents
of the control-register save area at real locations
448-511 reflect the correct state of the control regis­
ters at the point of interruption.

Storage Logical Validity
Bit 31 (ST), when one, indicates that the storage
locations, the contents of which are modified by
the instructions being executed, contain the correct
information relative to the point of interruption.
That is, all stores before the point of interruption
are completed, and all stores, if any, after the point
of interruption are suppressed. When a store
before the point of interruption is suppressed
because of an invalid CBC, the storage-logical­
validity bit may be indicated as one, provided that
the invalid CBC has been preserved as invalid.

When instruction -processing damage is indicated
but processing backup is not indicated, the storage­
logical-validity bit has no tneaning.

Storage logical validity reflects only the instruction­
processing activity and does not reflect errors in the
state of storage as the result of I/O operations, or of
the storing of the old psw and other interruption
information.

Access-Register Validity
Bit 33 (AR), when one, indicates that the contents
of the access-register save area at real locations
288-351 reflect the correct state of the access regis­
ters at the point of interruption.

CPU-Timer Validity
Bit 46 (CT), when one, indicates that the CPU timer
is not in error and that the contents of the
cpu-timer save area at reallocation 216 reflect the
correct state of the CPU timer at the time the inter­
ruption occurred.

Clock-Comparator Validity
Bit 47 (cc), when one, indicates that the clock
comparator is not in error and that the contents of
the clock -comparator save area at real location 224
reflect the correct state of the clock comparator.

Programming Note: The validity bits must be used
in conjunction with the subclass bits and the
backed -up bit in order to determine the extent of
the damage caused by a machine-check condition.
No damage has occurred to the system when all of
the following are true:

• The four psw-validity bits, the four register­
validity bits, the two timing-facility-validity
bits, and the storage-logical-validity bit are all
ones.

• Subclass bits 0, 4, 5, 6, 10, and 11 are zeros.

Chapter 11. Machine-Check Handling 11-21

• The instruction-processing-damage bit is zero
or, if one, the backed-up bit is also one.

• The vector-facility-source bit and the delayed­
access-exception bit are zeros.

Machine-Check Extended
Interruption Information
As part of the machine-check interruption, in some
cases, extended interruption information is placed
in fixed areas assigned in storage. The contents of
registers associated with the CPU are placed in
register-save areas. For external damage, additional
information is provided for some models by storing
an external-damage code. When storage error
uncorrected, storage error corrected, or storage-key
error uncorrected is indicated, the failing-storage
address is saved.

Each of these fields has associated with it a validity
bit in the machine-cheek-interruption code. If, for
any reason, the machine cannot store the proper
information in the field, the associated validity bit is
set to zero.

Register-Save Areas

As part of the machine-check interruption, the
current contents of the CPU registers, except for the
prefix register and the TOO clock, are stored in six
register-save areas assigned in storage. Each of
these areas has associated with it a validity bit in
the machine-check -interruption code. If, for any
reason, the machine cannot store the proper infor­
mation in the field, the associated validity bit is set
to zero.

The following are the six sets of registers and the
real locations in storage where their contents are
saved during a machine-check interruption.

Locations
216-223
224-231
288-351
352-383
384-447
448-511

Registers
CPU timer
Clock comparator
Access registers 0-15
Floating-point registers 0, 2, 4, 6
General registers 0-15
Control registers 0-15

11-22 ESA/370 Principles of Operation

External-Damage Code

The word at real location 244 is the external­
damage code. This field, when implemented and
indicated as valid, describes the cause of external
damage. The field is valid only when the external­
damage bit and the external-damage-validity bit
(bits 5 and 26 in the machine-check -interruption
code) are both ones. The presence and extent of
reporting an external-damage code depend on the
model.

The external-damage code has the following
format:

xx I~
o 0 0 0 0 0 0 0 N F 0 0 0
'--------'--~-I

o 8 10 31

Expanded storage Not Operational (XN): Bit 8,
when one, indicates that the controller associated
with some or all of the expanded storage in the
configuration has become not operational.

Expanded-storage-not-operational conditions are
reported to all CPus in the configuration.

Expanded-Storage Control Failure (XF): Bit 9,
when one, indicates that a malfunction has been
detected in a controller associated with some or all
of the expanded storage in the configuration.
When expanded-storage control failure is indicated,
the blocks of the expanded storage contain either
the proper contents or \a preserved error.
Expanded-storage-control-failure conditions are
reported to all CPus in the configuration.

Reserved: Bits 0-7 and 10-31 are reserved for
future expansion and are always set to zeros.

Failing-Storage Address

When storage error uncorrected, storage error cor­
rected, or storage-key error uncorrected is indicated
in the machine-cheek-interruption code, the associ­
ated address, called the failing-storage address, is
stored in bit positions 1-31 of the word at real
location 248. Bit 0 of that word is set to zero. The
field is valid only if the failing-storage-address
validity bit, bit 24 of the machine-check­
interruption code, is one.

In the case of storage errors, the failing-storage
address may designate any byte within the checking

block. For storage-key error uncorrected, the
failing-storage address may designate any address
within the block of storage associated with the
storage key that is in error. When an error is
detected in more than one location before the inter­
ruption, the failing-storage address may designate
any of the failing locations. The address stored is
an absolute address; that is, the value stored is the
address that is used to reference storage after
dynamic address translation and prefixing have
been applied.

Handling of Machine-Check
Conditions

Floating Interruption Conditions

An interruption condition which is made available
to any CPU in a multiprocessing configuration is
called a floating interruption condition. The frrst
CPU that accepts the interruption clears the inter­
ruption condition, and it is no longer available to
any other CPU in the configuration.

Floating interruption conditions include service­
signal external-interruption and I/o-interruption
conditions. Two machine-cheek-interruption con­
ditions, channel report pending and channel­
subsystem damage, are floating interruption condi­
tions. Depending on the model, some
machine-check -interruption conditions associated
with system recovery and warning may also be
floating interruption conditions.

A floating interruption is presented to the frrst CPU

in the configuration which is enabled for the inter­
ruption condition and can accept the interruption.
A CPU cannot accept the interruption when it is in
the check-stop state, has an invalid prefix, is per­
fonning an unending string of interruptions due to
a psw-format error of the type that is recognized
early, or is in the stopped state. However, a CPU

with the rate control set to instruction step can
accept the interruption when the start key is acti­
vated.

Programming Note: When a CPU enters the
check-stop state in a multiprocessing configuration,
the program on another CPU can detennine
whether a floating interruption may have been
reported to the failing CPU and then lost. This can
be accomplished if the interruption program places
zeros in the real storage locations containing old
psws and interruption codes after the interruption

has been handled (or has been moved into another
area for later processing). Mter a CPU enters the
check -stop state, the program in another CPU can
inspect the old-psw and interruption-code locations
of the failing CPU. A nonzero value in an old psw
or interruption code indicates that the CPU has
been interrupted but the program did not complete
the handling of the interruption.

Floating Machlne-Check-Interruption
Conditions
Floating machine-cheek-interruption conditions are
reset only by the manually initiated resets through
the operator facilities. When a machine check
occurs which prohibits completion of a floating
machine-check interruption, the interruption condi­
tion is no longer considered a floating interruption
condition, and system damage is indicated.

Floating 1/0 Interruptions
The detection of a machine malfunction by the
channel subsystem, while in the process of pre­
senting an I/o-interruption request for a floating I/O
interruption, may be reported as channel report
pending or as channel-subsystem damage.
Detection of a machine malfunction by a CPU,

while in the process of accepting a floating I/O
interruption, is reported as system damage.

Machine-Check Masking
All machine-check interruptions are under control
of the machine-check mask, psw bit 13. In addi­
tion, some machine-check conditions are controlled
by subclass masks in control register 14.

The exigent machine-check conditions (system
damage and instruction-processing damage) are
controlled only by the machine-check mask, psw
bit 13. When psw bit 13 is one, an exigent condi­
tion causes a machine-check interruption. When
psw bit 13 is zero, the occurrence of an exigent
machine-check condition causes the CPU to enter
the check-stop state.

The repressible machine-check conditions, except
vector-facility failure, channel-subsystem 'damage,
and service-processor damage, are controlled both
by the machine-check mask, psw bit 13, and by
five subclass-mask bits in control register 14. If
psw bit 13 is one and one of the subclass-mask bits
is one, the associated condition initiates a machine­
check interruption. If a subclass-mask bit is zero,
the associated condition does not initiate an inter­
ruption but is held pending. However, when a

Chapter 11. Machine-Check Handling 11-23

machine-check interruption is initiated because of a
condition for which the CPU is enabled, those con­
ditions for which the CPU is not enabled may be
presented along with the condition which initiates
the interruption. All conditions presented are then
cleared.

Control register 14 contains mask bits that specify
whether certain conditions can cause machine­
check interruptions; it has the following format:

CRDEW
MMMMM

e 3 7

Bits 3-7 of control register 14 are the subclass
masks for repressible machine-check conditions. In
addition, bit 0 of control register 14 is initialized to
one, but is otherwise ignored by the machine.

Programming Note: The program should avoid,
whenever possible, operating with psw bit 13, the
machine-check mask, set to zero, since any exigent
machine-check condition which is recognized
during this situation will cause the CPU to enter the
check-stop state. In particular, the program should
avoid executing I/O instructions or allowing I/O

interruptions with psw bit 13 zero.

Channel-Report-Pending Subclass Mask
Bit 3 (eM) of control register 14 controls channe1-
report-pending interruption conditions. This bit is
initialized to zero.

11-24 ESAj370 Principles of Operation

Recovery Subclass Mask
Bit 4 (RM) of control register 14 controls system­
recovery interruption conditions. This bit is initial­
ized to zero.

Degradation Subclass Mask
Bit 5 (OM) of control register 14 controls degrada­
tion interruption conditions. This bit is initialized
to zero.

External-Damage Subclass Mask
Bit 6 (EM) of control register 14 controls timing­
facility-damage and external-damage interruption
conditions. This bit is initialized to one.

Warning Subclass Mask
Bit 7 (WM) of control register 14 controls warning
interruption conditions. This bit is initialized to
zero.

Machine-Check Logout

As part of the machine-check interruption, some
models may place model-dependent information in
the fixed-logout area. This area is 16 bytes in
length and starts at reallocation 256.

Summary of Machine-Check
Masking
A summary of machine-check masking is given in
Figure 11-4 on page 11-25 and Figure 11-5 on
page 11-25.

Machine-Check Condition
Sub- Action When CPU

MCIC Class Disabled
Bit Subclass Mask for Subclass

0 System damage - Check stop
1 Instruction-processing damage - Check stop
2 System recovery RM Y
4 Timing-facility damage EM P
5 External damage EM P
6 Vector-facility failure - P
7 Degradation OM P
8 Warning WM P
9 Channel report pending CM P

10 Service-processor damage - P
11 Channel-subsystem damage - P

Ex~lanation:

- The condition does not have a subclass mask.

P Indication is held pending.

y Indication may be held pending or may be discarded.

CM Channel-report-pending subclass mask (bit 3 of CR14).

OM Degradation subclass mask (bit 5 of CR14).

EM External-damage subclass mask (bit 6 of CR14).

RM Recovery subclass mask (bit 4 of CR14).

WM Warning subclass mask (bit 7 of CR14).

Figure 11-4. Machine-Cheek-Condition Masking

Control State of Bit
Register 14 on Initial

Bit Descri pti on Bit Position CPU Reset

Channel-report-pending subclass mask 3 0
Recovery subclass mask 4 0
Degradation subclass mask 5 0
External-damage subclass mask 6 1
Warning subclass mask 7 0

Figure 11-5. Machine-Check Control-Register Bits

Chapter 11. Machine-Check Handling 11-25

Chapter 12. Operator Facilities

Manual Operation
Basic Operator Facilities ..,

Address-Compare Controls
Alter-and -Display Controls
Architectural-Mode Indicator
Architectural-Mode-Selection Controls
Check -Stop Indicator
IML Controls
Interrupt Key
Load Indicator
Load-Clear Key
Load-Nonnal Key
Load-Unit-Address Controls

Manual Operation

12-1
12-1
12-1
12-2
12-2
12-2
12-2
12-2
12-3
12-3
12-3
12-3
12-3

The operator facilities provide functions for the
manual operation and control of the machine. The
functions include operator-to-machine communi­
cation, indication of machine status, control over
the setting of the Ton clock, initial program
loading, resets, and other manual controls for oper­
ator intervention in nonnal machine operation.

A model may provide additional operator facilities
which are not described in this chapter. Examples
are the means to indicate specific error conditions
in the equipment, to change equipment configura­
tions, and to facilitate maintenance. Furthennore,
controls covered in this chapter may have addi­
tional settings which are not described here. Such
additional facilities and settings may be described in
the appropriate System Library publication.

Most models provide, in association with the oper­
ator facilities, a console device which may be used
as an 110 device for operator communication with
the program; this console device may also be used
to implement some or all of the facilities described
in this chapter.

The operator facilities may be implemented on dif­
ferent models in various technologies and config­
urations. On some models, more than one set of
physical representations of some keys, controls, and
indicators may be provided, such as on multiple
local or remote operating stations, which may be
effective concurrently.

Manual Indicator
Power Controls
Rate Control
Restart Key
Start Key
Stop Key
Store-Status Key
System-Reset-Clear Key
System-Reset-Nonnal Key
Test Indicator
TOD-Clock Control
Wait Indicator

Multiprocessing Configurations

12-3
12-3
12-3
12-4
12-4
12-4
12-4
12-4
12-5
12-5
12-5
12-5
12-5

A machine malfunction that prevents a manual
operation from being perfonned correctly, as
defined for that operation, may cause the CPU to
enter the check-stop state or give some other indi­
cation to the operator that the operation has failed.
Alternatively, a machine malfunction may cause a
machine-check-interruption condition to be recog­
nized.

Basic Operator Facilities

Address-Compare Controls

The address-compare controls provide a way to
stop the CPU when a preset address matches the
address used in a specified type of main-storage ref­
erence.

One of the address-compare controls is used to set
up the address to be compared with the storage
address.

Another control provides at least two positions to
specify the action, if any, to be taken when the
address match occurs:

1. The nonnal position disables the address­
compare operation.

2. The stop position causes the CPU to enter the
stopped state on an address match. When the
control is in this setting, the test indicator is on.
Depending on the model and the type of refer­
ence, pending I/O, external, and machine-check
interruptions mayor may not be taken before
entering the stopped state.

Chapter 12. Operator F acUities 12-1

A third control may specify the type of storage ref­
erence for which the address comparison is to be
made. A model may provide one or more of the
following positions, as well as others:

1. The any position causes the address compar­
ison to be performed on all storage references.

2. The data-store position causes address compar­
ison to be performed when storage is addressed
to store data.

3. The I/O position causes address comparison to
be performed when storage is addressed by the
channel subsystem to transfer data or to fetch a
channel-command or indirect-data-address
word. Whether references to the measurement
block, interruption-response block, channel-
path-status word, channel-report word,
subchannel-status word, subchannel-
information block, and operation-request block
cause a match to be indicated depends on the
model.

4. The instruction-address position causes address
comparison to be performed when storage is
addressed to fetch an instruction. The right­
most bit of the address setting mayor may not
be ignored. The match is indicated only when
the frrst byte of the instruction is fetched from
the selected location. It depends on the model
whether a match is indicated when fetching the
target instruction of EXECUTE.

Depending on the model and the type of reference,
address comparison may be performed on virtual,
real, or absolute addresses, and it may be possible
to specify the type of address.

In a multiprocessing configuration, it depends on
the model whether the address setting applies to
one or all CPUs in the configuration and whether
an address match causes one or all cpus in the con­
figuration to stop.

Alter-and-Display Controls

The operator facilities provide controls and proce­
dures to permit the operator to alter and display
the contents of locations in storage, the storage
keys, the general, floating-point, access, and control
registers, the prefix, and the psw.

Before alter-and-display operations may be per­
formed, the CPU must frrst be placed in the stopped
state. During alter-and-display operations, the

12-2 ESA/370 Principles of Operation

manual indicator may be turned off temporarily,
and the start and restart keys may be inoperative.

Addresses used to select storage locations for alter­
and-display operations are real addresses. The
capability of specifying logical, virtual, or absolute
addresses may also be provided.

Architectural-Mode Indicator

The architectural-mode indicator shows the archi­
tectural mode of operation (the ESA/370 mode or
some other mode) selected by the last architectural­
mode-selection operation.

Architectural-Mode-Selection Controls
/

The architectural-mode-selection controls provide
for the selection of either the ESA/370 architectural
mode of operation or, possibly, some otherarchi­
tectural mode of operation. Depending on the
model, the architectural-mode selection may be
provided as part of the 1M L operation or may be a
separate operation.

As part of the architectural-mode-selection process,
all CPus and the associated channel-subsystem
components in a particular configuration are placed
in the same architectural mode.

Check-Stop Indicator

The check-stop indicator is on when the CPU is in
the check-stop state. Reset operations normally
cause the CPU to leave the check-stop state and
thus tum off the indicator. The manual indicator
may also be on in the check-stop state.

IML Controls

The IML controls provided with some models
perform initial microprogram loading (IML). The
IML operation, when provided, may be used to
select the ESA/370 mode or, possibly, some other
mode of operation.

When· the IML operation is completed, the state of
the affected CPus, channel subsystem, storage,. and
operator facilities is the same as if a power-on reset
had been performed, except that the value and state
of the TOO clock are not changed.

The IML controls are effective while the power is
on.

Interrupt Key

When the interrupt key is activated, an external­
interruption condition indicating the interrupt key
is generated. (See the section "Interrupt Key" in
Chapter 6, "Interruptions.")

The interrupt key is effective when the CPU is in
the operating or stopped state. It depends on the
model whether the interrupt key is effective when
the CPU is in the load state.

Load Indicator

The load indicator is on during initial program
loading, indicating that the CPU is in the load state.
The indicator goes on for a particular CPU when
the load-clear or load-normal key is activated for
that CPU and the corresponding operation is
started. It goes off after the new psw is loaded suc­
cessfully. For details, see the section "Initial
Program Loading" in Chapter 4, "Control."

Load-Clear Key

Activating the load-clear key causes a reset opera­
tion to be performed and initial program loading to

. be started by using the I/O device designated by the
load-unit-address controls. Clear reset is performed
on the configuration. For details, see the sections
"Resets" and "Initial Program Loading" in Chapter
4, "Control."

The load-clear key is effective when the CPU is in
the operating, stopped, load, or check-stop state.

Load-Normal Key

Activating the load-normal key causes a reset oper­
ation to be performed and initial program loading
to be started by using the I/O device designated by
the load-unit-address controls. Initial CPU reset is
performed on the CPU for which the load-normal
key was activated, CPU reset is propagated to all
other CPUs in the configuration, and a subsystem
reset is performed on the remainder of the config­
uration. For details, see the sections "Resets" and
"Initial Program Loading" in Chapter 4, "Control."

The load-normal key is effective when the CPU is in
the operating, stopped, load, or check-stop state.

Load-Unit-Address Controls

The load-unit-address controls specify four
hexadecimal digits, which provide the device
number used for initial program loading. For
details, see the section "Initial Program Loading" in
Chapter 4, "Control."

Manual Indicator

The manual indicator is on when the CPU is in the
stopped state. Some functions and several manual
controls are effective only when the CPU is in the
stopped state.

Power Controls

The power controls are used to turn the power on
and off.

The CPus, storage, channel subsystem, operator
facilities, and I/O devices may all have their power
turned on and off by common controls, or they
may have separate power controls. When a partic­
ular unit has its power turned on, that unit is reset.
The sequence is performed so that no instructions
or I/O operations are performed until explicitly
specified. The controls may also permit power to
be turned on in stages, but the machine does not
become operational until power on is complete.

When the power is completely turned on, an IML

operation is performed on models which have an
IML function. A power-on reset is then initiated
(see the section "Resets" in Chapter 4, "Control").
It depends on the model whether the architectural
mode of operation can be selected when the power
is turned on, or whether the mode-selection con­
trols have to be used to change the mode after the
power is on.

Rate Control

The setting of the rate control determines the effect
of the start function and the manner in which
instructions are executed.

The rate control has at least two positions~ The
normal position is the process position. Another
position is the instruction-step position. When the
rate control is set to the process position and the
start function is performed, the CPU starts operating
at normal speed. When the rate control is set to
the instruction-step position and the wait-state bit

Chapter 12. Operator F acUities 12-3

is zero, one instruction or, for interruptible
instructions, one unit of operation is executed, and
all pending allowed interruptions are taken before
the CPU returns to the stopped state. When the
rate control is set to the instruction-step position
and the wait-state bit is one, no instruction is exe­
cuted, but all pending allowed interruptions are
taken before the CPU returns to the stopped state.
For details, see the section "Stopped, Operating,
Load, and Check-Stop States" in Chapter 4,
"Control. "

The test indicator is on while the rate control is not
set to the process position.

If the setting of the rate control is changed while
the CPU is in the operating or load state, the results
are unpredictable.

Restart Key

Activating the restart key initiates a restart inter­
ruption. (See the section "Restart Interruption" in
Chapter 6, "Interruptions.")

The restart key is effective when the CPU is in the
operating or stopped state. The key is not effective
when the CPU is in the check-stop state. It
depends on the model whether the restart key is
effective when any CPU in the configuration is in
the load state.

The effect is unpredictable when the restart key is
activated while any CPU in the configuration is in
the load state. In particular, if the CPU performs a
restart interruption and enters the operating state
while another CPU is in the load state, operations
such as I/O instructions, the SIGNAL PROCESSOR
instruction, and the INVALIDATE PAGE TABLE
ENTRY instruction may not operate according to
the defmitions given in this publication.

Start Key

Activating the start key causes the CPU to perform
the start function. (See the section "Stopped,
Operating, Load, and Check-Stop States" in
Chapter 4, "Control.")

The start key is effective only when the CPU is in
the stopped state. The effect is unpredictable when
the stopped state has been entered by a reset.

12-4 ESAj370 Principles of Operation

Stop Key

Activating the stop key causes the CPU to perform
the stop function. (See the section "Stopped,
Operating, Load, and Check-Stop States" in
Chapter 4, "ControL")

The stop key is effective only when the CPU is in
the operating state.

Operation Note: Activating the stop key has no
effect when:

• An unending string of certain program or
external interruptions occurs.

• The prefix register contains an invalid address.
• The CPU is in the load or check-stop state.

Store-Status Key

Activating the store-status key initiates a store­
status operation. (See the section "Store Status" in
Chapter 4, "Control.")

The store-status key is effective only when the CPU
is in the stopped state.

Operation Note: The store-status operation may
be used in conjunction with a standalone dump
program for ~he analysis of major program mal­
functions. For such an operation, the following
sequence would be called for:

1. Activation of the stop or system-reset-normal
key

2. Activation of the store-status key
3. Activation of the load-normal key to enter a

standalone dump program

The system-reset-normal key must be activated in
step I when (I) the stop key is not effective
because a continuous string of interruptions is
occurring, (2) the prefix register contains an invalid·
address, or (3) the CPU is in the check-stop state.

System-Reset-Clear Key

Activating the system-reset-clear key causes a clear­
reset operation to be performed. Clear reset is
propagated to all CPUs and storage units in the
configuration, and a subsystem reset is performed
on the remainder of the configuration. For details,
see the section "Resets" in Chapter 4, "Control."

The system-reset-clear key is effective. when the
CPU is in the operating, stopped, load, or check­
stop state.

System-Reset-Normal Key

Activating the system-reset-nonnal key causes a
cPu-reset operation and a subsystem-reset opera­
tion to be perfonned. In a multiprocessing config­
uration, a CPU reset is propagated to all cpus in
the configuration. For details, see the section
"Resets" in Chapter 4, "Control."

The system-reset-nonnal key is effective when the
cpu is in the operating, stopped, load, or check­
stop state.

Test Indicator

The test indicator is on when a manual control for
operation or maintenance is in an abnonnal posi­
tion that can affect the nonnal operation of a
program.

Setting the address-compare controls to the stop
position or setting the rate control to the
instruction-step position turns on the test indicator.

The test indicator may be on when one or more
diagnostic functions under the control of DIAG­
NOSE are activated, or when other abnonnal condi­
tions occur.

Operation Note: If a manual control is left in a
setting intended for maintenance purposes, such an
abnonnal setting may, among other things, result in
false machine-check indications or cause actual
machine malfunctions to be ignored. It may also
alter other aspects of machine operation, including
instruction execution, channel-subsystem operation,
and the functioning of operator controls and indica­
tors, to the extent that operation of the machine
does not comply with that described in this publi­
cation.

The abnonnal setting of a manual control causes
the test indicator of the affected CPU to be turned
on; however, in a multiprocessing configuration,
the operation of other CPUs may' be affected even
though their test indicators are not turned on.

TOO-Clock Control

When the TO D-clock control is not activated, that
is, the control is set to the secure position, the state
and value of the TO D clock are protected against
unauthorized or inadvertent change by not permit­
ting the instructions SET CLOCK or DIAGNOSE to
change the state or value.

When the TOD-clock control is activated, that is,
the control is set to the enable-set position, alter­
ation of the clock state or value by means of SET
CLOCK or DIAGNOSE is permitted. This setting is
momentary, and the control automatically returns
to the secure position.

In a multiprocessing configuration, activating the
Too-clock control enables all TOD clocks in the
configuration to be set. If there is more than one
physical representation of the TO D-clock control,
no TOO clock is secure unless all TOD-clock con­
trols in the configuration are set to the secure posi­
tion.

Wait Indicator

The wait indicator is on when the wait-state bit in
the current psw is one.

Multiprocessing Configurations
In a multiprocessing configuration, one of each of
the following keys and controls is provided for each
CPU: alter and display, interrupt, rate, restart, start,
stop, and store status. The load-clear key, load­
nonnal key, and load-unit-address controls are pro­
vided for each CPU capable of performing I/O oper­
ations. Alternatively, a single set of
initial-program-Ioading keys and controls may be
used together with a control to select the desired
CPU.

There need not be more than one of each of the
following keys and controls in a multiprocessing
configuration: address compare, IML, power,
system reset clear, system reset nonnal, and TO D
clock.

One check-stop, manual, test, and wait indicator is
provided for each CPU. A load indicator is pro­
vided only on a CPU capable of perfonning I/O
operations. Alternatively, a single set of indicators
may be switched to more than one CPU.

There need not be more than one architectural­
mode indicator in a multiprocessing configuration.

In a system capable of reconfiguration, there must
be a separate set of keys, controls, and indicators in
each configuration.

Chapter 12. Operator Facilities 12-5

Chapter 13. 1/0 Overview

Comparison among ESA/370, 370-XA and
System/ 3 70

The Channel Subsystem
Subchannels

Attachment of Input/Output Devices
Channel Paths
Control Units
I/O Devices

I/O Addressing
Channel-Path Identifier

Comparison among ESA/370,
370-XA and System/370

13-1
13-2
13-2
13-3
13-3
13-4
13-4
13-5
13-5

There is no difference between the input/output
facilities provided in ESA/370 and the input/output
facilities provided in 370-XA. "Input" and "output"
are terms used to describe the transfer of informa­
tion between I/O devices and main storage. An
operation involving this kind of transfer is referred
to as an input/output (I/O) operation. In 370-XI\.

and in FSA/370, the I/O facilities are collectively
called the channel subsystem. The channel sub­
system has a different logical structure from that of
the I/O facilities provided in System/370, with the
result that I/O instructions, channels, channel sets,
and I/O addressing are replaced for the 370-XI\. and
E..<;1\./370 channel subsystem by a different set of I/O

instructions, by logical device addressing, and by
device-accessing mechanisms that together provide
more function, flexibility, and extendibility. Com­
patibility with System/370 has been maintained in
two areas: (1) ccws, IDAWS, and channel pro­
grams, and (2) the physical attachment of control
units and I/O devices to the system.

In System/370, with some exceptions, each channel
has a single physical path and data-transfer mech­
anism between the channel and its attached control
units, and the path and channel are often thought
of as one. In 370-XA and ESI\./370, because the archi­
tecture permits up to 256 channel paths to be sup­
ported by the channel subsystem, the term
"channel path" is specifically used whenever refer­
ring to the physical path between the channel sub­
system and one or more control units. In most
cases, the term "channel path" that is used in
370-XI\. and E..<;A/370 is synonymous with the
System/370 term "channel" when "channel" is used

Subchannel Number
Device Number
Device Identifier ..

Execution of I/O Operations
Start-Function Initiation
Path Management
Channel-Program Execution
Conclusion of I/O Operations
I/O Interruptions

13-5
13-5
13-5
13-6
13-6
13-7
13-7
13-8
13-9

to mean the physical path for attachment of control
units to the system.

In System/370, a channel has (l) a unique channel
address within its channel set and (2) logically sep­
arate and distinct facilities for communicating with
its attached I/O devices and with the CPU to which
it is connected. For example, when an I/O device is
attached to more than one channel, each channel
has a separate subchannel that can be used to com­
municate with the I/O device. Subchannels are
never shared among channels, and each subchannel
is associated with only one channel path.

In 370-XA and 13SI\./370, however, a single channel
subsystem having a single set of subchannels is pro­
vided. Each subchannel is uniquely associated with
one I/O device, and that I/O device is uniquely asso­
ciated with that one subchannel within the channel
subsystem, regardless of the number of channel
paths by which the I/O device is accessible to the
channel subsystem. Therefore, the channel sub­
system has both the attributes of a single
channel -- a unique address (since there is only
one, addressing is implicit) and a single set of sub­
channels for all its attached devices -- and the attri­
butes of multiple channels, since it provides for up
to 256 channel paths and for up to 64K devices.

Although the logical structures of the I/O facilities
provided by the two modes differ, channel pro­
grams that can be executed by System/370 channels
can be executed by the channel subsystem.
Control units that are designed to attach to
System/370 channels by using the IBM I/O interface
can attach to the channel subsystem by using the
same I/O interface. This interface is described in the
System Library publication IBM System/360 and
System/370 I/O Interface Channel to Control Unit

Chapter 13. I/O Overview 13-1

Original Equipment Manufacturers' Information,
GA22-6974.

The Channel Subsystem
The channel subsystem directs the flow of informa­
tion between I/O devices and main storage. It
relieves CPUs of the task of communicating directly
with I/O devices and permits data processing to
proceed concurrently with I/O processing. The
channel subsystem uses one or more channel paths
as the communication link in managing the flow of
information to or from I/O devices. As part of I/O

processing, the channel subsystem also executes a
path-management operation, testing for channel­
path availability, choosing an available channel
path, and initiating execution of the I/O operation
with the device.

Within the channel subsystem are subchannels.
One subchannel is provided for and dedicated to
each I/O device accessible to the channel subsystem.
Each subchannel provides information concerning
the associated I/O device and its attachment to the
channel subsystem. The subchannel also provides
information concerning I/O operations and other
functions involving the associated I/O device. The
subchannel is the means by which the channel sub­
system provides information about associated I/O

devices to cpus, which obtain this information by
executing I/O instructions. The actual number of
sub channels provided depends on the model and
the configuration; the maximum addressability is
64K.

I/O devices are attached through control units to the
channel subsystem by means of channel paths.
Control units may be attached to the channel sub­
system by more than one channel path, and an I/O

device may be attached to more than one control
unit. In all, an individual I/O device may be acces­
sible to the channel subsystem by as many as eight
different channel paths, depending on the model
and the configuration. The total number of
channel paths provided by a channel subsystem
depends on the model and the configuration; the
maximum addressability is 256.

The performance of a channel subsystem depends
on its use and on the system model in which it is
implemented. Channel paths are provided with dif­
ferent data-transfer capabilities, and an I/O device
designed,to transfer data only at a specific rate (a
magnetic-tape unit or a disk storage, for example)

13-2 ESAj370 Principles of Operation

can operate only on a channel path that can
accommodate at least this data rate.

The channel subsystem contains common facilities
for the control of I/O operations. When these facili­
ties are provided in the form of separate, auton­
omous equipment designed specifically to control
I/O devices, I/O operations are completely over­
lapped with the activity in CPUs. The only main­
storage cycles required by the channel subsystem
during I/O operations are those needed to transfer
data and control information to or from the fmal
locations in main storage, along with those cycles
that may be required for the channel subsystem to
access the subchanne1s. when they are implemented
as part of nonaddressable main storage. These
cycles do not delay CPU programs, except when
both the CPU and the channel subsystem concur­
rently attempt to refer to the same main-storage
area.

Subchannels

A subchannel provides the logical appearance of a
device to the program. The subchannel contains
the information required for sustaining a single I/O

operation. The subchannel consists of internal
storage that contains information in the form of a
ccw address, channel-path identifier, device
number, count, status indications, and I/o-inter­
ruption subclass code, as well as information on
path availability and functions pending or being
performed. I/O operations are initiated with a
device by executing I/O instructions that designate
the subchannel associated with the device.

Each device has one subchannel per channel sub­
system by which the device is accessible. Each
device is assigned to a sub channel during an instal­
lation procedure. The device may be a physically
identifiable unit, or it may be housed internal to a
control unit. For example, in certain models of the
IBM 3380 Direct-Access Storage, each actuator used
in retrieving the data is considered to be a device.
In all cases, a device, from the point of view of the
channel subsystem, is an entity that is uniquely
associated with one subchannel and that responds
to selection by the channel subsystem by using the
communication protocols defmed for the type of
channel path by which it is accessible.

In some models, subchannels are provided in
blocks. In these models, more subchannels may be
provided than there are attached devices. Subchan­
nels that are provided but do not have devices

assigned to them are not used by the channel sub­
system to perfonn any function and are indicated
by storing the associated device-number-valid bit as
zero in the subchannel-infonnation block of the
subchannel.

The number of subchannels provided by the
channel subsystem is independent of the number of
channel paths to the associated devices. For
example, a device accessible through alternate
channel paths still is represented by a single sub­
channel. Each subchannel is addressed by using a
16-bit binary subchannel number.

Mter the operation with the subchannel has been
requested by executing START SUBCHANNEL, the
CPU is released for other work, and the channel
subsystem assembles or disassembles data and syn­
chronizes the transfer of data bytes between the 1/0

device and main storage. To accomplish this, the
channel subsystem maintains and updates an
address and a count that describe the destination or
source of data in main storage. Similarly, when an
I/O device provides signals that should be brought
to the attention of the program, the channel sub­
system transfonns the signals into status infonna­
tion and stores the information in the sub channel ,
where it can be retrieved by the program.

Attachment of Input/Output
Devices

Channel Paths

The channel subsystem communicates with 1/0

devices by means of channel paths between the
channel subsystem and control units. A control
unit may be accessible by the channel subsystem by
more than one channel path. Similarly, an 1/0

device may be accessible by the channel subsystem
through more than one control unit, each having
one or more channel paths to the channel sub­
system.

Devices that are attached to the channel subsystem
by multiple channel paths may be accessed by the
channel subsystem by using any of the av,wable
channel paths. Similarly, a device having the
dynamic-reconnection feature and operating in
multipath mode can be initialized to operate such
that the device may choose any channel path to
which it is attached when logically reconnecting to

the channel subsystem to continue a chain of 1/0

operations. The defInition of the type of channel
path used by the channel subsystem and the defi­
nition of the dynamic-reconnection feature are
given in the System Library publication IBM
System/360 and System/370 I/O Interface Channel
to Control Unit OEM I, GA22-6974.

An 1/0 operation occurs on a channel path in one
of two modes, depending on the facilities provided
by the channel path and the 1/0 device. The modes
are burst· and byte-multiplex.

In burst mode, the 1/0 device monopolizes a
channel path and stays logically connected to the
channel path for the transfer of a burst of infonna­
tion. No other device can communicate over the
channel path during the time a burst is transferred.
The burst can consist of a few bytes, a whole block
of data, a sequence of blocks with associated
control and status infonnation (the block lengths
may be zero), or status information which monop­
olizes the channel path. The facilities of the
channel path capable of operating in burst mode
may be shared by a number of concurrently oper­
ating 1/0 devices.

Some channel paths can tolerate an absence of data
transfer for about a half minute during a burst­
mode operation, such as occurs when a long gap
on magnetic tape is read. An equipment malfunc­
tion may be indicated when an absence of data
transfer exceeds the prescribed limit.

In byte-multiplex mode, the 1/0 device stays log­
ically connected to the channel path only for a
short interval of time. The facilities of a channel
path capable of operating in byte-mUltiplex mode
may be shared by a number of concurrently oper­
ating 1/0 devices. In this mode all I/O operations
are split into short intervals of time during which
only a segment of information is transferred over
the channel path. During such an interval, only
one device and its associated subchannel are log­
ically connected to the channel path. The intervals
associated with the concurrent operation of mul­
tiple I/O devices are sequenced in response to
demands from the devices. The channel-subsystem
facility associated with a sub channel exercises its
controls for anyone operation only for the time
required to transfer a segment of information. The
segment can consist of a single- -byte of data, a few
bytes of data, a status report from the device, or a
control sequence used for the initiation of a new
operation.

Chapter 13. I/O Overview 13-3

Ordinarily, devices with high data-transfer-rate
requirements operate with the channel path in burst
mode, and slower devices run in byte-multiplex
mode. Some control units have a manual switch
for setting the desired mode of operation.

For improved performance, some channel paths
and control units are provided with facilities for
high-speed transfer and data streaming. See the
System Library publication IBM System/360 and
System/370 I/O Interface Channel to Control Unit
OEMI, GA22-6974, for a description of those two
facilities.

The modes and features described above affect only
the protocol used to transfer information over the
channel path and the speed of transmission. No
effects are observable by CPU or channel programs
with respect to the way these programs are exe­
cuted.

Control Units

A control unit provides the logical capabilities nec­
essary to operate and control an I/O device and
adapts the characteristics of each device so that it
can respond to the standard form of control pro­
vided by the channel subsystem.

Communication between the control unit and the
channel subsystem takes place over a channel path.
The control unit accepts control signals from the
channel subsystem, controls the timing of data
transfer over the channel path, and provides indi­
cations concerning the status of the device.

The I/O device attached to the control unit may be
designed to execute only certain limited operations,
or it may execute many different operations. A
typical operation is moving a recording medium
and recording data. To accomplish its operations,
the device needs detailed signal sequences peculiar
to its type of device. The control unit decodes the
commands received from the channel subsystem,
interprets them for the particular type of device,
and provides the signal sequence required for exe­
cution of the operation.

A control unit may be housed· separately, or it may
be physically and logically integrated with the I/O

device, the channel subsystem, or a CPU. In the
case of most electromechanical devices, a well­
defmed interface exists between the device and the
control unit because of the difference in the type of
equipment the control unit and the device require.

13-4 ESAj370 Principles of Operation

These electromechanical devices often are of a type
where only one device of a group attached to a
control unit is required to transfer data at a time
(magnetic-tape units or disk-access mechanisms, for
example), and the control unit is shared among a
number of I/O devices. On the other hand, in some
electronic I/O devices, such as the channel-to­
channel adapter, the control unit does not have an
identity of its· own.

From the programmer's point of view, most func­
tions performed by the control unit can be merged
with those performed by the I/O device. Therefore,
this publication normally makes no specific
mention of the control-unit function; the execution
of I/O operations is described as if the I/O devices
communicated directly with the channel subsystem.
Reference is made to the control unit only when
emphasizing a function performed by it or when
describing how the sharing of the control unit
among a number of device~ affects the execution of
I/O operations.

1/0 Devices

An input/output (I/O) device provides external
storage, a means of communication between data­
processing systems, or a means of communication
between a system and its environment. I/O devices
include such equipment as card readers, card
punches, magnetic-tape units, direct-access-storage
devices (for example, disks), display units,
typewriter-keyboard devices, printers, teleprocessing
devices, and sensor-based equipment. An I/O

device may be physically distinct equipment, or it
may share equipment with other I/O devices.

The term "I/O . device," as it is used in this publica­
tion, refers to an entity with which the channel
subsystem can directly communicate. For example,
the IBM 2540 Card Reader-Punch is considered to
be two separate I/O devices from the point of view
of" the channel subsystem since the reader portion
and the punch portion are individually accessible.

Most types of I/O devices, such as printers, card
equipment, or tape devices, use external media, and
these devices are physically distinguishable and
identifiable. Other types are solely electronic and
do not directly handle physical recording media.
The channel-to-channel adapter, for example, pro­
vides for data transfer between two channel paths,
and the data never reaches a physical recording
medium outside main storage. Similarly, the IBM

3725 Communication Controller handles the trans-

mission of infonnation between the data-processing
system and a remote station, and its input and
output are signals on a transmission line.

In the simplest case, an I/O device is attached to
one control unit and is accessible from one channel
path. Switching equipment is available to make
some devices accessible from two or more channel
paths by switching devices among control units and
by switching control units among channel paths.
Such switching equipment provides multiple paths
by which an I/O device may be accessed. Multiple
channel paths to an I/O device are provided to
improve perfonnance or 1/0 availability, or both,
within the system. The management of multiple
channel paths to devices is under the control of the
channel subsystem and the device, but the channel
paths may indirectly be controlled by the program.

1/0 Addressing
Four different types of 1/0 addressing are provided
by the channel subsystem for the necessary
addressing of the various components: channel­
path identifiers, sub channel numbers, device
numbers, and, though not visible to programs,
addresses dependent on the channel-path type.

Channel-Path Identifier

The channel-path identifier (CHPID) is a system­
unique eight-bit value assigned to each installed
channel path of the system. A CHPID identifies a
physical channel path. A CHPID is specified by the
second-operand address of RESET CHANNEL PATH

and designates the physical channel path that is to
be reset. The channel paths by which a device is
accessible are identified in the subchannel­
infonnation block (SCHIB), each by its associated
CHPID, when STORE SUBCHANNEL is executed.
The CHPID can also be used in operator messages
when it is necessary to identify a particular channel
path. A system model may provide as many as 256
channel paths. The maximum number of channel
paths and the assignment of CHPIDS to channel
paths depends on the system model.

Subchannel Number

A sub channel number is a system-unique 16-bit
value used to address a subchannel. The sub­
channel is addressed by seven 1/0 instructions:
CLEAR SUBCHANNEL, HALT SUBCHANNEL,

MODIFY SUBCHANNEL, RESUME SUBCHANNEL,

START SUBCHANNEL, STORE SUBCHANNEL, and
TEST SUBCHANNEL. Each I/O device accessible to
the channel subsystem is assigned a dedicated sub­
channel at installation time. All I/O functions rela­
tive to a specific I/O device are specified by the
program by designating the subchannel assigned to
the 1/0 device. Subchannels are always assigned
subchannel numbers within a single range of con­
tiguous numbers. The lowest-numbered sub­
channel is subchannel O. The highest-numbered
subchannel of the channel subsystem has a sub­
channel number equal to one less than the number
of subchannels provided. A maximum of 64K sub­
channels can be provided. Nonnally, subchannel
numbers are only used in communication between
the CPU program and the channel subsystem.

Device Number

Each subchannel that has an I/O device assigned to
it also contains a system-unique parameter called
the device number. The device number is a 16-bit
value that is assigned as one of the parameters of
the subchannel at the time the device is assigned to
the subchannel.

The device number provides a means to identify a
device, independent of any limitations imposed by
the system model, the configuration, or channel­
path protocols. The device number is used in com­
munications concerning the device that take place
between the system and the system operator. For
example, the device number is entered by the
system operator to designate the input device to be
used for initial program loading.

Device Identifier

A device identifier is an address not apparent to the
program, that is used by the channel subsystem to
communicate with I/O devices. The type of device
identifier used depends on the specific channel-path
type and the protocols provided. Each sub channel
contains one or more device identifiers.

The \;hannel-path type used by the channel sub­
system is described in the System Library publica-

Chapter 13. I/O Overview 13-5

tion IBM System/360 and System/370 I/O Interface
Channel to Control Unit OEMI, GA22-6974. For
this type of channel path, the device identifier is
called a device address and consists of an eight-bit
value.

The device address identifies the particular I/O
device and control unit associated with a sub­
channel. The device address may identify, for
example, a particular magnetic-tape drive, disk­
access mechanism, or transmission line. Any
number in the range 0-255 can be assigned as a
device address.

For further information about the I/o-device
address used with the IBM I/O interface, see the
publication referred to above.

Programming Note: The device number is
assigned at device-installation time and may have
any value so long as it is system-unique. Device
numbers may be assigned installation-unique values
in multicomputer installations in order to avoid
ambiguity, particularly where a device can be
switched between two or more systems.

In installations in which a system may be operated
sometimes in System/370 and sometimes in the
FSA/370, it is advisable to make the FSA/370 device
number and System/370 I/O address equivalent to
prevent operational problems in such mixed envi­
ronments.

Additionally, the user must observe any restrictions
on device-number assignment that may be required
by the control program, support programs, or the
particular control unit or I/O device.

Execution of 110 Operations
I/O operations are initiated and controlled by infor­
mation with three types of fonnats: the instruction
START SUBCHANNEL, channel-command words
(ccws), and orders. The START SUBCHANNEL
instruction is executed by a CPU and is part of the
CPU program that supervises the flow of requests
for I/O operations from other programs that
manage or process the I/O data. When START SUB­
CHANNEL is executed, parameters are passed to the
target subchannel requesting that the channel sub­
system perform a start function with the I/O device
associated with the subchannel. The channel sub­
system performs the start function by using infor­
mation at the sub channel , including the informa-

13-6 ESA/370 Principles of Operation

tion passed during the execution of the START
SUBCHANNEL instruction, to fmd an accessible
channel path to the device. Once the device has
been selected, execution of an I/O operation is
accomplished by the decoding and executing of a
ccw by the channel subsystem and the I/O device.
One or more ccws arranged for sequential exe­
cution form a channel program and are executed as
one or more I/O operations, respectively. Both
instructions and ccws are fetched from main
storage, and their formats are common for all types
of I/O devices, although the modifier bits in the
command code of a ccw may specify device­
dependent conditions for the execution of an opera­
tion at the device.

Operations peculiar to a device, such as rewinding
tape or positioning the access mechanism on a disk
drive, are specified by orders which are decoded and
executed by I/O devices. Orders may be transferred
to the device as modifier bits in the command code
of a control command, may be transferred to the
device as data during a control or write operation,
or may be made available to the device by other
means.

Start-Function Initiation

CPU programs initiate I/O operations with the
instruction START SUBCHANNEL. This instruction
passes the contents of an operation -request block
(ORB) to the subchannel. The contents of the ORB
include the subchannel key, the address of the frrst
ccw to be executed, and the format of the ccws.
The ccw specifies the command to be executed
and the storage area, if any, to be used.

When the ORB contents have been passed to the
subchannel, the execution of START SUBCHANNEL
is complete. The results of the execution of the
instruction are indicated by the condition code set
in the program-status word.

When facilities become available, the channel sub­
system fetches the first ccw and decodes it
according to the format bit specified in the ORB. If
the format bit is zero, format-O
(System/370-compatible) ccws are specified. If the
format bit is one, format-l ccws are specified.
Format-O and format-l ccws contain the same
information, but the fields are arranged differently
in the format-l ccw so that 31-bit addresses can be
specified directly in the ccw.

Path Management

If the frrst ccw passes certain validity tests and
does not have the suspend flag specified, the
channel subsystem attempts device selection by
choosing a channel path from the group of channel
paths that are available for selection. A control
unit that recognizes the device identifier connects
itself logically to the channel path and responds to
its selection. The channel subsystem subsequently
sends the command-code part of the ccw over the
channel path, and the device responds with a status
byte I indicating whether the command can be exe­
cuted. The control unit may logically disconnect
from the channel path at this time, or it may
remain connected to initiate data transfer.

If the attempted selection does not occur as a result
of either a busy indication or a path-not­
operational condition, the channel subsystem
attempts to select the device by an alternate
channel path if one is available. When selection
has been attempted on all paths available for
selection and the busy condition persists, the opera­
tion remains pending until a path becomes free. If
a path-not-operational condition is detected on one
or more of the channel paths on which device
selection was attempted, the program is alerted by a
subsequent I/O interruption. The I/O interruption
occurs either upon execution of the channel
program (assuming the device was selected on an
alternate channel path) or as a result of the exe­
cution being abandoned, path-not-operational con­
ditions being detected on all of the channel paths
on which device selection was attempted.

Channel .. Program Execution

If the command is initiated at the device and
command execution does not require any data to
be transferred to or from the device, the device may
signal the end of the operation immediately on
receipt of the command code. In operations that
involve the transfer of data, the subchannel is set
up so that the channel subsystem will respond to
service requests from the device and assume further
control of the operation.

An 1/0 operation may involve the transfer of data
to or from one storage area, designated by a single
CCW, or to or from a number of noncontiguous
storage areas. In the latter case, generally a list of
CCws is used for execution of the I/O . operation,
each ccw designating a contiguous storage area,
and the ccws are coupled by data chaining. Data

chaining is specified by a flag in the ccw and
causes the channel subsystem to fetch another ccw
upon the exhaustion or filling of the storage area
designated by the current ccw. The storage area
designated by a ccw fetched on data chaining per­
tains to the I/O operation already in progress at the
I/O device, and the I/O device is not notified when a
new ccw is fetched.

Provision is made in the ccw format for the pro­
grammer to specify that, when the ccw is decoded,
the channel subsystem request an I/O interruption
as soon as possible, thereby notifying a CPU
program that chaining has· progressed at least as far
as that ccw in the channel program.

To complement dynamic address translation ill

cpus, ccw indirect data addressing is provided. A
flag in the ccw specifies that an indirect-data­
address list is to be used to designate the storage
areas for that ccw. Each time the boundary of a
2K-byte block of storage is reached, the list is refer­
enced to determine the next block of storage to be
used. ccw indirect data addressing permits essen­
tially the same ccw sequences to be used for a
program running with dynamic address translation
active in a CPU as would be used if the CPU were
operating with equivalent contiguous real storage.
ccw indirect data addressing permits the program
to designate data blocks having absolute storage
addresses up to 231 _1, independent of whether
format-O or format-l ccws have been specified in
the ORB.

In general, execution of an I/O operation or chain
of operations involves as many as three levels of
participation:

1. Except for effects due to the integration of CPU
and channel-subsystem equipment, a CPU is
busy for the duration of the execution of START
SUBCHANNEL, which lasts until the addressed
sub channel has been passed the ORB contents.

2. The subchannel is busy for a new START SUB­
CHANNEL from the receipt of the ORB contents
until the primary interruption condition is
cleared at the subchannel.

3. The I/O device is busy from the initiation of the
rrrst operation at the device until either the sub­
channel becomes suspended or the secondary
interruption condition is placed at the sub­
channel. In the case of a suspended sub­
channel, the device again becomes busy when
execution of the suspended channel program is
resumed.

Chapter 13. I/O Overview 13-7

Conclusion of 1/0 Operations

The conclusion of an I/O operation normally is
indicated by two status conditions: channel end
and device end. The channel-end condition indi­
cates that the I/O device has received or provided all
data associated with the operation and no longer
needs channel-subsystem facilities. This condition
is called the primary interruption condition, and the
channel end in this case is the primary status. Gen­
erally, the primary interruption condition is any
interruption condition that relates to an I/O opera­
tion and that signals the conclusion at the sub­
channel of the I/O operation or chain of I/O opera­
tions.

The device-end signal indicates that the I/O device
has concluded execution and is ready to execute
another operation. This condition is called the sec­
ondary interruption condition, and the device end
in this case is the secondary status. Generally, the
secondary interruption condition is any interruption
condition that relates to an I/O operation and that
signals the conclusion at the device of the I/O oper­
ation or chain of operations. The secondary inter­
ruption condition can occur concurrently with, or
later than, the primary interruption condition.

Concurrent with the primary or secondary inter­
ruption conditions, both the channel subsystem
and the I/O device can provide indications of
unusual situations.

The conditions signaling the conclusion of an I/O
operation can be brought to the attention of the
program by I/O interruptions or, when the CPUs are
disabled for I/O interruptions, by programmed inter­
rogation of the channel subsystem. In the former
case, these conditions cause storing of the I/o-inter­
ruption code, which contains information con­
cerning the interrupting source. In the latter case,
the interruption code is stored as a result of the
execution of TEST PENDING INTERRUPTION.

When the primary interruption condition is recog­
nized, the channel subsystem attempts to notify the
program, by means of an, interruption request, that
a subchannel contains information describing the
conclusion of an I/O operation at the subchannel.
The information identifies the last ccw used and
may provide its residual byte count, thus describing
the extent of main storage used. Both the channel
subsystem and the I/O device may provide addi­
tional indications of unusual conditions as part of
either the primary or secondary interruption condi-

13-8 ESA/370 Principles of Operation

tion. The information contained at the subchannel
may be stored by the execution of TEST SUB­
CHANNEL or the execution of STORE SUBCHANNEL.
This information, when stored, is called a
subchannel-status word (scsw).

Facilities are provided for the program to initiate
execution of a chain of I/O operations with a single
START SUBCHANNEL instruction. When the
current ccw specifies command chaining and no
unusual conditions have been detected during the
operation, the receipt of the device-end signal
causes the channel subsystem to fetch a new ccw.
If the ccw passes certain validity tests and the
suspend flag is not specified in the new ccw, exe­
cution of a new command is initiated at the device.
If the ccw fails to pass the validity tests, the new
command is not initiated, command chaining is
suppressed, and the status associated with the new
ccw causes an interruption condition to be gener­
ated. If the suspend flag is specified, execution of
the new command is not initiated, and command
chaining is concluded.

Execution of the new command is initiated by the
channel subsystem in the same way as the previous
operation. The ending signals occurring at the con­
clusion of an operation caused by a ccw specifying
command chaining are not made available to the
program. When another I/O operation is initiated
by command chaining, the channel subsystem con­
tinues execution of the channel program. If,
however, an unusual condition has been detected ,
command chaining is suppressed, the channel
program is terminated, an interruption condition is
generated, and the ending signals causing the termi­
nation are made available to the program.

The suspend-and-resume function provides the
program with control over the execution of a
channel program. The initiation of the suspend
function is controlled by the setting of the suspend­
control bit in the ORB. The suspend function is
signaled to the channel subsystem during channel­
program execution by specifying the suspend (s)
flag in the first ccw or in a ccw fetched during
command chaining.

Suspension occurs when the channel subsystem
fetches a ccw with a valid S flag. The command in
this ccw is not sent to the I/O device, and the
device is signaled that the chain of commands is
concluded. A subsequent RESUME SUBCHANNEL
instruction informs the channel subsystem that the
ccw that caused suspension may have been modi-

fied and that the channel subsystem must refetch
the ccw and examine the current setting of the
suspend flag. If the suspend flag is found to be not
specified in the ccw, the channel subsystem
resumes execution of the chain of commands with
the I/O device.

Channel-program execution may be terminated pre­
maturely by HALT SUBCHANNEL or CLEAR SUB­
CHANNEL. The execution of HALT SUBCHANNEL
causes the channel subsystem to issue the halt
signal to the I/O device and terminate channel­
program execution at the subchannel. When
channel-program execution is terminated by the
execution of HALT SUBCHANNEL, the program is
notified of the termination by means of an
I/o-interruption request. The interruption request
is generated when the device presents status for the
terminated operation. If, however, the halt signal
was issued to the device during command chaining
after the receipt of device end but before the next
command was transferred to the device, the inter­
ruption request is generated after the device has
been signaled. In the latter case, the device-status
field of the scsw will contain zeros. The execution
of CLEAR SUBCHANNEL clears the subchannel of
indications of the channel program in execution,
causes the channel subsystem to issue the clear
signal to the I/O device, and causes the channel sub­
system to generate an I/O interruption request to
notify the program of the completion of the clear
function.

1/0 Interruptions

Conditions causing I/o-interruption requests are
asynchronous to activity in cpus, and more than
one condition can occur at the same time. The
conditions are preserved at the subchannels until
cleared by TEST SUBCHANNEL or CLEAR SUB­
CHANNEL, or reset by an I/o-system reset.

When an I/o-interruption condition has been recog­
nized by the channel subsystem and indicated at
the subchannel, an I/o-interruption request is made
pending for the I/o-interruption subclass specified at
the subchannel. The I/o-interruption subclass for
which the interruption is made pending is under
programmed control through the use of MODIFY
SUBCHANNEL. A pending I/O interruption may be
accepted by any CPU that is enabled for inter­
ruptions from its I/o-interruption subclass. Each
CPU has eight mask bits in control register 6 which
control the enabling of that CPU for each of the
eight I/o-interruption subclasses, with the I/O mask
(bit 6) in the psw the master I/o-interruption mask
for the CPU.

When an I/O interruption occurs at a CPU, the
I/o-interruption code is stored in the I/o-communi­
cation area of that CPU, and the I/o-interruption
request is cleared. The I/o-interruption code identi­
fies the sub channel for which the interruption was
pending. The conditions causing the generation of
the interruption request may then be retrieved from
the subchannel explicitly by TEST SUBCHANNEL or
by STORE SUBCHANNEL.

A pending I/o-interruption request may also be
cleared by TEST PENDING INTERRUPTION when the
corresponding I/o-interruption subclass is enabled
but the psw has I/O interruptions disabled or TEST
SUBCHANNEL when the CPU is disabled for I/O
interruptions from the corresponding I/o-inter­
ruption subclass. A pending I/o-interruption
request may also be cleared by CLEAR SUB­
CHANNEL. Both CLEAR SUBCHANNEL and TEST
SUBCHANNEL clear the preserved interruption con­
dition at the subchannel as well.

Normally, unless the interruption request is cleared
by CLEAR SUBCHANNEL, the program executes
TEST SUBCHANNEL to obtain information con­
cerning the execution of the operation.

Chapter 13. I/O Overview 13-9

Chapter 14. 1/0 Instructions

1/0-Instruction Formats 14-1
1/0-Instruction Execution 14-1

Serialization 14-1
Operand Access 14-1
Condition Code 14-2
Program Exceptions 14-2

Instructions . \" 14-2
Clear Subchannel 14-4
Halt Subchannel 14-4
Modify Subchannel 14-6

The I/O instructions include all instructions that are
provided for the control of channel-subsystem
operations. The I/O instructions are listed in
Figure 14-1 on page 14-3. All of the I/O

instructions are privileged instructions.

Several I/O instructions result in the channel sub­
system being signaled to perform functions asyn­
chronous to the execution of the instructions. The
description of each instruction of this type contains
a section called "Associated Functions," which
summarizes the asynchronous functions.

I/O-Instruction Formats
All I/O instructions use the S format:

Op Code

16 20 31

The use of the second-operand address and general
registers 1 and 2 (as implied operands) depends on
the I/O instruction. Figure 14-1 on page 14-3
defmes which operands are used to execute each I/O

instruction. In addition, detailed information
regarding operand usage appears in the description
of each I/O instruction.

All I/O instructions that reference a subchannel use
the contents of general register 1 as an implied
operand. For these I/O instructions, general register
1 contains the subsystem-identification word. The

Reset Channel Path 14-7
Resume Subchannel 14-8
Set Address Limit 14-10
Set Channel Monitor 14-10
Start Subchannel " .. 14-12
Store Channel Path Status 14-14
Store Channel Report Word 14-14
Store Subchannel 14-15
Test Pending Interruption 14-16
Test Subchannel 14-17

subsystem-identification word has the following
format:

0000000000000001

16

Subchannel
Number

31

Bits 16-31 form the binary number of the sub­
channel to be used for the function specified by the
instruction.

I/O-Instruction Execution

Serialization

The execution of any I/O instruction causes serial­
ization and checkpoint synchronization to occur.
For a definition of the serialization of CPU opera­
tions, see the section "CPU Serialization" in
Chapter 5, "Program Execution."

Operand Access

During execution of an I/O instruction, the order in
which fields of the operand and fields of the sub­
channel (if applicable) are accessed is unpredictable.
It is also unpredictable as to whether fetch accesses
are made to fields of an operand or the subchannel
(as applicable) when those fields are not needed to
complete execution of the I/O instruction. (See the
section "Relation Between Operand Accesses" in
Chapter 5, "Program Execution.")

Chapter 14. I/O Instructions 14-1

Condition Code

During the execution of some I/O instructions, the
results of certain tests are used to set one of four
condition codes in the psw. The I/O instructions
for which execution can result in the setting of the
condition code are listed in Figure 14-1 on
page 14-3. The condition code indicates the result
of the execution of the I/O instruction. The general
meaning of the condition code for I/O instructions
is given below; the meaning of the condition code
for a specific instruction appears in the description
of that instruction.

Condition Code 0: Instruction execution produced
the expected or most probable result. (See the
section "Deferred. Condition Code (CC)" on
page 16-8 for a description of conditions that can
be encountered subsequent to the presentation of
condition code 0 that result in a nonzero deferred
condition code.)

Condition Code 1: Instruction execution produced
the alternate or second-most-probable result, or
status conditions were present that mayor may not
have prevented the expected result.

Condition Code 2: Instruction execution was inef­
fective because the designated subchannel or
channel-subsystem facility was busy with a previ­
ously initiated function.

Condition Code 3: Instruction execution was inef­
fective because the designated element was not
operational or because some condition precluded
initiation of the normal function.

14-2 ESAj370 Principles of Operation

In situations where conditions exist that could
cause more than one nonzero condition code to be
set, priority of the condition codes is as follows:

Condition code 3 has precedence over condition
codes 1 and 2.

Condition code 1 has precedence over condition
code 2.

Program Exceptions

The program exceptions that the I/O instructions
can encounter are access, operand, privileged­
operation, and specification' exceptions.
Figure 14-1 on page 14-3 shows the exceptions
that are applicable to each of the I/O instructions.
The execution of the instruction is suppressed for
privileged-operation, operand, and specification
exceptions. Except as indicated otherwise in the
section "Special Conditions" for each instruction,
the instruction ending for access exceptions is as
described in the section "Recognition of Access
Exceptions" in Chapter 6, "Interruptions."

Instructions
\

The mnemonics, format, and operation codes of
the I/O instructions are given in Figure 14-1 on
page 14-J. The figure also indicates the conditions
that can cause a program interruption and whether
the condition code is set.

In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic
operand designation for the assembler language are
shown with each instruction. In the case of START

SUBCHANNEL, for example, SSCH is the mnemonic
and D 2 (B 2) the operand designation.

Mne-
Name monic Characteristics

CLEAR SU8CHANNEL CSCH S C P OP
HALT SU8CHANNEL HSCH S C P OP
MODIFY SU8CHANNEL MSCH S C P A SP OP
RESET CHANNEL PATH RCHP S C P OP
RESUME SU8CHANNEL RSCH S C P OP

SET ADDRESS LIMIT SAL S P OP
SET CHANNEL MONITOR SCHM S P OP
START SU8CHANNEL SSCH S C P A SP OP
STORE CHANNEL PATH STATUS STCPS S P A SP
STORE CHANNEL REPORT WORD STCRW S C P A SP

STORE SU8CHANNEL STSCH S C P A SP OP
TEST PENDING INTERRUPTION TPI S C P Al SP
TEST SU8CHANNEL TSCH S C P A SP OP

Explanation:

¢ Causes serialization and checkpoint synchronization.
A Access exceptions for logical addresses.

¢
¢
¢
¢
¢

¢
¢
¢
¢
¢

¢
¢
¢

Op
Code

GS 8230
GS 8231
GS 82 8232
G1 8238
GS 8238

G1 8237
GM 823C
GS 82 8233

ST 82 823A
ST 82 8239

GS ST 82 8234
ST 82 8236

GS ST 82 8235

Al When the effective address is zero, it is not used to a~cess storage, and no
access exceptions can occur, except that access exceptions may occur during
access-register translation.

82 82 field designates an access register in the access-register mode.
C Condition code is set.
G1 Instruction execution includes the implied use of general register 1

as a parameter.
GM Instruction execution includes the implied use of multiple general

registers. General register 1 is used as a parameter, and general
register 2 may be used as a parameter.

GS Instruction execution includes the implied use of general register 1
as the subsystem-identification word.

OP Operand exception.
P Privileged-operation exception.
S S instruction format.
SP Specification exception.
ST PER storage-alteration event.

Figure 14-1. Summary of I/O Instructions

Chapter 14. I/O Instructions 14-3

Clear Subchannel

CSCH [S]

18230 1 11/111111111111111
o 16 31

The designated subchannel is cleared, the current
start or halt function, if any, is terminated at the
designated subchannel, and the channel subsystem
is signaled to asynchronously perform the clear
function at the designated subchannel and at the
associated device.

General register 1 contains the subsystem­
identification word, which designates the sub­
channel that is to be cleared.

If a start or halt function is in progress, it is termi­
nated at the subchannel.

The subchannel is made no longer status-pending.
All activity, as indicated in the activity-control field
of the SCSw, is cleared at the subchannel, except
that the subchannel is made clear-pending. Any
functions in progress, as indicated in the function­
control field of the scsw, are cleared at the sub­
channel, except for the clear function which is to be
perfonned because of the execution of this instruc­
tion.

The channel subsystem is signaled to asynchro­
nously perform the clear function. The clear func­
tion is sutnmarized below in the section "Associ­
ated Functions" and is described in detail in the
section "Clear Function" on page 15-13.

Condition code 0 is set to indicate that the actions
described above have been taken.

Associated Functions

Subsequent to the execution of CLEAR SUB­

CHANNEL, the channel subsystem asynchronously
performs the clear function. If conditions allow,
the channel subsystem chooses a channel path and
attempts to issue the clear signal to the device to
tenninate the I/O operation, if any. The subchannel
then becomes status-pending. Conditions encount­
ered by the channel subsystem that preclude issuing
the clear signal to the device do not prevent the
subchannel from becoming status-pending (see the
section "Clear Function" on page 15-13).

14-4 ESA/370 Principles of Operation

When the subchannel becomes status-pending as a
result of perfonning the clear function, data
transfer, if any, with the associated device has been
tenninated. The scsw stored when the resulting
status is cleared by TEST SUBCHANNEL has the
clear-function bit stored as one. If the channel sub­
system can determine that the clear signal was
issued to the device, the clear-pending bit is stored
as zero in the scsw. Otherwise, the clear-pending
bit is stored as one, and other indications are pro­
vided that describe in greater detail the condition
that was encountered. (See the section
"Interruption-Response Block" on page 16-6.)

Measurement data is not accumulated and the
device-connect time is not stored in the extended­
status word for the subchannel for a start function
that is terminated by CLEAR SUBCHANNEL.

Special Conditions

Condition code 3 is set and no other action is taken
when the subchannel is not operational for CLEAR

SUBCHANNEL. A subchannel is not operational for
CLEAR SUBCHANNEL when the subchannel is not
provided in the channel subsystem, has no valid
device number assigned to it, or is not enabled.

CLEAR SUBCHANNEL can encounter the program
exceptions that are listed below. Bit positions 0-15
of general register 1 must contain the value 0001
hex; otherwise, an operand exception is recognized.

Resulting Condition Code:

o Function initiated
1
2
3 Not operational

Program Exceptions:

• Operand
• Privileged operation

Halt Subchannel

HSCH [S]

18231 1 111111111111111111
o 16 31

The current start function, if any, is terminated at
the designated subchannel, and the channel sub-

system is signaled to asynchronously perform the
halt function at the designated subchannel and at
the associated device.

General register contains the subsystem­
identification word, which designates the sub­
channel that is to be halted.

If a start function is in progress, it is tenrllnated at
the subchannel.

The subchannel is made halt-pending and the halt
function is indicated at the subchannel.

When HALT SUBCHANNEL is executed and the des­
ignated sub channel is subchannel-and -device-active
and status-pending with intermediate status, the
status-pending indication is eliminated (see the dis­
cussion of bits 24, 25, and 28 in the section
"Activity Control (AC)" on page 16-13). The
status-pending condition is reestablished as part of
the halt function (see the section "Associated
Functions" below).

The channel subsystem is signaled to asynchro­
nously perform the halt function. The halt func­
tion is summarized below in the section "Associ­
ated Functions" and is described in detail in the
section "Halt Function" on page 15-14.

Condition code 0 is set to indicate that the actions
described above have been taken.

Associated Functions

Subsequent to the execution of HALT

SUBCHANNEL, the channel subsystem asynchro­
nously performs the halt function. If conditions
allow, the channel subsystem chooses a channel
path and attempts to issue the halt signal to the
device to terminate the I/O operation, if any. The
subchannel then becomes status-pending.

When the subchannel becomes status-pending as a
result of perfonrllng the halt function, data transfer,
if any, with the associated device has been termi­
nated. The scsw stored when the resulting status
is cleared by TEST SUBCHANNEL has the halt­
function bit stored as one. If the halt signal was
issued to the device, the halt-pending bit is stored
as zero. Otherwise, the halt-pending bit is stored as
one, and other' indications are provided that
describe in greater detail the condition that was
encountered. (See the section "Interruption-

Response Block" on page 16-6 and the section
"Halt Function" on page 15-14.)

In some models, path availability is tested as part
of the halt function (rather than as part of the exe­
cution of the instruction). In these models, when
no channel path is available for selection, the halt
signal is not issued, and the subchannel is made
status-pending. When the status-pending condition
is subsequently cleared by TEST SUBCHANNEL, the
halt-pending bit is stored as one in the scsw.

If a status-pending condition is eliminated during
execution of HALT SUBCHANNEL, then this condi­
tion is reestablished along with the other status
conditions when completion of the halt function is
indicated to the program.

The halt-pending condition may not be recognized
by the channel subsystem if a status-pending condi­
tion has been generated. This situation could
occur, for example, when alert status is presented
or generated while the subchannel is already start­
pending or resume-pending, or when primary status
is presented during the attempt to initiate the I/O

operation for the fITst command as specified by the
start function or implied by the resume function. If
recognition of the status-pending condition by the
channel subsystem has occurred logically prior to
recognition of the halt-pending condition, the
scsw, when cleared by TEST SUBCHANNEL, has the
halt-pending bit stored as one.

If measurement data is being accumulated when a
start function is terminated by HALT SUBCHANNEL,

the measurement data continues to be accumulated
for the subchanne1 and reflects the extent of su b­
channel and device usage required, if any, while
perfonrllng the currently tenrllnated start function.
The measurement data, if any, is accumulated in
the measurement block for the sub channel or
placed in the extended-status word, as appropriate,
when the subchannel becomes status-pending with
primary status. (See the section "Channel­
Subsystem Monitoring" on page 17-1.)

Special Conditions

Condition code 1 is set and no other action is taken
when the subchannel is status-pending alone or is
status-pending with any combination of alert,
primary, or secondary status.

Condition code 2 is set and no other action is taken
when the subchannel is busy for HALT SUB­

CHANNEL. The subchannel is busy for HALT SUB-

Chapter 14. I/O Instructions 14-5

CHANNBL when a halt function or clear function is
already in progress at the subchannel.

Condition code 3 is set and no other action is taken
when the subchannel is not operational for HALT

SUBCHANNBL. A subchannel is not operational for
HALT SUBCHANNBL when the sub channel is not
provided in the channel subsystem, has no valid
device number assigned to it, or is not enabled. In
some models, a sub channel is also not operational
for HALT SUBCHANNBL when no channel paths are
available for selection by the device. (See the
section "Channel-Path Availability" on page 15-12
for a description of channel paths that are available
for selection.)

HALT SUBCHANNEL can encounter the program
exceptions listed below. Bit positions 0-15 of
general register 1 must contain the value 0001 hex;
otherwise, an operand exception is recognized.

Resulting Condition Code:

o Function initiated
1 Status-pending with other than intermediate

status
2 Busy
3 Not operational

Program Exceptions:

• Operand
• Privileged operation

Programming Note: After execution of HALT SUB­

CHANNBL, the status-pending condition indicating
the completion of the halt function may be delayed
for an extended period of time, for example, when
the device is a magnetic-tape unit executing a
rewind command.

Modify Subchannel

[S]

IB232 1

o 16 20 31

The information contained in the subchannel­
information block '(SCHIB) is placed in the
program-modifiable fields of the sub channel. As a
result, the program influences, for that subchannel,
certain aspects of I/O processing relative to the
clear, halt, resume, and start functions and certain
1/0 support functions.

14-6 ESA/370 Principles of Operation

General register contains the subsystem­
identification word, which designates the sub­
channel that is to be modified as specified by
certain fields of the SCHIB. The second-operand
address is the logical address of the SCHIB and is
designated on a word boundary.

The channel-subsystem operations that may be
influenced due to placement of SCHIB information
in the subchanne1 are: (1) I/O processing (E field),
(2) interruption processing (interruption parameter
and ISC field), (3) path management (0, LPM, and
POM fields), and (4) monitoring and address-limit­
checking facilities (measurement-block index and
LM and MM fields). Bits 0-1 and 5-7 of word 1 and
bits 0-31 of word 6 of the SCHIB operand must be
specified as zeros, and bits 9-10 of word 1 must not
both be ones. The remaining fields of the SCHIB

are ignored and do not affect the processing of
MODIFY SUBCHANNEL. (For further details, see
the section "Subchannel-Information Block" on
page 15-1.)

Condition code 0 is set to indicate that the infor­
mation from the SCHIB has been placed in the
program-modifiable fields of the subchannel.

Special Conditions

Condition code 1 is set and no other action is taken
when the subchannel is status-pending. (See, the
section "Status Control (SC)" on page 16-16.)

Condition code 2 is set and no other action is taken
when a clear, halt, or start function is in progress at
the subchannel. (See the section "Function
Control (FC)" on page 16-12.)

Condition code 3 is set and no other action is taken
when the sub channel is not operational for MODIFY

SUBCHANNBL. A subchannel is not operational for
MODIFY SUBCHANNBL when the subchannel is not
provided in the channel subsystem.

MODIFY SUBCHANNEL can encounter the program
exceptions listed below. In word I of the SCHIB,

bits 0-1 and 5-7 must be zeros, and bits 9 and 10
must not both be ones; in word 6 of the SCHIB, bits
0-31 must be zeros; bits 0-15 of general register 1
must contain the value 000 I hex; otherwise, an
operand exception is recognized.

The execution of MODIFY SUBCHANNEL is sup­
pressed on all addressing and protection exceptions.

The second operand must be designated on a word
boundary; otherwise, a specification exception is
recognized.

Resulting Condition Code:

o SCHIB information placed in subchannel
I Status-pending
2 Busy
3 Not operational

Program Exceptions:

• Access (fetch, operand 2)
• Operand
• Privileged operation
• Specification

Programming Note: If a device signals I/o-error
alert while the associated sub channel is disabled,
the channel subsystem issues the clear signal to the
device and discards the I/o-error-alert indication
without generating an I/o-interruption condition.

If a device presents unsolicited status while the
associated subchannel is disabled, that status is dis­
carded by the channel subsystem without gener­
ating an I/o-interruption condition. However, if
the status presented contains unit check, the
channel subsystem issues the clear signal for the
associated sub channel and does not generate an
I/o-interruption condition. This should be taken
into account when the program uses MODIFY SUB­
CHANNEL to enable a sub channel. For example,
the medium on the associated device that was
present when the subchannel became disabled may
have been replaced, and, therefore, the program
should verify the integrity of that medium.

Reset Channel Path

RCHP [SJ

'B23B' 1//1/11//11/1111/1
o 16 31

The channel-path-reset facility is signaled to
perform the channel-path-reset function at the des­
ignated channel path.

General register 1 contains, in bit positions 24-31,
the channel-path identifier (CHPID) of the channel
path on which the channel-path-reset function is to
be performed. Bit positions 0-23 of general register

1 are reserved and must contain zeros; otherwise,
an operand exception is recognized.

General register 1 has the following format:

o 24 31

If conditions allow, the channel-path-reset facility is
signaled to asynchronously perform the channel­
path-reset function on the designated channel path.
The channel-path-reset function is summarized
below in the section "Associated Functions" and is
described in detail in the section "Channel-Path
Reset" on page 17-6.

Condition code 0 is set to indicate that the channel­
path-reset facility has been signaled.

Associated Functions

Subsequent to the execution of RESET CHANNEL
PATH, the channel-path-reset facility asynchro­
nously performs the channel-path-reset function.
Certain indications are reset at all subchannels that
have access to the designated channel path, and the
reset signal is issued on that channel path. Any I/O
functions in progress at the devices are reset, but
only for the channel path on which the reset signal
is received. An I/O operation or chain of I/O opera­
tions taking place in multipath mode may be able
to continue to execute on other channel paths in
the multipath group, if any. (See the section
"Channel-Path-Reset Function" on page 15-43.)

The result of performing the channel-path -reset
function on the designated channel path is commu­
nicated to the program by means of a channel
report (see the section "Channel Report" on
page 17-14).

Special Conditions

Condition code 2 is set and no other action is taken
when, on some models, the channel-path-reset
facility is busy performing the channel-path-reset
function for a previous execution of the RESET
CHANNEL PATH instruction.

Condition code 3 is set and no other action is taken
when, on some models, the designated channel
path is not operational for the execution of RES ET
CHANNEL PATH. On these models, the channel
path is not operational for the execution of RESET

Chapter 14. I/O Instructions 14-7

CHANNEL PATH when the designated channel path
is not physically available.

If the channel-path-reset facility is busy and the
designated channel path is not physically available,
it depends on the model whether condition code 2
or 3 is set.

RESET CHANNEL PATH can encounter the program
exceptions listed below. Bit positions 0-23 of
general register 1 must contain zeros; otherwise, an
operand exception is recognized.

Resulting Condition Code:

o Function initiated
1
2 Busy
3 Not operational

Program Exceptions:

• Operand
• Privileged operation

Programming Notes:

1. To eliminate the possibility of a data-integrity
exposure for devices that have the capability of
generating unsolicited device-end status, 1/0

operations in progress with such devices on the
channel path for which RESET CHANNEL PATH

is to be executed must be terminated by exe­
cution of either HALT SUBCHANNEL or CLEAR

SUBCHANNEL. Otherwise, subsequent to
receiving the reset signal, the device may
present an unsolicited device end that may be
interpreted by the channel subsystem as a solic­
ited device end and cause command chaining to
occur.

2. If the status-verification facility is being used
and RESET CHANNEL PATH is executed without
frrst stopping all ongoing operations associated
with the channel path being reset, erroneous
device-status-check conditions may be detected.

Resume Subchannel

RSCH [S]

IB238 1 1////////////////1

e 16 31

14-8 ESAj370 Principles· of Operation

The channel subsystem is signaled to perform the
resume function at the designated subchannel.

General register contains the subsystem­
identification word, which designates the sub­
channel at which the resume function is to be per­
formed.

The subchannel is made resume-pending.

Logically prior to the setting of condition code 0
and only if the subchannel is currently in the sus­
pended state, path-not-operational conditions at the
subchannel, if any, are cleared.

The channel subsystem is signaled to asynchro­
nously perform the resume function. The resume
function is summarized below in the section "Asso­
ciated Functions" and is described in detail in the
section "Start Function and Resume Function" on
page 15-17.

Condition code 0 is set to indicate that the actions
described above have been taken.

Associated Functions

Subsequent to the execution of RESUME SUB­

CHANNEL, the channel subsystem asynchronously
performs the resume function. Except when the
subchannel is subchannel-active, if the execution of
RESUME SUBCHANNEL results in the setting of con­
dition code 0, performance of the resume function
causes execution of a currently suspended channel
program to be resumed with the associated device,
provided that the suspend flag for the current ccw
has been set to zero by the program. If the
suspend flag remains set to one, execution of the
channel program remains suspended. But, if the
sub channel is subchannel-active at the time the exe­
cution of RESUME SUBCHANNEL results in the
setting of condition code 0, then it is unpredictable
whether execution of the current program is
resumed or whether it is found by the resume func­
tion that the subchanne1 has become suspended in
the interim. The subchannel is found to be sus­
pended by the resume function· only if the sub­
channel is status-pending with intermediate status
when the resume-pending condition is recognized
by the channel subsystem. (See the section "Start
Function and Resume Function" on page 15-17.)

Special Conditions

Condition· code 1 is set and no other action is taken
when the subchannel is status-pending.

Condition code 2 is set and no other action is taken
when the resume function is not applicable. The
resume function is not applicable when the sub­
channel (I) has any function other than the start
function alone specified, (2) has no function speci­
fied, (3) is resume-pending, or (4) does not have
suspend control specified for the start function in
progress.

Condition code 3 is set and no other action is taken
when the subchannel is not operational for the
resume function.· A subchannel is not operational
for the resume function if the subchannel is not
provided in the channel subsystem, has no valid
device number assigned to it, or is not enabled.

RESUME SUBCHANNEL can encounter the program
exceptions listed below. Bit positions 0-15 of
general register 1 must contain the value 0001 hex;
otherwise, an operand exception is recognized.

Resulting Condition Code:

o Function initiated
1 Status-pending
2 Function not applicable
3 Not operational

Program Exceptions:

• Operand
• Privileged operation

Programming Notes:

1. When channel-program execution is resumed
from the suspended state, the device views the
resumption as the beginning of a new chain of
commands. When the suspension of channel­
program execution occurs and the device
requires that certain commands be first or
appear only once in a chain of commands (for
example, direct-access-storage. devices), the
program must ensure that the appropriate com­
mands in the proper sequence are fetched by
the channel subsystem after channel-program
execution is resumed. One way the program
can ensure proper sequencing of commands at
the device is by allowing the I/O interruption to
occur for an intermediate interruption condi­
tion due to suspension.

It is not reliable to notify the program that the
subchannel is suspended by using the PCI flag
in the ccw that contains the S flag because the
PCI I/O interruption may occur before the sub­
channel is suspended. The scsw would indi­
cate that an I/O operation is in progress at the
subchannel and device in this case.

The suspend flag of the target ccw should be
set to zero before RESUME SUBCHANNEL is
executed; otherwise, it is possible that the
resume-pending condition may be recognized
and the ccw refetched while the suspend flag is
still one, in which case the resume-pending
condition would be reset, and the execution of
the channel program would be suspended. If
the suspend flag of the target ccw is set to zero
before the execution of RESUME SUBCHANNEL,

the channel program is not suspended, pro­
vided that the subchannel is not subchannel­
active at the time the execution of RESUME

SUBCHANNEL results in the setting of condition
code O. If condition code 0 is set while the
subchannel is still subchannel-active, it is
unpredictable whether the resume-pending con­
dition is recognized by the channel subsystem
or whether it is found by the resume function
that the sub channel has become suspended in
the interim. The subchannel is found to be
suspended by the resume function only if the
subchannel is status-pending with intermediate
status at the time the resume-pending condition
is recognized. When the subchannel is sus­
pended, the execution of TEST SUBCHANNEL,

which clears the intermediate interruption con­
dition' also clears the indication of resume­
pending.

2. Some models recognize a resume-pending con­
dition only after a ccw having a valid S flag set
to one is fetched. Therefore, if a subchannel is
resume-pending and, during execution of the
channel program, no ccw is fetched having a
valid s flag set to one, the subchannel remains
resume-pending until the primary interruption
condition is cleared by TEST S~BCHANNEL.

3. Path availability is not tested during the exe­
cution of RESUME SUBCHANNEL. Instead, path
availability is tested when the channel sub­
system begins performance of the resume func­
tion.

4. The cpntents of the ccw fetched during per­
formance of the resume function may be dif­
ferent from the contents of the same ccw when

Chapter 14. I/O Instructions 14-9

it was previously fetched and contained a valid
S flag.

Set Address Limit

SAL [S]

IB237 1 111111111111111111
e 16 31

The address-limit-checking facility is signaled to use
the specified address as the address-limit value, and
the specified address is passed to the facility.

General register I contains the address to be used
as the address-limit value. The address is desig­
nated on a 64K-byte boundary, and the leftmost bit
of general register I is zero.

General register I has the following format:

lei Address-Limit Value

e 1 31

Associated Functions

The value that is used by the address-limit-checking
facility when determining whether to permit or pro­
hibit a data access is called the address-limit value.
The initialized address-limit value is zero. The
initial address-limit value is used by the address­
limit-checking facility until the facility recognizes a
signal (caused by the execution of SET ADDRESS

LIMIT) to use a specified address. The recognition
of this specified address as the new address-limit
value occurs asynchronously with respect to the
execution of SET ADDRESS LIMIT.

If address-limit checking is specified for a sub­
channel, then whether the specified address is used
by the address-limit-checking facility (when deter­
mining whether to permit or prohibit a data access)
depends on whether SET ADDRESS LIMIT was exe­
cuted before, during, or after the execution of
START SUBCHANNEL for that subchannel. If SET

ADDRESS LIMIT is executed before START SUB­

CHANNEL, then the specified address is used by the
address-limit-checking facility. If SET ADDRESS

LIMIT is executed during or after the execution of
START SUBCHANNEL, then it is unpredictable
whether the specified address is used by the
address-limit-checking facility for that particular

14-10 ESA/370 Principles of Operation

start function. For a description of the manner in
which address-limit checking is performed, see the
section "Address-Limit Checking" on page 17-12.

Special Conditions

SET ADDRESS LIMIT can encounter the program
exceptions listed below. The address in general reg­
ister I must be designated on a 64K-byte boundary,
and the leftmost bit of general register 1 must be
zero; otherwise, an operand exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Operand
• Privileged operation

Set Channel Monitor

SCHM [S]

IB23CI 111111111111111111
e 16 31

The monitoring modes of the channel subsystem
are made either active or inactive, depending on the
setting of the measurement-mode-control bits in
general register 1. Depending on the setting of the
measurement-mode-control bit for measurement­
block update, the channel subsystem is signaled to
make the mode active, or the mode is made inac­
tive. If the measurement-mode-control bit for
measurement-block update is one, the
measurement-block origin and the measurement­
block key are passed to the channel subsystem.
Depending on the setting of the measurement­
mode-control bit for device-connect time, the mode
is made active or inactive.

General register I has the following format:

I MBK leeee eaeeeeee aeseesee eeeeselMlol

e 4 30 31

Bit positions 0-3 of general register 1 contain the
measurement-block key (MBK). When bit 30 is one
MBK specifies the access key that is to be used by
the channel subsystem when it accesses the
measurement-block area. Otherwise, MBK is
ignored.

Bit 30 (M) of general register 1 is the measurement­
mode-control bit that controls the measurement­
block-update mode. When bit 30 of general reg­
ister 1 is one and conditions allow, the
measurement-block-update facility is signaled to
asynchronously make the measurement-block­
update mode active. In addition, the MBO address
(in general register 2) and the measurement-block
key (MBK) (in general register 1) are passed to the
measurement-block-update facility. Furthermore,
when bit 30 is one, bit 0 of general register 2 must
be zero. The asynchronous functions that are per­
formed by the measurement-block-update facility
are summarized below in the section "Associated
Functions" and are described in detail in the
section "Channel-Subsystem Monitoring" on
page 17-1.

When bit 30 of general register 1 is zero and condi­
tions allow, the measurement-block-update mode is
made inactive if it is active or remains inactive if it
is inactive. The contents of bit positions 0-3 (MBK)
of general register 1 and the contents of general reg­
ister 2 are ignored.

Bit 31 (D) of general register 1 is the measurement­
mode-control bit· that controls the device-connect­
time-measurement mode. When bit 31 is one and
conditions allow, the device-connect-time­
measurement mode is made active if it is inactive or
remains active if it is active. When bit 31 is zero
and conditions allow , the device-connect-time­
measurement mode is made inactive if it is active or
remains inactive if it is inactive.

The remaining bit positions of general register 1 are
reserved and must contain zeros; otherwise, an
operand exception is recognized.

General register 2 has the following format:

MBO Address

(3 1 31

Bit 0 of general register 2 must be zero· when bit 30
(M) of general register 1 is one; otherwise, an
operand exception is recognized. When bit 30 (M)
of general register 1 is zero, bit 0 of general register
2 is ignored. Bit positions 1-31 of general register 2
contain the absolute address of the measurement­
block origin (MBO). When bit 30 (M) of general
register 1 is one the MBO address designates the
beginning of the measurement-block area. The
origin of the measurement-block area must be des-

ignated on a 32-byte boundary. The MBO address
is used by the channel subsystem to locate meas­
urement blocks. When bit 30 (M) of general reg­
ister 1 is zero, the contents of general register 2 are
ignored.

If the channel-subsystem timer that is used by the
channel-sub system-monitoring facilities is in the
error state, the state is reset. This happens inde­
pendent of the setting of the two measurement­
mode-control bits. (See the section "Channel­
Subsystem Timing" on page 17-1 for a description
of the timing facilities.

Associated Functions

When the measurement-block-update facility is sig­
naled (by means of SET CHANNEL MONITOR) to
make the measurement-block-update mode active,
the functions that are performed by the facility
depend on whether or not the mode is already
active when the signal is generated.

If the measurement-block-update mode is inactive
when the signal is generated, the mode remains
inactive until the measurement-block-update facility
recognizes the signal. When the measurement­
block-update facility recognizes the signal, the
measurement-block-update mode is made active,
and the MBK and MBO associated with that signal
(that is, the MBKand MBO that were passed when
the signal was generated) are used to control the
storing of measurement data.

If the measurement-block-update mode is active
when the signal is generated, the mode remains
active, and the MBK and MBO associated with the
execution of a previous SET CHANNEL MONITOR
instruction continue to be used to control the
storing of measurement data until the
measurement-block-update facility recognizes the
signal. When the measurement-block-update
facility recognizes the signal, the MBK and MBO
associated with that signal are used instead of the
MBK and MBO associated with the execution of a
previous SET CHANNEL MONITOR instruction.

In either of the above cases, the measurement­
block-update facility recognizes the signal during, or
subsequent to, the execution of the SET CHANNEL
MONITOR instruction that caused the signal to be
generated and logically prior to the performance of
any start function that is initiated by the subse­
quent execution of START SUBCHANNEL for a sub­
channel that is enabled for measurement by this

Chapter 14. I/O Instructions 14-11

facility. If a subchannel that is enabled for, meas­
urement by this facility already has a start function
in progress when the signal is generated, it is unpre­
dictable when measurement data for that sub­
channel is stored by using the MBK and MBO asso­
ciated with that signal.

While the measurement-block-update mode is
active, performance measurements are accumulated
for subchannels that are enabled for measurement­
block update. Measurements for a subchannel are
accumulated in a single 32-byte measurement block
within the measureinent-block area. A subchannel
is enabled for the measurement-block-update mode
by setting the measurement-block-update-enable bit
to one in the SCHIB and then executing MODIFY

SUBCHANNEL for that subchannel. The measure­
ment block that is used to accumulate measure­
ments for a subchannel is determined by the
measurement-block index that is contained in the
sub channel.

When the device-connect-time-measurement mode
is active, measurements of the length of time that
the device is actively communicating with the
channel subsystem dutfu.g the execution of a
channel program are accumulated for subchannels
that are enabled for device-connect-time measure­
ment. Measurements for a subchannel are pro­
vided in the ESW of the IRB. A subchannel is
enabled for device-connect-time-measurement
mode by setting the device-connect-time­
measurement-enable bit to one in the SCHIB and
then executing MODIFY SUBCHANNEL for that sub­
channel.

F or a more detailed description of the
measurement-block-update mode, the format and
contents of the measurement block, and the device­
connect-time-measurement mode, see the section
"Channel-Subsystem Monitoring" on page 17-1.

Special Conditions

SET CHANNEL MONITOR can encounter the
program exceptions listed below. Bits 4-29 of
general register 1 must be zeros; bits 1-31 of general
register 2, the MBO address, must be designated on
a 32-byte boundary when bit 30 (M) of general reg­
ister 1 is one; and bit 0 of general register 2 must be
zero when bit 30 (M) of general register 1 is one;
otherwise, an operand exception is recognized.

Condition Code: The code remains unchanged.

14-12 ESA/370 Principles of Operation

Program Exceptions:

• Operand
• Privileged operation

Programming Note: When the channel subsystem
is initialized, the measurement-block-update and
device-connect-time-measurement modes are made
inactive.

Start Subchannel

[S]

'B233'

o 16 20 31

The channel subsystem is signaled to asynchro­
nously perform the start function for the associated
device, and the execution parameters that are con­
tained in the designated ORB are placed at the des­
ignated sub channel. (See the section "Operation­
Request Block" on page 15-21.)

General register contains the subsystem­
idelltification word, which designates the sub­
channel that is to be started. The second-operand
address is the logical address of the ORB and is des­
ignated on a word boundary.

The execution parameters contained in the ORB are
placed at the subchannel.

In some models, when START SUBCHANNEL is exe­
cuted and the subchannel is status-pending with
only secondary status, the status-pending condition
is discarded at the subchannel.

The subchannel is made start-pending, and the start
function is indicated at the subchannel.

Logically prior to the setting of condition code 0,
path-not-operational conditions at the subchannel,
if any, are cleared.

The channel subsystem is signaled to asynchro­
nously perform the start function. The start func­
tion is summarized below in the section "Associ­
ated Functions" and is described in detail in the
section "Start Function and Resume Function" on
page 15-17.

Condition code 0 is set to indicate that the actions
described above have been taken.

Associated Functions

Subsequent to the execution of START SUB­

CHANNEL, the channel subsystem asynchronously
perfonns the start function.

The contents of the ORB, other than the fields that
must contain all zeros, are checked for validity. In
some models, the fields of the ORB that must
contain zeros are also checked asynchronously
(rather than during the execution of the instruc­
tion). When invalid fields are detected asynchro­
nously, the subchannel becomes status-pending
with primary, secondary, and alert status and with
deferred condition code 1 and program check indi­
cated. (See the section "Program Check" on
page 16-29.) In this situation, the 'I/O operation or
chain of I/O operations is not initiated at the device,
and the condition is indicated by the start-pending
bit being stored as one when the scsw is cleared by
the execution of TEST SUBCHANNEL. (See the
section "Subchannel-Status Word" on page 16-6).

In some models, path availability is tested asyn­
chronously (rather than as part of the execution of
the instruction). When no channel path is available
for selection, the subchannel becomes status­
pending with primary and secondary status and
with deferred condition code 3 indicated. The I/O

operation or chain of I/O operations is not initiated
at the device, and this condition is indicated by the
start-pending bit being stored as one when the
scsw is cleared by the execution of TEST SUB­

CHANNEL.

If conditions allow, a channel path is chosen and
execution of the channel program that is designated
in the ORB is initiated. (See the section "Start
Function and Resume Function" on page 15-17.)

Special Conditions

Condition code 1 is set and no other action is taken
if the sub channel is status-pending when START

SUBCHANNEL is executed. In some models, condi­
tion code 1 is not set when the subchannel is
status-pending with only secondary status; instead,
the status-pending condition is discarded.

Condition code 2 is set and no other action is taken
when a start, halt, or clear function is currently in

progress at thesubchannel (see the section "Func­
tion Control (FC)" on page 16-12).

Condition code 3 is set and no other action is taken
when the subchannel is not operational for START

SUBCHANNEL. A sub channel is not operational for
START SUBCHANNEL if the subchannel is not pro­
vided in the channel subsystem, has no valid device
number assigned to it, or is not enabled.

A subchannel is also not operational for START

SUBCHANNEL, in some models, when no channel
path is available for selection. In these models, the
lack of an available channel path is detected as part
of START SUBCHANNEL execution. In other
models, channel path availability is only tested as
part of the asynchronous start function.

START SUBCHANNEL can encounter the program
exceptions listed below. The execution of START

SUBCHANNEL is suppressed on all addressing and
protection exceptions. In word 1 of the ORB, bits
5-7, 13-15, and 25-31 must be zeros, in word 2 of
the ORB, bit 0 must be 0; otherwise, in some
models, an operand exception is recognized. In
other models, an I/o-interruption condition is gen­
erated indicating program check as part of the asyn­
chronous start function.

Bits 0-15 of general register I must contain 0001
hex; when the incorrect-Iength-indication­
suppression facility is not installed, bit 24 of word 1
of the ORB must be zero; otherwise, an operand
exception is recognized.

The second operand must be designated on a word
boundary; otherwise, a specification exception is
recognized, and the execution of START SUB­

CHANNEL is suppressed.

Resulting Condition Code:

o Function initiated
1 Status-pending
2 Busy
3 Not operational

Program Exceptions:

• Access (fetch, operand 2)
• Operand
• Privileged operation
• Specification

Chapter 14. I/O Instructions 14-13

Store Channel Path Status

STeps 02 (82) [S]

IB23AI

o 16 20 31

A channel-path-status word of up to 256 bits is
stored at the designated location.

The second-operand address is the logical address
of the location where the channel-path-status word
is to be stored and is designated on a 32-byte
boundary.

The channel-path-status word indicates which
channel paths are actively communicating with a
device at the time STORE CHANNEL PATH STATUS is
executed. Bit positions 0-255 correspond, respec­
tively, to the channel paths having the channel-path
identifiers 0-255. Each of the 256 bits at the desig­
nated location is set to one, set to zero, or left
unchanged, as follows:

• For all channel paths in the configuration that
are actively communicating with devices at the
time STORE CHANNEL PATH STATUS is exe­
cuted, the corresponding bits are stored as
ones.

• For all channel paths that are (1) provided in
the system (PIM bit in the scsw is one) and
(2) in the configuration, but not currently
being used by the channel subsystem in actively
communicating with devices, the corresponding
bits are stored as zeros.

• For all channel paths' that are not provided in
the system .(PIM bit in the scsw is zero), the
corresponding bits either are not stored or are
stored as zeros.

• For all channel paths in the configuration that
are in the channel-path-terminal state or are
not physically available (the corresponding
PAM bit in the scsw is zero), the corresponding
bits are stored as zeros.

Special Conditions

STORE CHANNEL PATH STATUS can encounter the
program exceptions listed below. The execution of
STORE CHANNEL PATH STATUS is suppressed on all
addressing and protection exceptions. The second

14-14 ESAj370 Principles of Operation

operand must be designated on a 32-byte
boundary; otherwise, a specification exception is
recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

• Access (store, operand 2)
• Privileged operation
• Specification

Programming Note: To ensure a consistent inter­
pretation of channel-path-status-word bits, the
program should, prior to the initial use of the area,
store zeros at the location where the channel-path­
status word is to be stored.

Store Channel Report Word

[S]

IB239 1

o 16 28 31

A CRW containing information affecting the
channel subsystem is stored at the designated
location.

The second-operand address is the logical address
of the location where the CR W is to be stored and is
designated on a word boundary.

When a malfunction or other condition affecting
channel-subsystem operation is recognized, a
channel report (consisting of one or more CRWS)

describing the condition is made pending for
retrieval and analysis by the program. The channel
report contains information concerning the identity
and state of a facility of the channel subsystem fol­
lowing the detection of the malfunction or other
condition. For a description of the channel report,
the CRW, and program-recovery actions related to
the channel subsystem, see the section "Channel­
Subsystem Recovery" on page 17-13.

When one or more channel reports are pending, the
instruction causes a CR W to be stored at the desig­
nated location and condition code 0 to be set. A
pending CRW can only be stored by executing
STORE CHANNEL REPORT WORD and, once stored,
is no longer pending. Thus, each pending CRW is
presented only once to the program.

When no channel reports are pending in the
channel subsystem, execution of STORE CHANNEL

REPORT WORD causes zeros to be stored at the des­
ignated location and condition code 1 to be set.

Special Conditions

STORE CHANNEL REPORT WORD can encounter the
program exceptions listed below. The execution of
STORE CHANNEL REPORT WORD is suppressed on
all addressing and protection exceptions. The
second operand must be designated on a word
boundary; otherwise, a specification exception is
recognized.

Resulting Condition Code:

o CRW stored
1 Zeros stored
2
3

Program Exceptions:

• Access (store, operand 2)
• Privileged operation
• Specification

Programming Notes:

1. CRW overflow conditions may occur if STORE

CHANNEL REPORT WORD is not executed to
clear pending channel reports. If the overflow
condition is encountered, one or more channel­
report words have been lost. (See the section
"Channel-Subsystem Recovery" on page 17-13
for details.)

2. A pending CRW can be cleared by any CPU in
the configuration executing STORE CHANNEL

REPORT WORD, regardless of whether a
machine-check interruption has occurred in any
CPu.

Store Subchannel

STSCH 02(82) [S]

18234 1

16 20 31

Control and status information for the designated
subchannel is stored in the designated SCHIB.

General register contains the sub system­
identification word, which designates the sub­
channel for which the information is to be stored.
The second-operand address is the logical address
of the SCHIB and is designated on a word
boundary.

The information that is stored in the SCHIB consists
of the path-management-control word, the scsw,
and three words of model-dependent information.
(See the section "Subchannel-Information Block"
on page 15-1.)

The execution of STORE SUBCHANNEL does not
change any information contained in the sub­
channel.

Condition code 0 is set to indicate that control and
status information for the designated subchannel
has been stored in the SCHIB. Whenever the exe­
cution of STORE SUBCHANNEL results in the setting
of condition code 0, the information in the SCHIB

indicates a consistent state of the subchannel.

Special Conditions

Condition code 3 is set and no other action is taken
when the designated subchannel is not operational
for STORE SUBCHANNEL. A subchannel is not
operational for STORE SUBCHANNEL if the sub­
channel is not provided in the channel subsystem.

STORE SUBCHANNEL can encounter the program
exceptions listed below. Bit positions 0-15 of
general register 1 must contain the value 0001 hex;
otherwise, an operand exception is recognized. The
second operand must be designated on a word
boundary; otherwise, a specification exception is
recognized.

Resulting Condition Code:

o SCHIB stored
1
2
3 Not operational

Program Exceptions:

• Access (store, operand 2)
• Operand
• Privileged operation
• Specification

Chapter 14. I/O Instructions 14-15

Programming Notes:

1. Device status that is stored in the scsw may
include device-busy, control-unit-busy, or
control-unit-end indications.

2. The information that is stored in the SCHIB is
obtained from the subchannel. The STORE
SUBCHANNEL instruction does not cause the
channel subsystem to interrogate the addressed
device.

3. STORE SUBCHANNEL may be executed at any
time to sample conditions existing at the sub­
channel, without causing any pending status
conditions to be cleared.

4. Repeated execution of STORE SUBCHANNEL
without an intervening delay (for example, to
determine when a subchannel changes state)
should be avoided because repeated accesses of
the subchannel by the CPU may delay or pro­
hibit access of the subchannel by the channel
subsystem to update the subchannel.

Test Pending Interruption

TPI [S]

18236 1

o 16 20 31

The I/o-interruption code for a pending I/o-inter­
ruption at the subchannel is stored at the location
designated by the second-operand address, and the
pending I/o-interruption request is cleared.

The second-operand address, when nonzero, is the
logical address of the location where the I/o-inter­
ruption code is to be stored and is designated on a
word boundary.

If the second-operand address is zero, the I/o-inter­
ruption code is stored at reallocations 184-191. In
this case, low-address protection and key-controlled
protection do not apply.

In this access-register mode when the second­
operand address is zero, it is unpredictable whether
access-register translation occurs for access register
B 2. If the translation occurs, the resulting segment­
table designation is not used; that is, the inter­
ruption code still is stored in real locations 184-191.

14-16 ESA/370 Principles of Operation

Pending I/o-interruption requests are accepted only
for those I/o-interruption subclasses allowed by the
I/o-interruption subclass mask in control register 6
of the CPU executing the instruction. If no
I/o-interruption requests exist that are allowed by
control register 6, the I/o-interruption code is not
stored, the second-operand location is not modi­
fied, and condition code 0 is set.

If a pending I/o-interruption request is accepted,
the I/o-interruption code is stored, the pending
I/o-interruption request is cleared, and condition
code 1 is set. The I/o-interruption code that is
stored is the same as would be stored if an I/O
interruption had occurred. However, PSW s are not
swapped, as when an I/o-interruption occurs.

The I/o-interruption code that is stored during exe­
cution of the instruction is dermed as follows:

Word a Subsystem-Identification Word

1 Interruption Parameter

31

Subsystem-Identification Word: See the section
"I/O-Instruction Formats" on page 14-1.

Interruption Parameter: Word 1 contains a four­
byte parameter which is specified by the program
and which previously was passed to the subchannel
in word 0 of the ORB or the PMCW. When a device
presents alert status and the interruption parameter
was not passed previously to the su bchannel by
executing START SUBCHANNEL or MODIFY SUB­
CHANNEL, this field contains zeros.

Special Conditions

TEST PENDING INTERRUPTION can encounter the
program exceptions listed below. The execution of
TEST PENDING INTERRUPTION is suppressed on all
addressing and protection exceptions. The second
operand must be designated on a word boundary;
otherwise, a specification exception is recognized.

Resulting Condition Code:

o Interruption code not stored
1 Interruption code stored
2
3

Program Exceptions:

• Access (store, operand 2, second-operand
address nonzero only)

• Privileged operation
• Specification

Programming Notes:

1. TEST PENDING INTERRUPTION should only be
executed with a second -operand address of zero
when 1/0 interruptions are masked off. Other­
wise, an I/o-interruption code stored by the
instruction may be lost if an I/o-interruption
occurs. The I/o-interruption code that identi­
fies the source of the I/o-interruption is stored
at real locations 184-191, replacing the code
that is stored by the· instruction.

2. In the access-register mode when the second­
operand address is zero, an access exception is
recognized if access-register translation occurs
and the access register is in error. This excep­
tion can be prevented by making the B 2 field
zero or by placing 00000000 hex, 00000001 hex,
or any other valid contents in the access reg­
ister.

Test Subchannel

[S]

'8235' 82

o 16 20 31

Control and status information for the subchannel
is stored in the designated IRB.

General register contains the sub system­
identification word, which designates the sub­
channel for which the information is to be stored.
The second-operand address is the logical address
of the IRB and is designated on a word boundary.

The information that is stored in the IRB consists
of the scsw, the extended-status word, and the
extended-control word. (See the section
"Interruption-Response Block" on page 16-6.)

If the subchannel is status-pending the status­
pending bit of the status-control field is stored as
one. Whether or not the subchannel is status­
pending has an effect on the functions that are per­
formed when TEST SUBCHANNEL is executed.

When the subchannel is status-pending and TEST
SUBCHANNEL is executed, information (as
described above) is stored in the IRB, followed by
the clearing of certain conditions and indications
that exist at the subchannel (as described in
Figure 14-2 on page 14-18). If an I/o-interruption
request is pending for the subchannel, the request is
cleared. Condition code 0 is set to indicate that
these actions have been taken.

When the sub channel is not status-pending and
TEST SUBCHANNEL is executed, information (as
described above) is stored in the IRB, and no condi­
tions or indications are cleared. Condition code 1
is set to indicate that these actions have been taken.

Figure 14-2 on page 14-18 describes which condi­
tions and indications are cleared by TEST SUB­
CHANNEL when the subchannel is status-pending.
All other conditions and indications at the sub­
channel remain unchanged.

Chapter 14. I/O Instructions 14-17

Subchannel Condition*

Alert Int Pri Sec Status
Status S tatus Status Status Pdg

Field Pdg Pdg Pdg Pdg Alone

Function C Nc C C C
Control

Activity Cp Nr Cp Cp Cp
Control

Status Cs Cs Cs Cs Cs
Control

N condition C Nr C C C

Explanation:

* Note that the rightmost column applies to
status-pending when it is alone. The other
four status-pending conditions result in the
clearing actions given. These actions apply
both whe'n a si ngl e status-pendi ng conditi on
occurs and when a combination of the four
status-pending conditions occurs. In the
combination case, all the clearing actions
of the individual cases apply.

C Cleared.
Cp The resume-, start-, halt-, clear-pending,

and suspended conditions are cleared.
Cs The status-pending condition is cleared.
Nc Not changed unless function control indicates

the halt function. If the halt function is
indicated, conditions are cleared as for
status-pending alone.

Nr Not changed unless function control indicates
either the halt function or the start
function and activity control indicates
resume pending and suspended. If the halt
function is indicated, the conditions are
cleared as for status-pending alone. If the
start function is indicated and activity
control indicates resume pending and
suspended, the resume-pending condition and
the N condition are cleared.

Figure 14-2. Conditions and Indications Oeared at the
Subchannel by TEST SUBCHANNEL

Special Conditions

Condition code 3 is set and no other action is taken
when the subchannel is not operational for TEST

SUBCHANNEL. A sub channel is not operational for
TEST SUBCHANNEL if the subchannel is not pro­
vided, has no valid device number associated with
it, or is not enabled.

14·18 ESA/370 Principles of Operation

TEST SUBCHANNEL can encounter the program
exceptions listed below. When the execution of
TEST SUBCHANNEL is terminated on addressing and
protection exceptions, the state of the sub channel is
not changed. Bit positions 0-15 of general register
1 must contain 0001 hex; otherwise, an operand
exception is recognized. The second operand must
be designated on a word boundary; otherwise, a
specification exception is recognized.

Resulting Condition Code:

o IRB stored; sub channel status-pending
1 IRB stored; subchannel not status-pending
2
3 Not operational

Program Exceptions:

• Access (store, operand 2)
• Operand
• Privileged operation
• Specifisiation

Programming Notes:

1. Device status that is stored in the scsw may
include device-busy, control-unit-busy, or
control-unit-end indications.

2. The information that is stored in the I RB is
obtained from the subchannel. The TEST SUB­

CHANNEL instruction does not cause the
channel subsystem to interrogate the addressed
device.

3. When an I/O interruption occurs, it is the result
of a status-pending condition at the sub­
channel, and typically TEST SUBCHANNEL is
executed to clear the status. TEST SUB­

CHANNEL may also be executed at any other
time to sample conditions existing at the sub­
channel.

4. Repeated execution of TEST SUBCHANNEL to
determine when a start function has been com­
pleted should be avoided because there are con­
ditions under which the completion of the start
function mayor may not be indicated. For
example, if the channel subsystem is holding an
interface-control-check (I FCC) condition in
abeyance (for any subchannel) because another
subchannel is already status-pending, and if the
start function being tested by TEST SUB­

CHANNEL has as the only path available for
selection the channel path with the IFCC condi­
tion, then the start function may not be initi­
ated until the status-pending condition in the

other subchannel is cleared, allowing the IFCC
condition to be indicated at the subchannel to
which it applies.

5. Repeated execution of TEST SUBCHANNEL
without an intervening delay, for example, to
determine when a subchannel changes state,
should be avoided because repeated accesses of
the subchannel by the CPU may delay or pro­
hibit access of the subchannel by the channel
subsystem in updating the sub channel.

6. The priority of I/o-interruption handling by a
CPU can be modified by execution of TEST SUB­
CHANNEL. When TEST SUBCHANNEL is exe­
cuted and the designated subchannel has an
I/o-interruption request pending, that I/o-inter­
ruption request is cleared and the scsw is
stored, without regard to any previously estab­
lished priority. The relative priority of the
remaining I/o-interruption requests is
unchanged.

Chapter 14. I/O Instructions 14-19

Chapter 15. Basic 1/0 Functions

Control of Basic 1/0 Functions
Subchanne1-Information Block

Path-Management-Control Word
Subchannel-Status Word
Model-Dependent Area
Summary of Modifiable Fields

Channel-Path Allegiance
Working Allegiance
Active Allegiance
Dedicated Allegiance
Channel-Path Availability
Control-Unit Type

Clear Function
Clear-Function Path Management
Clear-Function Subchannel Modification
Clear-Function Signaling and Completion

Halt Function
Halt-Function Path Management
Halt-Function Signaling and Completion

Start Function and Resume Function
Start-Function and Resume-Function

Path Management ...
Execution of 1/0 Operations

Blocking of Data
Operation-Request Block
Channel-Command Word
Command Code

15-1
15-1
15-2
15-7
15-7
15-7

15-10
15-11
15-11
15-11
15-12
15-12
15-13
15-13
15-13
15-14
15-14
15-15
15-15
15-17

15-18
15-19
15-21
15-21
15-23
15-24

Some I/O instructions specify to the channel sub­
system that a function is to be petformed. Collec­
tively, these functions are referred to as the basic
I/O functions. The basic I/O functions are the clear,
halt, start, resume, and channel-path-reset func­
tions.

Control of Basic 1/0 Functions
Information that is present at the subchannel con­
trols how the clear, halt, resume, and start func­
tions are petformed. This information is communi­
cated to the program in the subchannel-information
block during execution Of,STORESUBCHANNEL.

Designation of Storage Area
Chaining

Data Chaining
Command Chaining '"

Skipping
Program-Controlled Interruption
CCW Indirect Data Addressing
Suspension of Channel-Program

Execution
Commands

Write
Read
Read Backward
Control
Sense
Sense ID
Transfer in Channel "

Command Retry
Concluding 1/0 Operations During

Initiation
Immediate Conclusion of 1/0 Operations
Concluding 1/0 Operations During Data

Transfer
Channel-Path-Reset Function

Channel-Path-Reset-Function Signaling
Channel-Path-Reset

Function -Completion Signaling

Subchannel-Information Block

15-25
15-26
15-28
15-29
15-30
15-30
15-31

15-32
15-34
15-35
15-35
15-36
15-36
15-37
15-39
15-40
15-41

15-41
15-42

15-42
15-43
15-43

15-44

The subchannel-information block (SCHIB) is the
operand of the MODIFY SUBCHANNEL and STORE

SUBCHANNEL instructions. The two rightmost bits
of the SCHIB address are zeros, designating the
SCHIB on a word boundary. The SCllIB contains
three major fields: the path-management-control
word (PMCW), the subchannel-status word (SCSW),

and a model-dependent area. (Figure 15-1 on
page 15-2 shows the format of the PMCW, and
Figure 16-2 on page 16-7 shows the format of the
scsw.)

Chapter 15. Basic I/O Functions 15-1

STORE SUBCHANNEL is used to store the current
PMCW, the SCSW, and model-dependent data of the
designated subchannel. MODIFY SUBCHANNEL
alters certain PMCW fields at the subchannel. When
the program needs to change the contents of one or
more of the PMCW fields, the normal procedure is
(I) to execute STORE SUBCHANNEL to obtain the
current contents, (2) to perform the required mod­
ifications to the PMCW in main storage, and (3) to
execute MODIFY SUBCHANNEL to pass the new
information to the subchannel. The SCHIB has the
following format:

Word e

1

2
Path-Management-Control Word

3

4

5

6

7

8 Subchannel-Status Word

9

Ie

11 Model-Dependent Area

12

Path-Management-Control Word
The path-management-control word (PMCW) has
the format shown in Figure 15-1 when the sub­
channel is valid (see the section "Device Number
Valid (V)" on page 15-4).

15-2 ESAj370 Principles of Operation

e Interruption Parameter

eel ISC leea E I LM I Mt41 D I T I v Device Number

2 LPM PNOM LPUM PIM

3 MBI POM PAM

4 CHPID-a CHPID-1 CHPID-2 CHPID-3

5 CHPID-4 CHPID-5 CHPID-6 CHPID-7

6 aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa

a 16 31

Figure 15-1. PMCW Format

Interruption Parameter: Bits 0-31 of word 0
contain the interruption parameter that is stored as
word 1 of the interruption code. The interruption
parameter can beset to any value by START SUB­
CHANNEL and MODIFY SUBCHANNEL. The initial
value of the interruption parameter is zero.

I/O-Interruption Subclass Code: Bits 2-4 of word
1 contain a binary number (0-7) which corresponds
to the bit position of the I/o-interruption subclass­
mask bit in control register 6 of each CPU in the
configuration. The setting of that mask bit in
control register 6 of a CPU controls the recognition
of interruption requests relating to this subchannel
by that CPU (see the section "Priority of
Interruptions" on page 16-5). The ISC can be set
to any value by MODIFY SUBCHANNEL. The initial
value of the ISC is zero.

Reserved: Bits 0-1 and 5-7 5-6 of word 1 are
reserved and stored as zeros by STORE SUB­
CHANNEL. They must be zeros when MODIFY
SUBCHANNEL is executed; otherwise, an operand
exception is recognized.

Enabled (E): Bit 8 of word 1, when one, indicates
that the subchannel is enabled for all I/O functions.
When the E bit is zero, status presented by the
device is not made available to the program, and
I/O instructions other than MODIFY SUBCHANNEL
and STORE SUBCHANNEL that are executed for the
designated sub channel cause condition code 3 to be
set. The E bit can be either zero or one when
MODIFY SUBCHANNEL is executed; initially, all sub­
channels are not enabled; IPL causes the IPL I/O
device to become enabled.

limit Mode (M): Bits 9-10 of word 1 defme the
limit mode (LM) of the subchannel. The limit
mode is used by the channel subsystem when

address-limit checking is invoked for an I/O opera­
tion. (See the section "Address-Limit Checking"
on page 17-12.) Address-limit checking is under
the control of the address-limit-checking-control bit
that is passed to the subchannel in the operation­
request block (ORB) during the execution of START

SUBCHANNEL. (See the section "Address-Limit­
Checking Control (A)" on page 15-22. The defi­
nitions of these bits, whose values are used during
data transfer, are as follows:

Bit Bit
9 1 0 Function
o 0 Initialized value. No limit checking is

performed for this subchannel.
o 1 Data address must be equal to, or

greater than, the current address limit.
o Data address must be less than the

current address limit.
Reserved.

Bits 9 and 10 can contain any of the f!fst three bit
combinations shown above when MODIFY SUB­

CHANNEL is executed. Specification of the reserved
bit combination in the operand causes an operand
exception to be recognized when MODIFY SUB­

CHANNEL is executed.

Specification of the reserved bit combination in the
operand causes an operand exception to be recog­
nized when MODIFY SUBCHANNEL is executed.

Measurement Mode Enable (MM): Bits 11 and 12
of word 1 enable the measurement-block-update
mode and the device-connect-time-measurement
mode, respectively, of the subchannel. These bits
can contain any value when MODIFY SUBCHANNEL

is executed; initially, neither measurement mode is
enabled. The defmition of each of these bits is as
follows:

Bit
11 Measurement-Block-Update Enable:
o Initialized value. The subchannel is not

enabled for measurement-block update.
Storing of measurement-block data does not
occur.

Bit

The subchannel is enabled for measurement­
block update. If the measurement-block­
update mode is active, measurement data is
accumulated in the measurement block at
the time channel-program execution is com­
pleted or suspended at the subchannel, pro­
vided no error conditions described by sub­
channel logout have been detected. If the
measurement-block-update mode is inactive,
no measurement-block data is stored.

12 Device-Connect-Time-Measurement Enable:
o Initialized value. The subchanne1 is not

enabled for device-connect-time measure­
ment. Storing of the device-connect-time
interval (DCTI) in the extended-status word
(ESW) does not occur.

1 The sub channel is enabled for device­
connect-time measurement. If the device­
connect-time-measurement mode is active
and timing facilities are provided for the
subchannel, the value of the DCTI is stored
in the ESW when TEST SUBCHANNEL is exe­
cuted after channel-program execution is
completed or suspended at the subchannel,
provided no error conditions described by
subchannel logout have been detected. If
the device-connect-time-measurement mode
is inactive, no measurement values are
stored in the ESW.

The meaning of the measurement-mode (MM)

enable bits described above applies when the
timing-facility bit for the subchannel is one. When
the timing-facility bit is zero, the effect of the MM

bits is changed, as described below under "Timing
Facility." (For more discussion on measurement
modes, see the sections "Measurement-Block
Update" on page 17-2 and "Device-Connect-Time
Measurement" on page 17-5.)

Multipath Mode (0): Bit 13 of word 1, when one,
indicates that the sub channel operates in multipath
mode when executing an I/O operation or chain of
I/O operations. For proper operation in multipath
mode when more than one channel path is avail­
able for selection, the associated device must have
the dynamic-reconnection feature installed and

Chapter 15. Basic I/O Functions 15-3

must be set up for multipath-mode operation.
During performance of a start function in multipath
mode, a device is allowed to request service from
the channel subsystem over any of the channel
paths indicated at the subchannel as· being available
for selection (see the sections "Logical-Path Mask
(LPM)" and "Path-Available Mask (PAM)" on
page 15-7). Bit 13, when zero, indicates that the
subchannel operates in single-path mode when exe­
cuting an I/O operation or chain of I/O operations.
In single-path mode, the entire start function is per­
formed by using the channel path on which the
fIrst command of the I/O operation or chain of I/O

operations was accepted by the device. The D bit
can be either zero or one when MODIFY SUB­

CHANNEL is executed; initially the subchannel is in
single-path mode.

Timing Facility (T): Bit 14 of word 1, when one,
indicates that the channel-sub system-timing facility
is available for the subchannel and is under the
control of the two measurement-mode-enable bits
(MM) and SET CHANNEL MONITOR. Bit 14, when
zero, indicates that the channel-subsystem-timing
facility is not available for the subchannel. When
bit 14 is zero, the START SUBCHANNEL count is the
only measurement data that can be accumulated in
the measurement block for the subchannel. Storing
of the START SUBCHANNEL count is under the
control of bit 11 and SET CHANNEL MONITOR, as
described above under "Measurement Mode
Enable." Similarly, if the T bit is zero, no device­
connect-time-interval (DCTI) values can be meas­
ured for the subchannel. (See the sections
"Measurement-Block Update" on page 17-2 and
"Device-Connect-Time Measurement" on
page 17-5.)

Device Number Valid (V): Bit 1 5 of word 1, when
one, indicates that the device-number field (see
below) contains a valid device nUlnber and that a
device associated with this subchannel may be
physically installed. Bit 15 when zero indicates that
the subchannel is not valid, there ·is no I/O device
currently associated With the subchannel, and the
contents of all other defmed fields of the SCHIB are
unpredictable.

Device Number: Bits 16-31 of word 1 contain the
binary representation of the four-digit hexadecimal
device number of the device that is associated with
this subchannel. The device number is a system­
unique parameter that is assigned to the subchannel
and the associated device when the device is
installed.

15-4 ESAj370 Principles of Operation

Logical .. Path Mask (LPM): Bits 0-7 of word 2
indicate the logical availability of channel paths to
the associated device. Each bit of the LPM corre­
sponds one-for-one, by relative bit position, with a
CHPID located in an associated byte of words 4 and
5 of the SCHIB. (Each CHPID contains an 8-bit
value which uniquely identifies the physical channel
path.) A bit set to one means that the corre­
sponding channel path is logically available; a zero
means the corresponding channel path is logically
not available. When a channel path is logically not
available, the channel subsystem does not use that
channel path to initiate performance of any clear,
halt, resume, or start function, except when a dedi­
cated allegiance exists for that channel path. When
a dedicated allegiance exists at the subchannel for a
channel path, the logical availability of the channel
path is ignored whenever a clear, halt, resume, or
start function is performed. (See the section
"Channel-Path Allegiance" on page 15-10). If the
subchannel is idle, the logical availability of the
channel path is ignored whenever the control unit
initiates a request to present alert status to the
channel subsystem. The logical availability of a
channel path associated with the subchannel can be
changed by setting the corresponding LPM bit in the
SCHIB and then executing MODIFY SUBCHANNEL,

or by setting the corresponding LPM bit in the ORB

and then executing START SUBCHANNEL. Initially,
each installed channel path is logically available.

Path-Not-Operational Mask (PNOM): Any of bits
8-15 of word 2, when one, indicates that a path­
not-operational condition has been recognized on
the corresponding channel path. Each bit of the
PNOM corresponds one-for-one, by relative bit posi­
tion, with a CHPID located in an associated byte of
words 4 and 5 of the SClIIB. (Each CHPID contains
an 8-bit value which uniquely identifies the physical
channel path.) The channel subsystem recognizes a
path-not-operational condition when, during an
attempted device selection in order to perform a
clear, halt, resume, or start function, the device
associated with the subchannel appears not opera­
tional on a· channel path that is operational for the
subchannel. When a path-not-operational condi­
tion is recognized, the state of the channel path
changes from operational for the subchannel to not
operational for the subchannel. A channel path is
operational for the subchannel if the associated
device appeared operational on that channel path
the last tune the channel subsystem attempted
device selection in order to perform a clear, halt,
resume, or start function. A device appears to be
operational on a channel path when the device

responds to an attempted device selection. A
channel path is not operational for the subchannel
if the associated device appeared not operational on
that channel path the last time the channel sub­
system attempted device selection in order to
perform a clear, halt, resume, or start function.
Any of bits 8-15 of word 2, when zero, indicates
that a path-not-operational condition has not been
recognized on the corresponding channel path.

Initially, each of the eight possible channel paths
associated with each subchannel are considered to
be operational, regardless of whether the respective
channel paths are installed or available; therefore,
unless a _path-not-operational condition is recog­
nized during initial program loading, the PMCW, if
stored, contains a PNOM of all zeros if stored prior
to executing a CLEAR SUBCHANNEL, HALT SUB­

CHANNEL, RESUME SUBCHANNEL, or START SUB­

CHANNEL instruction.

Programming Note: The PNOM indicates those
channel paths for which a path-not-operational
condition has been recognized during the perform­
ance of the most recent clear, halt, resume, or start
function. That is, the PNOM indicates which of the
channel paths associated with the subchannel have
made a transition from the operational to the not­
operational state for the subchannel during the per­
formance of the most recent clear, halt, resume, or
start function. However, the transition of a
channel path from the not-operational to the oper­
ational state for the subchannel is indicated in the
POM. Therefore, the POM must be examined in
order to determine whether any of the channel
paths that are associated with a designated sub­
channel are operational for the subchannel.

Furthermore, while performing either a start or
resume function, the transition of a channel path
from the not-operational to the operational state
for the subchannel is recognized by the channel
subsystem only during the initiation sequence for
the frrst command specified by the start function or
implied by. the resume function. Therefore, a
channel path which is currently not operational for
the subchannel can be used by the device associated
with the subchannel when reconnecting to the
channel subsystem in order to continue command
chaining; however, the channel subsystem does not
indicate a transition of that channel path from the
not-operational to the operational state for the sub­
channel in the PO M.

POM Value and
Device State
Before Selection
Attempt

Value of Specified Bit
Subsequent to Selection
Attempt

Device SCSW
State1 POM POM PNOM2

OP e 1 e
NOP e e e
OP 1 ·1 e
NOP 1 e 1

Explanation:

~ Device state as it appears on the
corresponding channel path.

Nbit

e
e
e
13

2 Prior to the attempted device selection
during the performance of either a start
function or a resume function while the
subchannel is suspended, the channel
subsystem clears all existing
path-not-operational conditions, if any,
at the designated subchannel.

3 The N bit (bit 15, word e of the SCSW) is
indicated to the program and the N
condition is cleared at the subchannel when
TEST SUBCHANNEL is executed the next time
the subchannel is status-pending for other
than intermediate status alone provided that
it is not also suspended.

NOP The device is not operational on the
corresponding channel path.

OP The device is operational on the
corresponding channel path.

Figure 15-2. Resulting POM, PNOM, and N-bit Values
Subsequent to Selection Attempt

Last-Path-Used Mask (LPUM): Bits 16-23 of word
2 indicate the channel path that was last used for
communicating or transferring information between
the channel subsystem and the device. Each bit of
the LPUM corresponds one-for-one, by relative bit
position, with a CHPID located in an associated
byte of words 4 and 5 of the SCI-lIB. (Each CHPID

contains an 8-bit value which uniquely identifies
the physical channel path.) Each bit of the LPUM

is stored as zero except for the bit which corre­
sponds to the channel path last used whenever one
of the following occurs:

1. The first command of a start or resume func­
tion is accepted by the device (see the section
"Activity Control (AC)" on page 16-13).

Chapter 15. Basic I/O Functions 15-5

2. The device and channel subsystem are actively
cOnlmunicating when the suspend function is
performed for . the channel program in exe­
cution.

3. Status has been accepted from the device that is
recognized as an interruption condition, or a
condition has been recognized that suppresses
command chaining (see the section "Inter­
ruption Conditions" on page l6-2).

4. An interface-control-check condition has been
recognized (see the section "Interface-Control
Check" on page 16-32), and no subchannel­
logout information is currently present in the
subchannel.

The LPUM field of the PMCW contains the most
recent setting. The initial value of the LPUM is
zero.

Path-Installed Mask (PIM): Bits 24-31 of word 2
indicate which of the channel paths 0-7 to the 1/0

device are physically installed. The PIM indicates
the validity of the channel-path identifiers (see
below) for those channel paths that are physically
installed. Each bit of the PIM corresponds
one-for-one, by relative bit position, with a CHPID

located in an associated byte of words 4 and 5 of
the SCHIB. (Each CHPID contains a value which
uniquely identifies the physical channel path.) A
PIM bit stored as one indicates that the corre­
sponding channel path is installed. A PIM .bit
stored as zero indicates that the correspondmg
channel path is not installed. The PIM always
reflects the full complement of installed paths to
the device regardless of how the system is config­
ured. Th~refore, some of the channel paths indi­
cated in the PIM may not be physically available in
that configuration, as indicated by the bit settings
in the path-available mask (see below). The initial
value of the PIM indicates all the physically installed
channel paths to the device.

Measurement-Block Index (MLI): Bits 0-15 of
word 3 form an index value used by the
measurement-block-update facility when the
measurement-block-update mode is active (see the
section "Set Channel Monitor" on page 14-10 and
the subchannel is enabled for the mode (see the
section "Measurement Mode Enable (MM)" on
page 15-3). When the measurement-block index is
used, five zero bits are appended on the right, ~d
the result is added to the measurement-block-ongm
address designated by SET CHANNEL MONITOR.

The calculated address, called the measurement­
block address, designates the beginning of a 32-byte

15-6 ESA/370 Principles of Operation

storage area where 16 bytes of measurement data
are stored (see the section "Measurement Block"
on page 17-2). The MBI can contain any value
when MODIFY SUBCHANNEL is executed; the initial
value is zero.

Path-Operational Mask (POM): Bits 16-23 of
word 3 indicate the last known operational state of
the device on the corresponding channel paths.
Each bit of the POM corresponds one-for-one, by
relative bit position, with a CHPID located in an
associated byte of words 4 and 5 of the SCHIB.

(Each CHPID contains an 8-bit value which
uniquely identifies the physical channel path.) If
the associated device appeared operational on a
channel path the last time the channel subsystem
attempted device selection in order to perform a
clear, halt, resume, or start function, then the
channel path is operational for the subchannel, and
the bit corresponding to the channel path in the
POM is one. A device appears to be operational on
a channel path when the device responds to an
attempted device selection. A channel path is also
operational for the subchannel if MODIFY SUB­

CHANNEL is executed and the bit corresponding to
that channel path in the POM is specified as one.

If the associated device appeared not operational on
a channel path the last time the channel subsystem
attempted device selection in order to perform a
clear, halt, resume, or start function, then the
channel path is not operational for the subchannel,
and the bit corresponding to the channel path in
the POM is zero. A channel path is also not opera­
tional for the sub channel if MODIFY SUBCHANNEL

is executed and the bit corresponding to that
channel path in the PO M is specified as zero.

If the device associated with the subchannel
appears not operational on a channel path that is
operational for the subchannel during an attempted
device selection in order to perform a clear, halt,
resume, or start function, then the channel sub­
system recognizes a path-not-operational condition.
If an scsw is subsequently stored, then bit 15 of
word 1 is one, indicating the path-not-operational
condition. When a path-not-operational condition
is recognized, the state. of the channel path changes
from operational for the subchannel to not opera­
tional for the subchannel.

When the channel path is not operational for the
sub channel , a path-not-operational condition
cannot be recognized. Moreover, a channel path
that is not operational for the subchannel may be

available for selection; if the channel subsystem
chooses that channel path while executing a path­
management operation, and if during the the
attempted device selection, the device appears to be
operational again on that channel path, then the
state of the channel path changes from not opera­
tional for the sub channel to operational for the
subchannel.

The POM can contain any value when MODIFY

SUBCHANNEL is executed. Initially, each of the
eight possible channel paths associated with each
subchannel are considered to be operational,
regardless of whether the respective channel paths
are installed or available; therefore, unless a path­
not-operational condition is recognized during
initial program loading,the PMCW, if stored, con­
tains a PO M of all ones if stored prior to executing a
CLEAR SUBCHANNEL, HALT SUBCHANNEL, RESUME

SUBCHANNEL, or START SUBCHANNEL instruction.

Path-Available Mask (PAM): Bits 24-31 of word 3
indicate the physical availability of installed channel
paths. Each· bit of the PAM corresponds
one-for-one, by relative bit position, with a CHPID

located in an associated byte of. words 4 and 5 of
the SCHIB. (Each CHPID contains an 8-bit value
which uniquely identifies the physical channel
path.) A PAM bit of one indicates that the corre­
sponding channel path is physically available for
use in accessing the device. A PAM bit of zero indi­
cates the channel path is not physically available
for use in accessing the device. When a channel
path is not physically available, it may, depending
upon the model and the extent of failure, be used
during performance of the reset-channel-path func­
. tion. A channel path which is physically available
may become not physically available as a result of
reconfiguring the system, or this may occur as a
result of the performance of the channel-path-reset
function. The initial value of the PAM reflects the
set of channel paths by which the I/O device is
physically accessible at the time of initialization.

Note: The. change in the availability of a channel
path affects all subchannels having access to that
channel path. Whenever the setting of a PAM bit is
referred to in conjunction with the availability
status of a channel path, for brevity, reference is
made in this chapter to a single PAM bit instead of
to the respective PAM bits in all of the affected sub­
channels.

Channel-Path Identifiers (CHPIDs): Words 4 and
5 contain eight one-byte channel-path identifiers
corresponding to channel paths 0-7 of the PIM. A

CHPID is valid if the corresponding PIM bit is one.
Each valid CHPID contains the identifier of a phys­
ical channel path to a control unit by which the
associated I/O device may be accessed. A unique
CHPID is assigned to each physical channel path in
the system.

Different devices that are accessible by the same
physical channel path have, in their respective sub­
channels, the same CHPID value. The CHPID value
may, however, appear in each subchannel in dif­
ferent locations in the CHPID fields 0-7.

Subchannels that share an identical set of channel
paths have the same corresponding PIM bits set to
ones. The channel-path identifiers (CHPIDS) for
these channel paths are the same and occupy the
same respective locations in each SCHIB.

Reserved: Word 6 of the SCHIB is reserved and is
stored as zero by STORE SUBCHANNEL. Bits 0-31
of word 6 of the SCHIB operand must be zeros,
when MODIFY SUBCHANNEL is executed; otherwise,
an operand exception is recognized.

Subchannel-Status Word
Words 7-9 contain a copy of the scsw. The
format of the scsw is described in the section
"Subchannel-Status Word" on page 16-6. The
scsw is stored by executing either STORE SUB­

CHANNEL or TEST SUBCHANNEL (see the sections
"Store Subchannel" on page 14-15 and "Test
Subchannel" on page 14-17).

Model-Dependent Area
Words 1 0-12 contain model-dependent information .

Summary of Modif.~ble Fields
Figure 15-3 on page 15-8 lists the initial settings
for fields in a subchannel whose device-number­
valid bit is set to one, and indicates what modifies
the fields.

All of the PMCW fields contain meaningful informa­
tion when STORE SUBCHANNEL is executed and the
designated subchannel is idle. Subchannel fields
that the channel subsystem does not modify
contain valid information whenever STORE SUB­

CHANNEL is executed, provided that the device­
number-valid bit is one. The validity of the sub­
channel fields that are modifiable by the channel
subsystem depends on the state of the subchannel
at the time STORE SUBCHANNEL is executed.

Chapter 15. Basic I/O Functions 15-7

Modified
Program Modifies by Channel

Subchannel Field Initial Value 1 by Executing Subsystem2

Interruption parameter Zeros MSCH,SSCH No

I/O-interruption subclass code Zeros MSCH No

Enabled Zero MSCH No

Limit mode Zeros MSCH No

Measurement mode Zeros MSCH Yes l

Multipath mode Zero MSCH No

Timing facil ity Installed value 4 None No

Device number valid Installed value 4 None No

Device number Installed value4 None No

Logical-path mask Path-instal led-mask MSCH,SSCH No
value

Path-not-operational, mask Zeros CSCH,SSCH,RSCH5 Yes

Last-path-used mask Zeros CSCH Yes

Path-installed mask Installed value4 None No

Measurement-block index Zeros MSCH No

Path-operational mask Ones CSCH,MSCH,RSCH5 Yes

Path-available mask Installed values 4 6 None Yes 6

Channel-path 10 0-7 Installed value4 None No

Subchannel-status word Zeros TSCH Yes

Model-dependent area * None *

Figure 15-3 (Part 1 of 2). Modification of Subchannel Fields

15-8 ESAj370 Principles of Operation

Explanation:

These fields are not meaningful if the subchanne1 is not valid.
Initializing of a subchanne1 is performed when I/O-system reset occurs.
(See the section "I/O-System Reset" in Chapter 17, "1/0 Support
Functions.") One or more of the installed-value parameters that are
unmodifiab1e by the program may be set when the subchanne1 is idle. In
this case, all the program-modifiable fields are set to their initialized
values, and the program is notified of such a change by a channel report.
(See the section "Channe1-Report Word" in Chapter 17, "I/O
Support Functions.")

2 Subchannel fields that are not normally modifiable by the channel subsystem
may be modified by external means. When this occurs, the program is noti­
fied of the change by a channel report that is made pending at the time of
the change.

3 When any of the following error conditions associated with the
measurement-b1ock-update mode are detected, the measurement-b1ock-update
mode is disabled by the channel subsystem (bit 11, word 1, of the SCHIB
zero) in the affected subchannel. The device-connect-time-measurement­
enable bit (bit 12,word 1 of the SCHIB) is never modified by the channel
subsystem.

4

5

6

*

Measurement program check
Measurement protection check
Measurement data check
Measurement key check

This information is entered when the channel-subsystem configuration is
established.

The mask is modified by the resume function only when the subchanne1 is in
the suspended state at the time RESUME SUBCHANNEL is executed.

The channel subsystem may modify the PAM to reflect changes in the system
configuration caused by partitioning or unpartitioning channel paths
because of reconfiguration or permanent failure of part of the I/O system.

Model-dependent.

Figure 15-3 (Part 2 of 2). Modification of Subchannel Fields

Chapter 15. Basic I/O Functions t 5-9

\

Programming Notes:

1. System performance may be degraded if the
LPM is not used to make channel paths for
which a path-not-operational condition has
been indicated in the PNOM logically not avail­
able.

2. If, during the performance of a start function, a
channel path becomes not physically available
because a channel-path failure has been recog­
nized, continued performance of the start func­
tion may be precluded. That is, the program
mayor may not be notified, and the sub­
channel may remain in the subchannel-and­
device-active state until cleared by the perform­
ance of the clear function.

3. If the same MBI is placed in more than one
subchannel by the program, the channel­
subsystem-monitoring facility updates the same
locations with measurement data relating to
more than one sub channel. In this case, the
values stored in the measurement data are
unpredictable. (See the section "Measurement­
Block Update" on page 17-2.)

4. Modification of the I/O configuration (reconfig­
uration) may be accomplished in various ways
depending on the model. If the reconfiguration
procedure affects the physical availability of a
channel path, then any change in availability
can be detected by executing STORE SUB­

CHANNEL for a subchannel that has access to
the channel path and by subsequently exam­
ining the PAM bits of the SCHIB.

5. The defmitions of the PNOM, POM, and N bit
are such that a path-not-operational condition
is reported to the program only the frrst time
the condition is detected by the channel sub­
system after the corresponding PO M bit is set to
one.

For example, if the POM bit for every channel
path available for selection is one and the
device appears not operational on all corre­
sponding channel paths while the channel sub­
system is attempting to initiate a start function
at the device, the channel subsystem makes the
subchannel status-pending, with deferred condi­
tion code 3 and with the N bit stored as one.
The PNOM in the SCHIB indicates the channel
path or channel paths ,that appeared not opera­
tional, for which the corresponding PO M bits

15-10 ESA/370 Principles of Operation

have been set to zeros. The next START SUB­

CHANNEL causes the channel subsystem to
again attempt device selection by choosing a
channel path from among all of the channel
paths that are available for selection. If device
selection is not successful and all channel paths
available for selection have again been chosen,
deferred condition code 3 is set, but the N bit
in the scsw is zero. The POM contains zeros in
at least those bit positions that correspond to
the channel paths that are available for
selection. (See the section "Channel-Path
Availability" on page 15-12 for a description
of the term "available for selection.") When the
N bit in the scsw is zero, the PNOM is also
zero.

6. If the program is to detect path-not-operational
conditions, the PNOM should be inspected fol­
lowing the execution of TEST SUBCHANNEL

(which results in the setting of condition code
zero and the valid storing of the N bit as one)
and preceding the performance of another start,
resume, halt, or clear function at' the sub­
channel.

Channel-Path Allegiance
The channel subsystem establishes allegiance condi­
tions between subchannels and channel paths. The
kind of allegiance established at a subchannel for a
channel path or set of channel paths depends upon
the state of the subchannel, the device, . and' the
information, if any, transferred between the channel
subsystem and device. The way in which path
management is handled during the performance of
a clear, halt, resume, or start function is determined
by the kind of allegiance, if any, currently recog­
nized between a subchannel and a channel path.

Performing the clear function at a subchannel clears
any currently existing allegiance condition in the
subchannel for all channel paths.

Performing the reset-channel-path function clears
all currently existing allegiances for that channel
path in all subchannels.

When a channel path becomes not physically avail­
'able, all internal indications of prior allegiance con­
ditions are cleared in all subchannels having access
to the designated channel path.

Working Allegiance

A subchannel has a working allegiance for a
channel path when the subchannel becomes device­
active on that channel path. Once a working alle­
giance is established, the channel subsystem main­
tains the working allegiance at the subchannel for
the channel path until either the subchannel is no
longer device-active or a dedicated allegiance is
recognized, whichever occurs earlier. Unless a dedi­
cated allegiance is recognized, a working allegiance
for a channel path is extended to the set of channel
paths that are available for selection if the device is
specified to be operating in multipath mode (that
is, the multipath-mode bit is stored as one in the
SCHIB). Otherwise, the working allegiance remains
only for that channel path over which the start
function was initiated.

Once a working allegiance is established for a
channel path or set of channel paths, the working
allegiance is not changed until the subchannel is no
longer device-active or until a dedicated allegiance
is established. If the subchannel is operating in
single-path mode, a working allegiance is main­
tained only for a single path.

While a working allegiance exists at a subchannel,
an active allegiance can occur only for a channel
path for which the working allegiance is being
maintained, unless the device is specified as oper­
ating in multipath mode. When the device is speci­
fied as operating in multipath mode, an active alle­
giance may also occur for a channel path that is
not available for selection if the presentation of
status by the device on that channel path causes an
alert interruption condition to be recogriized.

A working allegiance is cleared in any subchannel
having access to a channel path if the channel path
becomes not physically available.

Active Allegiance

A subchannel has an active allegiance established
for a channel path no later than when active com­
munication has been initiated on that channel path
with an I/O device. The subchannel can have an
active allegiance to only one channel path at a
time. While the subchannel has an active allegiance
for a channel path, the channel subsystem does not
actively communicate with that device on any other

channel path. When the channel subsystem accepts
a no-longer-busy indication from the device that
does not cause an interruption condition, this status
does not constitute the initiation of active commu­
nication. An active allegiance at a subchannel for a
channel path is terminated when the channe1 sub­
system is no longer actively communicating with
the I/O device on that channel path.

A working allegiance can become an active alle­
giance.

Dedicated Allegiance

If a channel path is physically available (that is, the
corresponding PAM bit is one), a dedicated alle­
giance may be recognized for that channel path. If
a channel path is not physically available, a dedi­
cated allegiance cannot be recognized for the corre­
sponding channel path. The channel subsystem
establishes a dedicated allegiance at the subchannel
for a channel path when the subchannel becomes
status-pending with alert status, and device status
containing the unit-check indication is present at
the subchannel. A dedicated allegiance is main­
tained until the sub channel is no longer start­
pending (unless it becomes suspended) or resume­
pending following performance of the next start
function, clear function, or channel-path-reset func­
tion or the next resume function if applicable. If
the subchannel becomes suspended, the dedicated
allegiance remains until the resume function is initi­
ated and the subchannel is no longer resume­
pending. Unless a clear or channel-path-reset func­
tion is performed, the sub channel establishes a
working allegiance when the dedicated allegiance
ends. This occurs when the sub channel becomes
device-active. While a dedicated allegiance exists at
a sub channel , only that channel path is available
for selection until the dedicated-allegiance condition

, is cleared.

A dedicated allegiance can become an active alle­
giance. While a dedicated allegiance exists, an
active allegiance can only occur for the same
channel path.

A currently existing dedicated allegiance is cleared
at any sub channel having access to a channel path
when the channel path becomes not physically
available or whenever the device appears not opera­
tional on the channel path for which the dedicated
allegiance exists.

Chapter 15. Basic I/O Functions 15-11

Channel-Path Availability

When a channel path is not physically available,
the channel subsystem does not use the channel
path to perform any of the basic I/O functions
except, in some cases, the channel-path-reset func­
tion and does not respond to any control-unit­
initiated requests on that same channel path. If a
channel path is not physically available, the condi­
tion is indicated by the corresponding path­
available-mask (PAM) bit being zero when STORE

SUBCHANNEL is executed (see the section "Path­
Available Mask (PAM)" on page 15-7). Further­
more, if the channel path is not physically available
for the subchannel designated by STORE SUB­

CHANNEL, then it is not physically available for
any subchannel that has a device which is acces­
sible by that channel path.

Unless a dedicated allegiance exists at a subchannel
for the channel path, a channel path becomes avail­
able for selection if it is logically available and
physically available (as indicated by the bits in the
LPM and PAM corresponding to the channel path
being stored as ones when STORE SUBCHANNEL is
executed). If a dedicated allegiance exists at a sub­
channel for the channel path, only that channel
path is available for selection, and the setting of the
corresponding LPM bit is ignored. If the channel
path is currently being used and a dedicated alle­
giance exists at the subchannel for the channel
path, selection of the device is delayed until the
channel path is no longer being used.

The availability status of the eight logical paths to
the associated device described in Figure 15-4 is
determined by the hierarchical arrangement of the
corresponding bit values contained in the PIM, PAM,

and LPM and by existing conditions, if any, recog­
nized by the channel subsystem.

15-12 ESAj370 Principles of Operation

Value of
Bit Inl Channel-

Path
PIM PA M LPM Conditi on1 Channel-Path State

9 9 2 - X Not installed

1 9 - X Not physically available

1 1 93 X Not logically available

1 1 }3 Active Available for selection 4

1 1 1 Inactive Available for selection

Explanation:

1 If the channel path is recogniz~d as being
used in active comnunication with a device,
the channel-path condition is described as
active. If the channel path is recognized as
not being used in active communication, the
condition is described as inactive.

2 A PAM bit cannot have the value one when the
corresponding PIM bit has the value zero.

3 If a dedi cated all egi ance exi sts to the
channel path at the subchannel, the state of
the bit is ignored, and the channel path is
considered to be available for selection.

4 The channel path may appear to be active when
a channel-path-terminal condition has been
recognized.

X Condition is not meaningful.

- Bit value is not meaningful.

Figure 15-4. Path Condition and Path-Availability
Status for PIM, PAM, and LPM Values

Control-Unit Type

In the sections "Clear Function" on page 15-13,
"Halt Function" on page 15-14, and "Start Func­
tion and Resume Function" on page 15-17 refer­
ence is made to type 1, type 2, and type 3 control
units. For a description of these control-unit types,
see the System Library publication IBM
System/360 and System/370 I/O Interface Channel
to Control Unit OEMI, GA22-6974.

Clear Function
Subsequent to the execution of CLEAR SUB­

CHANNEL, the channel subsystem perfonns the
clear function. Perfonnance of the clear function
consists in (1) executing a path-management opera­
tion, (2) modifying fields at the subchannel,
(3) issuing the clear signal to the associated device,
and (4) causing the sub channel to be made status­
pending, indicating completion of the clear func­
tion.

Clear-Function Path Management

A path-management operation is executed as part
of the clear function in order to examine channel­
path cOl.lditions for the associated subchannel and
to attempt to choose an available channel path on
which the clear signal can be issued to the associ­
ated device.

Channel-path conditions are examined in the fol­
lowing order:

1. If the channel subsystem is actively communi­
cating or attempting to establish active commu­
nication with the device to be signaled, the
channel path that is in use is chosen.

2. If the channel subsystem is in the process of
accepting a no-longer-busy indication (which
will not cause an interruption condition to be
recognized) from the device to be signaled, and
the associated subchannel has no allegiance to
any channel path, the channel path that is in
use is chosen.

3. If the associated subchannel has a dedicated
allegiance for a channel path, that channel path
is chosen.

4. If the associated subchannel has a working alle­
giance for one or more channel paths, one of
those channel paths is chosen.

5. If the associated subchannel has no allegiance
for any channel path, if a last-used channel
path is indicated, and if that channel path is
available for selection, that channel path is
chosen. If that channel path is not available
for selection, either no channel path is chosen
or a channel path is chosen from the set of
channel paths, if any, that are available for
selection (as though no last-used channel path
were indicated).

6. If the associated subchannel has no allegiance
for any channel path, if no last-used channel
path is indicated, and if there exist one or more
channel paths that are available for selection,
one of those channel paths is chosen.

If none of the channel-path conditions listed above
apply, no channel path is chosen.

For item 4, for item 5 under the specified condi­
tions, and for item 6, the channel subsystem
chooses a channel path from a set of channel paths.
In these cases the channel subsystem may attempt
to choose a channel path, provided that the fol­
lowing conditions do not apply:

1. A channel-path-terminal condition exists for
the channel path.

2. Another subchannel has an active allegiance for
the channel path.

3. The device to be signaled is attached to a
type-l control unit, and the subchannel for
another device attached to the same control
unit has an allegiance to the same channel
path, unless the allegiance is a working alle­
giance and primary status has been accepted by
that subchannel.

4. The device to be signaled is attached to a
type-3 control unit, and the sub channel for
another device attached to the same control
unit has a dedicated allegiance to the same
channel path.

Clear-Function Subchannel
Modification

Path-management-control indications at the sub­
channel are modified during perfonnance of the
clear function. Effectively, this modification occurs
after the attempt to choose a channel path, but
prior to the attempt to select the device to· issue the
clear signal. The path-management-control indi­
cations that are modified are as follows:

1. The state of all eight possible channel paths at
the subchannel is set to operational for the sub­
channel.

2. The last-path-used indication is reset to indi­
cate no last-used channel path.

3. Path-not-operational conditions, if any, are
reset.

Chapter 15. Basic I/O Functions 15-13

Clear-Function Signaling and
Completion

Subsequent to the attempt to choose a channel
path and the modification of the path-management­
control fields, the channel subsystem, if conditions
allow, attempts to select the device to issue the
clear signal. (See the section "Clear Signal" on
page 17-5.) Conditions associated with the sub­
channel and the chosen channel path, if any, affect
(1) whether an attempt is made to issue the clear
signal, and (2) whether the attempt to issue the
clear signal is successful. Independent of these con­
ditions, the sub channel is subsequently set status­
pending and the performance of the clear function
is complete. These conditions and their effect on
the clear function are described as follows:

No Attempt Is Made to Issue the Clear Signal:
The channel subsystem does not attempt to issue
the clear signal to the device if any of the following
conditions exist:

1. No channel path was chosen. (See the section
"Clear-Function Path Management" on
page 15-13.)

2. The chosen channel path is no longer available
for selection.

3. A channel-path-terminal condition exists for
the chosen channel path.

4. The chosen channel path is currently being
used to actively communicate with a different
device.

5. The device to be signaled is attached to a
type-l control unit, and the subchannel for
another device attached to the same control
unit has an allegiance to the . same channel
path, unless the allegiance is a working alle­
giance and primary status has been accepted by
that sub channel.

6. The device to be signaled is attached to a
type-3 control unit, and the sub channel for
another device attached to the same control
unit has a dedicated allegiance to the same
channel path.

If any of the conditions above exist, the subchannel
remfl,ins clear-pending and is set status-pending, and
the performance of the clear function is complete.

15-14 ESA/370 Principles of Operation

The Attempt to Issue the Clear Signal Is Not Suc­
cessful: When the channel subsystem attempts to
issue the clear signal to the device, the attempt may
not be successful because of the following condi­
tions;

1. The control unit or device signals a busy condi­
tion when the channel subsystem attempts to
select the device to issue the clear signal.

2. A path-not-operational condition is recognized
when the channel subsystem attempts to select
the device to issue the clear signal.

3. An error condition is encountered when the
channel subsystem attempts to issue the clear
signal.

If any of the conditions above exist and the channel
subsystem either determines that the attempt to
issue the clear signal was not successful or cannot
determine whether the attempt was successful, the
sub channel remains clear-pending and is set status­
pending, and the perfonnance of the clear function
is complete.

The Attempt to Issue the Clear Signal Is Suc­
cessful: When the channel sub~ystem determines
that the attempt to issue the clear signal was suc­
cessful, the subchannel is no longer clear-pending
and is set status-pending, and the petformance of
the clear function is complete. When the sub­
channel becomes status-pending, the I/O operation,
if any, with the associated device has been termi­
nated.

Programming Note: Subsequent to the perform­
ance of the clear function, any nonzero status,
except control-unit end alone, that is presented to
the channel subsystem by the device is passed to
the program as unsolicited alert status. Unsolicited
status consisting of control-unit end alone or zero
status is not presented to the program.

Halt Function
Subsequent to the execution of HALT

SUBCHANNEL, the channel subsystem performs the
halt function. Performance of the halt function
consists in (1) executing a path-management opera­
tion, (2) issuing the halt signal to the associated
device, and (3) causing the subchannel to be made
status-pending, indicating completion of the halt
function.

Halt-Function Path Management

A 'path-management operation is executed as part
of the halt function to examine channel-path condi­
tions for the associated subchannel and to attempt
to choose a channel path on which the halt signal
can be issued to the associated device.

Channel-path conditions are examined in the fol­
lowing order: .

1. If the channel subsystem is actively communi­
cating or attempting to establish active commu­
nication with the device to be signaled, the
channel path that is in use is chosen.

2. If the channel subsystem is in the process of
accepting a no-longer-busy indication (which
will not cause an interruption condition to be
recognized) from the device to be signaled, and
the associated subchannel has no allegiance to
any channel path, the channel path that is in
use is chosen.

3. If the associated subchannel has a dedicated
allegiance for a channel path, that channel path
is chosen.

4. If the associated subchannel has a working alle­
giance for one or more channel paths, one of
those channel paths is chosen.

5. If the associated subchannel has no allegiance
for any channel path, if a last-used channel
path is indicated, and if that channel path is
available for selection, that channel path is
chosen. If that channel path is not available
for selection, either no channel path is chosen
or a channel path is chosen from the set of
channel paths, if any, that are available for
selection (as though no last-used channel path
were indicated).

6. If the associated subchannel has no allegiance
for any channel path, if no last-used channel
path is indicated, and if there exist one or more
channel paths that are available for selection,
one of those channel paths is chosen.

If none of the channel-path conditions listed above
apply, no channel path is chosen.

For item 4, for item 5 under the specified condi­
tions, and for item 6 above, the channel subsystem
chooses a channel path from a set of channel paths.
In these cases the channel subsystem may attempt
to choose a channel path for which the following
conditions do not apply: /

1. A channel-path-terminal condition exists for
the channel path.

2. Another subchannel has an active allegiance for
the channel path.

3. The device to be signaled is attached to a
type-l control unit, and the subchannel for
another device attached to the same control
unit has an allegiance to the same channel
path, unless the allegiance is a working alle­
giance and primary status has been accepted by
that sub channel.

4. The device to be signaled is attached to a
type-3 control unit, and the subchannel for
another device attached to the same control
unit has a dedicated allegiance to the same
channel path.

Halt-Function Signaling and
Completion

Subsequent to the attempt to choose a channel
path, the channel subsystem, if conditions allow,

. attempts to select the device to issue the halt signal.
(See the section "Halt Signal" on page 17-5.)
Conditions associated with thesubchannel and the
chosen channel path, if any, affect (1) whether an
attempt is made to issue the halt signal,
(2) whether the attempt to issue the halt signal is
successful, and (3) whether the subchannel is made
status-pending to complete the halt function.
These conditions and their effect on the halt func­
tion are described as follows:

No Attempt Is Made to Issue the Halt Signal:
The channel subsystem does not attempt to issue
the halt signal to the device if any of the following
conditions exist:

1. No channel path was chosen. (See the section
"Halt-Function Path Management.")

2. The chosen channel path is no longer available
for selection.

3. A channel-path-terminal condition exists for
the chosen channel path.

4. The. associated sub channel is status-pending
with other than intermediate status alone.

5. The device to be signaled is attached to a
type-! control unit, and the sub channel for
another device attached to the same control
unit has an allegiance to the same channel
path, unless the allegiance is a working alle-

Chapter 15. Basic I/O Functions 15-15

giance and primary status has been accepted by
that subchannel.

6. The device to be signaled is attached to a
type-3 control unit, and the subchannel for
another device attached to the same control
unit has a dedicated allegiance to the same
channel path.

If the conditions described in items 3 on
page 15-15, 5 on page 15-15, or 6 above exist, the
associated subchannel remains halt-pending until
those conditions no longer exist. When the condi­
tions no longer exist (for the channel-path-terminal
condition, when the condition no longer exists as a
result of executing RESET CHANNEL PATH) the
channel subsystem attempts to issue the. halt signal
to the device.

If any of the remaining conditions above exist, the
subchannel remains halt-pending, is set status­
pending, and the halt function is complete.

The Attempt to Issue the Halt Signal Is Not Suc­
cessful: When the channel subsystem attempts to
issue the halt· signal to the device, the attempt may
not be successful because of the following condi­
tions:

1. The control unit or device signals a busy condi­
tion when the channel subsystem attempts to
select the device to issue the halt signal.

2. A path-not-operational condition is recognized
when the channel subsystem attempts to select
the device to issue the halt signal.

3. An error condition is encountered when the
channel subsystem attempts to issue the halt
signal.

If the control unit or device signals a busy condi­
tion (item 1), the subchannel remains halt-pending
until the internal indication. of busy is reset. When
this event occurs, the channel subsystem again
attempts to issue the halt signal to the device.

If any of the remaining conditions above exists and
the channel subsystem either determines that the
attempt to issue the halt signal was not successful
or cannot determine whether the attempt was suc­
cessful, then the subchannel remains halt-pending
and is set status~pending, and the halt function is
complete.

The Attempt to Issue the Halt Signal Is Suc­
cessful: When the channel subsystem determines
that the attempt to issue the halt signal was suc-

15-16 ESA/370 Principles of Operation

cessful and ending status, if appropriate, has been
received at the subchannel, the subchannel is no
longer halt-pending and is set status-pending, and
the halt function is complete. When the sub­
channel becomes status-pending, the 1/0 operation,
if any, with the associated device has been termi­
nated. The conditions that affect the receipt of
ending status at the subchannel, and the effect of
the halt signal at the device are described in the fol­
lowing discussion.

When the subchannel is subchannel-and-device­
active or only device-active during the performance
of the halt function, the state continues until the
sub channel is Inade status-pending because (1) the
device has provided ending status or (2) the
channel subsystem has determined that ending
status is unavailable. When the subchannel is idle,
start-pending, start-pending and resume-pending,
suspended, or suspended and resume-pending, or
when the halt signal is issued during command
chaining after the receipt of device end but before
the next command is transferred to the device, no
operation is in progress at the device, and therefore
no status is generated by the device as a result of
receiving the halt signal. When the subchannel is
neither sub channel active nor status-pending with
intermediate status, and no errors are detected
during the attempt to issue the halt signal to the
device, an interruption condition indicating status­
pending alone is generated after the halt signal is
issued.

The effect of the halt signal at the device depends
partially on the type of device and its state. The
effect of the halt signal on a device that is not
active or that is executing a mechanical operation
in which data is not transferred across the channel
path, such as rewinding tape or positioning a disk­
access mechanism, depends upon the control-unit
or device model. If the device is executing a type
of operation that is unpredictable in duration or in
which data is transferred across the channel path,
the control unit interprets the signal as one to ter­
minate the operation. Pending status conditions at
the device are not reset. When the control unit
recognizes the halt signal, it immediately ceases all
communication with the channel subsystem until it
has reached the normal ending point. The control
unit then requests selection by the channel sub­
system to present any generated status.

If the sub channel is involved in the data-transfer
portion of an 1/0 operation, data transfer is termi­
nated during the performance of the halt function,
and the device is logically disconnected from the

channel path. If the halt function is addressed to a
subchannel executing a chain of 1/0 operations and
the device has already provided channel end for the
current 1/0 operation, the channel subsystem causes
the device to be disconnected and command
chaining or command retry to be suppressed. If
the subchannel is executing a chain of 1/0 opera­
tions with the device and the halt signal is issued
during command chaining at a point after the
receipt of device end for the previous 1/0 operation
but before the next command is transferred to the
device, the subchannel is made status-pending with
primary and secondary status immediately after the
halt signal is issued. The device-status field of the
scsw contains zeros in this case. If the halt func­
tion is addressed to a subchannel that is start­
pending and the halt-pending condition is recog­
nized before initiation of the start function,
initiation of the start function is not attempted, and
the subchannel becomes status-pending after the
device has been signaled.

When the subchannel is not executing an 1/0 opera­
tion with the associated device, the device is
selected, and an attempt is made to issue the halt
signal as the device responds. If the subchannel is
in the device-active state, the subchannel becomes
status-pending, only after receiving the device-end
status frOln the halted device. If the sub channel is
neither subchannel-and-device-active nor device­
active, the subchannel becomes status-pending
immediately after selecting the device and issuing
the halt signal. The scsw for the latter case has the
status-pending bit set to one (see the section
"Status-Pending (Bit 31)" on page 16-18).

The termination of an I/O operation by performing
the halt function may result in two distinct inter­
ruption conditions.

The frrst interruption condition occurs when the
device generates the channel-end condition. The
channel subsystem handles this condition as it
would any other interruption condition from the
device, except that the command address in the
associated scsw designates the point at which the
I/O operation is terminated, and the subchannel­
status bits may reflect unusual conditions that were
detected. If the halt signal was issued before all
data designated for the operation had been trans­
ferred, incorrect length is indicated, subject to the
control of the s LI flag in the current ccw. The
value in the count field of the associated scsw is
unpredictable.

The second interruption condition occurs if
device-end status was not presented with the
channel-end interruption condition. In this situ­
ation, the subchannel-key, command-address, and
count fields of the associated scsw are not mean­
ingful.

When HALT SUBCHANNEL terminates an I/O opera­
tion, the method of termination differs from that
used upon exhaustion of count or upon detection
of programming errors to the extent that termi­
nation by HALT SUBCHANNEL is not contingent on
the receipt of a service request from the associated
device.

Programming Notes:

1. When, after an operation is terminated by
HALT SUBCHANNEL, the subchannel is status­
pending with primary, primary and secondary,
or secondary status, the extent of data trans­
ferred as described by the count field is unpre­
dictable.

2. When the path that is chosen by the path­
management operation has a channel-path­
terminal condition associated with it, the halt
function remains pending until the condition
no longer exists. Until the condition is cleared,
the associated subchannel cannot be used to
execute I/O operations, even if other channel
paths become available for selection. CLEAR

SUBCHANNEL can be executed to terminate the
halt-pending condition and make the sub­
channel usable.

Start Function and Resume
Function
Subsequent to execution of START SUBCHANNEL

and RESUME SUBCHANNEL, the channel subsystem
performs the start and resume functions, respec­
tively, to initiate an I/O operation with the associ­
ated device. Performance of a start or resume func­
tion consists in: (1) executing a path-management
operation, (2) executing an I/O operation or chain
of I/O operations with the associated device, and
(3) causing the subchannel to be made status­
pending, indicating completion of the performance
of the start function. (Completion of a start func­
tion is described in Chapter 16, "I/O
Interruptions" on page 16-1.) The start function
initiates the execution of a channel program that is
designated in the ORB, which in turn is designated
as the operand of START SUBCHANNEL, in contrast

Chapter 15. Basic I/O Functions 15-17

to the resume function which initiates the execution
of a suspended channel program, if any, beginning
at the ccw that caused suspension; otherwise, the
resume function is performed as if it were a start
function (see the section "Resume-Pending (Bit
20)" on page 16-13).

Start-Function and Resume-Functio~
Path Management

A path-management operation is executed by the
channel subsystem during the performance of either
a start or resume function to choose an available
channel path that can be used for device selection
to initiate an 1/0 operation with that device. The
actions taken are as follows:

1. If the subchannel is currently start-pending and
device-active, the start function remains
pending at the subchannel until the secondary
status for the previous start function has been
accepted from the associated device and the
subchannel is made start-pending alone. When
the status is accepted and it does not describe
an alert interruption condition, the subchannel
is not made status-pending, and the perform­
ance of the pending start function is subse­
quently initiated. If the status describes an
alert interruption condition, the subchannel
becomes status-pending with secondary and
alert status, the pending start function is not
initiated, deferred condition code 1 is set, and
the start-pending bit remains one. If the sub­
channel is currently start-pending alone, the
performance of the start function is initiated as
described below.

2. If a dedicated allegiance exists at the sub­
channel for a channel path, the channel sub­
system chooses that path for device selection.
If a busy condition is encountered while
attempting to select the device and a dedicated
allegiance exists at the subchannel, the start
function remains pending until the internal
indication of busy is reset for that channel
path. When the internal indication of busy is
reset, the performance of the pending start
function is initiated on that channel path.

3. If no channel paths are available for selection
and no dedicated allegiance exists in the sub­
channel for a channel path, a channel path is
not chosen.

4. If all channel paths that are available for
selection have been tried and one or more of
them are being used to actively communicate

15-18 ESA/370 Principles of Operation

with other devices, or, alternatively, if the
ch~el subsystem has encountered either a
control-unit-busy or device-busy condition on
one ortnore of those channel paths, or a com­
bination of those conditions on one or more of
those channel paths, the start function remains
pending at the subchannel until a channel path,
control unit, or device, as appropriate, becomes
available.

S. If (1) the start function is to be initiated on a
channel path with a device attached to a type-l
control unit and (2) no other device is attached
to the same control unit whose subchannel has
either a dedicated allegiance to the same
channel path or a working allegiance to the
same channel path where primary status has
not been received for that subchannel, then
that channel path is chosen if it is available for
selection; otherwise, that channel path is not
chosen. If, however, another channel path to
the device is available for selection and if no
allegiances exist as described above, that
channel path is chosen. If no other channel
paths are available for selection, the start or
resume function, as appropriate, remains
pending until a channel path becomes avail­
able.

6. If the device is attached to a type-3 control unit
and if at least one other device is attached to
the same control unit whose sub channel has a
dedicated allegiance to the same channel path,
another channel path that is available for
selection may be chosen, or the start function
remains pending until the dedicated allegiance
for the other device is cleared.

7. If a channel path has been chosen and a busy
indication is received during device selection to
initiate execution of the fITst command of a
pending channel program, the channel path
over which the busy indication is received is
not used again for that device or control unit
(depending on the device-busy or control-unit­
busy indication received) until the internal indi­
cation of busy is reset.

8. If, during an attempt to select the device in
order to initiate execution of the fITst command
specified for the start or implied for the resume
function (as described in action 7), the channel
subsystem receives a busy indication, it per­
forms one of the following actions:

a. If the device is specified to be operating in
multipath mode and the busy indication
received is device busy, then the start or

resume function remains pending until the
internal indication of busy is reset. (See
the section "Multipath Mode (D)" on
page 15-3.)

b. If the device is specified to be operating in
multipath mode and the busy indication
received is control unit busy, or if the
device is specified to be operating in single­
path mode, the channel subsystem
attempts selection of the device by
choosing an alternate channel path that is
available for selection and continues the
path-management operation until either the
start or resume function is initiated or
selection of the device has been attempted
on all channel paths that are available for
selection. If the start or resume function
has not been initiated by the channel sub­
system after all channel paths available for
selection have been chosen, the start or
resume function remains pending until the
internal indication of busy is reset.

c. If the subchannel has a dedicated alle­
giance, then action 2 on page 15-18
applies.

9. When, during the selection attempt to transfer
the ftrst command, the device appears not
operational and the corresponding channel path
is operational for the subchannel, a path-not­
operational condition is recognized and the
state of the channel path changes at the sub­
channel from operational for the sub channel to
not operational for the subchannel (see the
section "Path-Not-Operational Mask
(PNOM)" on page 15-4). The path-not­
operational conditions at the subchannel, if
any, are preserved until the subchannel next
becomes clear-pending, start-pending, or
resume-pending (if the sub channel was sus­
pended), at which time the path-not­
operational conditions are cleared. If, however,
the corresponding channel path is not opera­
tional for the subchannel, a path-not­
operational condition is not recognized. When
the device appears not operational during the
selection attempt to transfer the frrst command
on a channel path that is available for selection,
one of the following actions occurs:

a. If a dedicated allegiance exists for that
channel path, then it is the only channel
path that is available for selection; there­
fore, further attempts to initiate the start or
resume function are abandoned, and an
interruption condition is recognized.

b. If no dedicated allegiance exists and there
are alternate channel paths available for
selection which have not been tried, one of
those channel paths is chosen to attempt
device selection and transfer the frrst
command.

c. If no dedicated allegiance exists, no alter­
nate channel paths are available for
selection which have not been tried, and
the device has appeared operational on at
least one of the channel paths that were
tried, the start or resume function remains
pending at the subchannel until either a
channel path, a control unit, or the device,
as appropriate, becomes available.

d. If no dedicated allegiance exists, no alter­
nate channel paths are available for
selection which have not been tried, and
the device has appeared not operational on
all channel paths that were tried, further
attempts to initiate the start or resume
function are abandoned, and an inter­
ruption condition is recognized.

10. When the subchannel is active and an I/O oper­
ation is to be initiated with a device, all device
selections occur according to the LPUM indi­
cation if the multipath mode is not specified at
the subchannel. For example, if command
chaining is specified, the channel subsystem
transfers the frrst and all subsequent commands
describing a chain of I/O operations over the
same channel path.

Execution of 110 Operations
After a channel path is chosen, the channel sub­
system, if conditions allow, initiates execution of an
I/O operation with the associated device. Execution
of additional I/O operations may follow initiation
and execution of the frrst I/O operation. The
channel subsystem can execute seven commands:
write, read, read backward, control, sense, sense ID,

and transfer in channel. Each command, except
transfer in channel, initiates a corresponding I/O

operation. Except for periods while channel­
program execution is suspended at the subchannel
(see the section "Suspension of Channel-Program
Execution" on page 15-32), the subchannel is
active from the acceptance of the frrst command
until the primary interruption condition is recog­
nized at the subchannel. If the primary inter­
ruption condition is recognized before the accept­
ance of the first command, the subchannel does not

Chapter 15. Basic I/O Functions 15-19

become active. Normally, the primary interruption
condition is caused by the channel-end signal or, in
the case of command chaining, the channel-end
signal for the last ccw of the chain. (See the
section "Primary Interruption Condition" on
page 16-4.) The device is active until the sec­
ondary interruption condition is recognized at the
subchannel. Normally, the secondary interruption
condition is caused by the device-end signal or, in
the case of command chaining, the device-end
signal for the last ccw of the chain. (See the
section "Secondary Interruption Condition" on
page 16-4.)

Programming Note: An I/O operation or chain of
I/O operations is normally executed by the channel
subsystem and the device operating in single-path
mode. In single-path mode, all transfers of com­
mands, data, and status for the I/O operation or
chain of I/O operations occur on the channel path
over which the frrst command was transferred to
the device.

When the device has the dynamic-reconnection
feature ins~alled, an I/O operation or chain of I/O

operations may be executed in multipath mode; to
operate in multipath mode, MODIFY SUBCHANNEL

must have been previously executed for the sub­
channel with bit 13 of word 1 of the SCHIB speci­
fied as one. (See the section "Multipath Mode
(D)" on page 15-3.) In addition, the device must
be set up for multipath mode by execution of
certain model-dependent commands appropriate to
that type of device. The general procedures for
handling multipath-mode operations are as follows:

1. Setup

a. A set-multipath-mode type of command
must be successfully executed by the device
on each channel path that is to be a
member of the multipath group being set
up; otherwise, the multipath mode of oper­
ation may give unpredictable results at the
subchannel.· If, for any reason, one or
more physically available channel paths to
the device are not included in the multipath
group, these channel paths must not be
available for selection while the subchannel
is operating in multipath mode. A channel
path can be made not available for
selection by having the corresponding LPM

bit set to zero either in the SCHIB prior to
executing STORE SUBCHANNEL or in the

15-20 ESA/370 Principles of Operation

ORB prior to executing START SUB­

CHANNEL.

b. When a set-multipath-mode type of
command is transferred to a device, only a
single channel path must be logically avail­
able in order to avoid alternate channel­
path selection for the performance of that
start function; otherwise, device-busy con­
ditions may be detected by the channel
subsystem on more than one channel path,
which may cause unpredictable results for
subsequent multipath-mode operations.
This type of setup procedure should be
used whenever the membership of a multi­
path group is changed.

2. Leaving Multipath Mode

To leave mUltipath mode and continue proc­
essing in single-path mode, either of the fol­
lowing two procedures may be used:

a. A disband-multipath-mode type of
command may be executed for any channel
path of the multipath group. This
command must be followed either by
(1) the execution of MODIFY SUBCHANNEL

with bit 13 of word 1 of the SCH IB speci­
fied as zero, or by (2) the specification of
only a single channel path as logically
available in the LPM. A start function
must not be performed at a subchannel
operating in multipath mode with multiple
channel paths available for selection while
the device is operating in single-path mode;
otherwise, unpredictable results may occur
at the subchannel for that function or sub­
sequent start functions.

b. A resign-multipath-mode type of command
is executed on each channel path of the
multipath group (the reverse of the setup
described in item 1). This command must
be followed by either (1) the execution of
MODIFY SUBCHANNEL with bit 13 of word
1 of the SCHIB specified as zero, or (2) the
specification of only a single channel path
as logically available in the LPM. No start
function may be performed at a sub channel
operating in multipath mode with multiple
channel paths available for selection while
the device is operating in single-path mode;
otherwise, unpredictable results may occur
at the subchannel for that or subsequent
start functions.

Blocking of Data

Data recorded by an I/O device is divided into
blocks. The length of a block depends on the
device; for example, a block can be a card, a line of
printing, or the infonnation recorded between two
consecutive gaps on magnetic tape.

The maximum amount of infonnation that can be
transferred in one I/O operation is one block. An
I/O operation is terminated when the associated
main-storage area is exhausted or the end of the
block is reached, whichever occurs first. For some
operations, such as writing on a magnetic-tape unit
or at an inquiry station, blocks are not defmed, and
the amount of infonnation transferred is controlled
only by the program.

Operation-Request Block

The operation-request block (ORB) is the operand
of START SUBCHANNEL. The ORB specifies the
parameters to be used in controlling that particular
start function. These parameters include the inter­
ruption parameter, the subchannel key, the address
of the frrst CCW, operation-control bits, and a spec­
ification of the logical availability of channel paths.
The contents of the ORB are placed at the desig­
nated subchannel during the execution of START
SUBCHANNEL, prior to the setting of condition
code O. If the execution of START SUBCHANNEL
results in the setting of a nonzero condition code,
the contents of the ORB have not been placed at the
designated subchannel. The two rightmost bits of
the ORB address must be zeros, placing the ORB on
a word boundary; otherwise, a specification excep­
tion is recognized. The fonnat of the ORB is as
follows:

----------------------,

o

Key ILl 0000000

2 Channel-Program Address

o 31

The fields in the ORB are defmed as follows:

Interruption Parameter: Bits 0-31 of word 0 are
preserved unmodified in the subchannel until
replaced by a subsequent START SUBCHANNEL or
MODIFY SUBCHANNEL instruction. These bits are
placed in word I of the interruption code when an
I/O interruption occurs and when an interruption

request is cleared by execution of TEST PENDING
INTERRUPTION.

Subchannel Key: Bits 0-3 of word 1 fonn the
subchannel key for all fetching of ccws, IDAWS,
and output data and for the storing of input data
associated with the start function initiated by START
SUBCHANNEL. This key is matched with a storage
key during these storage references. For details, see
the section "Key-Controlled Protection" in Chapter
3, "Storage."

Suspend Control (S): Bit 4 of word I controls the
perfonnance of the suspend function for the
channel program identified in the ORB. The setting
of the S bit applies to all CCws of the channel
progran1 designated by the ORB (see the section
"Commands" on page 15-34). When bit 4 is one,
suspend control is specified, and channel-program
suspension occurs when a valid suspend flag is
detected in a ccw. If bit 4 is zero, suspend control
is not specified, and the presence of the suspend
flag in any ccw of the channel program causes a
program-check condition to be recognized.

Reserved: Bits 5-7 of word I are reserved for
future use and must be zeros; otherwise, either an
operand exception or a program-check condition is
recognized.

Format Control (F): Bit 8 of word I specifies the
fonnat of the channel-command words (ccws)
which make up the channel program designated by
the channel-program-address field. If bit 8 of word
1 is zero, fonnat-O CCws are specified. If bit 8 is
one, fonnat-l ccws are specified. (See the section
"Channel-Command Word" on page 15-23, for the
defmition of the ccw fonnats).

Prefetch Control (P): Bit 9 of word 1 specifies
whether or not unlimited prefetching of cCWs is
allowed for the channel program. If this bit is zero,
no prefetching is allowed, except in the case of data
chaining on output, where the prefetching of one
ccw describing a data area is allowed. If tIns bit is
one, unlimited prefetching is allowed.

Initial-Status-Interruption Control (I): Bit 10 of
word 1 specifies whether or not the channel sub­
system must verify to the program that the device
has accepted the frrst command associated with a
start or resume function. If the I bit is specified as
one in the ORB, then when initial status is received
and the subchannel becomes active, indicating that
the frrst command has been accepted for this start

Chapter 15. Basic I/O Functions 15-21

or resume function, the z bit (see the section "Zero
Condition Code (Z)" on page 16-11) is set to one
at this subchannel, and the subchannel becomes
status-pending with intennediate status.

If the sub channel does not become active -- for
example, when the device signals channel end
immediately upon receiving the frrst command,
command chaining is not specified in the ccw, and
command retry is not signaled -- the command­
accepted condition (z bit set to one) is not gener­
ated; instead, the subchannel becomes status­
pending with primary status; intennediate status
may also be indicated in this case when the
command is accepted if the frrst ccw contained the
PCI flag.

Address-limit-Checking Control (A): Bit 11 of
word 1 specifies whether or not address-limit
checking is specified for the channel program. If
this bit is zero, no address-limit checking is per­
fonned for the execution of the channel program,
independent of the setting of the limit-mode bits in
the subcbannel (see the section "Limit Mode (M)"
on page 15-2). If this bit is one, address-limit
checking is allowed for the channel program,
subject to the setting of the limit-mode bits in the
subchannel.

Suppress-Suspended-Interruption Control (U):
Bit 12 of word 1, when one, specifies that the
channel subsystem is to suppress the generation of
an intermediate interruption condition due to sus­
pension if the subchannel becomes suspended.
When bit 12 is zero, the channel subsystem gener­
ates an intermediate interruption condition when­
ever the subchannel becomes suspended during exe­
cution of the channel program.

Reserved: Bits 13-15 of word 1 are reserved for
future use and must be zeros; otherwise, an
operand exception or a program-check condition is
recognized.

logical-Path Mask (lPM): Bits 16-23 of word 1
are preserved unmodified in the subchannel and
specify to the channel subsystem which of the
logical paths. 0-7 are to be considered logically
available, as viewed by the program. A bit setting
of one means that the corresponding channel path
is logically available; a zero specifies that the corre­
sponding channel path is logically not available. If

15-22 ESA/370 Principles of Operation

a channel path is specified by the program as being
logically not available, the channel subsystem does
not use that channel path to perform clear, halt,
resume, or start functions when requested by the
program, except when a dedicated-allegiance condi­
tion exists for that channel path. If a dedicated­
allegiance condition exists, the setting of the LPM is
ignored, and a resume, start, halt, or clear function
is perfonned by using the channel path having the
dedicated -allegiance.

Incorrect-length-Suppression Mode (l): When
the incorrect-length-indication-suppression facility
is installed and bit 8 of word 1 is one, then bit 24
of word 1, when one, specifies the incorrect-1ength­
suppression mode. If the subchannel is in this
mode when an immediate operation occurs (that is,
a device signals the channel-end condition during
the initiation sequence) and the current ccw con­
tains a nonzero value in bits 16-31, indication of an
incorrect-length condition is suppressed.

When the incorrect-length-indication-suppression
facility is installed and bit 8 of word 1 is one, then
bit 24 of word 1, when zero, specifies the incorrect­
length-indication mode. If the subchannel is in this
mode when an immediate operation occurs (that is,
a device signals the channel-end condition during
the initiation sequence) and the current ccw con­
tains a nonzero value in bits 16-31, indication of an
incorrect-length condition is recognized. Command
chaining is suppressed unless the SLI flag in the
ccw is one and the chain-data flag is zero.

When the incorrect-Iength-indication-suppression
facility is installed and bit 8 of word 1 is zero, the
value of bit 24 is ignored by the channel subsystem,
and the sub channel is in the incorrect-Iength­
suppression mode.

When the incorrect-length-indication-suppression
facility is not installed and bit 24 of word 1 is zero,
the subchannel is in the incorrect-Iength­
suppression mode. When the incorrect-Iength­
indication-suppression facility is not installed, bit 24
must be zero; otherwise, an operand exception is
recognized.

Reserved: Bits 25-31 of word 1 are reserved for
future use and must be set to zeros; otherwise, an
operand exception or a program-check condition is
recognized.

Channel·Program Address: Bits 0-31 of word 2
designate the location of the frrst ccw in absolute
storage. Bit 0 of word 2 must be zero; otherwise,
an operand exception or a program-check condition
is recognized. If format-O ccws have been specified
in bit 8 of word 1, then bits 1-7 must also be zeros;
otherwise, a program-check condition is recognized.

The three rightmost bits of the channel-program
address must be zeros, designating the ccw on a
doubleword boundary; otherwise, a program-check
condition is recognized.

If the channel-program address designates a
location protected against fetching or designates a
location outside the storage of the particular instal­
lation, the start function is not initiated at the
device. In this situation, the subchannel becomes
status-pending with primary, secondary, and alert
status.

Programming Notes:

I. Bit positions of the 0 RB which presently are
specified to contain zeros may in the future be
assigned for the control of new functions.

2. The interruption parameter may contain any
information, but ordinarily the information is
of significance to the program handling the I/O
interruption.

Channel-Command Word

The channel-command word (ccw) specifies the
command to be executed and, for commands initi­
ating certain I/O operations, it designates the storage
area associated with the operation, the action to be
taken whenever transfer to or from the area is com­
pleted' and other options.

A channel program consists of one or more ccws
that are logically linked such that they are fetched
by the channel subsystem and executed in the
sequence specified by the CPU program. Contig­
uous ccws are linked by the use of the chain-data
or chain-command flags, and noncontiguous ccws
may be linked by a ccw specifying the transfer-in­
channel command.

As each ccw is executed, it is recognized as the
current ccw. A ccw becomes current (I) when it
is the frrst ccw of a channel program and has been
fetched, (2) when, during command chaining, the
new ccw is logically fetched, or (3) when, during
data chaining, the new ccw takes over control of

the I/O operation (see the section "Data Chaining"
on page 15-28). When chaining is not specified, a
ccw is no longer current after TEST SUBCHANNEL
clears the start-function bit in the subchannel.

The location of the frrst ccw of the channel
program is designated in the ORB that is the
operand of START SUBCHANNEL. The frrst ccw is
fetched subsequent to the execution of the instruc­
tion. The format of the ccws fetched by the
channel subsystem is specified by bit 8 of word I of
the ORB. Each additional ccw in the channel
program is obtained when the ccw is needed.
Fetching of the ccws by the channel subsystem
does not affect those locations in main storage.

ccws have either of two different formats, format 0
or format 1. The two formats do not differ in the
information contained in the ccw but only in the
arrangement of the fields within the ccw.

The formats are defmed as follows:

Format a

Icmd cOdel Data Address
I

a 8 31

Flags lallllllllli Count

32 39 48 63

Format 1

Icmd cOdel Flags lal Count

a 15 31

lal Data Address

32 63

Format-O CCws can be located anywhere in the frrst
16,777,216 bytes of main storage.

Format-I ccws can be located anywhere in main
storage.

Bit 39 (format 0) or bit IS (format 1) of every ccw
other than a format-O ccw specifying transfer in
channel must be zero. Additionally, if indirect dat"a
address~g is specified, bits 30-31 (format 0) or bits
62-63 (format 1) of the ccw must be zeros, desig­
nating a word boundary, and bit 0 of the frrst entry
of the indirect-data-address list must be zero. Oth­
erwise, a program-check condition may be gener-

Chapter 15. Basic I/O Functions 15-23

ated (see the section "CCW Indirect Data
Addressing" on page 15-31). Detection of this
condition during data chaining causes the I/O device
to be signaled to conclude the operation. When
the absence of these zeros is detected during
command chaining or subsequent to the execution
of START SUBCHANNEL, the new operation is not
initiated, and an interruption condition is generated.

The contents of bit positions 40-47 of a fonnat-O
ccw are ignored.

The fields in the ccws are defmed as follows:

Command Code: Bits 0-7 (both fonnats) specify
the operation to be executed.

Data Address: Bits 8-31 (fonnat 0) or bits 33-63
(fonnat 1) designate a location in absolute storage.
It is the frrst location referred to in the area desig­
nated by the ccw. If a byte count of zero is speci­
fied' this field is not checked.

Chain-Data (CD) Flag: Bit· 32 (fonnat 0) or bit 8
(fonnat 1), when one, specifies chaining of data. It
causes the storage area designated by the next ccw
to be used with the current I/O operation. When
the CD flag is one in a ccw, the chain-command
and suppress-length-indication flags (see below) are
ignored.

Chain-Command (CC) Flag: Bit 33 (fonnat 0) or
bit 9 (fonnat 1), when one, and when the CD flag
and S flag are both zeros, specifies chaining of com­
mands. It causes the operation specified by the
command code in the next ccw to be initiated on
nonnal cOlllpletion of the current operation.

Suppress-length-Indication (Sll) Flag: Bit 34
(fonnat 0) or bit 10 (fonnat 1) controls whether an
incorrect-length condition is to be indicated to the
program. When this bit is one and the CD flag is
zero, the incorrect-length indication is suppressed.
When both the cc and SLI flags are ones, and the
CD flag is zero, command chaining takes place,
regardless of the presence of an incorrect-length
condition. This bit should be specified in all ccws
where suppression of the incorrect-length indication
is desired.

Skip (SKIP) Flag: Bit 35 (fonnat 0) or bit 11
(fonnat 1), when one, specifies the suppression of
transfer of information to ~torage during a read,
read-backward, sense ID, or sense operation.

15-24 ESAj370 Principles of Operation

Program-Controlled-Interruption (PCI) Flag: Bit
36 (fonnat 0) or bit 12 (format 1), when one,
causes the channel subsystem to generate an inter­
mediate interruption condition when the ccw takes
control of the I/O operation. When the PCI flag bit
is zero, nonnal operation takes place.

Indirect-Data-Address (IDA) Flag: Bit 37 (format
0) or bit 13 (format 1), when one, specifies indirect
data addressing.

Suspend (S) Flag: Bit 38. (format 0) or bit 14
(fonnat 1), when one, specifies suspension of
channel-program execution. When valid, it causes
channel-program execution to be suspended prior
to execution of the ccw containing the S flag. The
S flag is valid when bit 4, word 1 of the associated
ORB is one.

Count: Bits 48-63 (fonnat 0) or bits 16-31 (fonnat
1) specify the number of bytes in the storage area
designated by the ccw.

Programming Note: Bit 39 of a fonnat-O CCW or
bit 15 of a fonnat-l ccw, which presently must be
zero, may in the future be assigned for the control
of new functions. It is recommended, therefore,
that this bit position not be set to one for the
purpose of obtaining an intentional program-check
indication.

Command Code

The command code, bit positions 0-7 of the ccw,
specifies to the channel subsystem and the I/O

device the operation to be executed. A detailed
description of each command appears in the section
"Commands" on page 15-34.

The two rightmost bits or, when these bits are
zeros, the four rightmost bits of the command code
identify the operation to the channel subsystem.
The channel subsystem distinguishes among the
following four operations:

Output forward (write, control)
Input forward (read, sense, sense ID)
Input backward (read backward)
Branching (transfer in channel)

The channel subsystem ignores the leftmost bits of
the command code, except in a fonnat-l ccw spec­
ifying transfer in channel. In this situation, all bits
of the command code are decoded by the channel
subsystem.

Commands that initiate 1/0 operations (write, read,
read backward, control, sense, and sense ID) cause
all eight bits of the command code to be transferred
to the control unit. In these command codes, the
leftmost bit positions contain modifier bits. The
modifier bits specify to the device how the
command is to be executed. They may, for
example, cause the device to compare data received
during a write operation with data previously
recorded, and they may specify such conditions as
recording density and parity. For the control
command, the modifier bits may contain the order
code specifying the control function to be executed.
The meaning of the modifier bits depends on the
type of 1/0 device and is specified in the System
Library publication for the device.

The command-code assignment is listed in
Figure 15-5. The symbol x indicates that the bit
position is ignored; m identifies a modifier bit.

Code Comnand

x x x x a a a a Invalid
mmmm m mal Write
mmmm m m 1 a Read
mmmm 1 1 a a Read backward
mmmm m mIl Control
mmmm a 1 a e Sense
1 lIe a 1 a a Sense ID
x x x x 1 a a a Transfer in channell
a a a a 1 a a a Transfer in channe1 2

mmmm 1 a a a Invalid 3

EXl:!lanation:

m Modifier bit

x Ignored

1 Format-a CCW

2 Format-l CCW

3 Format-l CCW with any of bits a-3 nonzero

Figure 15-5. Command-Code Assignment

Whenever the channel subsystem detects an invalid
command code during the initiation of command
execution, the program-check -interruption condi­
tion is generated and channel-program execution is
terminated. The command code is ignored during
data chaining, unless it specifies transfer in channel.

Designation of Storage Area

The main-storage area associated with an 1/0 opera­
tion is defmed by one or more ccws. A ccw
defmes an area by designating the address of the
frrst byte to be transferred and the number of con­
secutive bytes contained in the area. The address
of the location which designates the frrst byte of
data is specified in the data-address field of the
ccw. The number of bytes contained in the
storage area is specified in the count field.

In write, read, control, sense, and sense-ID opera­
tions, storage locations are used in ascending order
of addresses. As information is transferred to or
from main storage, the address from the address
field is incremented, and the count from the count
field is decremented. The read-backward operation
places data in storage in a descending order of
addresses, and both the count and the address are
decremented. When the count reaches 0, the
storage area defmed by the ccw is exhausted.

Any main-storage location available to the start
function can be used in the transfer of data to or
from an 1/0 device, provided in both cases that the
location is not protected against that type of refer­
ence. Format-O ccws can be located in any avail­
able part of the frrst 16M bytes of storage, and
format-l ccws may be located in any part of avail­
able storage, provided that the location is not pro­
tected against a fetch-type reference. When the
channel subsystem attempts to refer to 'a protected
location, the protection-check condition is gener­
ated, and the device is, signaled to terminate the
operation.

A main-storage locati~ l& available if it is provided
and access to it is noi J>l'evented by the address­
limit-checking facility. If a main-storage location is
not available, it is said to have an invalid address.

If the channel subsystem refers to a location not
provided in the system, the program-check condi­
tion is generated. When the frrst ccw designated
by the channel-program address is at a nonexistent
location, the start function is not initiated at the
device, the status portion of the scsw is updated
with the program-check indication, and the sub­
channel becomes status-pending with primary, sec­
ondary, and alert status, and deferred condition
code 1 is indicated. Invalid data addresses, as well
as any invalid ccw addresses detected on chaining
or subsequent to the execution of START S U B­

CHANNEL, cause the channel subsystem to signal

Chapter 15. Basic I/O Functions 15-25

the device to conclude the operation the next time
the device requests or offers a byte of data or
status. In this situation, the subchannel is made
status-pending with program check indicated in the
subchannel status; the device status is a function of
the status received from the device. The program­
check condition causes command chaining and
command retry to be suppressed.

During an output operation, the channel subsystem
may fetch data from main storage before the time
the I/O device requests the data. Any number of
bytes specified by the current ccw may be pre­
fetched and buffered. When data chaining during
an output operation, the channel subsystem may
fetch one ccw describing a data area at any time
during the execution of the current ccw. If unlim­
ited prefetching is allowed by the setting of the
prefetch-control bit in the ORB, then any number of
cCWs may be prefetched by the channel subsystem.
When the I/O operation uses data and ccws from
locations near the end of the available storage, such
prefetching may cause the channel subsystem to
refer to locations that do not exist. Invalid
addresses detected during prefetching of data or
CCWs do not affect the execution of the operation
and do not cause error indications until the I/0
operation actually attempts to use the information.
If the operation is concluded by the I/O device or
by execution of HALT SUBCHANNEL or CLEAR SUB­
CHANNEL before the invalid information is needed,
the condition is not brought to the a!tention of the
program.

The count field in the ccw can specify any number
of bytes up to 65,535. In format-O ccws, the count
field is always nonzero unless the command code
specifies transfer in channel, in which case the
count field is ignored. In format-l ccws, the count
field may contain the value zero unless data
chaining is specified or the ccw is fetched while
data chaining. Whenever (I) the count field in a
format-l ccw is zero, (2) data chaining is either
not specified or is not in effect, and (3) data
transfer is requested by the device, the device is sig­
naled to stop, and the I/O operation is terminated.
The channel subsystem sets the incorrect-length
condition if the SLI flag is not one in the ccw. No
data is transferred. If the device does not request
data transfer, the operation proceeds to the normal
ending point.

If a zero byte count is contained in a format-O ccw
which does not specify transfer in channel, or if a
zero byte count is contained in a format-l ccw

15-26 ESA/370 Principles of Operation

that specifies data chaining or was fetched while
data chaining, a program-check condition is recog­
nized, and the subchannel is made status-pending
with combinations of primary, secondary, and alert
status as a function of the state of the sub channel
and the status received from the device.

Note: For a description of the storage area associ­
ated with a ccw when indirect data addressing is
invoked, see the section "CCW Indirect Data
Addressing" on page 15-31.

Chaining

When the channel subsystem has completed the
transfer of information specified by a CCW, it can
continue performing the start function by fetching a
new ccw. Such fetching of a new ccw is called
chaining, and the ccws belonging to such a
sequence are said to be chained.

Chaining takes place between cCWs located in suc­
cessive doubleword locations in storage. It pro­
ceeds in an ascending order of addresses; that is, the
address of the new ccw is obtained by adding 8 to
the address of the current ccw. Two chains of
ccws located in noncontiguous storage areas can
be coupled for chaining purposes by a transfer-in­
channel command. All ccws in a chain apply to
the I/O device that is associated with the subchannel
designated by the original START SUBCHANNEL
instruction.

Two types of chaining are provided: chaining of
data and chaining of commands. Chaining is con­
trolled by the chain-data (CD) and chain-command
(cc) flags in conjunction with the suppress-Iength­
indication (SLI) flag in the ccw. These flags specify
the action to be taken by the channel subsystem
upon the exhaustion of the current ccw and upon
receipt of ending status from the device, as shown
in Figure 15-6 on page 15-27.

The specification of chaining is effectively propa­
gated through a transfer-in-channel command.
When, in the process of chaining, a transfer-in­
channel command is fetched, the ccw designated
by the transfer-in-channel command is used for the
type of chaining specified in the ccw preceding the
transfer-in-channel command.

The CD and cc flags are ignored in a format-O ccw
specifying the transfer-in -channel command. In a
format-l ccw specifying the transfer-in-channel
command, the CD and cc flags must be zeros; oth­
erwise, a program-check condition is recognized.

Action at the Subchannel upon Exhaustion of Count or Receipt of Channel End

Immediate Operation Nonimmediate Operation

Flags in Incorrect-Length- Incorrect-Length-
Current CCW Suppression Model Indication Mode Count Exhausted Count Not

Exhausted
CCW CCW CCW CCW CE Not CE and CE

CD CC SLI Count;e Count=e Count;e Count=e Received Received Received

e e e End, NIL End, NIL End, IL End, NIL Stop, IL End, NIL End, IL
e e 1 End, NIL End, NIL End, NIL End, NIL Stop,NIL End, NIL End, NIL
e 1 e CC CC End, IL CC Stop, IL CC End, IL
e 1 1 CC CC CC CC Stop, CC CC CC

1 - - End, NIL PC End, IL PC CD * End, IL

Explanation:

*

CC

CD

CE

End

IL

NIL

PC

The selected bit is ignored and may be either zero or one.

These situations cannot validly occur. When data chaining is specified, the new
CCW takes control of the operation after transferring the last byte of data
designated by the current CCW, but before the next request for data or status
transfer from the device. The new CCW (which cannot contain a count of zero
unless a program-check condition is also recognized) is in control of the
operation.

The count field must contain a nonzero value when format-a CCWs are specified;
otherwise, the operation is terminated with a program-check condition.

Command chaining is performed by the channel subsystem upon receipt of device
end.

The chain-data flag causes the channel subsystem to immediately fetch a new CCW
for the same operation. The operation continues unless the CCW thus fetched has
a count field of zero, in which case the operation is terminated with a
program-check condition.

Channel end from the device which indicates end of block.

Operation is terminated.

Incorrect length is indicated with the subsequent interruption condition
generated at the subchannel.

Incorrect length is not indicated with the subsequent interruption condition
generated at the subchannel.

These situations cannot validly occur. The channel subsystem recognizes a
program-check condition when a CCW is fetched that has the chain-data flag set to
one and a count field of zero.

Stop Device is signaled to terminate data transfer, but subchannel remains
subchannel-active until channel end is received.

Figure 15-6. Sub channel Chaining Action

Chapter IS. Basic I/O Functions 15-27

Programming Note: When bit 9 of word 1 of the
ORB is one, unlimited fetching of chained ccws by
the channel subsystem is permitted. When pre­
fetching is allowed by the ORB, no modification of
the channel program should be performed after
START SUBCHANNEL is execute<.! and before the
primary interruption condition for the operation
has been received unless the sub channel is currently
suspended and is not resume-pending.

Data Chaining
During data chaining, the new ccw fetched by the
channel subsystem defmes a new storage area for
the original I/O operation. Execution of the opera­
tion at the I/O device is not affected. When all data
designated by the current ccw has been transferred
to main storage or to the device, data chaining
causes the operation to continue, using the storage
area designated by the new ccw. The contents of
the command-code field of the new ccw are
ignored, unless they specify transfer in channel.

Data chaining is consid~red to occur immediately
after the last byte of data designated by the current
ccw has been transferred to main storage or to the
device. When the last byte of the data transfer has
been placed in main storage or accepted by the
device, the new ccw takes over the control of the
operation. If the device sends channel end after
exhausting the count of the current ccw but before
transferring any data to or from the storage area
designated by the new ccw, the scsw associated
with the concluded operation pertains to the new
ccw.

If programming errors are detected in the new ccw
or during its fetching, the error indication is gener­
ated, and the device is signaled to conclude the
operation when it attempts to transfer data desig­
nated by the new ccw. If the device signals the
channel-end condition before transferring any data
designated by the new ccw, program check or pro­
tection check is indicated in the scsw associated
with the termination. The contents of the scsw
pertain to the new ccw unless the address of the
new ccw is invalid, the location is protected
against fetching, or programming errors are detected
in an intervening transfer-in-channel command. A
data address referring to a nonexistent or protected
area causes an error indication only after the I/O
device has attempted to transfer data to or from the
invalid location.

Data chaining during an input operation causes the
new ccw to be fetched when all data designated by

15-28 ESA/370 Principles of Operation

the current ccw has been placed in main storage.
On an output operation, the channel subsystem
may fetch the new ccw from main storage before
data chaining occurs. Any programming errors in
the prefetched ccw, however, do not affect the exe­
cution of the operation until all data designated by
the current ccw has been transferred to the I/O

device. If the device concludes the operation before
all data designated by the current ccw has been
transferred, the conditions associated with the pre­
fetched ccw are not indicated to the program.
Unlimited prefetching is allowed under the control
of the prefetch bit specified in the ORB. (See the
section "Prefetch Control (P)" on page 15-21.)
When unlimited prefetching is not allowed and an
output operation is specified, only one ccw
describing a data area may be prefetched. If a pre­
fetched ccw specifies transfer in channel, only one
more ccw may be fetched before the exhaustion of
the current ccw.

Programming Notes:

1. If the ORB does not specify unlimited pre­
fetching, no prefetching of ccws is performed,
except in the case of data chaining on an
output operation where one ccw describing a
data area may be prefetched at a time.

If the ORB for the I/O operation specifies that
prefetching is allowed, any number of ccws
may be prefetched and buffered in the channel
subsystem.

The same actions for signaling errors and ter­
minating operations take place when unlimited
prefetching is allowed by the 0 RB as when it is
not allowed. Therefore, neither the program
nor the I/O device is aware of any differences
whether or not prefetching of ccws is being
performed by the channel subsystem.

When prefetching has been specified in the
ORB, the result of modifications to ccws after
START SUBCHANNEL has been executed or after
self-describing channel programs have been
used, is unpredictable. (See note 2 for the defi­
nition of self-describing channel programs.)

2. Data chaining may be used to rearrange infor­
mation as it is transferred between main storage
and an I/O device. Data chaining permits
blocks of information to be transferred to or
from noncontiguous areas of storage, and,
when used in conjunction with the skipping
function, data chaining allows the program to
place in main storage specified portions of a
block of data.

When, during an input operation, the program
specifies data chaining to a location in which
data has been placed under the control of the
current ccw, the channel subsystem, in
fetching the next ccw, fetches the new contents
of the location. This is true even if the
location contains the last byte transferred under
the control of the current ccw. When a
channel program data-chains to a ccw placed
in storage by the ccw specifying data chaining,
the input block is said to be self-describing. A
self-describing block contains one or more
ccws that designate storage locations and
counts for subsequent data in the same input
block.

The use of self-describing blocks is equivalent
to the use of unchecked data. An 1/0 data­
transfer malfunction that affects validity of a
block of infonnation is signaled only at the
completion of data transfer. The error condi­
tion nonnally does not prematurely terminate
or otherwise affect the execution of the opera­
tion. Thus, there is no assurance that a ccw
read as data is valid until the operation is com­
pleted. If the ccw thus read is in error, use of
the ccw in the current operation may cause
subsequent data to be placed at wrong
locations in main storage with resultant
destruction of its contents, subject only to the
control of the protection key and the address­
limit-checking facility, if used.

3. When, during data chaining, a device transfers
data by using the data-streaming feature, an
overrun or chaining-check condition may be
recognized when a small byte-count value is
specified in the ccw. The minimum acceptable
number of bytes that can be specified varies as
a function of the system model and system
activity.

Command Chaining
During command chaining, the new ccw fetched
by the channel subsystem specifies a new 1/0 opera­
tion. The channel subsystem fetches the new ccw
upon the receipt of the device-end signal for the
current operation. If the new ccw does not specify
an S flag and if no unusual conditions are detected,
the channel subsystem initiates the new operation.
The presence of the S flag or unusual conditions
causes command chaining to be suppressed. When
command chaining takes place, the completion of
the current operation does not cause an 1/0 inter­
ruption, and the count indicating the amount of
data transferred during the current operation is not
made available to the program. For operations

involving data transfer, the new command always
applies to the next block of data at the device.

Command chaining takes place and the new opera­
tion is initiated only if no unusual conditions have
been detected in the current operation. In partic­
ular, the channel subsystem initiates a new 1/0

operation by command chaining upon receipt of a
status byte containing only the following bit combi­
nations: (1) device end, (2) device end and status
modifier, (3) device end and channel end, and
(4) device end, channel end, and status modifier.
In the frrst two cases, channel end is signaled before
device end, with all other status bits zeros. If a
condition such as attention, unit check, unit excep­
tion, incorrect length, program check, or protection
check has occurred, the sequence of operations is
concluded, and the status associated with the
current operation causes an interruption condition
to be generated. The new ccw in this case is not
fetched. The incorrect-length condition does not
suppress command chaining if the current ccw has
the SLI flag set to one.

An exception to sequential chaining of ccws occurs
when the 1/0 device presents the status-modifier
condition with the device-end signal or channel-end
and device-end signals. When command chaining
is specified and no unusual conditions have been
detected, or when command retry has been previ­
ously signaled and an immediate retry could not be
performed, the combination of status-modifier and
device-end bits causes the channel subsystem to
alter the sequential execution of ccws. If command
chaining was specified, status modifier and device
end cause the channel subsystem to fetch and chain
to the ccw whose main-storage address is 16 higher
than that of the ccw that specified chaining. If
command retry was previously signaled and imme­
diate retry could not be performed, the status
causes the channel subsystem to command chain to
the ccw whose storage address is 8 higher than that
of the ccw for which retry was initially signaled.

When both command and data chaining are speci­
fied, the fIrst ccw associated with the operation
specifies the operation to be executed, and the last
ccw specifies whether another operation follows.

Programming Note: Command chaining makes it
possible for the program to initiate transfer of mul­
tiple blocks of data by executing a single START

SUBCHANNEL instruction. It also permits a sub­
channel to be set up for execution of other com­
mands, such as positioning the disk-access mech­
anism, and for data-transfer operations without

Chapter 15. Basic I/O Functions 15-29

interference by the program at the end of each
operation. Command chaining, in conjunction
with the status-modifier condition, permits the
channel subsystem to modify the normal sequence
of operations in response to signals provided by the
I/O device.

Skipping

Skipping causes the suppression of main-storage
references during an I/O operation. It is defmed
only for read, read-backward, sense ID, and sense
operations, and is controlled by the skip flag, which
can be specified individually for each ccw. When
the skip flag is one, skipping occurs; when it is
zero, normal operation takes place. The setting of
the skip flag is ignored in all other operations.

Skipping affects only the handling of information
by the channel subsystem. The operation at the 1/0

device proceeds normally, and information is trans­
ferred. The channel subsystem keeps updating the
count but does not place the information in main
storage. Chaining is not precluded by skipping. In
the case of data chaining, normal operation is
resumed if the skip flag in the new ccw is zero.

No checking for invalid or protected data addresses
takes place during skipping.

Programming Note: Skipping, when combined
with data! chaining, permits the program to place in
main storage specified portions of a block of infor­
mation from an 1/0 device.

Program-Controlled Interruption

The program-controlled-interruption (PCI) function
permits the program to cause an 1/0 interruption
during execution of an 1/0 operation. The function
is controlled by the PCI flag of the ccw. Neither
the value of the PCI flag nor the associated inter­
ruption request affects the execution of the current
operation.

The value of the PCI flag can be one either in the
frrst ccw designated for the current start or resume
function or in a ccw fetched during chaining. If
the PCI flag is one in a ccw that has become
current, the subchannel becomes status-pending
with intermediate status, and an I/o-interruption
request is generated. The point at which the sub­
channel becomes status-pending depends on the
progress of the current start or resume function as
follows:

15"-30 ESA/370 Principles of Operation

1. If the PCI flag is one in the frrst ccw associated
with a start function or a resume function, the
sub channel becomes status-pending with inter­
mediate status only after the command has
been accepted.

2. If the PCI flag is one in a ccw which has
become current while data chaining, the sub­
channel becomes status-pending with interme­
diate status after all data designated by the pre­
ceding ccw has been transferred.

3. If the PCI flag is one in a ccw which has
become current while command chaining, the
subchannel becomes status-pending with inter­
mediate status as that ccw becomes current.

In all cases, if the subchannel is enabled for 1/0

interruptions, the point of interruption depends on
the current activity in the system and may be
delayed. No predictable relationship exists between
the point at which the interruption request is gener­
ated because of the PCI flag and the extent to which
data transfer has been completed to or from the
area designated by the ccw. However, all the fields
within the scsw pertain to the same instant.

An intermediate interruption condition that is made
pending because of a PCI flag remains pending
during chaining if not cleared by TEST SUB­
CHANNEL or CLEAR SUBCHANNEL. If another
ccw containing a PCI flag that is one becomes
current prior to the clearing of the intermediate
interruption condition, only one interruption condi­
tion is preserved.

An intermediate interruption may occur while the
subchannel is subchannel-and-device-active with
the operation specified by the ccw causing the
intermediate interruption condition or with the
operation specified by a ccw that has subsequently
become current. If the intermediate interruption
condition is not cleared prior to the conclusion of
the operation or chain of operations, the condition
is indicated together with the primary interruption
condition at the conclusion of the operation or
chain of operations. The intermediate interruption
condition may be cleared by TEST SUBCHANNEL
while the subchannel is subchannel-active.

If the scsw stored by TEST SUBCHANNEL indicates
that the subchannel is status-pending with interme­
diate status and the operation or chain of opera­
tions has not been concluded (that is, the activity­
control field indicates subchannel-and-device-active
or suspended), then the ccw-address field contains
an address which is 8 higher than the address of the

most recent ccw to become current and have a PCI
flag that is one, or the ccw-address field contains
an address which is 8 higher than a ccw which has
subsequently become current. Unless the scsw
also contains the primary-status bit set to one, the
device-status field contains zeros, and the count is
unpredictable.

Subchannel-status conditions other than PCI may
be indicated when the scsw is stored. If the sub­
channel is not also status-pending with primary
status, these conditions mayor may not be indi­
cated again. If the subchannel-status condition is
detected while prefetching and the operation or
chain of operations is concluded before the condi­
tion affects an operation, the condition is reset and
is not indicated when the subchannel subsequently
becomes status-pending with primary status. If the
subchannel-status condition affects an operation,
the condition is indicated when the subchannel
becomes status-pending with primary status.

If the program-controlled-interruption condition
remains pending until the operation or chain of
operations is concluded at the subchannel, a single
interruption request exists. When TEST SUB­

CHANNEL is subsequently executed, the status­
control field of the scsw stored indicates both the
primary interruption condition and the intermediate
interruption condition, and the PCI bit of the
subchannel-status field is one.

The value of the PCI flag is inspected in every ccw
except for those CCWs that specify the transfer-in­
channel command. The PCI flag is ignored during
initial program loading.

Programming Notes:

1. The program-controlled interruption provides. a
means of alerting the program to the progress
of chaining during an I/O operation. It permits
programmed dynamic main-storage allocation.

2. A ccw with a PCI flag that has a value of one
may, if retried because of command retry, cause
multiple PCI interruptions to occur. (See the
section "Command Retry" on page 15-41.)

CCW Indirect Data Addressing

CCW indirect data addressing permits a single
channel-command word to control the transfer of
data that spans noncontiguous pages in real main
storage. The use of ccw indirect data addressing
also allows the program to designate data addresses
above 16M for both format-O and format-l CCws.

CCW indirect data addressing is specified by a flag in
the ccw which, when one, indicates that the data
address is not used to directly address data.
Instead, the address points to a list of words, called
indirect-data-address words (IDAWS), each of which
contains an absolute address designating a data area
within a 2K-byte block of main storage.

When the indirect-data-addressing bit in the ccw is
one, the data-address field of the ccw designates
the location of the rust IDAW to be used for data
transfer for the command. Additional IDA ws, if
needed for completing the data transfer for the
CCW, are in successive locations in storage. The
number of IDAWS required for a ccw is determined
by the count field of the ccw and by the data
address in the initial IDAW. When, for example,
the ccw count field specifies 4 K bytes and the rust
IDAW designates a location in the middle of a
2K-byte block, three JDAWS are required.

Each IDAW is used for the transfer of up to 2K
bytes. The IDAW designated by the ccw can desig­
nate any location. Data is then transferred, for
read, write, control, sense ID, and sense commands,
to or from successively higher storage locations or,
for a read-backward command, to successively
lower storage locations, until a 2K -byte block
boundary is reached. The control of data transfer
is then passed to the next IDAW. The second and
any subsequent IDAWs must designate, depending
on the command, the rust or last byte (for read

. backward) of a 2K-byte block. Thus, for read,
write, control, sense ID, and sense commands, these
IDAWS have zeros in bit positions 21-31. For a
read-backward command, these IDAWS have ones
in bit positions 21-31.

Except for the unique restrictions on the desig­
nation of the data address by the IDAW, all other
actions taken for the data address, such as for pro­
tected storage and invalid addresses, and the actions
taken for data prefetching are the same as when
indirect data addressing is not used.

Chapter 15. Basic I/O Functions 15-31

IDAWS pertaining to the current CCW or 'a pre­
fetched ccw may be prefetched. The number of
IDA ws that can be prefetched cannot exceed that
required to satisfy the count in the ccw that points
to the IDA ws. An IDA W takes control of data
transfer when the last byte has been transferred for
the previous IDAW. The same actions take place as
with data chaining regarding when an IDAW takes
control of data transfer during an I/O operation.
That is, when the count for the ccw has not
reached zero, a new IDAW takes control of the data
transfer when the last byte has been transferred for
the previous IDAW for that ccw, even in situations
where (1) channel end, (2) channel end and device
end, or (3) channel end, device end, and status
modifier are received prior to transfer of any data
bytes pertaining to the new IDAW.

A prefetched IDAW does not take control of an I/O

operation if the count in the ccw has reached zero
with the transfer of the last byte of data for the pre­
vious IDAW for that ccw. Program or access errors
detected in prefetched IDAWS are not indicated to
the program until the IDAW takes control of data
transfer. However, when the channel subsystem
detects an invalid CBC on the contents of a pre­
fetched IDAW or its associated key, the condition
may be indicated to the program, when detected,
before the IDAW takes control of data transfer. For
a description of the indications provided when an
invalid CBC is detected on the contents of an IDA W

or its associated key, see the section "Channel­
Control Check" on page 16-31.

The format of the IDAW and the significance of its
fields are as follows:

Data Address

(3 31

Bit 0 is reserved for future use and must be zero.
Otherwise, a program-check condition may be
recognized, as described below.

Bits 1-31 designate the location of the frrst byte to
be used in the data transfer. In the frrst IDAW for a
CCW, any location can be designated. F or subse­
quent IDAWS, depending on the command, either
the frrst or the last location of a 2K -byte block
located on a 2K -hyte boundary must be designated.
For read, write, control, and sense commands, the
location at the beginning of the block must be des­
ignated; that is, bits 21-31 of the IDAW must be

15-32 ESA/370 Principles of Operation

zeros. For a read-backward command, the location
at the end of the block must be designated; that is,
bits 21-31 of the IDAW must be all ones. Improper
data-address designation causes the program-check
condition to be generated and the operation to be
terminated.

When the IDA flag of the ccw is set to one and any
of the following conditions occurs:

1. The address in the ccw does not designate the
frrst IDAW on an integral word boundary,

2. The address in the ccw designated a storage
location which is not available,

3. Access to the storage location designated by the
address in the ccw is prohibited by protection,
or

4. Bit 0 of the frrst IDA W is not zero,

then, depending on the tnodel, one of the following
two actions is taken independent of the setting of
the skip flag:

1. The above conditions are checked before initi­
ating the operation at the device. If any of
these conditions is recognized, initiation of the
I/O operation does not occur, and the sub­
channel is made status-pending with primary,
secondary, and alert status.

2. The operation is initiated at the device prior to
checking for these conditions. If the device
attempts to transfer data, the device is signaled
to terminate the I/O operation, and the sub­
channel is made status-pending with primary,
secondary, and alert status as a function of the
subchannel state and the status presented by
the device.

Suspension of Channel-Program
Execution

The suspend function, when used in conjunction
with RESUME SUBCHANNEL, provides the program
with a means to stop and restart the execution of a
channel program. The initiation of the suspend
function is controlled by the setting of the suspend­
control bit in the ORB (bit 4 of word 1). The
suspend function is signaled when suspend control
has been specified for the subchannel in the ORB

and a ccw containing a valid S flag set to one
becomes the current ccw. The flag can be indi­
cated either in the frrst ccw of the channel program
or in a ccw fetched while command chaining. The
S flag is not valid and causes a program-check con-

dition to be recognized if (1) the ORB contains the
suspend-control bit set to zero, or (2) the ccw is
fetched while data chaining (see the section "Data
Chaining" on page 15-28, concerning the handling
of programming errors detected during data
chaining).

Upon recognition of the suspend function, suspen­
sion of channel-program execution occurs when the
ccw becomes current (see the section "Channel­
Command Word" on page 15-23, for a deftnition
of when a ccw becomes current). If suspension
occurs during command chaining, the device is sig­
naled that command chaining is no longer in effect.

RESUME SUBCHANNEL signals that the ccw which
caused channel-program suspension may have been
modifted, that the ccw must be refetched, and that
the contents of the ccw must be examined to
determine the settings of the flags. If the S flag is
one, execution of that ccw does not occur. If the
ccw is valid and the S flag in the ccw is zero, exe­
cution is initiated (see the section "Resume
Subchannel" on page 14-8 and the section "Start
Function and Resume Function" on page 15-17).

When a valid ccw that contains a valid S flag
becomes the current ccw during command
chaining and the resume-pending condition is not
recognized, the suspend function is performed and

. causes the following actions to occur in the order
given:

1. The device is signaled that the chain of opera­
tions has been concluded.

2. Channel-program execution is suspended at the
subchannel; all prefetched IPAWS, ccws, and
data are discarded; and the subchannel is set up
such that the resume function can be per­
formed when the subchannel is next recognized
to be resume-pending.

3. If the measurement-block-update mode is
active and the subchanne1 is enabled for the
mode, the accrued values of the measurement
data, including the start-subchannel and sample
count, are added to the accumulated values in
the measurement block for the subchannel.
The start-subchannel count is the only meas­
urement data which is updated in the measure­
ment block if the channel-subsystem-timing
facility is not available for the subchannel. (See
the section "Channel-Subsystem Monitoring"
on page 17-1, for qlore information.)

4. The subchannel is placed in the suspended
state.

5. If the sub channel is not resume-pending at this
point, the intermediate interruption condition
due to suspension is recognized if the suppress­
suspended-interruption bit of the ORB is zero;
otherwise, the resume function is performed.

When a valid ccw that contains a· valid S flag
becomes the current ccw during command
chaining and the resume-pending condition is
recognized, the resume function is performed
instead of the suspend function.

When the first ccw of a channel program contains
a valid S flag and the resume-pending condition is
not recognized, the suspend function is performed
and causes the following actions to occur in the
order given:

1. Channel-program execution is suspended prior
to selection of the device.

2: The sub channel is set up such that the resume
function can be performed when the sub­
channel is next recognized to be resume­
pending.

3. If the measurement-block-update mode is
active and the subchannel is enabled for the
mode, the SSCH + RSCH count is incremented
and the accrued\function-pending time (a func­
tion of the setting of the timing-facility bit) is
added to the accumulated value in the measure­
ment block for the sub channel.

4. The subchannel is placed in the suspended
state.

5. If the subchannel is not resume-pending at this
point, the sub channel is made status-pending
with intermediate status due to suspension if
the suppress-suspended-interruption-control bit
of the ORB is zero; otherwise, the resume func­
tion is performed.

When the frrst ccw of a channel program contains
a valid S flag and the resume-pending condition is
recognized, the resume function is performed
instead of the suspend function.

Programming Notes:

1. The execution of MODIFY SUBCHANNEL and
START SUBCHANNEL completes with condition
code 2 set if the designated subchannel is sus­
pended. The start function is indicated at the
subchannel while the sub channel is in the sus­
pended state.

Chapter 15. Basic I/O Functions 15-33

2. In certain situations, normal resumption of the
execution of a channel program which has been
suspended may not be desired. Normal termi­
nation of the suspended channel-program exe­
cution may be accomplished by:

a. Executing HALT SUBCHANNEL designating
the sub channel

b. Modifying the ccws in storage such that
when channel-program execution is
resumed, the command transferred to the
device is a control command with all modi­
fier bits specified as zeros (no-operation)
and with the chain -command flag specified
as zero; and then executing RESUME SUB­

CHANNEL.

3. If the suspended interruption is suppressed, the
N condition and DCTI values applicable to the
preceding subchannel-active period are not
made available to the program. The execution
of RESUME SUBCHANNEL when the subchannel
is in the suspended state causes path-not­
operational conditions and the N condition to
be reset to zeros. Path-not-operational condi­
tions and the N condition are not reset when
RESUME SUBCHANNEL is executed and the des­
ignated subchannel is not in the suspended
state.

Commands

Figure 15-7 lists the command codes for the seven
commands and indicates which flags are defmed for
each command. Except for a format-l ccw speci­
fying transfer in channel, the flags are ignored for
all commands for which they are not defmed. The
flags are reserved in a format-l ccw specifying
transfer in channel and must be zeros.

15·34 ESAj370 Principles of Operation

Name Code Flags

Write M M M M M Mal CD CC SLI PCI IDA S
Read M M M M M M 1 e CD CC SLI SK PCI IDA S
Read backward M M M M 1 1 a e CD CC SLI SK PCI IDA S
Control M M M M M M 1 1 CD CC SLI PCI IDA S
Sense M M M M e lea CD CC SLI SK PCI IDA S
Sense ID 1 1 1 e e 1 a e CD CC SLI SK PCI IDA S
Transfer in X X X X 1 a a a (See note below)
channel

EXJ;!lanation:

CC Chain command
CD Chain data
IDA Indirect data addressing
M Modifier bit
PCI Program-controlled interruption
S Suspend
SK Skip
SLI Suppress-length indication
X Ignored in a format-a CCWj must be zero in a

format-l CCW

Note: Flags are ignored in a format-a transfer-in-
channel CCW and must be zeros in a format-l
transfer-in-channel CCW.

Figure 15-7. Command Codes

All flags have individual significance, except that
the· cc and SLI flags are ignored when the CD flag is
set to one. The presence of the SLI flag is ignored
for immediate operations involving format-O ccws,
in which case the incorrect-length indication is sup­
pressed regardless of the setting of the flag. The
incorrect-length indication may be suppressed for
immediate operations when executing a format-l
ccw, depending on the incorrect-Iength­
suppression mode. The PCI flag is ignored during
initial program loading. All flags, except the PCI

flag, are ignored when the S flag is one.

Each command is described below, with an illus­
tration of its ccw formats.

Programming Notes:

1. A malfunction that affects the validity of data
transferred in an I/O operation is signaled at the
end of the operation by means of unit check or
channel-data check, depending on whether the
device (control unit) or the channel subsystem
detected the error. In order to make use of the
checking facilities provided in the system, data
read in an input operation should not be used
until the end of the operation has been reached
and the validity of the data has been checked.
Similarly, on writing, the copy of data in main
storage should not be destroyed until the
program has verified that no malfunction

affecting the transfer and recording of data was
detected.

2. An error condition may be recognized and the
I/O operation terminated when 256 or more
chained commands are executed with a device
and none of the executed commands result in
the transfer of any data. When this condition
is recognized, program check is indicated.

3. All ccws that require suppression of incorrect­
length indications must use the SLI flag.

Write

Format e

Data Address

e 8 31

C C S P I
D C L I C D S 8 11111/11 Count

I I A

32 35 48 48 63

Format 1

C C S P I
MMMMMMe1 D C L / C D S e Count

I I A

e 8 11 16 31

Data Address

32 63

A write operation is initiated at the I/O device, and
the subchanne1 is set up to transfer data from main
storage to the I/O device. Data is fetched from
storage in an ascending order of addresses, starting
with the location designated by the ccw.

A ccw used in a write operation is inspected for
the CD, CC, SLI, PCI, IDA, and S flags. The setting of
the skip flag is ignored. Bit positions 0-5 of the
ccw contain modifier bits.

Programming Note: When writing on devices for
which the block length is not dermed, such as a
magnetic-tape unit or an inquiry station, the
amount of data written is controlled only by the

count in the ccw. Every operation terminated
under count control causes the incorrect-length
indication, unless the indication is suppressed by
the SLI flag.

Read

Format 8

MMMMMM18 Data Address

e 8 31

s
C C S K P I
D C L I C D S 8 11111/11 Count

I P I A

32 35 48 48 63

Format 1

S
C C S K P I

MMMMMM18 D C L I C D S e Count
I P I A

8 8 11 16 31

lal
Data Address

32 63

A read operation is initiated at the I/O device, and
the subchannel is set up to transfer data from the
device to main storage. For devices such as
magnetic-tape units, disk storage, and card equip­
ment, the bytes of data within a block are provided
in the same sequence as written by means of a
write command. Data is placed in storage in an
ascending order of addresses, starting with the
location designated by the ccw.

A read command code containing zeros for the six
modifier bits is also called an initial-read command.
This command is used by those devices that can
perform the initial-program-loading function if the
command is the fITst to be executed after a system­
reset signal is received.

A ccw used in a read operation is inspected for
every one of the seven flags -- CD, CC, SLI, SKIP,

Chapter 15. Basic I/O Functions 15-35

PCI, IDA, and s. Bit positions 0-5 of the ccw
contain modifier bits.

Read Backward

Format a

MMMM11aa Oata Address

8 31

s
C C S K P I
o C L I C 0 S a 11111111 Count

I P I A

32 35 48 48 63

Format 1

S
C C S K P I

MMMM1188 o C L I C 0 S 8 Count
I P I A

8 8 11 16 31

lal
Oata Address

32 63

A read-backward operation is initiated at the I/O

device, and the subchannel is set up to transfer data
from the device to main storage. On magnetic-tape
units, read backward causes reading to be per­
formed with the tape moving backward. The bytes
of data within a block are sent in a sequence oppo­
site to that on writing. The bytes are placed in
storage in a descending order of addresses, starting
with the location designated by the ccw. The bits
within an eight-bit byte are in the same order as
sent to the device on writing.

A ccw used in a read-backward operation is
inspected for every one of the seven flags -- CD, CC,

SLI, SKIP, PCI, IDA, and s. Bit positions 0-3 of the
ccw contain modifier bits.

15-36 ESA/370 Principles of Operation

Control

Format 8

1~~J11 Oata Address

8 8 31

C C S P I
o C L I C 0 S 8 11111111 Count

I I A

32 35 48 48 63

Format 1

C C S P I
MMMMMM11 o C L I C 0 S 8 Count

I I A

8 8 11 16 31

lei
Data Address

32 63

A control operation is initiated at the I/O d~vice,
and the subchannel is set up to transfer data from
main storage to the device. The device interprets
the data as control information. The control infor­
mation, if any, is fetched from storage in an
ascending order of addresses, starting with the
address designated in the ccw. A control
command may be used to initiate at the device an
I/O operation not involving transfer of data, such as
backspacing or rewinding magnetic tape or posi­
tioning a disk-access mechanism.

For many control functions, the entire operation is
specified by the modifier bits in the command code ,
and the function is performed over the channel
path as an immediate operation (see the section
"Immediate Conclusion of 110 Operations" on
page 15-42). If the command code does not
specify the entire control function, the data-address
field of the ccw designates the location containing
the required additional information. This control
information may include an order code further
specifying the operation to be executed or an
address, such as the disk address· for the seek func­
tion, and is transferred in response to requests by
the device.

A control-command code containing zeros for the
six modifier bits is defmed as a no-operation. If the
command is accepted, the no-operation order
causes the addressed device to respond with
channel end and device end without causing any
action at the device. The order can be executed as
an immediate operation, or the device can delay the
status until after the initiation sequence is com­
pleted. Other operations that can be initiated by
means of the control command depend on the type
of I/O device. These operations and their codes are
specified in the System Library publication for the
device.

A ccw used in a control operation is inspected for
the CD, CC, SLI, PCI, IDA, and S flags. The setting
of the skip flag is ignored. Bit positions 0-5 of the
ccw contain modifier bits.

Programming Notes:

1. Since a format-l ccw with a count of zero is
valid, the program can use the ccw count field
to specify that no data be transferred to the I/O

device. If the device requests a data transfer,
the device is signaled to terminate data transfer.
If the SLI and chain-command flags are also
specified, and no unusual conditions are
encountered subsequent to signaling the device
to terminate data transfer, then the new opera­
tion is initiated upon receipt of device end from
the device.

2. If the subchannel is in the incorrect-Iength­
suppression mode, if the chain-data flag in the
current ccw is zero, and if the operation is exe­
cuted as an immediate operation, then incorrect
length is not indicated, regardless of the setting
of the S LI flag.

If the sub channel is in the incorrect-Iength­
indication mode, if the chain-data flag in the
current ccw is zero, and if the operation is exe­
cuted as an immediate operation, then incorrect
length is indicated if the count field of the
current ccw specifies a nonzero value, unless
suppressed by the SLI flag of the ccw; incorrect
length is not indicated, however, if the count
field of the ccw specifies a value of zero.

If a new ccw that has a count field of zero is
fetched during data chaining or if a ccw is
fetched with the chain -data flag set to one and
a count field of zero, then a program-check
condition is recognized by the channel sub­
system.

Sense

Format 9

MMMM9199 Data Address

8 31

s
C C S K P I
D C L I C D S 9 IIIIIIII Count

I P I A

32 35 49 48 63

Format 1

S
C C S K P I

MMMM9199 D C L I C D S 9 Count
I P I A

9 8 11 16 31

lal
Data Address

32 63

A sense operation is initiated at the I/O device, and
the subchannel is set up to transfer sense data from
the device to storage. The data is placed in storage
in an ascending order of addresses, starting with the
location designated by the ccw.

The basic sense command is specified when the
modifier bits are all zeros. Data transferred during
a basic sense operation provides information con­
cerning both unusual conditions detected by the
device and the status of the device. The informa­
tion provided by the basic sense command is more
detailed than that supplied by the device-status byte
and may describe reasons for the unit-check indi­
cation. It may also indicate, for example, if the
device is in the not-ready state, if the tape unit is in
the fue-protected state, or if magnetic tape is posi­
tioned beyond the end-of-tape mark.

The f11'st six bits of the f11'st sense-data byte (sense
byte 0) are common to all I/O devices. The six bits,
when set to ones, designate the following:

Chapter 15. Basic I/O Functions -- t 5-37

Bit Designation

0 Command reject
1 Intervention required
2 Bus-out check
3 Equipment check
4 Data check
5 Overrun

The following is the meaning of the frrst six bits:

Command Reject: The device has detected a pro­
gramming error. A command has been received
which the device is not designed to execute, such as
read backward transferred to a direct-access-storage
device, or which the device cannot execute because
of its present state, such as write transferred to a
ftle-protected tape unit. The program may have
required use of an optional feature or may have
specified invalid control data. An example of
invalid control data which is treated as an extension
of the command is an invalid seek argument that is
transferred to a direct-access-storage device.
Command reject is also indicated when an invalid
sequence of commands is recognized by the device,
such as write to a direct-access-storage device
without previously designating the data block.

Intervention Required: The last operation could
not be executed because of a condition requiring
some type of intervention at the device. This bit
set to one indicates conditions such as an empty
hopper in a card punch or the printer being out of
paper. It is also set to one when the addressed
device is in the not-ready state, is in test mode, or
on some control units when the device is not pro­
vided on the control unit~··

Bus-Out Check: The device has received a data
byte or a command code with invalid CBC over the
channel path. During writing, bus-out check indi­
cates that incorrect data may have been recorded at
the device, but the condition does not cause the
operation to be terminated prematurely unless the
operation is such that an error precludes mean­
ingful continuation of the operation. Invalid CBC

detected on the command code or control informa­
tion causes the operation to be immediately termi­
nated and suppresses checking for command-reject
and intervention-required conditions.

15-38 ESA/370 Principles of Operation

Equipment Check: During the last operation, the
device has detected equipment'malfunctioning, such
as an invalid card-hole count or a printer-buffer
parity error.

Data Check: The device has detected a data error
other than one included in bus-out check. Data
check identifies errors associated with the recording
medium and includes conditions such as reading an
invalid card code or detecting invalid parity on data
recorded on magnetic tape.

On an input operation, data check indicates that
incorrect data may have been placed in main
storage. The device forces correct parity on data
sent to the channel subsystem. On writing, this
condition indicates that incorrect data may have
~een recorded at the device. Unless the operation
IS of a type where the error precludes meaningful
continuation, data errors on reading and writing do
not cause the operation to be terminated prema­
turely.

Overrun: The overrun condition occurs when the
channel subsystem fails to respond to the control
unit in the anticipated time interval to a request for
service from the 1/0 device. When the total activity
initiated by the program exceeds the capability of
the channel subsystem, an overrun may occur when
data is transferred to or from a control unit that is
either using the data-streaming feature or is not
buffered. An overrun condition also may occur
when the device receives the new command too late
during command chaining. The data-streaming
feature is described in the System Library publica­
tion IBM System/360 and System/370 I/O Interface
Channel to Control Unit OEMI, GA22-6974. Refer
to the System Library publication for the device for
information concerning the availability of the data­
streaming feature for that device.

All information significant to the use of the device
normally is provided in the first sense byte. Any
~it posit~ons following those used for programming
information may contain diagnostic information,
and the total number of sense bytes provided by
the qevice for the basic sense command (command
code 04 hex) may extend up to 32 bytes, as needed.
The number and the meaning of the sense bytes
extending beyond the frrst sense byte depend on the
type of I/O device.

The basic sense command initiates a sense opera­
tion on all devices and cannot cause the command­
reject, intervention-required, data-check, or overrun

bit to be set to one. If the control unit detects an
equipment malfunction, or invalid parity on the
sense-command code, the equipment-check or bus­
out-check bit is set to one, and unit check is indi­
cated in the device-status byte.

Devices that can provide special diagnostic sense
information or that can be instructed to perform
other special functions by use of the sense
command may defme modifier bits for the control
of these functions. The special sense operations
may be initiated by a unique combination of modi­
fier bits (see the section "Sense ID"), or a group of
codes may specify the same function. Any
remaining sense-command codes may be considered
invalid, thus causing the unit-check indication, or
may cause the same action as the basic sense
command, depending on the type of device.

The sense information pertaining to the last I/O
operation or device action may be reset any time
after the completion of a· sense command addressed
to that device. Except for the no-operation
command, any other command addressed to the
device may be allowed to reset the sense informa­
tion, provided that the busy bit is not included in
the initial status. The sense information may also
be changed as a result of asynchronous actions, for
example, when the device changes from the not­
ready to the ready state.

A ccw used in a sense operation is inspected for
every one of the seven flags -- CD, CC, SLI, SKIP,
PCI, IDA, and s. Bit positions 0-3 of the ccw
contain modifier bits.

Sense ID

Fonnat 0

11100100 Data Address

a 8 31

s
C C S K P I
D C L I C D S a ////1/// Count

I P I A

32 35 4a 48 63

Format. 1

S
C C S K P I

Illaalaa D C L I C D S a Count
I P I A

a 8 11 16 31

Data Address

32 63

Execution of the sense-10 command proceeds
exactly as for a read command, except that the data
is obtained from sensing indicators rather than from
a record source. The data transferred can be up to
seven bytes in length.

The control unit and I/O device may properly
execute the sense-ID cotnlnand, may execute the
command as the basic sense command, or may
reject the sense-ID command with unit-check
status, depending on the control-unit and I/o-device
model.

The sense-ID command does not initiate anyopera­
tions other than the sensing of the type/model
number. If the control unit and I/O device are
available, then the sense-ID command is executed
even if the I/O device is absent or not ready.

Basic sense data may be reset as a result of exe­
cuting the sense-ID command.

Bytes
o
1,2
3
4,5
6

Contents
FFhex
Control-unit type number
Control-unit model' number
I/o-device type number
I/o-device model number

All unused sense bytes are set to zeros.

Bytes 1 and 2 contain the four-decimal-digit
control-unit type number that corresponds directly
with the control-unit type number attached to the
control unit.

Byte 3 contains the control-unit model number, if
applicable. If not applicable, byte 3 is a byte of all
zeros.

Bytes 4 and 5 contain the four-decimal-digit
I/o-device type number that corresponds directly

Chapter 15. Basic I/O Functions 15-39

with the l/o-deviGe type number attached to the I/O
device.

Byte 6 contains the I/o-device model number, if
applicable. If not applicable, byte 6 is a byte of all
zeros.

Whenever a control unit is not separately address­
able from the attached I/O device or I/O devices, the
response to the sense-ID command is a concat­
enation of the control-unit type number and the
I/o-device type number.

If a control unit can be addressed separately from
the attached I/O device or I/O devices, then the
response to the sense-ID command depends on the
unit addressed. If the control unit is addressed, the
response to the sense-ID command is as follows:

llytes (;ontents
o FF hex
1,2 Control-unit type number
3 Control-unit model number

The response consists of the control-unit type and
model number, with. normal ending status pre­
sented after byte 3.

If the I/O device is addressed, the response to the
sense-ID command is as follows:

Bytes (;ontents
o FF hex
1,2 I/o-device type number
3 I/o-device model number

The response consists of the I/o-device type and
model number, with normal ending status pre­
sented after byte 3.

F or communication controllers utilizing indirect
addressing to end devices,and for cases where the
control unit and device are not distinct, the sense
data source is the same as if a control unit were
being addressed.

A ccw used in a sense-IDoperation is inspected for
every flag -- CD, CC, SLI, SKIP, PCI, IDA, and s.

15~40 ESAj370 Principles of Operation

Transfer in Channel

Format a

CCW Address

8 31

1/1//1//1////1/1///////11/////////1111111/1//////

32 63

Format 1

laeeeHlae I Zeros

e 8 31

lal CCW Address

32 63

The next ccw is fetched from the location in abso­
lute main storage designated by the data-address
field of the ccw specifying transfer in channel.

The transfer-in-channel command does not initiate
any I/O operation, and the I/O device is not signaled
of the execution of the command. The purpose of
the transfer-in-channel command is to provide
chaining between ccws not located in adjacent
doubleword locations in an ascending order of
addresses. The command can occur in both data
and command chaining.

Bits 29-31 (format 0) or bits 61-63 (format 1) of a
ccw that specifies the transfer-in-channel command
must be zeros, designating a ccw on a doubleword
boundary. Furthermore, a ccw specifying transfer
in channel may not be fetched from a location des­
ignated by an immediately preceding transfer in
channel. When either of these errors is detected or
when an invalid address is designated in the
transfer-in-channel command, the program-check
condition is generated. When a ccw which speci­
fies the transfer-in-channel command designates a
ccw at a location protected against fetching, the
protection-check condition is generated. Detection
of these errors during data chaining causes the
operation at the I/O device to be terminated and an
interruption condition to be generated, whereas
during command chaining it causes only an inter­
ruption condition to be generated.

The contents of the second half of the format-O
ccw, bit positions 32-63, are ignored. Similarly,

the contents of bit positions 0-3 of the format-O
ccw are ignored.

Bit positions 0-3 and 8-32 of the format-l ccw
must contain zeros; otherwise, a program-check
condition is generated.

Command Retry

The channel subsystem has the capability to
perform command retry, a procedure that causes a
command to be retried without requiring an I/O

interruption. This retry is initiated by the control
unit presenting either of two status-bit combina­
tions by means of a special sequence. When imme­
diate retry can be performed, it presents a
channel-end, unit-check, and status-modifier
status-bit combination, together with device end.
When immediate retry cannot be performed, the
presentation of device end is delayed until the
control unit is prepared. When device end is pre­
sented alone, the previous command is transferred
again. If device end is accompanied by status mod­
ifier, command retry is not performed, and the
channel subsystem command-chains to the ccw
following the one for which command retry was
signaled (see the section "Status Modifier" on
page 16-23). When the channel subsystem is not
capable of performing command retry due to an
error condition, or when any status bit other than
device end or device end and status modifier
accompanies the requested cOriunand-retry initi­
ation, the retry is suppressed, and the subchannel
becomes status-pending. The scsw stored by TEST

SUBCHANNEL contains the channel-end, unit-check;
and status-modifier status indications, along with
any other appropriate status.

Programming Note: The following possible results
of a command retry must be anticipated by the
program:

1. A ccw containing a PCI may, if retried because
of command retry, cause multiple PCI inter­
ruptions to occur.

2. If a ccw used in an operation is changed
before that operation has been successfully
completed, the results are unpredictable.

Concluding -1/0 Operations
During Initiation
After the designated subchannel has been deter­
mined to be in a state such that START SUB­

CHANNEL can be executed, certain tests are per­
formed on the validity of the information specified
by the program and on the logical availability of
the associated device. This testing occurs during or
subsequent to the execution of START SUB­

CHANNEL and during command chaining and
command retry.

A data-transfer operation is initiated at the sub­
channel and device only when no programming or
equipment errors are detected by the channel sub­
system and when the device responds with zero
status during the initiation sequence. When the
channel subsystem detects or the device signals any
unusual condition during the initiation of an I/O

operation, the command is said to be not accepted.
In this case, the sub channel becomes status­
pending with primary, secondary, and alert status.
Deferred condition code 1 is set, and the start­
pending bit remains set to one.

Conditions that preclude the initiation of an I/O

operation are detailed in the scsw stored by TEST

SUBCHANNEL. In this situation, the device is not
started, no interruption conditions are generated
subsequent to TEST SUBCHANNEL, and the sub­
channel is idle. The device is immediately available
for the initiation of another operation, provided the
command was not rejected because of the busy or
not-operational condition.

When an unusual condition causes a command to
be not accepted during the initiation of an I/O oper­
ation by command chaining or command retry, an
interruption condition is generated, and the sub­
channel becomes status-pending with combinations
of primary, secondary, and alert status as a function
of the status signaled by the device. The status
describing the condition remains at the subchannel
until cleared by TEST SUBCHANNEL. The condi­
tions are indicated to the program by means of the
corresponding status bits in the scsw. A path-not­
operational condition recognized during command
chaining is signaled to the program by means of an
interface-control-check indication. The new I/O

operation at the device is not started.

START SUBCHANNEL is executed independent of its
associated device.- Tests on most program-specified
information, on device availability and unit status,

Chapter 15. Basic I/O Functions 15-41

and on most error conditions are performed subse­
quent to the execution of START SUBCHANNEL.

When any conditions are detected that preclude
performance of the start function, an interruption
condition is generated by the channel subsystem
and placed at the subchannel, causing it to become
status-pending.

Immediate Conclusion of 1/0
Operations
During the initiation of an 1/0 operation, the device
can accept the command and signal the
channel-end condition immediately upon receipt of
the command code. An 1/0 operation causing the
channel-end condition to be signaled during the ini­
tiation sequence is called an immediate operation.
Status generated by the device for the immediate
command, when command chaining is not specified
and command retry is not signaled, causes the sub­
channel to become status-pending with combina­
tions of primary, secondary, intermediate, and alert
status as a result of information specified in the
ORB and ccw and status presented by the device.
If the immediate operation is the frrst operation of
the channel program, deferred condition code I is
set and accompanies the status indications. If inter­
mediate status is indicated, the indication can occur
only as a result of the ccw having the PCI flag set
to one (see the section "Program-Controlled
Interruption" on page 15-30).

Whenever command chaining is specified after an
immediate operation and no unusual conditions
have been detected during the execution, or when
co~and retry occurs for an immediate operation,
an mterruption condition is not generated. The
subsequent commands in the chain are handled
normally, and, usually, the channel-end condition
for the last ccw generates a primary interruption
condition. If device end is signaled with channel
end, a secondary interruption condition is also gen­
erated.

Whenever immediate completion of an 1/0 opera­
tion is signaled, no data has been transferred to or
from the device, and the data address in the ccw is
not checked for validity. If the subchannel is in the
incorrect-length-suppression mode, incorrect length
is not indicated to the program, and command
chaining is performed when specified. If the sub­
channel is in the incorrect-length-indication mode
incorrect length and command chaining are unde;
control of the SLI and chain-command flags. The

15-42 ESA/370 Principles of Operation

conditions which cause the incorrect-length indi­
cation to be suppressed are summarized in
Figure 15-6 on page 15-27.

Programming Note: I/O operations for which the
entire operation is specified in the command code
may be executed as immediate operations.
Whether the command is executed as an immediate
operation depends on the operation and type of
device.

Concluding 1/0 Operations
During Data Transfer
When the subchannel has been passed the contents
of an ORB, the sub channel is said to-be start­
pending. When the I/O operation has been initiated
and the command has been accepted, the sub­
channel becomes subchannel-and-device active and
remains in that state unless (I) the channel sub­
system detects an equipment malfunction, (2) the
operation is concluded by execution of CLEAR SUB­

CH~NNEL or HALT SUBCHANNEL, or (3) status
which causes a primary interruption condition to
be recognized (usually channel end) is accepted
from the device. When command chaining and
~ommand retry are not specified or when chaining
IS suppressed because of unusual conditions, the
status that is recognized as primary status causes
the operation at the subchannel to be concluded
and an interruption condition to be generated. The
status bits in the associated scsw indicate primary
stat~s and the unusual conditions, if any. The
deVice can present status that is recognized as
primary status at any time after the initiation of the
I/O operation, and the presentation of status may
occur before any data has been transferred.

For operations not involving data transfer the
device normally controls the timing of' the
channel-end condition. The duration of data­
transfer operations may be variable and may be
controlled by the device or the channel subsystem.

Excluding equipment errors, and the execution of
the CLEAR SUBCHANNEL, HALT SUBCHANNEL, and
RESET CHANNEL PATH instructions, the channel
subsystem signals the device to conclude execution
of an I/O operation during data transfer whenever
any of the following conditions occurs:

• The storage areas designated for the operation
are exhausted or filled.

• A program-check condition is detected.

• A protection-check condition is detected.

• A chaining-check condition is detected.

• A channel-control~check condition is detected
that does not affect the control of the I/O oper­
ation.

The frrst of these conditions occurs when the
channel subsystem has decremented the count to
zero in the last ccw associated with the operation.
A count of zero indicates that the channel sub­
system has transferred all information specified by
the I/O operation. The other four conditions are
due to errors and cause premature conclusion of
data transfer. In either case, the conclusion is sig­
naled in response to a service request from the
device and causes data transfer to cease. If the
device has no blocks defmed for the operation
(such as writing on magnetic tape), it concludes the
operation and presents channel-end status.

The device can control the duration of an operation
and the timing of channel end by blocking of data.
On certain operations for which blocks are defmed
(such as reading on magnetic tape), the device does
not present channel-end status until the end of the
block is reached, regardless of whether the device
has been previously signaled to conclude data
transfer.

Checking for the validity of the data address is per­
formed only as data is transferred to or from main
storage. When the initial data address in the ccw
is invalid, no data is transferred during the opera­
tion, and the device is signaled to conclude the
operation in response to the first service request.
On writing, devices such as magnetic-tape units
request the frrst byte of data before any mechanical
motion is started and, if the initial data address is
invalid, the operation is terminated by the channel
subsystem before the recording medium has been
advanced. However, since the operation has been
initiated at the device, the device presents
channel-end status, causing the channel subsystem
to recognize a primary interruption condition.
Subsequently, the device also presents device-end
status, causing the channel subsystem to recognize
a secondary interruption condition. Whether a
block at the device is advanced when no data is
transferred depends on the type of device.

When command chaining takes place, the sub­
channel is in the subchannel-and-device-active state
from the time the frrst I/O operation is initiated at
the device until the device presents channel-end
status for the last I/O operation of the chain. The

subchannel remains in the device-active state until
the device presents the device-end status for the last
I/O operation of the chain.

Any unusual conditions cause command chaining
to be suppressed and a primary interruption condi­
tion to be generated. The unusual conditions can
be detected by either the channel subsystem or the
device, and the device can provide the indications
with channel end, control-unit end, or device end.
When the channel subsystem is aware of the
unusual condition by the time the channel-end
status for the operation is accepted, the chain is
ended as if the operation during which the condi­
tion occurred were the last operation of the chain.
The device-end status is recognized as a secondary
interruption condition whether presented together
with the channel-end status or separately. If the
device presents unit check or unit exception
together with either control-unit end or device end
as status. which causes the channel subsystem to
recognize the primary interruption condition, then
the subchannel-and-device-active state of the sub­
channel is terminated, and the sub channel is made
status-pending with primary, secondary, and alert
status. Intermediate status may also be indicated if
an intermediate interruption condition previously
existed at the subchannel for the initial-status­
interruption condition or the PCI condition and
that condition still remains pending at the sub­
channel. The channel-end status which was pre­
sented to the channel subsystem previously when
command chaining was signaled is not made avail­
able to the program.

Channel-Path-Reset Function
Subsequent to the execution of RESET CHANNEL

PATH, the channel-path-reset function is performed.
Perforrp.ance of the function consists in:
(1) issuing the reset signal on the designated
channel path and (2) causing a channel report to
be made pending, indicating completion of the
channel-path-reset function.

Channel-Path-Reset-Function
Signaling

The channel subsystem issues the reset signal on
the designated channel path. As part of this opera­
tion, the'following actions are taken:

1. All internal indications associated with control
unit busy, device busy, and allegiance condi­
tions for the designated channel path are reset.

Chapter 15. Basic I/O Functions 15-43

These indications are reset at all subchannels
that have access to the designated channel path.
The reset function has no other effect on sub­
channels, including those having I/O· operations
in progress.

2. If the channel path fails to respond properly to
the reset signal (see the section "I/O-System
Reset" on page 17-6, for a detailed description)
or, because of a malfunction, the reset signal
could not be issued, the channel path is made
physically not available at each applicable sub­
channel.

3. If an I/O operation is in progress at the device
and the device is actively communicating on
the channel path in the execution of that I/O

operation when the reset signal is received on
that channel path, the I/O operation is reset,
and the control unit and device immediately
terminate current communication with the
channel subsystem. (To avoid possible misin­
terpretation of unsolicited device-end status,
programming measures can be taken as
described in programming note 2.)

4. If an I/O operation is in progress in multipath
mode at the device and the device is not cur­
rently communicating over the channel path in
execution of that I/O operation when the reset
signal is received, then the I/O operation mayor
may not be reset depending on whether
another ch~el path is available for selection
in the same multipath group for the device. If
there is at least one other channel path in the
multipath group for the device that is available
for selection, the I/O operation is not reset.
However, the channel path on which the
system reset is received is removed from the
current set of channel paths that form the
multipath group. If the channel path on which
the reset signal is received is either the only
channel path of a multipath group or the
device is operating in single-path mode, the I/O

operation is reset.

5. The channel-path-reset function causes I/O

operations to be terminated at the device as
described above; however, I/O operations are
never terminated at the subchannel by the
channel-path-reset function.

If an I/O operation is in progress at the subchannel
and the channel path designated for the perform~
ance of the channel-path-reset function is being
used for that I/O operation, the subchannel mayor
may not accurately reflect the progress of the I/O

operation up to that instant. The subchannel

15-44 ESA/370 Principles of Operation

remains in the state that exists at the time the
channel-path-reset function is performed until the
state is changed because of some action taken by
the program or by the device.

Channel-Path-Reset
Function-Completion Signaling

Mter the reset signal has been issued and an·
attempt has been made to issue the reset signal, or
after it has been determined that the reset signal
cannot be issued, the channel-path-reset function is
completed. (See the section "Reset Signal" on
page 17-6.)

As a result of the channel-path-reset function being
performed, a channel report is made pending (see
the section "Channel-Subsystem Recovery" on
page 17-13) to report the results. If the channel
path responds properly to the system-reset signal,
the channel report indicates that the channel path
has been initialized and is physically available for
use. If the reset signal was issued but either the
channel path failed to respond properly or the
channel path was already not physically available at
each sub channel having access to the channel path,
the channel report indicates that the channel path
has been initialized but is not physically available
for use. If, because of a malfunction or because the
designated channel path is not in the configuration,
the reset signal could not be issued, the channel
report indicates that. the channel path has not been
initialized and is not physically available for use.

Programming Notes:

I. If an I/O operation is in progress in multipath
mode when the channel-path-reset function is
performed on a channel path of the multipath
group, it is possible for the I/O operation to be
continued on a remaining channel path of the
group.

2. When the performance of the channel-path­
reset function causes the I/O operation at the
device to be reset, unsolicited device-end status
presented by the device, if any, may be erro­
neously interpreted_ by the channel subsystem
to be chaining status and thus cause the
channel subsystem to continue the chain of
commands. If this situation occurs, the
device-end status is not made available to the
program and the device is selected again by the
channel subsystem; however, the device may
interpret the initiation sequence as the begin­
ning of a new channel program instead of

command chaining. This possibility can be
avoided by executing CLEAR SUBCHANNEL or
HALT SUBCHANNEL, designating the affected
subchannels, prior to executing RESET

CHANNEL PATH.

3. Execution of the channel-path-reset function
may, on some models, cause overruns to occur
on other channel paths.

4. Even though reset is signaled on the designated
channel path, allegiances to that channel path
by one or more devices may not have been
reset because of a malfunction at a control unit
or a malfunction at the physical channel path
to the control unit.

Chapter 15. Basic I/O Functions 15-45--

Chapter 16. 1/0 Interruptions

Interruption Conditions
Intermediate Interruption Condition
Primary Interruption Condition
Secondary Interruption Condition
Alert Interruption Condition

Priority of Interruptions
Interruption Action
Interruption-Response Block
Subchannel-Status Word

Subchannel Key
Suspend Control (S) ..
Extended-Status-Word Format (L)
Deferred Condition Code (CC)
Format (F)
Prefetch (P)
Initial-Status-Interruption Control (I)
Address-Limit-Checking Control (A)
Suppress-Suspended Interruption (U)

Subchannel-Control Field
Zero Condition Code (Z)
Extended Control (E)
Path Not Operational (N)
Function Control (FC)
Activity Control (AC)
Status Control (SC)

CCW -Address Field
Device-Status Field

16-2
16-4
16-4
16-4
16-4
16-5
16-5
16-6
16-6
16-8
16-8
16-8
16-8

16-10
16-11
16-11
16-11
16-11
16-11
16-11
16-11
16-12
16-12
16-13
16-16
16-18
16-23

When an I/O operation or sequence of I/O opera­
tions initiated by the execution of START SUB­

CHANNEL is ended, the channel subsystem and the
device generate status conditions. The generation
of these conditions can be brought to the attention
of the program by means of an I/O interruption or
by means of the execution of the TEST PENDING

INTERRUPTION instruction. TEST PENDING INTER­

RUPTION instruction or the TEST PENDING ZONE

INTERRUPTION instruction. (During certain
abnormal situations, these conditions can be
brought to the attention of the program by means
of a machine-check interruption. See the section
"Channel-Subsystem Recovery" on page 17-13 for
details.) The status conditions, as well as an
address and a count indicating the extent of the
operation sequence, are presented to the program
in the form of a subchannel-status word (scsw).
The scsw is stored in an interruption-response

Attention
Status Modifier
Control-Unit End
Busy
Channel End
Device End
Unit Check
Unit Exception

Subchannel-Status Field
Program-Controlled Interruption
Incorrect Length
Program Check ...
Protection Check ..
Channel-Data Check
Channel-Control Check
Interface-Control Check
Chaining Check

Count Field
Extended-Status Word

Extended-Status Format 0
Subchannel Logout
Extended-Report Word
Failing-Storage Address

Extended-Status Format 1
Extended-Status Format 2
Extended-Status Format 3

Extended-Control Word ...

16-23
16-23
16-24
16-25
16-25
16-26 I

16-26 '
16-27
16-28
16-28
16-28
16-29
16-30
16-30
16-31
16-32
16-33
16-33
16-36
16-36
16-36
16-40
16-40
16-40
16-41
16-42
16-43

block (IRB) during the execution of TEST SUB­

CHANNEL.

Normally an I/O operation is in execution until the
device signals pritnary interruption status. Primary
interruption status can be signaled during initiation
of an I/O operation, or later. An I/O operation can
be terminated by the channel subsystem performing
a clear or halt function when it detects an equip­
ment malfunction, a program check, a chaining
check, a protection check, or an incorrect-length
condition, or by performing a clear, halt, or
channel-path-reset function as a result of the exe­
cution of CLEAR SUBCHANNEL, HALT SUB­

CHANNEL, or RESET CHANNEL PATH, respectively.

I/O interruptions provide a means for the CPU to
change its state in response to conditions that occur
at I/O devices or subchannels. These conditions
can be caused by the program, by the channel sub­
system, or by an external event at the device.

Chapter 16. I/O Interruptions 16-1

Interruption Conditions
The conditions causing requests for I/O inter­
ruptions to be initiated are called I/o-interruption
conditions. When an interruption condition is
recognized by the channel subsystem, it is indicated
at the appropriate sub channel. The sub channel is
then said to be status-pending. The subchannel
becoming status-pending causes the channel sub­
system to generate an I/o-interruption request. An
I/o-interruption request can be brought to the
attention of the program only once.

An I/o-interruption request remains pending until it
is accepted by a CPU in the configuration, is with­
drawn by the channel subsystem, or is cleared by
means of the execution of TEST PENDING INTER­
RUPTION, TEST PENDING ZONE INTERRUPTION,
TEST SUBCHANNEL, or CLEAR SUBCHANNEL, or by
means of subsystem reset. When a CPU accepts an
interruption request and stores the associated inter­
ruption code, the interruption request is cleared.
Alternatively, an I/o-interruption request can be
cleared by means of the execution of TEST
PENDING INTERRUPTION. TEST PENDING INTER­
RUPTION or TEST PENDING ZONE INTERRUPTION.
In all cases, the sub channel remains status-pending
until the associated interruption condition is cleared
when TEST SUBCHANNEL is executed or when the
sub channel is reset.

An I/o-interruption condition is normally cleared
by means of the execution of TEST SUBCHANNEL.
If TEST SUBCHANNEL is executed, designating a
sub channel that has an I/o-interruption request
pending, both the interruption request and the
interruption condition at the subchannel are
cleared. The interruption request and the inter­
ruption condition can also be cleared by CLEAR
SUBCHANNEL.

A device-end status condition generated by the I/O
device and presented following the conclusion of
the last I/O operation of a start function is reset at
the subchannel by the channel subsystem without
generating an I/o-interruption condition or
I/o-interruption request if the subchannel is cur­
rently start-pending and if the status contains device
end either alone or accompanied by control-unit
end. If any other status bits accompany the
device-end status bit, then the channel subsystem
generates an I/o-interruption request with deferred
condition code 1 indicated.

16-2 ESA/370 Principles of Operation

When an I/O operation is terminated because of an
unusual condition detected by the channel sub­
system during the command initiation sequence,
status describing the interruption condition is
placed at the subchannel, causing it to become
status-pending. If the unusual condition is detected
by the device, the device-status field of the associ­
ated scsw identifies the condition.

When command chaining takes place, the gener­
ation of status by the device does not cause an
interruption, and the status is not made available to
the program. .

When the channel subsystem detects· any of the fol­
lowing interruption conditions, it initiates a request
for an I/O interruption without necessarily commu­
nicating with, or having received the status byte
from, the device:

• A programming error associated with the con­
tents of the ORB passed to the subchannel by
the previous execution of START SUBCHANNEL

• A valid suspend flag in the ftrst ccw fetched
that initiates channel-program execution for
either START SUBCHANNEL or RESUME SUB­
CHANNEL, and suppress suspended interruption
not specified in the 0 RB

• A progratnming error associated with the frrst
ccw or frrst IDAW

These interruption conditions from the subchannel,
except for the suspended condition, can be accom­
panied by other subchannel-status indications, but
the device-status indications are all stored as zeros.

The channel subsystem issues the clear signal to the
device when status containing unit check is pre­
sented to a subchannel that is disabled or when the
device is not associated with any subchannel.
However, if the presented status does not contain
unit check, the status is accepted by the channel
subsystem and discarded without causing the sub­
channel to become status-pending.

An interruption condition caused by the device
may be accompanied by multiple device-status con­
ditions. Further, more than one interruption con­
dition associated with the same device can be
accepted by the channel subsystem without an
intervening I/O interruption. As an example, when
the channel-end condition is not cleared at the
device by the time device end is generated, both
conditions may be cleared at the device concur­
rently and indicated in the scsw together. Altema-

tively, channel-end status may have been previously
accepted at the subchannel, and an I/O interruption
may have occurred; however, the associated status­
pending condition may not have been cleared by
TEST SUBCHANNEL by the time device-end status
was accepted at the subchannel. In this situation,
the device-end status may be merged with the
channel-end status without causing an additional
I/O interruption. Whether an interruption condi­
tion may be merged at the subchannel with other
existing interruption conditions depends upon
whether the interruption condition is unsolicited or
solicited.

Unsolicited Interruption Condition: An unsolic­
ited interruption condition .is any interruption con­
dition which is unrelated to the performance of a
clear, halt, resume, or start function. An unsolic­
ited interruption condition is identified at the sub­
channel as alert status. An· unsolicited interruption
condition can be generated only when the sub­
channel is not device-active.

The sub channel and device status associated with
an unsolicited interruption condition is never
merged with that of any currently existing inter­
ruption condition. If the sub channel is currently
status-pending, the unsolicited interruption condi­
tion is held in abeyance in either the channel sub­
system or the device, as appropriate, until the
status-pending condition has been cleared.

Solicited Interruption Condition: A solicited inter­
ruption condition is any interruption condition gen­
erated as a direct consequence of performing or
attempting to perform a clear, halt, resume, or start
function. Solicited interruption conditions include
any interruption condition generated while the sub­
channel is either subchannel-and-device-active or
device-active. The subchannel and device status
associated with a solicited interruption condition
may be merged at the subchannel with that of
another currently existing solicited interruption
condition. Figure 16-1 describes the interruption
condition that results from any combination of bits
in the status-control field of the scsw.

Status-Control Field Status-Control-Bit Combinations

Alert 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
Primary 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0
Secondary 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0
Intermediate 0 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0
Status-pending 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Resulting interrup- E S S S S S - S S S S S S - S S
tion condition

EXElanation:

- Combination does not occur.

E Unso 1 i cited or solicited interruption condition.

S Solicited interruption condition.

0 Indicates the bit stored as zero.

1 Indicates the bit stored as one.

Figure 16-1. Interruption Condition for Status-Control-Bit Combinations

Chapter 16. I/O Interruptions t 6-3

Intermediate Interruption Condition

An intermediate interruption condition is a solicited
interruption condition that indicates that an event
for which the program had previously requested
notification has occurred. An intermediate inter­
ruption condition is described by solicited sub­
channel status, the Z bit, the subchannel-suspended
condition, or any combination of the three. An
intermediate interruption condition can occur only
after it has been requested by the program through
the use of flags in the ORB or a ccw. Depending
on the state of the sub channel , execution or sus­
pension of the 1/0 operation continues, unaffected
by the setting of the intermediate-status bit.

An intermediate interruption condition can be indi­
cated only together with one of the following indi­
cations:

1. Subchannel-active

2. Status-pending with primary status alone

3. Status-pending with primary status together
with alert status or secondary status or both

4. Suspended

If only the intermediate-status bit and the status­
pending bit of the status-control field are ones
during the execution of TEST SUBCHANNEL, the
device-status field is zero.

Primary Interruption Condition

A primary interruption condition is a solicited
interruption condition that indicates the perform­
ance of the start function is completed at the sub­
channel. A primary interruption condition is
described by the scsw stored as a result of exe­
cuting TEST SUBCHANNEL while the sub channel is
status-pending with primary status. Once the
primary interruption condition is indicated at the
subchannel, the channel subsystem is no longer
actively participating in the 1/0 operation by trans­
ferring commands or data. When a subchannel is

16-4 ESAj370 Principles of Operation

status-pending with a primary interruption condi­
tion, execution of any of the following instructions
results in the setting of a nonzero condition code:
HALT SUBCHANNEL, MODIFY. SUBCHANNEL,

RESUME SUBCHANNEL, and START SUBCHANNEL.

Once the primary interruption condition is cleared
by executing TEST SUBCHANNEL, the subchannel
accepts the START SUBCHANNEL instruction. (See
the section "Start Subchannel" on page 14-12.)

Secondary Interruption Condition

A secondary interruption condition is a solicited
interruption condition that normally indicates the
completion of an 1/0 operation at the device. A
secondary interruption condition is also generated
by the channel subsystem if the start function is
terminated because a solicited alert interruption
condition is recognized prior to initiating the frrst
1/0 operation at the device. A secondary inter­
ruption condition is described by the scsw stored
as a result of executing TEST SUBCHANNEL while
the sub channel is status-pending with secondary
status. Once the channel subsystem has accepted
status from the device that causes a secondary
interruption condition to be recognized, the start
function is completed at the device.

Alert Interruption Condition

An alert interruption condition is either a solicited
interruption condition that indicates the occurrence
of an unusual condition in a halt, resume, or start
function or an unsolicited interruption condition
that describes a condition unrelated to the perform­
ance of a halt, resume, or start function. An alert
interruption condition is described by the scsw
stored as a result of executing TEST SUBCHANNEL

while the subchannel is status-pending with alert
status. An alert interruption condition may be gen­
erated by either the channel subsystem or the
device. Nonzero alert status is always brought to
the attention of the program. Whenever the sub­
channel is idle and zero status is presented by the
device, the status is discarded.

Priority of Interruptions
All requests fo'r an I/O interruptio'n are asynchro'­
nous to' any activity in any CPU, and interruptio'n
requests asso'ciated with mo're than o'ne subchannel
can exist at the same time. The prio'rity o'f inter­
ruptio'ns is co'ntro'lled by two' types o'f
mechanisms -- o'ne establishes within the channel
subsystem the prio'rity amo'ng interruptio'n requests
fro'm subchannels asso'ciated with the same
I/o-interruptio'n subclass, and another establishes
within a given CPU the prio'rity amo'ng requests
fro'm subchannels o'f different I/o-interruptio'n sub­
classes. The channel subsystem requests an I/O
interruptio'n o'nly after it has established prio'rity
amo'ng requests fro'm its subchannels. The co'ndi­
tio'ns resPo'nsible fo'r the requests are preserved at
the subchannels until cleared by a CPU executing
TEST SUBCHANNEL o'r CLEAR SUBCHANNEL o'r
until I/o-system reset is perfo'rmed.

The assignment o'f prio'rity amo'ng requests fo'r
interruptio'n fro'm subchannels o'f the same
I/o-interruptio'n subclass is in the o'rder that the
need fo'r interruptio'n is reco'gnized by the channel
subsystem. The o'rder o'f reco'gnitio'n by the
channel subsystem is a functio'n o'f the type o'f
interruptio'n co'nditio'n and the type o'f channel
path. Fo'r the type o'f channel path used by the
channel subsystem, the o'rder depends o'n the elec­
trical Po'sitio'n o'f the device o'n the channel path to'
which it is attached. A device's electrical Po'sitio'n
o'n the I/O interface is no't related to' its device
address.

The assignment o'f prio'rity amo'ng requests fo'r
interruptio'n fro'm subchannels o'f different l/o-inter­
ruptio'n subclasses is made by the CPU acco'rding to'
the numerical value o'f the I/o-interruptio'n subclass
co'des (with zero' having highest prio'rity), in Co'n­
junctio'n with the I/o-interruptio'n subclass mask in
co'ntrol register 6. The numerical value o'f the
I/o-interruptio'n subclass co'de is directly related to'
the bit Po'sitio'n in the I/o-interruptio'n subclass
mask in co'ntro'l register 6 o'f a CPU. If in any CPU

an I/o-interruptio'n subclass-mask bit is zero', then
all subchannels having an I/o-interruptio'n subclass
co'de numerically equal to' the asso'ciated positio'n in
the mask register are said to' be masked o'ff in the
respective CPU. Therefo're, a CPU accepts the
highest-prio'rity l/o-interruptio'n request fro'm a sub­
channel which has the Io'west-numbered I/o-inter­
ruption subcl~ss co'de that is no't masked o'ff by a
corresPo'nding bit in co'ntro'l register 6 o'f that CPU.

When the highest-priority interruptio'n request is

accepted by a CPU, it is cleared So' that the inter­
ruptio'n request is no't accepted by any o'ther CPU in
the co'nfiguratio'n.

The prio'rity o'f interruptio'n handling can be mo'di­
fied by executio'n o'f either TEST SUBCHANNEL o'r
CLEAR SUBCHANNEL. When either o'f these
instructio'ns is executed and the designated sub­
channel has an interruptio'n request pending, that
interruptio'n request is cleared, witho'ut regard to'
any previous established prio'rity. The relative pri­
o'rity o'f the remaining interruptio'n requests is
unchanged.

Programming Notes:

1. The I/o-interruptio'n subclass mask is in co'ntro'l
register 6, which has the follo'wing fo'rmat:

Reserved

e 8 31

2. Co'ntrol register 6 is set to' all zero's during
initial CPU reset.

Interruption Action
An I/O interruptio'n can o'ccur o'nly when the
I/o-interruptio'n subclass-mask bit asso'ciated with
the subchannel is o'ne and the CPU is enabled fo'r
I/O interruptio'ns.

The interruptio'n o'ccurs at the co'mpletio'n o'f a unit
o'f o'peratio'n (see the sectio'n "Po'int o'f
Interruptio'n" in Chapter 5, "Pro'gram Executio'n").
If the channel subsystem establishes the prio'rity
among requests fo'r interruptio'n fro'm subchannels
while the CPU is disabled fo'r I/O interruptio'ns, the
interruptio'n o'ccurs immediately after co'mpletio'n o'f
the instructio'n enabling the CPU and befo're the
next instructio'n is executed, pro'vided that the
I/o-interruptio'n subclass-mask bit asso'ciated with
the subchannel is o'ne. Alternatively, if the channel
subsystem establishes the prio'rity amo'ng requests
fo'r interruptio'n fro'm subchannels while the
I/o-interruptio'n subclass-mask bit is zero' fo'r each
subchannel which is status-pending, the inter­
ruptio'n o'ccurs immediately after co'mpletio'n o'f the
instructio'n which sets at least o'ne o'f the I/o-inter­
ruptio'n subclass-mask bits to' o'ne, pro'vided that
the CPU is also' enabled fo'r I/O interruptio'ns. This
interruptio'n is asso'ciated with the highest-prio'rity
I/o-interruptio'n request, as established by the CPU.

Chapter 16. I/O Interruptions 16·5

If the channel subsystem has not established the
priority among requests for interruption from the
subchannels by the time the interruption is allowed,
the interruption does not necessarily occur imme­
diately after completion of the instruction enabling
the CPU. A delay can occur regardless of how long
the interruption condition has existed at the sub­
channel.

The interruption causes the current psw to be
stored as the old psw at reallocation 56 and causes
the I/o-interruption code associated with the inter­
ruption to be stored at reallocations 184-191 of the
CPU allowing the interruption. Subsequently, a
new psw is loaded from real location 120, and
processing resumes in the CPU state indicated by
that psw. The sub channel causing the interruption
is identified by the interruption code.

Interruption-Response Block
The interruption-response block (IRB) is the
operand of TEST SUBCHANNEL. The two rightmost
bits of the IRB address are zeros, designating the
IRB on a word boundary. The IRB contains three
major fields: the subchannel-status word, the
extended-status word, and the extended-control
word. The format of the IRB is as follows:

Word e
1
2

3
4
5
6
7

Subchannel-Status Word

Extended-Status Word

The I/o-interruption code has the following format 8
when it is stored:

Hex. Dec.

B8 184 Subsystem-Identification Word

BC 188 Interruption Parameter

e 31

Bits 2-4 of the interruption-identification word
contain a value in the range 0-7 that specifies the
interruption-subclass code (ISC) associated with the
subchannel for which the pending interruption
request is cleared.

Bits 8-15 of the interruption-identification word
contain a value in the range 0-255 specifying the
zone number associated with the subchannel for
which the pending interruption request is cleared.
While a CPU is accepting an interruption request,
no other CPU can accept an interruption request
from a subchannel of the same I/o-interruption
subclass. However, other CPUs may accept a
pending interruption request from a subchannel of
a different I/o.,interruption subclass. Mter the inter­
ruption has occurred, other CPus can accept a
pending interruption request from a sub channel of
the same I/o-interruption subclass, if any remain.

Programming Note: The I/o-interruption subclass
code for all subchannels is set to zero by I/o-system
reset. It may be set to any of the values 0-7 by
executing MODIFY SUBCHANNEL. (The operation
of the instruction is described in the section
"Modify Subchannel" on page 14-6.)

16-6 ESAj370 Principles of Operation

I Extended-Control Word I

151L--__ I
The length of the subchannel-status and extended­
status words is 12 bytes and 20 bytes, respectively.
The length of the extended-control word is 32
bytes. When the extended-control bit (bit 14, word
0) of the scsw is zero, words 8-15 of the
interruption-response block mayor may not be
stored.

Subchannel-Status Word
The subchannel-status word (scsw) provides to the
program indications describing the status of a sub­
channel and its associated device. If performance
of a halt, resume, or start function has occurred,
the scsw may describe the conditions under which
the operation was concluded.

The scsw is stored when TEST SUBCHANNEL is
executed and the designated subchannel is opera­
tional. The scsw is placed in words 0-2 of the IRB
that is designated as the TEST SUBCHANNEL
operand. When STORE SUBCHANNEL is executed,
the scsw is stored in words 7-9 of the subchannel­
information block (described in the section
"Subchannel-Information Block" on page 15-1).
Figure 16-2 on page 16-7 shows the format of the
scsw and summarizes its contents.

Word
o

1

Key AC SC

CCW Address

2 Device Status Sch Status Count

Word 0
0-3

4
5

6-7
8
9

10
11
12
13
14
15
16

17-19

20-26

27-31

Word 1
0-31

Word 2
0-7

8-15

16-31

4 8

Subchannel key
Suspend control (S)
ESW Format (L)

16

Deferred condition code (CC)
Format (F)
Prefetch (P)

20

Initial-status interruption control (I)
Address-l imi t-checki ng control (A)
Suppress-suspended interruption (U)
Zero condition code (Z)
Extended control (E)
Path not operat i ona 1 (N)
Reserved (0)
Functi on control (FC)

27

(bit 17, start function; bit 18, halt function;
bit 19, clear function)

Activity control (AC)
(bit 20, resume-pending; bit 21, start-pending;
bit 22, halt-pending; bit 23, clear-pending;
bit 24, subchannel-active; bit 25, device-active;
bit 26. suspended)

Status control (SC)
(bit 27, alert status; bit 28, intermediate status;
bit 29, primary status; bit 30, secondary status;
bit 31, status-pending)

CCW address

Device status
(bit 0, attention; bit 1, status modifier;
bit 2, control-unit end; bit 3, busy;
bit 4, channel end; bit 5, device end;
bit 6, unit check; bit 7, unit exception)

Subchannel status (Sch Status)

31

(bit 8, program-controlled interruption; bit 9, incorrect length;
bit 10, program check; bit 11, protection check;
bit 12, channel-data check; bit 13, channel-control check;
bit 14, interface-control check; bit 15, chaining check)

Count

Figure 16-2. SCSW Format

Chapter 16. I/O Interruptions 16-7

The contents of the subchannel-status word (scsw)
depend on the state of the sub channel when the
scsw is stored. Depending on the state of the sub­
channel and the device, the specific fields of the
scsw may contain (I) information pertaining to
the last operation, (2) information unrelated to the
execution of an operation, (3) zeros, or (4) a value
of no meaning. The following descriptions indicate
when an scsw field contains meaningful informa­
tion.

Subchannel Key
When the start-function bit (bit 17 of word 0) is
one, bits 0-3 of word 0 contain the access key used
during performance of the associated start function.
These bits are identical with the key specified in the
ORB (bits 0-3 of word 1). The subchannel key is
meaningful only when the start-function bit (bit 17
of word 0) is one.

Suspend Control (S)
When the start-function bit (bit 17 of word 0) is
one, bit 4 of word 0, when one, indicates that the
suspend function can be initiated at the subchannel.
Bit 4 is meaningful only when bit 17 is one. If bit
17 is one and bit 4 is one, channel-program exe-

. cution can be suspended if the channel subsystem
recognizes a valid s flag which is set to one in a
ccw. If bit 4 is zero, channel-program execution
cannot be suspended, and if an S flag set to one in
a ccw is recognized, a program-check condition is
recognized.

Extended-Status-Word Format (L)
When the status-pending bit (~it 31 of word 0) is
one, bit 5 of word 0, when one, indicates that a
format-O ESW has been stored. A format-O ESW is
stored when an interruption condition containing
one of the following indications is cleared by TEST

SUBCHANNEL:

Channel-data check
Channel-control check
Interface-control check
Measurement-block-program check
Measurement-block -data check
Measurement-block-protection check

The extended-status-word-format bit is meaningful
whenever the subchannel is status-pending. The
extended-status information that is used to fonn a
format-O ESW is cleared at the subchannel by TEST

SUBCHANNEL or CLEAR SUBCHANNEL.

16-8 ESA/370 Principles of Operation

Deferred Condition Code (CC)
When the start-function bit (bit 17 of word 0) is
one and the status-pending bit (bit 31 of word 0) is
also one, bits 6-7 of word 0 indicate the general
reason that the subchannel was status-pending
when TEST SUBCHANNEL or STORE SUBCHANNEL

was executed. The deferred condition code is
meaningful when the sub channel is status-pending
with any combination of status and only when the
start-function bit of the function-control field in the
scsw is one. The meaning of the deferred condi­
tion code for each value when the subchannel is
status-pending is given m Figure 16-3 on
page 16-10.

The deferred condition code, if not zero, is used to
indicate whether conditions have been encountered
that preclude the subchannel becoming subchannel­
and-device-active while the subchannel is either
start-pending or suspended.

Deferred Condition Code 0: A normal I/O inter­
ruption has taken place.

Deferred Condition Code 1: Status is present in
the scsw that was presented by the associated
device or generated by the channel subsystem sub­
sequent to the setting of condition code 0 for
START SUBCHANNEL or RESUME SUBCHANNEL. If
only the alert-status bit and. the status-pending bit
of the status-control field of the scsw are ones, the
status present is not related to the execution of a
channel program. If the intermediate-status bit, the
primary-status bit, or both are ones, then the status
is related to the execution of the channel program
specified by the most recently/executed START SUB­

CHANNEL instruction or implied by the most
recently executed RESUME SUBCHANNEL instruc­
tion. (See the section "Immediate Conclusion of
I/O Operations" on page 15-42.) If the secondary­
status bit is one and the primary -status bit is zero,
the status present is related to the channel program
specified by the START SUBCHANNEL instruction or
implied by the RESUME SUBCHANNEL instruction
that preceded the most recently' executed START

SUBCHANNEL instruction.

Deferred Condition Code 2: This code does not
occur and is reserved for future use.

Deferred Condition Code 3: An attempted device
selection has occurred, and the device appeared not
operational on all of the channel paths that were
available for selection of the device.

A device appears not operational when it does not
respond to a selection attempt by the channel sub­
system. This occurs when the control unit is not
provided in the system, when power is off in the
control unit, or when the control unit has been log­
ically switched off the channel path. The not­
operational state is also indicated when the control
unit is provided and is capable of attaching the
device, but the device has not been installed and
the control unit is not designed to recognize the
device being selected as one of its attached devices.
(See also the section "I/O Addressing" on
page 13-5.)

A deferred condition code 3 also can be set by the
channel subsystem if no channel paths to the device
are available for selection. (See Figure 16-3 on
page 16-10.)

Programming Notes:

1. If, during performance of a start function, the
I/O device being selected is not installed or has
been logically removed from the control unit,
but the associated control unit is operational
and the control unit recognizes the I/O device
being selected as one of its I/O devices (for
example, access mechanism 7 on the IBM 3830
Storage Control that has only access mech­
anisms 0-3 installed), the control unit,
depending upon the model, either fails to rec-

ognize the address of the I/O device or considers
the I/O device to be not ready. In the former
case, a path-not-operational condition is recog­
nized, subject to the setting of the path­
operational mask. (See the section "Path­
Operational Mask (POM)" on page 15-6.) In
the latter case, the not-ready condition is indi­
cated when the control unit responds to the
selection and indicates unit check whenever the
not-ready state precludes successful initiation of
the operation at the I/O device. In this case,
unit-check status is indicated in the scsw, the
subchannel becomes status-pending with
primary, secondary, and alert status, and with
deferred condition code 1 indicated. (See the
section "Unit Check" on page 16-26.) Refer
to the System Library publication for the
control unit to determine how the condition is
indicated.

2. The deferred condition code is 1 and the status­
control field contains the status-pending and
intermediate-status bits or the status-pending,
intermediate-status, and alert-status bits as ones
when HALT SUBCHANNEL has been executed
and the designated subchannel is suspended
and status-pending with intermediate status. If
the alert-status bit is one, then sub channel­
logout information was generated as a result of
attempting to issue the halt signal to the device.

Chapter 16. I/O Interruptions 16-9

Bit 6 Bit 7 Status Control 1 Meaning

o o

o 1

1 o

1 1

A IPS X
A I P - X
A - P S X
A - P - X
- IPS X
- I P - X
- - P S X
- - P - X

A IPS X
A I P - X
A I - - X2
A - P S X
A - P - X
A - - S X
A - - - X
- I PS X
- I P - X
- I - - X2
- - P S X
- - P - X
- - - S X3
____ X3 2

Reserved

- - P S x
- IPS x

Normal I/O interruption

Either an immediate operation, with chaining not
specified, has ended normally, or the setting of som~
status condition precluding the initiation or resumpt­
ion of a requested I/O operation at the device.

Reserved

The device is not operational on any available path or,
if a dedicated-allegiance condition exists, the device
is not operational on the path to which the dedicated
allegiance is owed.

Explanation:

1 The allowed combinations of status-control-bit settings when the
start-function bit is one in the function-control field.

2 The condition is encountered after the execution of HALT SUBCHANNEL when the
subchannel is currently suspended.

3 The condition is encountered after the execution of HALT SUBCHANNEL when the
subchannel is currently start-pending. .

A Alert status.
I Intermediate status.
P Primary status.
S Secondary status.
X Status-pending.
- Bit is zero.

Figure 16-3. Deferred-Condition-Code Meaning for Status-Pendip.g Subchannel

Format (F)
When the start-function bit (bit 17 of word 0) is
one, bit 8 of word 0 indicates the format of the
ccws associated with an I/O operation. The format
bit is meaningful only when bit 17 is one. If bit 8
of word 0 is zero, format-O ccws are indicated. If
it is one, format-1 ccws are indicated. (See the

16-10 ESA/370- Principles of Operation

section "Channel-Command Word" on page 15-23
for the description of the two CCW formats.)

Prefetch (P)
When the start-function bit (bit 17 of word 0) is
one, bit 9 of word 0 indicates whether or not
unlimited prefetching of CCws is allowed. The pre­
fetch bit is meaningful only when bit 17 is one. If
bit 9 is zero, prefetching of one ccw describing a
data area is allowed during output-data-chaining
operations and is not allowed during any other
operations. If bit 9 is one, unlimited prefetching of
ccws is allowed.

Inltial-Status-Interruption Control (I)
When the start-function bit (bit 17 of word 0) is
one, bit 10 of word 0, when one, indicates that the
channel subsystem is to generate an intermediate
interruption condition if the subchannel becomes
subchannel-active (see the section "Initial-Status­
Interruption Control (I)" on page 15-21). Bit 10
of word 0, when zero, indicates that the subchannel
becoming subchannel-active is not to cause an
intermediate interruption condition to be generated.

The program requests the intermediate interruption
condition by means of the ORB. An 1/0 inter­
ruption that results from that request may be due
to the channel subsystem performing either a start
function or a resume function. (See the section
"Zero Condition Code (Z)" for details of the indi­
cation given by the channel subsystem when the
intermediate interruption condition is cleared by
TEST SUBCHANNEL).

Address-Llmlt-Checking Control (A)
When the start-function bit (bit 17 of word 0) is
one, bit 11 of word 0, when one, indicates that the
channel subsystem has been requested by . the
program to perform address-limit checking, subject
to the setting of the limit mode at the subchannel
(see the section "Address-Limit-Checking Control
(A)" on page 15-22). The address-limit-checking­
control bit is meaningful only when bit 17 is one.

Suppress-Suspended Interruption (U)
When the start-function bit (bit 17 of word 0) is
one, bit 12 of word 0, when one, indicates that the
channel subsystem has been requested by the
program to suppress the generation of a
subchannel-suspended interruption condition when
the subchannel is suspended (see the section
"Suppress-Suspended -Interruption Control (U)" on
page 15-22). When bit 12 is zero, the channel sub­
system generates an intermediate interruption con-

dition whenever the subchannel is suspended during
execution of the associated channel program. The
suppress-suspended-interruption bit is meaningful
only when bit 17 is one.

Subchannel-Control Field

The following subchannel-control-information
descriptions apply to the subchannel-control field
(bits 13-31 of word 0) of the scsw.

Zero Condition Code (Z)
Bit 13 of word 0, when one, indicates that the sub­
channel has become subchannel-active and the
channel subsystem has recognized an initial-status­
interruption condition at the subchannel. The z bit
is meaningful only when the intermediate-status bit
(bit 28 of word 0) and the start-function bit (bit 17
of word 0) are both ones.

If the initial-status-interruption-control bit (bit 10,
word 1 of the ORB) is one when START SUB­
CHANNEL is executed, then the subchannel
becoming subchannel-active causes the subchannel
to be made status-pending with intermediate status
indicating the initial-status-interruption condition.
The initial-status-interruption condition remains at
the subchannel until the intermediate interruption
condition is cleared by the execution of TEST SUB­
CHANNEL or CLEAR SUBCHANNEL. If the initial­
status-interruption-control bit of the ORB is zero
when START SUBCHANNEL is executed, then the
subchannel becoming subchannel-active does not
cause an intermediate interruption condition to be
generated, and the initial-status-interruption condi­
tion is not recognized.

Extended Control (E)
Bit 14 of word 0, when one, indicates that model­
dependent information is stored in the extended­
control word (ECW). When bit 14 is zero, the con­
tents of words 0-7 of the ECW, if stored, are
unpredictable. The E bit is meaningful whenever
the subchannel is status-pending with alert status
either alone or together with primary status, sec­
ondary status, or both.

Programming Note: During execution of TEST
SUBCHANNEL, the storing of words 0-7 of the ECW
is a model-dependent function subject to the setting
of bit 14 as described above. Therefore, the
program should always provide sufficient storage to
accommodate the storing of a 64-byte IRB.

Chapter 16. I/O Interruptions 16-11

Path Not Operational (N)
Bit 15 of word 0, when one, indicates that the N

condition has been recognized by the channel sub­
system. The N condition, in turn, indicates that
one or more path-not-operational conditions have
been recognized. The channel subsystem recog­
nizes a path-not-operational condition when,
during an attempted device selection in order to
perform a clear, halt, resume, or start function, the
device associated with the subchannel appears not
operational on a channel path that is operational
for the subchannel. A channel path is operational
for the subchannel if the associated device appeared
operational on that channel path the last time the
channel subsystem attempted device selection in
order to perform a clear, halt, resume, or start func­
tion. A channel path is not operational for the
subchannel if the associated device appeared not
operational on that channel path the last time the
channel subsystem attempted device selection in
order to perform a clear, halt, resume, or start func­
tion. A device appears to be operational on a
channel path when the device responds to an
attempted device selection.

The N bit is meaningful whenever the status­
control field contains one of the indications listed
below, and at least one basic I/O function is also
indicated at the subchannel:

• Status-pending with any combination of
primary, secondary, or alert status

• Status-pending alone

• Status-pending with intermediate status when
the subchannel is also suspended

The N condition is reset whenever the execution of
TEST SUBCHANNEL results in the setting of condi­
tion code 0 and the N bit is meaningful as described
above.

Notes:

1. A path-not-operational condition does not
imply a malfunctioning channel path. A mal­
functioning channel path causes the generation
of an error indication, such as interface-control
check.

2. When a path-not-operational condition has
been recognized and the subchannel subse­
quently becomes status-pending with only
intermediate status, the path-not-operational
condition continues to be recognized until the
subchannel becomes status-pending with
primary status or becomes suspended and is

16-12 ESA/370 Principles of Operation

indicated by storing the path-not-operational
bit as a one during the execution of TEST S U B­

CHANNEL. When a path-not-operational con­
dition has been recognized and the channel­
program execution subsequently becomes
suspended, the path-not-operational condition
does not remain pending if channel-program
execution is subsequently resumed. Instead,
the old indication is lost, and the path-not­
operational indication, if any, pertains to the
attempt by the channel subsystem to resume
channel-program execution.

Function Control (FC)
The function-control field indicates the basic I/O

functions that are indicated at the subchannel.
This field may indicate the acceptance of as many
as two functions. The function-control field is con­
tained in bit positions 17-19 of the frrst word of the
scs w. The function -control field is meaningful at
an installed subchannel whenever the sub channel is
valid (see the section "Device Number Valid (V)"
on page 15-4). The function-control field contains
all zeros whenever both the activity- and status­
control fields contain all zeros. The meaning of the
individual bits is as follows:

Start Function (Bit 17): When one, bit 17 indi­
cates that a start function has been requested and is
either pending or in progress at the subchannel. A
start function is requested by executing START SUB­

CHANNEL: A start function is indicated at the sub­
channel when condition code 0 is set during the
execution of START SUBCHANNEL. The start func­
tion indication is cleared at the subchannel when
TEST SUBCHANNEL is executed and the subchannel
is either status-pending alone, or status-pending
with any combination of alert, primary, or sec­
ondary status. The start function indication is also
cleared at the subchannel during the execution of
CLEAR SUBCHANNEL.

Halt Function (Bit 18): When one, bit 18 indicates
that a halt function has been requested and is either
pending or in progress at the subchannel. A halt
function is requested by executing HALT SUB­

CHANNEL. A halt function is indicated at the sub­
channel when condition code 0 is set for HALT SUB­

CHANNEL. The halt function indication is cleared
at the subchannel when the next status-pending
condition which occurs is cleared by execution of
TEST SUBCHANNEL. The next status-pending con­
dition depends on the state of the subchannel when
HALT SUBCHANNEL is executed. If the subchannel
is subchannel-active when HALT SUBCHANNEL is

executed, then the next status-pending condition is
status-pending with at least primary status indi­
cated. If the subchannel is device-active when
HALT SUBCHANNEL is executed, then the next
status-pending condition is status-pending with at
least secondary status indicated. If the subchannel
is suspended and status-pending with intermediate
status when HALT SUBCHANNEL is executed, then
the next status-pending condition is status-pending
with intermediate status. If the subchannel is idle
when HALT SUBCHANNEL is executed, then the
next status-pending condition is status-pending
alone. The halt function indication is also cleared
at the sub channel during the execution of CLEAR

SUBCHANNEL. In normal operations, this function
is indicated together with bit 17; that is, there is a
start function either pending or in progress which is
to be halted.

Clear Function (Bit 19): When one, bit 19 indi­
cates that a clear function has been requested and is
either pending or in progress at the subchannel. A
clear function is requested by executing CLEAR SUB­

CHANNEL. A clear function is indicated at the sub­
channel when condition code 0 is set for CLEAR

SUBCHANNEL (see the section "Clear Subchannel"
on page 14-4). The clear function indication is
cleared at the subchannel when the resulting status­
pending condition is cleared by TEST SUBCHANNEL.

Activity Control (A C)
The activity-control field is contained in bit posi­
tions 20-26 of the frrst word of the scsw. This
field indicates the current progress of a basic I/O

fu?ction previously accepted at the subchannel. By
usmg the contents of this field, the program can
determine the degree of completion of the basic I/O

function. The activity-control field is meaningful at
an installed subchannel whenever the subchannel is
valid (see the section "Device Number Valid (V)"
on page 15-4). However, if an IFCC or CCC condi­
tion is detected during the performance of a basic
I/O function and that function is indicated as
pending, I/O operations may 9r may not have been
executed at the device. The activity-control bits are
defmed as follows:

Bit Designation
20 Resume-pending
21 Start-pending
22 Halt-pending
23 Clear-pending
24 Subchannel-active
25 Device-active
26 Suspended

When an scsw is stored that has the status-pending
bit of the status-control field zero and all zeros in
the activity-control field, the subchannel is said to
be idle or in the idle state.

Note: All conditions that are represented by the
bits in the function-control field and by the resume­
pending, start-pending, halt-pending, clear-pending,
subchannel-active, and suspended bits in the
activity-control field are reset at the subchannel
when TEST SUBCHANNEL is executed and the sub­
channel (1) is status-pending alone, (2) is status­
p~nding with primary status, (3) is status-pending
WIth alert status, or (4) is status-pending with inter­
mediate status and is also suspended.

Resume-Pending (Bit 20): When one, bit 20 indi­
cates that the subchannel is resume-pending. The
channel subsystem mayor may not be in the
process of performing the start function. The sub­
channel becomes resume-pending when condition
code 0 is set for RESUME SUBCHANNEL. The point
at which the sub channel is no longer resume­
pending is a function of the subchannel state
existing when the resume-pending condition is
recognized and the state of the device if channel­
program execution is resumed.

If the subchannel is in the suspended state when
the resume-pending condition is recognized, the
ccw that caused the suspension is ref etched the . '
settmg of the suspend flag is examined, and one of
the following actions is taken by the channel sub­
system:

1. If the ccw suspend flag is one, the device is
not selected, the subchannel is no longer
resume-pending, and channel-program exe­
cution remains suspended.

2. If the ccw suspend flag is zero, the channel
subsystem attempts to resume channel-program
execution by performing a modified start func­
tion. The resumption of channel-program exe­
cution appears to the device as the initiation of
a new channel-program execution. The resume
function causes the channel subsystem to
execute the path-management operation as if a
new start function were being initiated, using
the 0 RB parameters previously passed to the
subchannel by START SUBCHANNEL with the
exception that the channel-program address is
the address of the ccw that previously caused
suspension of channel-program execution.

Th~ sub channel remains resume-pending when,
durmg the performance of the start function ,

Chapter 16. I/O Interruptions 16-13

the channel subsystem (I) determines that it is
not possible to attempt to initiate the 1/0 oper­
ation for the frrst command, (2) determines
that an attempt to initiate the 1/0 operation for
the frrst command does not result in the
command being accepted, or (3) detects an
IFCC or CCC condition and is unable to deter­
mine whether the frrst command has been
accepted. (See the section "Start Function and
Resume Function" on page 15-17.)

The subchannel is no longer resume-pending
when any of the following events occurs:

a. While performing the start function, the
subchannel becomes subchannel-and­
device-active or device-active only, or the
frrst command is accepted with
channel-end and device-end initial status
and the ccw does not specify command
chaining.

b. CLEAR SUBCHANNEL is executed.

c. TEST SUBCHANNEL clears any combination
of primary, secondary, and alert status or
clears the status-pending condition alone.

d. TEST SUBCHANNEL clears intermediate
status while the subchannel is suspended.

If the subchannel is not in the suspended state
when the resume-pending condition is recog­
nized, the ccw suspend flag of the most
recently fetched ccw, if any, is examined and
one of the following actions is taken by the
channel subsystem:

3. If a ccw has not been fetched or the suspend
flag of the most recently fetched ccw is zero,
the subchannel is no longer resume-pending,
and the resume function is not performed.

4. If the suspend flag of the most recently fetched
ccw is one, the subchannel is no longer
resume-pending, and the ccw is ref etched. The
subchannel proceeds with channel-program
execution if the suspend flag of the ref etched
ccw is zero. The subchannel suspends
channel-program execution if the suspend flag
of the ref etched ccw is one.

Some models recognize a resume-pending condition
only after a ccw having a valid S flag set to one is
fetched. Therefore, if a subchannel is resume­
pending and, during execution of the channel
program, no ccw is fetched that has a valid S flag
set to one, the subchannel remains resume-pending

16-14 ESA/370 Principles of Operation

until the primary interruption condition is cleared
by TEST SUBCHANNEL.

Start-Pending (Bit 21): When one, bit 21 indicates
that the subchannel is start-pending. The channel
subsystem mayor may not be in the process of
performing the start function. The subchannel
becomes start-pending when condition code 0 is set
for START SUBCHANNEL. The subchannel remains
start-pending when, during the performance of the
start function, the channel subsystem (I) deter­
mines that it is not possible to attempt to initiate
the 1/0 operation for the frrst command, (2) deter­
mines that an attempt to initiate the 1/0 operation
for the frrst command does not result in the
command being accepted, or (3) detects an IFCC or
CCC condition and is unable to determine whether
the frrst command has been accepted. (See the
section "Start Function and Resume Function" on
page 15-17.)

The sub channel becomes no longer start-pending
when any of the following occurs:

I. While performing the start function, the sub­
channel becomes subchannel-and-device-active
or device-active only, or the first command is
accepted with channel-end and device-end
initial status and the ccw does not specify
command chaining.

2. The subchannel becomes suspended because of
a valid suspend flag in the frrst ccw.

3. CLEAR SUBCHANNEL is executed.

4. TEST SUBCHANNEL clears any combination of
primary, secondary, and alert status or clears
the status-pending condition alone.

Halt-Pending (Bit 22): When one,bit 22 indicates
that the subchannel is halt-pending. The channel
subsystem mayor may not be in the process of
performing the halt function. The subchannel
becomes halt-pending when condition code 0 is set
for HALT SUBCHANNEL. The subchannel remains
halt-pending when, during the performance of the
halt function, the channel subsystem (I) determines
that it is not possible to attempt to issue the halt
signal to the device, (2) determines that the attempt
to issue the halt signal to the device is not suc­
cessful, or (3) detects an IFCC or ccc condition
and is unable to determine whether the halt signal
is issued to the device. (See the section "Halt
Function" on page 15-14.)

The subchannel is no longer halt-pending when any
of the following occurs:

1. While performing the halt function, the channel
subsystem determines that the halt signal has
been issued to the device.

2. CLEAR SUBCHANNEL is executed.

3. TEST SUBCHANNEL clears any combination of
primary, secondary, and alert status or clears
the status-pending condition alone.

4. TEST .SUBCHANNEL clears intermediate status
while the subchannel is suspended.

Clear-Pending (Bit 23): When one, bit 23 indi­
cates that the subchannel is clear-pending. The
channel subsystem may. or may not be in the
process of performing the clear function. The sub­
channel becomes clear-pending when condition
code 0 is set for CLEAR SUBCHANNEL. The sub­
channel remains clear-pending when, during per­
formance of the clear function, the channel sub­
system (1) determines that it is not possible to
attempt to issue the clear signal to the device,
(2) determines that the attempt to issue the clear
signal to the device is not successful, or (3) detects
an IFCC or CCC condition and is unable to deter­
mine whether the clear signal is issued to the
device. (See the section "Clear Function" on
page 15-13.)·

The subchannel is no longer clear-pending when
either of the following occurs:

1. While performing the clear function, the
channel subsystem determines that the clear
signal has been issued to the device.

2. TEST SUBCHANNEL clears the status-pending
condition alone.

Subchannel-Actlve (Bit 24): When one, bit 24
indicates that the subchannel is subchannel-active.
A subchannel is said to be subchannel-active when
an I/O operation is currently in execution at the
sub channel. The subchannel becomes subchannel­
active when the ftrst command is accepted for any
of the following initial-status combinations and the
start function or resume function is not imme­
diately concluded at the subchannel. (See the
section "Immediate Conclusion of I/O Operations"
on page 15-42.)

1. All zeros

2. Unit check, status modifier, and channel end
when used to indicate command retry
(delayed). (See the section "Command Retry"
on page 15-41.)

3. Unit check, status modifier, channel end, and
device end when used to indicate command
retry (immediate). (See the section "Command
Retry" on page 15-41.)

4. Channel end when the chain-command flag is
one in the ccw

5. Channel end and device end when the chain­
command flag is one in the ccw

6. Channel end, device end, and status modifier
when the chain-command flag is one in the
ccw

The subchannel is no longer subchannel-active
when any of the following occurs:

1. The subchannel becomes suspended.

2. The subchannel becomes status-pending with
primary status.

3. CLEAR SUBCHANNEL is executed.

4. The device appears not operational during per-
formance of a halt function.

The subchannel does not become subchannel-active
during performance of the function specified by
either a HALT SUBCHANNEL or a CLEAR SUB­

CHANNEL instruction.

Device-Active (Bit 25): When one, bit 25 indicates
that the subchannel is device-active. A subchannel
is said to be device-active when an I/O operation is
currently in progress at the associated device. The
subchannel becomes device-active when the ftrst
command is accepted for:

1. One of the combinations of initial status listed
above in the section "Subchannel-Active (Bit
24)"

2. Initial status of channel end with neither busy
nor device end, and command chaining is not
specified in the ccw. (See the section "Imme­
diate Conclusion of I/O Operations" on
page 15-42.)

The subchannel is no longer device-active when
any of the following occurs:

1. The sub channel becomes suspended.

2. The sub channel becomes status-pending with
secondary status.

3. CLEAR SUBCHANNEL is executed.

4. The device appears not operational during per­
formance of a halt function.

Chapter 16. I/O Interruptions 16-15

If the sub channel is not start-pending or if the
status accepted from the device also describes an
alert condition, the subchannel becomes status­
pending with secondary status. Mter the status has
been accepted from the device, the device is capable
of accepting a command for executing a new I/O

operation. If the subchannel is start-pending and
the status is device end or device end with control­
unit end, then the channel subsystem discards the
status and performs the start function for the new
channel program. (See the section "Start Function
and Resume Function" on page 15-17) In this situ­
ation, the subchannel does not become status­
pending with the secondary interruption condition,
and the status is not made available to the
program.

The subchannel does not become device-active
during performance of the functions specified by
either a HALT SUBCHANNEL or a CLEAR SUB­

CHANNEL instruction.

Suspended (Bit 26): When one, bit 26 indicates
that the sub channel is suspended. A subchanne1 is
said to be suspended when channel-program exe­
cution is currently suspended. The subchannel
becomes suspended as part of the suspend function.
(See the section "Suspension of Channel-Program
Execution" on page 15-32.)

The subchannel is no longer suspended when any
of the following occurs:

1. As part of the resume function following the
execution of RESUME SUBCHANNEL when the
subchannel becomes subchannel-and-device­
active or device-active only, or the frrst
command is accepted for channel-end and
device-end initial status, with or without status
modifier, and the ccw does not specify
command. chaining.

2. CLEAR SUBCHANNEL is executed.

3. TEST SUBCHANNEL clears any combination of
primary, secondary, and alert status or clears
the status-pending condition alone.

4. TEST SUBCHANNEL clears intermediate status
while the halt function is specified.

Programming Note: When an scsw is stored by
STORE SUBCHANNEL or TEST SUBCHANNEL fol­
lowing CLEAR SUBCHANNEL but prior to the sub­
channel becoming status-pending, and the
subchannel-active bit (bit 24 of word 0) is stored as
0, this does not mean that data transfer has stopped
for the device. The program cannot determine

16-16 ESAj370 Principles of Operation

whether data transfer has stopped until the sub­
channel becomes status-pending as a result of per­
forming the clear function.

Status Control (SC)
The status-control field is contained in bit positions
27-31 of the frrst word of the scsw. This field pro­
vides the program with a summary-level indication
of the interruption condition described by either
sub channel or device status, the Z bit, or, in the
case of the subchannel-suspended interruption, the
suspended bit (bit 26). More than one summary
indication may be signaled as a result of existing
conditions at the subchannel. Whenever the sub­
channel is enabled (see the section "Enabled (E)"
on page 15-2) and at least bit 31 is one, the sub­
channel is said to be status-pending. Whenever the
subchanne1 is disabled, the subchannel is not made
status-pending. Bit 31 of scsw word 0 is mean­
ingful at an installed sub channel whenever the sub­
channel is valid (see section "Device Number Valid
(V)" on page 15-4); bits 27-30 are meaningful
when bit 31 is one. The status-control bits are
defmed as follows:

Alert Status (Bit 21): When one (and when the
status-pending bit is also one), bit 27 indicates an
alert interruption condition exists. In such a case,
the subchanne1 is said to be status-pending with
alert status. An alert interruption condition is
recognized when alert status is present at the sub­
channel. Alert status may be subchannel status or
device status. Alert status is status generated by
either the channel subsystem or the device under
any of the following conditions:

• The subchannel is idle (activity-control bits
20-26 and status-control bit 31 are zeros).

• The subchannel is start-pending, and the status
condition precludes initiation of the I/O opera­
tion.

• The subchannel is subchannel-and-device­
active, and the status condition has suppressed
command. chaining or would have suppressed
command chaining if chaining had been speci­
fied (see the section "Chaining" on
page 15-26).

• The subchannel is subchannel-and-device­
active, command chaining is not specified, exe­
cution of the channel program has just been
concluded, and the status presented by the
device is attempting to alter the sequential exe­
cution of commands (see the section "Status
Modifier" on page 16-23).

• The subchannel is device-active only, and the
status presented by the device is other than
device end, control-unit end, or device end and
control-unit end.

• The subchannel is suspended (bit 26 is one).

If the subchannel is start~pending when an alert
interruption condition is recognized, the subchannel
becomes status-pending with alert status, deferred
condition code 1 is set, the start-pending bit
remains one, and execution of the pending 1/0

operation is not initiated.

When TEST SUBCHANNEL is executed and stores an
scsw with the alert-status bit and the status­
pending bit as ones in the IRB, the alert inter­
ruption condition is cleared at the subchannel. The
alert interruption condition is also cleared during
execution of CLEAR SUBCHANNEL.

Whenever alert status is present at the subchannel,
it is brought to the ~ attention of the program.
Examples of alert status include attention, device
end (which signals a transition from the not-ready
to the ready state), incorrect length, program check,
and unit check.

Intermediate Status (Bit 28): When one (and
when the status-pending bit is also one), bit 28
indicates an intermediate interruption condition
exists. In such a case, the sub channel is said to be
status-pending with intermediate status. Interme­
diate status can be indicated when the z bit (of the
subchannel-control field), the suspended bit (of the
activity-control field), or the PCI bit (of the
subchannel-status field) is one.

When the initial-status-interruption-control bit is
one in the ORB, the subchannel becomes status­
pending with intermediate status (the z bit indi­
cated) only after initial status is received for the frrst
ccw of the channel program and the subchannel is
subchannel-active. If the subchannel does not
become subchannel-active, the Z condition is not
generated.

When suspend control is specified and the gener­
ation of an intermediate interruption condition due
to suspension is not suppressed in the ORB, then
the subchannel can become status-pending with
intermediate status due to suspension if a ccw
becomes current that contains the suspend flag set
to one. When the suspend flag is specified in the

" frrst ccw of a channel program, channel-program
execution is suspended and the subchannel

becomes status-pending with intermediate status
(the suspended bit indicated) before the command
in the frrst ccw is transferred to the device. When
the suspend flag is specified in a ccw fetched
during command chaining, channel-program exe­
cution is suspended and the subchannel becomes
status-pending with intermediate status (the sus­
pended bit indicated) only after execution of the
preceding ccw is complete.

When the PCI flag is specified in a ccw, the gen~r­
ation of an intermediate interruption condition due
to PCI depends on whether the ccw is the frrst
ccw of the channel program. When the PCI flag is
specified in the frrst ccw of a channel program, the
sub channel becomes status-pending with interme­
diate status (the PCI bit indicated) only after initial

,status is received for the first ccw of the channel
program indicating the command has been
accepted. When the PCI flag is specified in a ccw
fetched while chaining, the subchannel becomes
status-pending with intermediate status (the PCI bit
indicated) only after execution of the preceding
ccw is complete. If chaining occurs before an
interruption condition containing PCI is cleared by
TEST SUBCHANNEL, the condition is carried over to
the next ccw. This carryover occurs during both
data and command chaining, and, in either case,
the condition is propagated through the transfer-in­
channel command.

If the subchannel is status-pending with interme­
diate status when HALT SUBCHANNEL is executed,
the intermediate interruption condition remains at
the subchannel, but the interruption request, if any,
is withdrawn, and the subchannel becomes no
longer status-pending. The subchannel remains no
longer status-pending until performance of the halt
function has ended. The sub channel then becomes
status-pending with intermediate status indicated
(possibly together with any combination of
primary, secondary, and alert status).

When TEST SUBCHANNEL is executed and stores an
scsw with the intermediate-status bit and the
status-pending bit as ones in the IRB, the interme­
diate interruption condition is cleared at the sub­
channel. The intermediate interruption condition is
also cleared at the subchannel during the execution
of CLEAR SUBCHANNEL.

Primary status (Bit 29): When one (and when the
status-pending bit is also one), bit 29 indicates a
primary interruption condition exists. In such a
case, the subchannel is said to be status-pending
with primary status. A primary interruption condi-

Chapter 16. I/O Interruptions 16-17

tion is a solicited interruption condition that indi­
cates the completion of the start function at the
subchannel. The primary interruption condition is
described by the scsw stored. When an I/O opera­
tion is terminated by HALT SUBCHANNEL but the
halt signal is not issued to the device because the
device appeared not operational, the subchannel is
made status-pending with primary status (and sec­
ondary status) with both the subchannel-status field
and the device-status field set to zero.

When TEST SUBCHANNEL is executed and stores an
scsw with the primary-status bit and the status­
pending bit as ones in the IRB, the primary inter­
ruption condition is cleared at the subchannel. The
primary interruption condition is also cleared at the
subchannel during the execution of CLEAR SUB­

CHANNEL.

Secondary Status (Bit 30): When one (and when
the status-pending bit is also one), bit 30 indicates a
secondary interruption condition exists. In such a
case, the sub channel is said to be status-pending
with secondary status. A secondary interruption
condition is a solicited interruption condition that
normally indicates the completion of the I/O opera­
tion at the device. The secondary interruption con­
dition is described by the scsw stored.

When an I/O operation is terminated by HALT SUB­

CHANNEL but the halt signal is not issued to the
device because the device appeared not operational,
the subchannel is made status-pending with sec­
ondary status (and primary status if the subchannel
is also subchannel-active) with zeros for subchannel
and device status.

When TEST SUBCHANNEL is executed and stores an
scsw with the secondary-status bit as one in the
I RB, the secondary interruption condition is cleared
at the subchannel. The secondary interruption
condition is also cleared at the subchannel during
execution of CLEARSUBCHANNEL.

Status-Pending (Bit 31): When one, bit 31 indi­
cates that the subchannel is status-pending and that
information describing the cause of the interruption
condition is available to the program. The sub­
channel becomes status-pending whenever interme­
diate, primary, secondary, or alert status is gener­
ated. When HALT SUBCHANNEL is executed,
designating a subchannel that is idle, the sub­
channel becomes status-pending subsequent to per-

16-18 ESA/370 Principles of Operation

formance of the halt function to notify the program
that the halt function has been completed. When
TEST SUBCHANNEL is executed, thus storing an
scsw with the status-pending bit as one in the IRB,

the status-pending condition is cleared at the sub­
channel. The status-pending condition is also
cleared at the subchannel during the execution of
CLEAR SUBCHANNEL. When CLEAR SUBCHANNEL

is executed, and the designated subchannel is opera­
tional' the subchannel becomes status-pending sub­
sequent to performance of the clear function to
notify the program that the clear function has been
completed.

Note: The status-pending bit, in conjunction with
the remaining bits of the status-control field, indi­
cates the type of status condition. For example, if
bits 29 and 31 are ones, the subchannel is status­
pending with primary status. Alternatively, if only
bit 31 is one, then the subchannel is said to be
status-pending or status-pending alone. If only bit
31 is one in the status-control field, the settings of
all bits in the subchannel- and device-status fields
are unpredictable. If bit 31 is not one, then the
remaining bits of the status-control field are not
meaningful.

CCW-Address Field

Bits 1-31 of word 1 form an absolute address. The
address indicated is a function of the subchannel
state when the scsw is stored, as indicated in
Figure 16-4 on page 16-19. When the subchannel­
status field indicates channel-control check,
channel-data check, or interface-control check, the
ccw-address field is usable for recovery purposes if
the ccw-address field-validity flag in the ESW is
one.

Programming Note: When a ccw address, either
detected in the channel-program address (see the
section "Channel-Program Address" on
page 15-23) or generated during chaining, would
cause the channel subsystem to fetch a ccw from a
location greater than 16,777,215 while format-O
ccws are specified for the operation, the invalid
address is stored in the ccw -address field of the
scsw without truncation. If the invalid address
causes the channel subsystem, while chaining, to
fetch a ccw from a location greater than
2,147,483,647 while in 31-bit addressing mode, the
rightmost 31 bits of the invalid address are stored in
the ccw -address field.

Subchannel State 1 CCW Address 2

Start-pending (UUUU0/AIPSX)3 Unpredictable

Start-pending and device-active (UUUU0/AIPSX)3 Unpredictable

Subchannel-and-device-active (UUUU0/AIPSX)3 Unpredictable

Device-active only (UUUU0/AIPSX) Unpredictable

Suspended (YYYYY/AIPSX)3 See note 1

Status-pending (l0001/AIPSX) because of Channel-program address + 8
unsolicited alert status from the device while
the subchannel was start-pending3

Status-pending (0Yll1/AIPSX) because the Channel-program address + 8
device appeared not operational on all paths3

Status-pending (10011/AIPSX) because of Channel-program address + 8
solicited alert status from the device while
the subchannel was start-pending and device-
active3

Status-pending (10111/AIPSX) because of
solicited alert status generated by the
channel subsystem while the subchannel was
start-pending3 or start-pending and device­
active3

See note 2

•

Status-pending (01001/AIPSX) for the program- CCW + 8 of the CCW that contained the
controlled-interruption condition while the last recognized PCI, or 8 higher than
subchannel was subchannel-and-device active3 a CCW which has subsequently become

current

Status-pending (81881/AIPSX) for the initial­
status-interruption condition while the
subchannel was subchannel-and-device active3

Status-pending (lYIYl/AIPSX); termination
occurred because of program check caused by
one of the following conditions: 3

Bit 24, word 1 of ORB set to one;
incorrect-length-indication-suppression
facility not installed

Unused bits in ORB not set to zeros

Invalid CCW-address specification in
transfer in channel (TIC)

Invalid CCW-address specification in the
channel-program address in the ORB

CCW + 8 of the CCW causing the
intermediate interruption condition,
or a CCW which has subsequently
become current

Channel-program address + 8

Channel-program address + 8

Address of TIC + 8

Channel-program address + 84

Figure 16-4 (Part 1 of 4). CCW Address as Function of Subchannel State

Chapter 16. I/O Interruptions 16-19

Subchannel State 1 CCW Address2

Invalid CCW address in TIC Address of TIC + 8

Invalid CCW address in the channel-program Channel-program address + 84

address in the ORB

Invalid CCW address while chaining Invalid CCW address + 8

Invalid command code Address of invalid CCW + 85

Invalid count Address of invalid CCW + 85

Invalid IDAW-address specification Address of invalid CCW + 85

Invalid IDAW address in a CCW Address of invalid CCW + 85

Invalid IDAW address while sequentially Address of currert CCW + 8
fetching IDAWs

Invalid data-address specification, Address of invalid CCW + 85

format 1

Invalid data address in a CCW Address of invalid CCW + 85

Invalid data address while sequentially Address of current CCW + 8
accessing storage

Invalid data address in IDAW Address of current CCW + 8

Invalid IDAW specification Address of current CCW + 8

Invalid CCW, format 0 or 1, for a CCW other Address of invalid CCW + 85

than a TIC

Invalid suspend flag -- CCW fetched during Address of invalid CCW + 8
data chaining has suspend flag set to one

Invalid suspend flag -- CCW has suspend Address of invalid CCW + 8
flag set to one, but suspend contrel was
not specified in the ORB

Invalid CCW, format 1, for a TIC Address of TIC + B

Invalid sequence -- two TICs Address of second TIC + 8

Invalid sequence -- 256 or more CCWs Address of 256th CCW + B
without data transfer

Status-pending (lYIYl/AIPSX); termination
occurred because of protection check detected
as follows: 3

On a CCW access

On data or an InAW access

Address of the protected CCW + 85

Address of current CCW + B

Figure 16-4 (Part 2 of 4). CCW Address as Function of Subchannel State

16-20 ESAj370 Principles of Operation

Subchannel State 1

Status-pending (lYIYl/AIPSX); termination
occurred because of chaining check3

Status-pending (YYIYl/AIPSX); termination
occurred under count contro1 3

Status-pending (lYIYl/AIPSX); operation
prematurely terminated by the device because
of alert status 3

Status-pending (YYYYl/AIPSX) after termination
by HALT SUBCHANNEL and the activity-control­
field bits indicated below set to ones:

Status-pending alone

Start-pending 3

Device-active and start-pending 3

Device-active

Subchannel-active and device-active 3

Suspended

Suspended and resume-pending

CCW Address 2

Address of current CCW + 8

Address of current CCW + 86

Address of current CCW + 86

Unpredictable

Unpredictable

Unpredictable

Unpredictable

ccw + 8 of the last executed CCW

CCW + 8 of CCW causing suspension

Unpredictable

Status-pending (88881/AIPSX) after termination Unpredictable
by CLEAR SUBCHANNEL

Status-pending (YYIYl/AIPSX); operation
completed normally at the subchanneP

Status-pending (80011/AIPSX)

Status-pending (10001/AIPSX)

Status-pending (88881/AIPSX)

CCW + 8 of the last executed CCW6

Unpredictable

Unpredictable

Unpredictable

Status-pending (lYlll/AIPSX); command chaining Address of current CCW + 86

suppressed because of alert status other than
channel-control check or interface-control
check3

Status-pending (lYYYl/AIPSX) because of alert See note 36

status for channel-control check or
interface-control check3

Status-pending (lYIYl/AIPSX) because of
channel-data check3

Address of current CCW + 86

Figure 16-4 (Part 3 of 4). CCW Address as Function of Sub channel State

Chapter 16. I/O Interruptions 16-21

Explanation:

1 The meaning of the notation used in this column is as follows:
A Alert status
I Intermediate status
P Primary status
S Secondary status
X Status-pending

The possible combination of status-control-bit settings is shown to the left of
the "/" symbol by the use of these symbols:

e Corresponding condition is not indicated.
1 Corresponding condition is indicated.
U Unpredictable. The corresponding condition is not meaningful when the

subchannel is not status-pending.
Y The corresponding condition is not significant and is indicated as a

function of the subchannel state.

2 A CCW becomes current when (1) it is the first CCW of a channel program and
has been fetched, (2) while command chaining, the previous CCW is no longer
current and the new CCW has been fetched, or (3) in the case of data chaining,
the new CCW takes over control of the I/O operation (see the section "Data
Chaining" in Chapter 15, "Basic I/O Functions"). If chaining is not specified
or is suppressed, a CCW is no longer current and becomes the last-executed CCW
when secondary status has been accepted by the channel subsystem. During
command chaining, a CCW is no longer current when device-end status has been
accepted or, in the case of data chaining, when the last byte of data for that
CCW has been accepted.

3 The subchannel may also be resume-pending.

4 The stored address is the channel-program address (in the ORB) + 8 even though
it is either invalid or protected.

5 The stored address is the address of the current CCW + 8 even though it is
either invalid or protected.

6 Incorrect length is indicated as a function of the setting of the
suppress-length-indication flag in the current CCW (see the section
"Channel-Command Word" in Chapter 15, "Basic I/O Functions").

Notes:

1. Unless the subchannel is also resume-pending, the address stored is the address
of the CCW that caused suspension, plus 8. Otherwise, the address stored is
unpredictable.

2. The address of the CCW is given as a function of the alert status indicated.
For example, if a program-check or protection-check condition is recognized,
the CCW address stored is the same as for the entry for program check or
protection check, respectively, in this table. Alternatively, if alert status
for interface-control check or channel-control check is indicated, the CCW
address stored is either the channel-program address (in the ORB) + 8 or
invalid as specified by the field-validity flags in the subchannel logout.

3. Bit 21 of the subchannel-logout information when stored as one, indicates that
the address is CCW + 8 of the last-fetched CCW if the command for the CCW has
not been accepted by the device. If the command .has been accepted by the
device at the time the error condition is recognized, then the address stored
is the address of the CCW + 8 of the last executed CCW.

Figure 16-4 (Part 4 of 4). CCW Address as Function of Subchannel State

t 6-22 ESA/370 Principles of Operation

Device-Status Field

Device-status conditions are generated by the I/O
device and are presented to the channel subsystem
over the channel path. The timing and causes of
these conditions for each type of device are speci­
fied in the System Library publication for the
device. The device-status field is meaningful when­
ever the subchannel is status-pending with any
combination of primary, secondary, intermediate,
or alert status. Whenever the subchannel is status­
pending with intermediate status alone, the device­
status field is zero. When the subchannel-status
field indicates channel-control check, channel-data
check, or interface-control check, the device-status
field is usable for recovery purposes if the device­
status field-validity flag in the ESW is one. When
the subchannel is status-pending with deferred­
condition code 3 indicated, the contents of the
device-status field are not meaningful.

If, within a system, the 1/0. device is accessible from
more than one channel path, status related to
channel-sub system-initiated operations in single­
path mode (solicited status) is signaled over the ini­
tiating channel path. Devices operating in multi­
path mode may signal solicited status over any
channel path that belongs to the same path group
as the initiating channel path. The handling of
conditions not associated with 1/0 operations
(unsolicited alert status), such as attention, unit
exception, arid device end due to transition from
the not-ready to the ready state, depends on the
type of device and condition and is specified in the
_ System Library publication for the device.

The channel subsystem does not modify the status
bits received from the I/O device. These bits appear
in the scsw as received over the channel path.

Attention
Attention is generated when the device detects an
asynchronous condition that is significant to the
program. The condition may also be described by
qther status indications that accompany attention.
Attention is interpreted by the program and is not
associated with the initiation, execution, or conclu­
sion of an I/O operation.

The device can signal the attention' condition to the
channel subsystem when no operation is in
progress at the 1/0 device. Attention can be indi­
cated with device end upon completion of an oper­
ation, and it can be presented to the channel sub­
system during the initiation of a new I/O operation.

When the device signals attention during the initi­
ation of an operation, the operation is not initiated.
Attention accompanying device end causes
command chaining and command retry to be sup­
pressed. ,

An I/O device may present attention accompanied
by device end and unit exception when a transition
is made from the not-ready to the ready state (see
the section "Device End" on page 16-26).

Status Modifier
Status modifier is generated by the device when the
device cannot provide its current status in response
to interrogation by the channel subsystem, when
the control unit is busy, when the normal sequence
of commands has to be modified, or when
command retry is to be initiated.

When the device is interrogated and the status­
modifier condition signaled, in the absence of any
other status bit, this indicates that the device
cannot provide its current status. The interruption
condition, which may be pending at the device, is
not cleared. The 2702 Transmission Control is an
example of a type of device that cannot provide its
current status as a result of channel-subsystem
interrogation.

-Presence of status modifier and device end means
that the normal sequence of commands must be
modified. The handling of this set of bits by the
channel subsystem depends on the operation. If
command chaining is specified in the current ccw
and no unusual conditions have been detected,
presence of status modifier and device end causes
the channel subsystem to fetch and chain to the
ccw whose main-storage address is 16 higher than
that of the current ccw. If the I/O device signals
the status-modifier condition at a time when no
command chaining is specified, or when any
unusual conditions have been detected, no action is
taken by the channel subsystem, and the status­
modifier bit is placed in the scsw.

Status modifier is presented in combination with
unit check and channel end to initiate the
command-retry procedure.

Control units that recognize special conditions
which must be brought to the attention of the
program present status modifier along with other
status indications in order to modify the meaning

Chapter 16. I/O Interruptions 16-23

of the status. The status presented is unrelated to
the execution of an 1/0 operation.

When status modifier is generated together with the
busy status bit, it indicates that the busy condition
pertains to the control unit associated with the
addressed 1/0 device. The control unit appears
busy when it is executing a type of operation that
precludes the acceptance and execution of any
command and may appear busy when it contains
status or sense information for a device other than
the one addressed. The status may be control-unit
end or channel end following the performance of
the halt function. The busy state occurs for opera­
tions such as backspace tape fue, in which case the
control unit remains busy after providing channel
end for operations concluded by HALT SUB­

CHANNEL. The busy state temporarily occurs on
the IBM 3705 Communication Controller after initi­
ation of an operation on a device accommodated
by the control unit. A control unit accessible from
two or more channel paths appears busy to the
other channel paths when it is communicating with
any of the channel paths.

Control-Unit End
Control-unit end indicates that the control unit has
become available for use for another operation.

The control-unit-end condition is provided only by
control units shared by 1/0 devices or control units

. accessible by two or more channel paths, and only
when orie or both of the following conditions have
occurred:

1. The channel subsystem had previously caused
the control unit to be interrogated while the
control unit was busy. The control unit is con­
sidered to have been interrogated in the busy
state when a command has been transferred to
a device on the control unit, and the control
unit had' responded with busy and status modi­
fier in the device status byte.

2. The control unit detected an unusual condition
during the portion of the . operation after
channel end had been signaled to the channel
subsystem. The indication of the unusual con­
dition accompanies control-unit end. However,
the signaling of control-unit end and device end
does not necessarily describe an unusual condi­
tion.

The two conditions described above are reset by
the reset signal and the clear signal. Therefore, if
one of these signals occurs before control-unit end
is generated, no' control-unit end is generated. If

16-24 ESA/370 Principles of Operation

control-unit end has been generated but not pre­
sented to the channel subsystem by the time one of
the signals occurs, the pending control-unit end is
reset.

If the control unit remains busy with the execution
of an operation after signaling channel end but has
not detected any unusual conditions and has not
been interrogated by the channel subsystem,
control-unit end is not generated. Similarly,
control-unit end is not provided when the control
unit has been interrogated and could perform the
indicated function. The latter case is indicated by
the absence of busy and status modifier in the
response to the interrpgation.

When the busy condition of the control unit is
temporary, control-unit end may be included with
busy and status modifier in response to the interro­
gation even though the control unit has not yet
been freed. The busy condition is considered to be
temporary if its duration is 2 milliseconds or less.
If a temporary busy condition is indicated, the
channel subsystem assumes the responsibility to
periodically reinterrogate the control unit until it is
no longer busy. The IBM 3705 Communications
Controller is an example of a device in which the
control unit may be busy temporarily and which
includes control-unit end with busy and 'status
modifier.

The control-unit end condition can be signaled
with channel end, with device end, or between the
two.

Control-unit end may be signaled at other times
and may be accompanied by other status bits.
When control-unit end is signaled in the absence of
any other status, the status may be identified with
any device recognized by the control unit. For
control units attaching more than a single 1/0

device, a pending control-unit end for one 1/0

device does not necessarily preclude initiation of
new operations with other attached devices.
Whether the control unit allows initiation of other
operations is at the option of the control unit.

When control-unit end is presented to the channel
subsystem subsequent to the acceptance of channel
end and is accompanied by other status indications,
command chaining is suppressed, if specified, and
an interruption condition may be generated indi­
cating one or more of the following conditions:

1. A secondary interruption condition, in the fol~
lowing cases:

a. Control-unit end accompanied by device
end and other status indications, or

b. Control-unit end accompanied by only
device end while the sub channel is not
start-pending.

2. An alert interruption condition, in the fol­
lowing cases:

a. Control-unit end accompanied by device
end while the subchannel is subchannel­
active, or

b. Control-unit end accompanied by status
other than device end.

3. A primary interruption condition if the sub-
channel is subchannel-active.

When control-unit end alone is presented to the
channel subsystem, the channel subsystem resets
internal indications of control unit busy and dis­
cards the control-unit-end status without recog­
nizing an interruption condition, unless all of the
following conditions are met:

1. Control-unit end is presented on the channel
path with which the channel subsystem is
maintaining a working allegiance for this sub­
channel.

2. The device is not operating in multipath mode
(see the section "Multipath Mode (D)" on
page 15-3).

3. The subchannel is subchannel-and-device­
active.

4. Channel-end status has been previously pre-
sented, and command chaining is specified.

If all of the above conditions are met, the channel
subsystem suppresses corrunand chaining and
recognizes an interruption condition indicating
primary, secondary, and alert status. In addition,
when the status-verification facility is installed and
active, the device-status-check bit is set to one.

Control-unit end presented with channel end is
unusual status and causes the channel subsystem to
suppress command chaining, if specified, and recog­
nize an interruption condition for the subchannel
with primary and alert status indicated.

Busy
Busy indicates that the device cannot execute the
command because (1) it is executing a previously
initiated operation, (2) it has pending status which
must be presented to the channel subsystem, (3)
the device is currently inaccessible because of a
busy shared facility existing between the control
unit and device, as in the case of the string-switch
feature on the IBM 3830 Model 2, or (4) a self­
initiated function is being perfonned. The pending
status for the addressed device, if any, accompanies
the busy indication. If the busy condition applies
to the control unit, busy is accompanied by status
modifier.

Whenever the device indicates that a busy condi­
tion exists and it is unable to execute an operation,
the device responds to the channel subsystem when
it becomes no longer busy (see the section "Device
End" on page 16-26).

Channel End
Channel end is caused by the completion of the
portion of an I/O operation involving transfer of
data or control information between the I/O device
and the channel subsystem.

Each I/O operation initiated at the I/O device causes
one and only one channel end for an I/O operation.
The channel-end condition is not generated when
prograrruning errors or equipment malfunctions are
detected during initiation of the operation. When
command chaining takes place, only the channel
end of the last operation of the chain is made avail­
able to the program. The channel-end condition is
not made available to the program when a chain of
commands is prematurely concluded because of an
unusual condition indicated with device end or
during the initiation of a chained command.

The instant within an I/O operation when channel
end is generated depends on the operation and the
type of device. For operations such as writing on
magnetic tape, the channel-end condition occurs
when the block has been written. On devices that
verify the writing, channel end mayor may not be
delayed until verification is perfonned, depending
on the device. When magnetic tape is being read,
the channel-end condition occurs when the gap on
tape reaches the read-write head. On devices
equipped with buffers, such as the'IBM 3211 Printer
Modell, the channel-end condition occurs upon
completion of data transfer between the channel
subsystem and the buffer. During control. opera­
tions, channel end is generated when the control

Chapter 16. I/O Interruptions 16-25

information has been transferred to the devices,
although, for short operations, the condition may
be delayed until completion of the operation.
Operations that do not cause any data to be trans­
ferred can provide the channel-end condition during
the initiation sequence.

Channel end is presented in combination with
status modifier and unit check by means of a
special sequence to initiate the command-retry pro­
cedure.

Device End
Device end is indicated (I) when the completion of
an I/O operation occurs at the I/O device, (2) when
the device signals that a transition from the not­
ready to the ready state has occurred, (3) when the
termination of an activity has occurred which previ­
ously caused a response of busy to the channel sub­
system, and (4) when the I/O device signals that an
asynchronous condition has been recognized.
Device end normally indicates that the I/O device
has become available for use for another operation.

Each I/O operation initiated at the I/O device causes
one and only one device end for an I/O operation.
The device-end condition is not generated when
any programming or equipment malfunction is
detected during initiation of the operation. When
command chaining is specified and the suspend flag
is zero in the next ccw, receipt of the device-end
signal, in the absence of' any unusual conditions,
causes the channel subsystem to initiate transfer of
the next command. When command chaining
takes place, the only device end made available to
the program is that of the last operation of the
chain, unless an unusual condition is detected
during the initiation of a chained command. If an
unusual condition is detected during the initiation
of a chained command, the subchannel becomes
status-pending with primary and secondary status,
and with the scsw indicating the unusual condition
without including the device-end indication.

The device-end condition associated with an 1/0

operation is generated either simultaneously with
the channel-end condition or later. For data
transfer on some I/O devices, the I/O operation is
completed at the time channel end is generated, and
both device end and channel end occur together.
The time at which device end is presented depends
upon the I/o-device type and the kind of command
executed. For most I/O devices, device end is pre­
sented when the the I/O operation is completed at
the I/O device. In some cases, for reasons of per­
formance, device end is presented before the I/O

16-26 ESA/370 Principles of Operation

operation has actually been completed at the I/O
device. However, in all cases, when device end is
presented, the I/O device is available for execution
of an immediately following ccw if command
chaining was specified in the previous ccw.

On buffered devices, such as an IBM 3211 Printer
Modell, the device-end condition occurs upon
completion of the mechanical operation. When
device end is generated later than channel end for
the last I/O operation of a channel program, the
program may elect to request the initiation of
another start function prior to receiving the
device-end indication. If the device-end indication
is solicited and the subchannel is start-pending for a
new start function, the device-end indication is dis­
carded by the channel subsystem, and the pending
I/O operation is initiated.

For control operations, device end is generated at
the completion of the operation at the device. The
operation may be completed at the time' channel
end is generated or later.

When the device makes a transition from the not­
ready to the ready state, either device end or device
end, attention, and unit exception are indicated.
Refer to the System Library publication for the
device to determine which indication is given.

Unit Check
Unit check indicates that the I/O device has detected
an unusual condition that is detailed by the infor­
mation available to a sense command. Unit check
may indicate that a programming or an equipment
error has been detected, that the not-ready state of
the device has affected the execution of the
command, or that an exceptional condition other
than the one identified by unit exception has
occurred. The unit-check bit provides a summary
indication of the conditions identified by sense data.

An error condition causes the unit-check indication
when it occurs during the execution of a command,
during some activity associated with an I/O opera­
tion, or when an unusual condition is detected that
is unrelated to execution of an I/O operation.
Unless the error condition pertains to the activity
initiated by a command or is of immediate signif­
icance to the program, the condition does not cause
the program to be alerted after device end has been
signaled to the channel subsystem; a malfunction
may, however, cause the device to become not
ready. If an error condition of immediate signif­
icance to the program occurs while there is no I/O

operation in progress, unit check is presented
together with attention, control-unit end, or device
end as unsolicited alert status.

Unit check is indicated when the existence of the
not-ready state precludes a satisfactory execution of
the command, or when the command, by its
nature, tests the state of the device. When no
status condition is pending for the addressed device
at the control unit, the control unit signals unit
check when a command is transferred to a device in
the not-ready state. In the case of no-operation,
the command is rejected, and channel end and
device end do not accompany unit check.

Unless the command is designed to cause unit
check, such as rewind and unload on magnetic
tape, unit check is not indicated if the command is
properly executed, even though the device has
become not ready during or as a result of the oper­
ation. Similarly, unit check is not indicated if the
command can be executed when the device is in the
not-ready state. Selection of a device in the not­
ready state does not cause a unit-check indication
when the sense command is transferred, and when
the addressed device contains status.

If the device detects during the initiation sequence
that the command cannot be executed, unit check
is presented to the channel subsystem and appears
without channel end or device end. Such device
status indicates that no action has been taken at the
device in response to the command. If the condi­
tion precluding proper execution of the operation
occurs after the command has been accepted, unit
check is accompanied by channel end, or device
end, depending on when the condition was
detected. Any errors associated with an operation,
but detected after device end has been signaled to
the channel subsystem, are indicated by signaling
unit check with attention.

During the initiation sequence, if the device is
already active or already contains status, errors such
as invalid command code or invalid CBC for the
command code do not cause the device to present
unit check. Under these circumstances, the device
responds by presenting the busy bit together with
the previously existing status, if any. The invalid
CBC for the command code or the invalid
command code is not indicated.

Conclusion of an operation with the unit-check
indication causes command chaining and command
retry to be suppressed.

Unit check is presented in combination with
channel end and status modifier to initiate the
command-retry procedure.

Programming Notes:

1. Unit-check status presented either in the
absence of or accompanied by other status
indicates only that sense information is avail­
able to the basic sense command. Presentation
of either channel end and unit check or channel
end, device end, and unit check does not
provide any indication as to the kind of condi­
tions encountered by the control unit, the state
of the I/O device, or whether execution of the
I/O operation ever was initiated even though
the command may have been accepted.
Descriptions of these conditions are provided in
the sense information.

2. START SUBCHANNEL, RESUME SUBCHANNEL,

HALT SUBCHANNEL, or CLEAR SUBCHANNEL

may be executed for a subchannel whose asso­
ciated device is attached to the same control
unit that is currently holding sense data per­
taining to a unit-check condition signaled by
another attached device. The channel sub­
system ensures that no sense data is lost. The
performance of the function specified by the
START SUBCHANNEL, RESUME SUBCHANNEL,

or HALT SUBCHANNEL instruction may be
delayed, however, until the sense data has been
cleared from the control unit, or it may not
take place at all, as in the case of CLEAR SUB­

CHANNEL. The sense data may be retrieved
(or reset) by executing START SUBCHANNEL for
the sub channel that presented unit check.
Sense information is also reset if the execution
of CLEAR SUBCHANNEL results in a clear signal
being issued on the channel path on which unit
check was presented, or if the RESET CHANNEL

PATH instruction is executed, designating the
channel path on which unit check was pre­
sented.

Unit Exception
Unit exception is caused when the I/O device
detects a condition that usually does not occur.
Unit exception includes a condition such as recog­
nition of a tape mark and does not necessarily indi­
cate an error. During execution of an I/O opera­
tion, unit exception has only one meaning for any
particular command and type of device.

The unit-exception condition can be generated only
when the device is executing an I/O operation, or

Chapter 16. I/O Interruptions l6-27

when the device is involved with some activity
associated with an I/O operation and the condition
is of immediate significance to the program. If the
device detects during the initiation sequence that
the operation cannot be executed, unit exception is
presented and appears without channel end or
device end. Such unit status indicates that no
action has been taken at the device in response to
the command. If the condition precluding normal
execution of the operation occurs after the
command has been accepted, unit exception is
accompanied by channel end, or device end,
depending on when the condition was detected.
Any unusual conditions associated with an opera­
tion, but detected after device end has been cleared,
are indicated by signaling unit exception with atten­
tion.

If the I/O device responds with busy status to a
command, the generation of unit exception is sup­
pressed even when execution of that command
usually causes unit exception to be indicated.

Concluding an operation with the unit-exception
indication causes command chaining and command
retry to be suppressed.

Some I/O devices present unit exception accompa­
nied by device end and attention whenever the
device makes the transition from the not-ready to
the ready state (see the section "Device End" on
page 16-26).

S ubchannel-Status Field

Subchannel-status conditions are detected and indi­
cated in the scsw by the channel subsystem. .
Except for the conditions caused by equipment
malfunctioning, they can occur only while the
channel subsystem is involved with the perform­
ance of a halt, resume, or start function. The
subchannel-status field is meaningful whenever the
sub channel is status-pending with any combination
of pr4nary, secondary, intermediate, or alert status.
When the subchannel is status-pending with
deferred condition code 3 indicated, the contents of
the subchanne1-status field are not meaningful.

Program-Controlled Interruption
An intermediate interruption condition is generated
after a ccw with the program-controlled­
interruption (PCI) flag set to one becomes the
current ccw. The I/O interruption due to the PCI

flag may be delayed an unpredictable amount of
time because of masking of the interruption request

16-28 ESAj370 Principles of Operation

or other activity in the system. (See the section
"Program-Controlled Interruption" on
page 15-30.)

Detection of the PCI condition does not affect the
progress of the I/O operation.

Incorrect Length
Incorrect length occurs when the number of bytes
contained in the storage areas assigned for the I/O

operation is not equal to the number of bytes
requested or offered by the I/O device. Incorrect
length is indicated for one of the following reasons:

Long Block on Input: During a read, read­
backward, or sense operation, the device attempted
to transfer one or more bytes to main storage after
the assigned main-storage areas were filled. The
extra bytes have not been placed in main storage.
The count in the scsw is zero.

Long Block on Output: During a write or control
operation, the device requested one or more bytes
from the channel subsystem after the assigned
main-storage areas were exhausted. The count in
the scsw is zero.

Short Block on I nput: The number of bytes trans­
ferred during a read, read-backward, or sense opera­
tion is insufficient to fill the main-storage areas
assigned to the operation. The count in the scsw
is not zero.

Short Block on Output: The device terminated a
write or control operation before all information
contained in the assigned main-storage areas was
transferred to the device. The count in the scsw is
not zero.

The incorrect-length indication is suppressed when
the current ccw has the SLI flag set to one and the
CD flag set to zero. The indication does not occur
for operations rejected during the initiation
sequence. The indication also does not occur for
immediate operations when the count field is
nonzero and the subchannel is in the incorrect­
length-suppression mode.

Presence of the incorrect-length condition sup­
presses command chaining unless the SLI flag in the
ccw is one or unless the condition occurs in an
immediate operation when the sub channel is in the
incorrect-length -suppression mode.

Program Check
Program check occurs when programming errors
are detected by the channel subsystem. The condi­
tion can be due to the following causes:

Invalid CCW-Address Specification: The
channel-program address (CPA) or the transfer-in­
channel command does not designate the ccw on a
doubleword boundary, or bit 0 of the CPA or bit 32
of a format-l ccw specifying the transfer-in­
channel command is not zero.

Invalid CCW Address: The channel subsystem
has attempted to fetch a ccw from a main-storage
location which is not available. An invalid ccw
address can occur because the· program has desig­
nated an invalid address in the channel-pro gram­
address field of the ORB or in the transfer-in­
channel command or because, on chaining, the
channel subsystem attempts to fetch a ccw from
an unavailable location. A main-storage location is
unavailable either because the absolute address does
not correspond to a physical location or because a
format-O ccw has been specified in the ORB and
the absolute address designates a location greater
than 16,777,215.

Invalid Command Code: There are zeros in the
four rightmost bit positions of the command code
in the ccw designated by the CPA or in a ccw
fetched on command chaining. The command
code is not tested for validity during data chaining.

Invalid Count, Format 0: A ccw, which is other
than a ccw specifying transfer in channel, contains
zeros in bit positions 48-63.

Invalid Count, Format 1: A ccw that specifies
data chaining or a ccw fetched while data chaining
contains zeros in bit positions 16-31.

Invalid IDAW-Address Specification: Indirect
data addressing is specified, and the contents of the
data-address field in the ccw do not designate the
frrst IDAW on an integral word boundary; that is,
bits 30-31 (format 0) or bits 62-63 (format 1) are
not zeros.

Invalid IDAW Address: The channel subsystem
has attempted to fetch an IDAW from a main­
storage location which is not available. An invalid
IDAW address can occur because the program has
designated an invalid address in a ccw that speci­
fies indirect data addressing or because the channel
subsystem, on sequentially fetching IDAWS,

attempts to fetch from an unavailable location. A
main-storage location is unavailable either because
the absolute address does not correspond to a phys­
ical location or because a format-O ccw has been
specified in the ORB and the absolute address desig­
nates a location greater than 16,777,215.

Invalid Data-Address Specification: Bit 32 of a
format-I ccw is not zero.

Invalid Data Address: When one of the following
conditions is detected, an invalid data address is
recognized by the channel subsystem.

I. Use of the data address has caused the channel
subsystem to attempt to wrap from the
maximum storage address to zero.

2. Use of the data address has caused the channel
subsystem to attempt to wrap from zero to the
maximum storage address during a read­
backward operation.

3. The channel subsystem has attempted to
transfer data to or from a storage location
which is either not available or is outside the
addressing range specified by SET ADDRESS

LIMIT and the limit mode at the subchannel.

An invalid data address can occur because the
program has designated an invalid address in the
ccw or in an IDAW, or because an address-limit
violation is detected when the address exceeds the
boundary address specified by SET ADDRESS LIMIT,

or because the channel subsystem, on sequentially
accessing storage, attempted to access an unavail­
able location. A main-storage location is unavail­
able either because the absolute address does not
correspond to a physical location or because a
format-O ccw has been specified in the ORB, indi­
rect data addressing has not been specified, and the
absolute address designates a location greater than
16,777,215.

Note: The maximum storage address is determined
as a function of whether 24-bit or 31-bit addressing
is used. If format-O ccws are specified in the ORB,

the maximum storage address recognized by the
channel subsystem is 16,777,215 unless indirect data
addressing is specified. Otherwise, the maximum
storage address is 2,147,483,647. If format-I ccws
are specified in the ORB, the maximum storage
address recognized by the channel subsystem is
2,147,483,647.

Invalid IDAW Specification: Bit 0 of the IDAW is
not zero, or the second or a subsequent IDAW does
not designate the location of the beginning or, for

Chapter 16. I/O Interruptions 16-29

read-backward operations, the location of the
ending byte of a 2K-byte block.

Invalid CCW, Format 0: A ecw other than a eew
specifying transfer in channel does not contain a
zero in bit position 39.

Invalid CCW, Format 1: A ecw other than a eew
specifying transfer in channel does not contain a
zero in bit position 15, or a ecw specifying transfer
in channel does not contain zeros in bit positions
0-3 and 8-31.

Invalid Suspend Flag: A format-O or format-l
eew fetched during data chaining, other than a
eew specifying transfer in channel, does not
contain a zero in bit position 38 or 14, respectively.
A eew other than a eew specifying transfer in
channel does not contain a zero in bit position 38
for a format-O eew or bit position 14 for a
fonnat-l eew, and suspend control was not speci­
fied in the 0 RB (bit 4 of word 1).

Invalid ORB Format: Word 1 of the ORB does not
contain zeros in bit positions 5-7, 13-15, and 25-31.
If the incorrect-Iength-indication-suppression
facility is not installed, then bit 24 of word 1 of the
ORB must also be zero.

Invalid Sequence: The channel subsystem has
fetched two successive ecws both of which specify
transfer in channel, or, depending on the model, a
sequence of 256 or more ecws with command
chaining specified was executed by the channel sub­
system and did not result in the transfer of any data
to or from an I/O device.

Detection of the program-check condition during
the initiation of an operation at the device causes
the operation to be suppressed and the subchannel
to be made status-pending with primary, secondary,
and alert status. When the condition is detected
after the I/O operation has been initiated at the
device, the device is signaled to conclude the opera­
tion the next time the device requests or offers a
byte of data or status. In this situation, the sub­
channel is made status-pending as a function of the
status received from the device. The program-check
condition causes command chaining and command
retry to be suppressed.

16-30 ESAj370 Principles of Operation

Protection Check
Protection check occurs when the channel sub­
system attempts a storage access that is prohibited
by the protection mechanism. Protection applies
to the fetching of eews, IDA ws, and output data,
and to the storing of input data. The sub channel
key provided in the ORB is used as the access key
for storage accesses associated with an I/O opera­
tion.

Detection of the protection-check condition during
the fetching of the frrst eew or IDA W causes the
operation to be suppressed and the subchannel to
be made status-pending with primary, secondary,
and alert status. When protection check is detected
after the I/O operation has been initiated at the
device, the device is signaled to conclude the opera­
tion the next time it requests or offers a byte of
data or status. However, if an access violation
occurs when the channel subsystem is in the
process of fetching either a new IDAW or a new
eew while data chaining and if the device signals
the channel-end condition before transferring any
data designated by the new eew or IDAW, then the
status is accepted, and the subchannel becomes
status-pending with primary and alert status and
with protection check indicated. Other indications
may accompany the protection-check indication as
a function of the operation specified by the eew,
the status received from the device, and the current
state of the subchannel. The protection-check con­
dition causes command chaining and command
retry to be suppressed.

Channel-Data Check
Channel-data check indicates that an uncorrected
storage error has been detected in regard to data,
contained in main storage, that is currently used in
the execution of an I/O operation. The condition
may be indicated when detected, even if the data is
not used when prefetched. Channel-data check is
indicated when data or the associated key has an
invalid checking-block code (eBe) in main storage
when that data is referenced by the channel sub­
system.

On an input operation, when the channel sub­
system attempts to store less than a complete
checking block, and invalid eBC is detected on the
checking block in storag~, the contents of the
location remain unchanged, with invalid CBC. On
an output operation, whenever channel-data check
is indicated, no bytes from the checking block with
invalid eBe are transferred to the device.

During a storage access, the maximum number of
bytes that can be transferred is model-dependent.
If a channel-data-check condition is recognized
during that storage access, the number of bytes
transferred to or from storage may not be detect­
able by the channel subsystem. Consequently, the
number of bytes transferred to or from storage may
not be correctly reflected by the residual count.
However, the residual count that is stored in the
scsw, when used in conjunction with the storage­
access code and the ccw address, designates a byte
location within the page in which the channel-data­
check condition was recognized.

A condition indicated as channel-data check causes
the current operation, if any, to be terminated.
The subchannel becomes status-pending with
primary and alert status or with primary, sec­
ondary, and alert status as a function of the status
received from the device. The count and address
fields of the scsw stored by TEST SUBCHANNEL

pertain to the operation terminated. The extended­
status-word-format bit is one, and subchannel­
logout information is stored in the ESW when TEST

SUBCHANNEL is executed.

Whenever the channel-data-check condition per­
tains to prefetched data, the failing-storage-address­
validity flag (bit 6 of the ERW) is one. An absolute
address of a location within the checking block for
which the channel-data-check condition is gener­
ated is stored in the failing-storage-address field in
word 2 of the ESW.

Uncorrectable storage or key errors detected on
prefetched data while the sub channel is start­
pending cause the operation to be canceled before
initiation at the device. In this case, the subchannel
is made status-pending with primary, secondary,
and alert status, with channel-data check indicated,
and with the failing-storage address stored in word
2 of the ESW.

Whenever channel-data check is indicated, no
measurement data for the subchannel is stored.

Channel-Control Check
Channel-control check is caused by any machine
malfunction affecting channel-subsystem controls.
The condition includes invalid CBC on a ccw, an
IDAW, or the respective associated key. The condi­
tion may be indicated when an invalid CBC is
detected on a prefetched CCW, IDAW, or the respec­
tive associated key, even if that ccw or IDAW is not
used.

Channel-control check may also indicate that an
error has been detected in the information trans­
ferred to or from main storage during an I/O opera­
tion. However, when this condition is detected, the
error has occurred inboard of the channel path: in
the channel subsystem or in the channel path
between the channel subsystem and main storage.

Detection of the channel-control-check condition
causes the current operation, if any, to be termi­
nated immediately. The subchannel is made status­
pending with primary and alert status or with
primary, secondary, and alert status as a function of
the type of termination, the current subchannel
state, and the device status presented, if any. The
count and data-address fields of the scsw stored by
TEST SUBCHANNEL pertain to the operation termi­
nated. The extended-status-word-format bit is one
and subchannel-Iogout information is stored in the
ESW when TEST SUBCHANNEL is executed.

Whenever the channel-control-check condition per­
tains to an invalid CBC detected on a prefetched
ccw, a prefetched IDAW, or the key associated with
the prefetched ccw or the prefetched IDAW, an
extended-report word containing bit 6 set to one
and the failing-storage address is stored in the ESW

when TEST SUBCHANNEL is executed.

Channel-control-check conditions encountered
while prefetching when the subchannel is start­
pending cause the operation to be canceled before
initiation at the device. In this case, the sub channel
is made status-pending with primary, secondary,
and alert status, with channel-control check indi­
cated, and with the failing-storage address stored in
the extended-status word.

If a subchannel is halt-pending and the channel
subsystem encounters a channel-control-check con­
dition while performing the halt function for that
sub channel , the subchannel remains halt-pending
unless the channel subsystem can determine that
the halt signal was issued. The subchannel remains
halt-pending even if the channel subsystem was
attempting to issue the halt signal and is unable to
determine if the halt signal was issued.

If a subchannel is start-pending or resume-pending
and the channel subsystem encounters a channel­
control-check condition while performing the start
function for that subchannel, the subchannel
remains start-pending or resume-pending unless the
channel subsystem can determine that the fust
command was accepted. The subchannel remains

Chapter 16. 110 Interruptions 16-31

start-pending or resume-pending even if the channel
subsystem was attempting to initiate the I/O opera­
tion for the frrst command and is unable to deter­
mine if the command was accepted. If the channel
subsystem is unable to detennine whether the frrst
command was accepted, the subchannel is made
status-pending with at least alert and primary
status.

In some situations in which a channel-subsystem
malfunction exists, the channel-control-check con­
dition may be reported as a machine-check condi­
tion.

Whenever channel-control check is indicated, no
measurement data for the subchannel is stored.

Programming Note: If the status-control field of
the scsw indicates that the subchannel is status­
pending with alert status but the field-validity flags
of the scsw indicate that the device-status field is
not usable for error-recovery purposes, the program
should assume that the channel-control-check con­
dition occurred while the channel subsystem was
accepting alert status from the device and take the
appropriate action for alert status, even though the
status itself has been lost.

Interface-Control Check
Interface-control check indicates that an invalid
signal has occurred on the channel path. The con­
dition is detected by the channel subsystem and
usually indicates malfunctioning of an I/O device.
Interface-control check can occur for the following
reasons:

1. A data or status byte received from a device
while the subchannel is subchannel-and-device­
active or device-active has an invalid checking­
block code.

2. The status byte received from a device while
the subchannel is idle, start-pending, sus­
pended, or halt-pending has an invalid
checking-block code.

3. A device responded with an address other than
the address designated by the channel sub­
system during initiation of an operation.

4. During command chaining, the device appeared
not operational.

5. A signal from an I/O device either did not occur
or occurred at an invalid time or had an invalid
duration.

16-32 ESA/370 Principles of Operation

6. The channel subsystem recognized the
I/o-error-alert condition (see the section
"I/O-Error Alert (A)" on page 16-39).

7. ESW bit 26, device-status check, is set to one.

Detection of the interface-control-check condition
causes the current operation, if any, to be termi­
nated immediately, and the subchannel is made
status-pending with alert status, primary and alert
status, secondary and alert status, or primary, sec­
ondary, and alert status as a function of the type of
termination, the current subchannel state, and the
device status presented, if any. The extended­
status-word-format bit is one and subchannel­
logout information is stored in the ESW when TEST

SUBCHANNEL is executed.

If a subchannel is halt-pending and the channel
subsystem encounters an interface-control-check
condition while performing the halt function for
that subchannel, the subchannel remains halt­
pending unless the channel subsystem can deter­
mine that the halt signal was issued. The sub­
channel remains halt-pending even if the channel
subsystem was attempting to issue the halt signal
and is unable to determine if the halt signal was
issued.

If a subchannel is start-pending or resume-pending
and the channel subsystem encounters an interface­
control-check condition while performing the start
function for that subchannel, the subchannel
remains start-pending or resume-pending unless the
channel subsystem can determine that the frrst
cornmand was accepted. The subchannel remains
start-pending or resume-pending even if the channel
subsystem was attempting to initiate the I/O opera­
tion for the first command and is unable to deter­
mine if the command was accepted. If the channel
subsystem is unable to determine whether the frrst
command was accepted, the subchannel is made
status-pending with at least alert and primary
status.

If, while initiating a signaling sequence with the
channel subsystem for the purpose of presenting
status or transferring data, the device presents an
address with invalid parity, the error condition is
not made available to the program since the iden­
tity of the device and associated subchannel are
unknown.

Whenever interface-control check is indicated, no
measurement data for the subchannel is stored.

Programming Note: If the status-control field of
the scsw indicates that the subchannel is status­
pending with alert status but the field-validity flags
of the scsw indicate that the device-status field is
not usable for error-recovery purposes, the program
should assume that the interface-control-check con­
dition occurred while the channel subsystem was
accepting alert status from the device and take the C

appropriate action for alert status, even though the
status itself has been lost.

Chaining Check
Chaining check is caused by channel-subsystem
overrun during data chaining on input operations.
The condition occurs when the I/o-data rate is too
high for the particular resolution of data addresses.
Chaining check cannot occur on output operations.

Detection of the chaining-check condition causes
the I/O device to be signaled to conclude the opera-

tion. It causes command chaining to be sup­
pressed.

Count Field

Bits 16-31 of word 2 contain the residual count.
The count is to be used in conjunction with the
original count specified in the last ccw and,
depending upon existing conditions (see
Figure 16-4 on page 16-19), indicates the number
of bytes transferred to or from the area designated
by the ccw. The count field is meaningful when­
ever the subchannel is status-pending with primary
status which consists of either (1) device status
only or (2) device status together with subchannel
status of incorrect length only, PCI only, or both.

In Figure 16-5 on page 16-34, the contents of the
count field are listed for all cases where the sub­
channel is either start-pending, subchannel-and­
device-active, device-active, suspended, or status­
pending.

Chapter 16. I/O Interruptions 16-33

Subchannel State 1 Count

Start-pending (UUUU8/AIPSX)2 Not meaningfu1 3

Start-pending and status-pending Not meaningfu1 3

(l8YY1/AIPSX) 2

Start-pending and status-pending (88111/AIPSX) Not meaningfu1 3

because the device appeared not operational on
all paths2

Start-pending and device actiye (UUUU8/AIPSX)2 Not meaningfu1 3

Suspended (YYYYY/AIPSX)2

Subchannel-and-device-active (UUUU8/AIPSX)2

Device-active (UUUU8/AIPSX)

Status-pending (81881/AIPSX) because of
program-control led-interruption condition or
initial-status interruption

Status-pending (lYIYl/AIPSX); termination
occurred because of: 2

Program check
Protection check
Chaining check
Channel-control check
Interface control check
Channel-data check

Status-pending (YYIYl/AIPSX)j termination
occurred under count contro12

Status-pending (Y8811/AIPSX)2

Status-pending (lYIYl/AIPSX)2

Not meaningfu13

Not meani ngfu13

Not meaningfu1 3

Not meaningfu1 3

Not meani ngfu13
Not meaningfu1 3

Not meaningfu1 3

See note 1
Not meaningfu13
See note 2

Correct

Not meaningfu13

Correct; residual count of last used
CCW

Status-pending (lYlll/AIPSX)j cOlnmand chaining Correct; residual count of last used
suppressed because of alert status2 CCW

Status-pending (YYYYl/AIPSX)j after termination Unpredictable
by HALT SUBCHANNEL2

Status-pending (88881/AIPSX)j after termination Not meaningfu1 3

by CLEAR SUBCHANNEL

Status-pending (YYIYl/AIPSX)j operation
completed normally at the subchanne1 2

Correct; indicates the residual count

Figure 16-5 (Part 1 of 2). Contents of Count Field in the SCSW

16-34 ESA/370 Principles of Operation

Subchannel State 1 Count

Status-pending (IYlll/AIPSX); command chaining Correct; original count of CCW
terminated because of alert status 2 specifying the new I/O operation

Status-pending (19991/AIPSX) because of alert Not meaningful 3

status

Explanation:

1 In situations where more than a single condition exists because of, for example,
alert status that is described by program check and unit check, the entry
appearing first in the table takes precedence.

The meaning of the notation in this column is as follows:

A Alert status
I Intermediate status
P Primary status
S Secondary status
X Status-pending

The allowed combination of status-control-bit settings is shown to the left of
the 1\ /" symbol.

Bit settings are specified as follows:

9 Corresponding condition is not indicated.
1 Corresponding condition is indicated.
U Unpredictable. The corresponding condition is not meaningful when the

subchannel is not status-pending.
Y Corresponding condition is not significant and is indicated as a function

of the subchannel state.

2 The subchannel may also be resume-pending.

3 The contents of the count field are not meaningful because the count field is
not valid when the SCSW is stored and the subchannel is in the given state.

Notes:

1. The count is unpredictable unless IDAW check is indicated, in which case the
count may not correctly reflect the number of bytes transferred to or from main
storage but will (when used in conjunction with the CCW address) designate a
byte location within the page in which the channel-control-check condition was
recognized.

2. During a storage access, the maximum number of bytes that can be stored by a
channel subsystem is model-dependent. If a channel-data-check condition is
recognized during that access, the number of bytes transferred to or from
storage may not be detectable by the channel subsystem. Consequently, the
number of bytes transferred to or from storage may not be correctly reflected by
the residual count. However, the residual count that is stored when used in
conjunction with the storage-access code and the CCW address designates a byte
location within the page in which the channel-data-check condition was
recognized.

Figure 16-5 (Part 2 of 2). Contents of Count Field in the SCSW

Chapter 16. I/O Interruptions 16-35

Extended-Status Word
The extended-status word (ESW) provides additional
information to the program about the subchannel
and its associated device. The ESW is placed in
words 3-7 of the IRB designated by the second
operand of TEST SUBCHANNEL when TEST SUB­
CHANNEL is executed and the subchannel desig­
nated is operational. If the subchannel is status­
pending or status-pending with any combination of
primary, secondary, intermediate, or alert status
(except as noted in the next paragraph) when TEST
SUBCHANNEL is executed, the ESW may have one
of the following types of extended-status formats:

Format
o

2

3

Description
Subchannellogout in word 0, an ERW in
word 1, a failing-storage address or zeros
in word 2, and zeros in words 3-4
Zeros in bytes 0 and 2-3 of word 0, the
LPUM in byte 1 of word 0, and zeros in
words 1-4
Zeros in byte 0, the LPUM in byte 1, and
the device-connect time in bytes 2-3 of
word 0; zeros in words 1-4
Zeros in byte 0, the LPUM in byte 1, and
unpredictable values in bytes 2 and 3 of
word 0; zeros in words 1-4

Bytes 0-3 of word 0 of the ESW contain unpredict­
able values if any of the following conditions IS

met:

1. The subchannel is not status-pending.

2. The subchannel is status-pending alone, and
the extended-status-word·format bit is zero.

3. The subchannel is status-pending with interme­
diate status alone for other than the interme­
diate .interruption condition due to suspension.

The type of extended-status format stored depends
upon conditions existing at the subchannel at the
time TEST SUBCHANNEL is executed. The condi­
tions under which each of the types of formats is
stored are described in the remainder of this
section.

Extended-Status Format 0

The ESW stored by TEST SUBCHANNEL is a
format-O ESW when the extended-status-word­
format bit (bit 5, word 0 of the scsw) is one and
the sub channel is status-pending with any combina­
tion of status as defmed in Figure 16-6 on
page 16-40. In this case, subchannel~logout infor-

16-36 ESA/370 Principles of Operation

mation and an ERW are stored in the extended­
status word. Subchannel logout provides detailed
model-independent information, relating to a sub­
channel and describing equipment errors detected
by the channel subsystem. The information is pro­
vided to aid the recovery of an I/O operation, a
device, or both. Whenever sub channel logout is
provided, the error conditions relate only to the
subchannel reporting the error. If I/O operations
involving other sub channels have been affected by
the error condition, those subchannels also provide
similar subchannel-Iogout information. An
extended-report word provides additional informa­
tion relating to the cause of the malfunction.

A format-O ESW has this format:

e Subchannel Logout

1 Extended-Report Word

2 Failing-Storage Address

3
Zeros

4

Subchannel Logout
The subchannellogout has this format:

lei ESF LPUM

e 1 8 16 22 24 26 31

Extended-Status Flags (ESF): Any of the bits 1-7,
when one, specify that an error-check condition has
been detected by the channel subsystem. The fol­
lowing indications are provided in the ESP field:

Key Check: Bit 1, when one, indicates that the
channel subsystem, when accessing data,
when attempting to update the measurement
block, or when attempting to fetch either a
ccw or an IDAW, has detected an invalid
checking-block code (CBC) on the associated
storage key. The channel-data-check bit (bit
12 of word 2 of the scsw), the measurement­
block data-check bit (bit 3 of word 0 of the
ESW), the ccw-check bit (bit 5 of word 0 of
the ESW), or the IDAw-check bit (bit 6 of
word 0 of the ESW) identifies the source of the
key error.

Note: This condition may be indicated to the
program when an invalid checking-block code
on a key is detected but the data, ccw, or
IDA W is not used when prefetching. In this
case, the failing-storage-address-validity bit
(bit 6 of the ERW) is one, indicating that an
absolute address of a location within the
invalid CBC is stored in word 2 of the ESW.

Measurement-Block Program Check: Bit 2, when
one, indicates that the channel subsystem, in
attempting to update the measurement block,
has detected an invalid absolute address when
combining the measurement-block origin with
the measurement-block index for this sub­
channel.

Measurement-Block Data Check: Bit 3, when one,
indicates that a malfunction has been detected
involving the data of the measurement block
in main storage. (See the section "Measure­
ment Block" on page 17-2.) Measurement­
block data check is indicated when the meas­
urement block is updated and an invalid
checking-block code (CBC) is detected on the
storage used to contain the measurement data
or on the associated key. When invalid CBC
on the associated key is detected, the key­
check bit, bit 1 of the ESF field, is also stored
as one.

Measurement-Block Protection Check: Bit 4, when
one, indicates that the channel subsystem,
when attempting to update the measurement
block, has been prohibited from accessing the
measurement block because the storage key
does not match the measurement-block key
(see the section "Measurement Block" on
page 17-2.) The key provided by SET
CHANNEL MONITOR is used for the access of
storage associated with measurement-block­
update operations (see the section "Set
Channel Monitor" on page 14-10).

Note: Whenever any of the measurement­
check conditions, bits 2-4, is indicated, the
channel subsystem sets the sub channel
measurement-block-update-enable bit to zero,
disabling the storing of measurement data for
the sub channel (see the section "Measurement
Mode Enable (MM)" on page 15-3).

CCW Check: Bit 5, when one, indicates that an
invalid CBC on the contents of the ccw or its
associated key has been detected. When
either of these conditions is detected, the I/O
operation is terminated, the subchannel
becomes status-pending with primary and

alert status, the extended-status-word-format
bit in the scsw is stored as one, and channel­
control check is indicated in the sub channel­
status field. The subchannel also becomes
status-pending with secondary status as a
function of the type of termination or status
received from the device. When invalid CBC
on the associated key is detected, the key­
check bit, bit 1 of the ESP field, is also stored
as one.

Note: This condition may be indicated to the
program when an invalid checking-block code
on the contents of a prefetched ccw is
detected but the ccw is not used. In this
case, the failing-storage-address-validity bit
(bit 6 of the ERW) is one, indicating that an
absolute address of a location within the
invalid CBC is stored in word 2 of the ESW.

IDAW Check: Bit 6, when one, indicates that an
invalid CBC on the contents of an IDA W or its
associated key has been detected. When
either of these conditions is detected, the I/O
operation is terminated with the device, the
sub channel becomes status-pending with
primary and alert status, the extended-status­
word-format bit in the scsw is one, and
channel-control check is indicated in the
subchannel-status field. The sub channel also
becomes status-pending with secondary status
as a function of the type of termination or
status received from the device. When invalid
CBC on the associated key is detected, the
key-check bit, bit 1 of the ESF field, is also
one.

Note: This condition may be indicated to
the program when an invalid checking-block
code on the contents of a prefetched IDA W is
detected but the IDAW is not used. In this
case, the failing-storage-address-validity bit
(bit 6 of the ERW) is one, indicating that an
absolute address of a location within the
invalid CBC is stored in word 2 of the ESW.
Detection of a channel-data -check condition
does not cause the ccw-check and
IDAw-check bits to be stored as ones.

Reserved: Bit 7 is stored as zero.

Last-Path-Used Mask (LPUM): Bits 8-15 indicate
the channel path that was last used for communi­
cating or transferring information between the
channel subsystem and the device. The bit corre­
sponding to the channel path in use is set whenever
one of the following occurs:

Chapter 16. I/O Interruptions 16-37

1. The fll'st command of a start-subchannel func­
tion is accepted by the device (see the section
"Activity Control (AC)" on page 16-13).

2. The device and channel subsystem are actively
communicating when the channel subsystem
performs the suspend function for the channel
program in execution.

3. The channel subsystem accepts status from the
device that is recognized as an interruption
condition, or a condition has been recognized
that suppresses command chaining (see the
section "Interruption Conditions" on
page 16-2).

4. The channel subsystem recognizes an interface­
control-check condition (see the section
"Interface-Control Check" on page 16-32), and
no subchannel-Iogout infonnation is currently
present at the sub channel.

The LPUM field contains the most recent setting
and is valid whenever the FSW contains infonnation
in one of the formats 0-3 (see the section
"Extended-Status Word" on page 16-36) and the
scsw is stored. When subchannel-Iogout informa­
tion is present in the FSW, a zero LPuM-field­
validity flag indicates that the LPUM setting is not
consistent with the other subchannel-logout indi­
cations.

Field-Validity Flags (FVF): Bits 17-21 indicate the
validity of the information stored in the corre­
sponding fields of either the scsw or the extended­
status word. When the validity bit is one, the cor­
responding field has been stored and is usable for
recovery purposes. When the validity bit is zero,
the corresponding field is not usable.

This bit-significant field has meaning when
channel-data check, channel-control check, or
interface-control check is indicated in the scsw.
When these checks are not indicated, this field, as
well as the termination -code and sequence-code
fields, has no meaning. Further, when these checks
are not indicated, the last-path-used-mask, device­
status, and ccw -address fields are all valid. The
fields are defmed as follows:

17 Last-path-used mask
18 Termination code
19 Sequence code
20 Device status
21 ccw address

16-38 ESA/370 Principles of Operation

storage-Access Code (SA): Bits 22-23 indicate
the type of storage access that was being perfonned
by the channel subsystem at the time of error. It
pertains only to the access of storage for the
purpose of fetching or storing data during execution
of an I/O operation. This encoded field has
meaning only when channel-data check, channel­
control check, or interface-control check is indi­
cated in the subchannel status. The access-code
assignments are as follows:

00 Access type unknown
01 Read
10 Write
11 Read backward

Termination Code (TC): Bits 24-25 indicate the
type of termination that has occurred. This
encoded field has meaning only when channel-data
check, channel-control check, or interface-control
check is indicated in the scsw. The types of termi­
nation are as follows:

00 Halt signal issued
01 Stop, stack, or normal termination
10 Clear signal issued
11 Reserved

When at least one channel check is indicated in the
scsw but the termination-code-fie1d-validity flag is
zero, it is unpredictable which, if any, termination
has been signaled to the device. If more than one
channel-check condition is indicated in the scsw,
the device may have been signaled one or more ter­
mination codes that are the same or different. In
this situation, if the termination-code-field-validity
flag is one, the termination code indicates the most
severe of the terminations signaled to the device.
The termination codes, in order of increasing
severity, are: stop, stack, or nonnal termination
(01); halt signal issued (00); and clear signal issued
(10).

Device-Status Check (D): When the status­
verification facility is installed, bit 26, when one,
indicates that the subchannel logout in the FSW

resulted from the channel subsystem detecting
device status that had valid CBC but that contained
a combination of bits that was inappropriate when
the status byte was presented to the channel sub­
system. When the device-status-check bit is one,
the interface-control-check status bit is set to one.
If, additionally, bit 20 of the subchannel-10gout
field has been stored as one, then the status byte in
error has been stored in the device-status field of
the scsw. If the status-verification facility is not
installed, bit 26 is stored as zero.

Secondary Error (E): Bit 27, when one, indicates
that a malfunction of a system component which
mayor may not have been directly related to any
activity involving subchannels or I/O devices has
occurred. Subsequent to this occurrence, the
activity related to this subchannel and the associ­
ated I/O device was affected and caused the sub­
channel to be set status-pending with either
channel-control check or interface-control check.

I/O·Error Alert (A): Bit 28, when one, indicates
that subchannel logout in the ESW resulted from
the signaling of I/o-error alert. The I/o-error-alert
signal indicates that the control unit or device has
detected a malfunction that must be reported to the
channel subsystem. The channel subsystem, in
response, issues a clear signal and, except as
described in the next paragraph, causes interface­
control check to be set and
extended-status-format-O (logout) information to be
stored in the ESW.

When I/o-error alert is signaled and the subchannel
has previously been set disabled or no subchannel
is associated with the device, the clear signal is
issued to the device, and the I/o-error-alert indi­
catio:tl is ignored by the channel subsystem.

Sequence Code (SC): Bits 29-31 identify the I/O
sequence in ,progress at the time of error. The
sequence code pertains only to I/O operations initi­
ated by execution of START SUBCHANNEL or
RESUME SUBCHANNEL. This encoded field has
meaning only when channel-data check, channel­
control check, or interface-control check is indi­
cated in the scsw.

The sequence-code assignments are:

000 Reserved

001 A nonzero command byte has been sent by
the channel subsystem, but device status has
not yet been analyzed by the channel sub­
system. This code is set during the initiation
sequence.

010 The command has been accepted by the
device, but no data has been transferred. This
code is set during the initiation sequence, if
the initial status is (1) channel end alone,
(2) channel end and device end, (3) channel

end, device end, and status modifier, or (4) all
zeros.

011 At least one byte of data has been transferred
between the channel subsystem and the
device. This code may be used when the
channel path is in an idle or polling state.

100 The command in the current ccw (1) has not
yet been sent to the device, (2) was sent but
not accepted by the device, or (3) was sent
and accepted but command-retry status was
presented. This code is set when one of the
following conditions occurs:

1. When the command address is updated
during command chaining or during the
initiation of a start function or resume
function at the device

2. When, during the initiation sequence, the
status includes attention, control-unit end,
unit check, unit exception, busy, status
modifier (without channel end and device
end), or device end (without channel end)

3. When command retry is signaled

4. When the channel subsystem interrogates
the device in the process of clearing an
interruption condition

S. When the channel subsystem signals the
conclusion of the chain of operations to
the device during command chaining
while performing the suspend function

101 The command in the current ccw has been
accepted, but data transfer is unpredictable.
This code applies from the time a device is
logically connected to a channel path until the
time it is determined that a new sequence
code applies. This code may also be used
when the channel subsystem places a channel
path in the polling or idle state and it is
impossible to determine that code 010 or 011
applies. It may also be used at other times
when a channel path cannot distinguish
between code 010 or 011.

110 Reserved

111 Reserved

Figure 16-6 on page 16-40 dermes the relationship
between indications provided as subchannel-10gout
data and the appropriate scsw bits.

Chapter 16. I/O Interruptions 16-39

Logout Condition
for SCSW

Indication of1

Subchanne1-Logout Condition Indicated CDC CCC IFCC

Key check V V -
Measurement-b1ock-program check2 - - -
Measurement-b10ck-data check2 - - -
Measurement-b1ock-protection check2 - - -
CCW check - V -
IDAW check - V -
Last-path-used mask' V V V
Field-validity flags V V V
Termination code' V V V
Device-status check - - V
Secondary error - V V
I/O-error alert - - V
Sequence code3 V V V

Explanation:

- No relationship.

1 When more than one SCSW indication is signaled,
the subchanne1-1ogout conditions that are valid
are the logical OR for each of the respective SCSW
indications.

2 Only one measurement-block check may be indicated
in a specific subchannel logout.

, This field has a field-validity flag.

CCC Channel-control check.

CDC Channel-data check.

IFCC Interface-control check.

V Bit setting valid.

Figure 16-6. Relationship between Subchannel-Logout
Data and SCSW Bits

Extended-Report Word
The extended-report word provides infonnation to
the program describing specific conditions that may
exist at the device, sub channel , or channel sub­
system. The extended-report word is stored when
the extended-status-word-fonnat bit (bit 5, word 0
of the scsw) is one.

The ERW has this fonnat:

Falllng-Storage-Address-Validity Flag (F): Bit 6,
when one, indicates that the channel subsystem has
detected an invalid CBC on a ccw, a data address,
an IDAW, or the respective associated key and has

16-40 ESAj370 Principles of Operation

stored in word 2 of the ESW an absolute address of
a location within the invalid CBC. When an ERW is
stored with bit 6 set to zero, the channel subsystem
has not detected an invalid CBC while prefetching
data, a CCW, or an IDAW, and zeros are stored in
word 2 of the ESW.

The remaining bits of the ERW are currently
reserved and are stored as zeros when the ERW is
stored.

Failing-Storage Address
Word 2 of the extended-status word fonns an abso­
lute address. When the channel subsystem has
detected an invalid CBC, and the failing-storage­
address-validity flag (bit 6 of the ERW) is one, the
address contained in the failing-storage-address field
designates a byte location within the checking block
associated with the invalid CBC. When the failing­
storage-address-validity flag is zero, this field con­
tains zeros.

Extended-Status Format 1

The ESW stored by TEST SUBCHANNEL is a
fonnat-l ESW when the following conditions are
met:

1. The extended-status-word-fonnat bit (bit 5,
word 0 of the scsw) is zero.

2. The subchannel status-control field has the
status-pending bit (bit 31, word 0 of thescsw)
set to one, together with:

a. The primary-status bit (bit 29, word 0 of
the scsw) alone, or

b. The primary-status bit and other status­
control bits, or

c. The intennediate-status bit (bit 28, word 0
of the scsw) and the suspended bit (bit 26,
word 0 of the scsw).

3. At least one of the following conditions is indi­
cated:

a. The device-connect-time-measurement
mode is inactive.

b. The channel-subsystem-timing facility is
not available for the subchannel.

c. The sub channel is not enabled for the
device-connect-time-measurement mode.

Zeros are stored in bytes 0 and 2-3 of word 0, and
the LPUM is stored in byte 1 of word O. Zeros are
stored in words 1-4.

The device-connect-time-measurement mode is
made inactive when SET CHANNEL MONITOR is exe­
cuted and bit 31 of general register 1 is zero.

A format-1 ESW has this format:

: I LPUM I

I Zeros I
4~1 __ ~ __ ~ ______ ~I

e 8 16 31

Last-Path-Used Mask (LPUM): For a defmition of
the LPUM, see the section "Last-Path-Used Mask
(LPUM)" on page 16-37.

Extended-Status Format 2

The ESW stored by TEST SUBCHANNEL is a
format-2 ESW when the following conditions are
met:

1. The extended-status-word-format bit (bit 5,
word 0 of the scsw) is zero.

2. The channel-sub system-timing facility is avail­
able for the subchannel.

3. The subchannel is enabled for the device­
connect-time-measurement mode.

4. The device-connect-time-measurement mode is
active.

5. The subchannel status-control field has the
status-pending bit (bit 31, word 0 of the scsw)
set to one, together with:

a. The primary-status bit (bit 29, word 0 of
the scsw) alone, or

b. The primary-status bit and other status­
control bits, or

c. The intermediate-status bit (bit 28, word 0
of the scsw) and the suspended bit (bit 26,
word 0 of the scsw).

Zeros are stored in byte 0 of word 0, the LPUM is
stored in byte 1 of word 0, and the device-connect
time is stored in bytes 2-3 of word O. Zeros are
stored in words 1-4.

A format-2 ESW has this format:

: 1 LPUM OCTI I
I Zeros I
41~ __ ~ __ ~ ______ ~1

e 8 16 31

Last-Path-Used Mask (LPUM): For a defmition of
the LPUM, see the "Last-Path-Used Mask
(LPUM)" on page 16-37.

Oevice-Connect-Tlme Interval (OCTI): Bits 16-31
contain the binary count of time increments accu­
mulated by the channel subsystem during the time
that the channel subsystem and the device were
actively communicating and the subchannel was
subchannel-active. The time increment of the OCTI

is 128 microseconds.

If the above conditions for the storing of the nCTI

value in the ESW are met but the device-connect­
time-measurement mode was made active by SET

CHANNEL MONITOR subsequent to execution of
START SUBCHANNEL for this subchanne1, the OCTI

value stored is greater than or equal to zero and
less than or equal to the correct nCTI value.

Note: The OCTI value stored in the ESW is the
same as that used to update the corresponding
measurement-block data for the subchannel if the
measurement-block-update mode is in use for the
subchannel. If the measurement-block-update
mode for the channel subsystem is active and the
subchanne1 is enabled for the device-connect-time­
measurement mode but no nCTI value is stored in
the ESW (because of the presence of sub channel­
logout information), or if the nCTI is zero, then
nothing is added to the corresponding
measurement-block data.

Chapter 16. I/O Interruptions 16-4 t

Extended-Status Format 3

The FSW stored by TFST SUBCHANNEL is a
format-3 FSW when the extended-status-word­
format bit (bit 5, word 0 of the scsw) is zero and
the subchannel is status-pending with (1) sec­
ondary status, alert status, or both when primary
status is not also present, or (2) intermediate status
when the subchannel is not suspended. Zeros are
stored in byte 0 of word 0, and the LPUM is stored
in byte 1 of word O. Bytes 2-3 of word 0 contain
unpredictable values. Zeros are stored in words
1-4.

A format-3 FSW has this fonnat:

: I LPUM XXXXXXXX XXXXXXXX I

I Zeros I
4~1 __ ~ __ ~ __ ~ __ ~I

o 8 16 24 31

Last-Path-Used Mask (LPUM): For a defInition of
the LPUM, see the section "Last-Path-Used Mask
(LPUM)" on page 16-37.

An "x" in the format indicates the bit may be zero
or one.

Figure 16-7 summarizes the conditions at the sub­
channel under which each type of information is
stored in the FSW.

16-42 ESA/370 Principles of Operation

Subchannel Conditions When IRB Is Stored

Subchannel:" Path-Management- Extended-
Status Word Control Word Status

Word (ESW) ,
Device- Word 0
Connect-

Status- Device- Time-
Control Sus- Connect- Msrmnt- Contents
Field pen- Time- Timing- Mode-

L ded Msrmnt Facility Enable For- Bytes
AIPSX Bit Bit t10de Bit Bit mat 0,1,2,3

----a ///////////////////////////////////
///////////////////////////////

aaaal a /////////////////////////////// U ****
//////////////////////////

a //////////////////////////

Inactive /////////////////
//1/////

a18a1 a a /1////1/ 1 ZMZZ
1

Active a
1

1 2 ZMDD

//// Inactive /////////////////
//// /1////1/
//// a 1/////1/ 1 ZHZZ

**1*1 a 1///
//// Active a
/1// 1
//// 1 2 ZMDD

**a11 a ///////////////////////////////
////////////////////1//////1/// 3 ZM**

1*aa1 a /1////1/////////1////////////1/

****1 1 //////11///1/1//1///1/11/////// a RRRR

Ex~lanation:

- Defined to be not me~ningful when X is zero.
* Bits may be zeros or ones.
I Information not relevant in this situation.
A Alert status.
0 Accumulated device-connect-time-interval (OCTI)

value stored in bytes 2 and 3.
I Intermediate status.
L Extended-status-word format.
M Last-path-used mask (LPUM) stored in byte 1.
P Primary status.
R Subchannel-logout information stored in word a.
S Secondary status.
U No format defined.
X Status-pending.
Z Bits are stored as zeros.

Figure 16-7. Information Stored in ESW

Extended-Control Word
The extended-control word provides additional
information to the program describing conditions
that may exist at the channel subsystem, sub­
channel, or device. The extended-control (E) bit
(bit 14, word 0 of the scsw), when one, indicates
that model-dependent information has been stored
in the extended-control word.

The extended-control word may be stored only
when the extended-status-word-format bit (bit 5,
word 0 of the scsw) is also stored as one.

The information provided in the extended-control
word is as follows:

SCSW Word 0
Bits l

5 14

o
1
1

o
o
1

ECW Words 0-7

Unpredictable2

Unpredictable 2

Model-dependent information 3

1 The combination 01 is reserved for future
use.

2 If stored, the value of these words is
unpredictable.

3 Unused bits in the model-dependent
information are stored as zeros.

Chapter 16. I/O Interruptions 16-43

Chapter 17. 1/0 Support Functions

Channel-Subsystem Monitoring
Channel-Subsystem Timing

Channel-Subsystem Timer
Measurement-Block Update

Measurement Block
Time-Interval-Measurement Accuracy

Device-Connect-Time Measurement
Signals and Resets

Signals
Halt Signal
Clear Signal
Reset Signal

Resets

17-1
17-1
17-2
17-2
17-2
17-4
17-5
17-5
17-5
17-5
17-5
17-6
17-6

The I/O support functions are those functions of
the channel subsystem that are not directly related
to the initiation or control of I/O operations. The
following I/O support functions are described in this
chapter: channel-subsystem monitoring, signals
and resets, externally initiated functions, status ver­
ification, address-limit checking, configuration alert,
and channel-subsystem recovery.

Channel-Subsystem Monitoring
Monitoring facilities are provided in the channel
subsystem so that the program can retrieve meas­
ured values on performance for a designated sub­
channel. The use of these facilities is under
program control by means of the execution of the
SET CHANNEL MONITOR instruction. Additionally,
each sub channel can be selectively enabled to use
the facilities by means of the execution of the
MODIFY SUBCHANNEL instruction.

The channel-subsystem-monitoring facilities include
the zone-measurement facility, alternate­
measurement facility, channel-subsystem-timing
facility, measurement-block-update facility, and
device-connect-time-measurement facility. The
measurement-block-update facility and the device­
connect-time-measurement facility are logically dis­
tinct ~d operate independent of one another.
Each of the facilities that constitute the channel­
subsystem-monitoring facilities is described in this
chapter.

Channel-Path Reset
I/O-System Reset

Externally Initiated Functions
Initial Program Loading
Reconfiguration of the I/O System

Status Verification
Address-Limit Checking
Configuration Alert
Incorrect-Length -Indication Suppression
Channel-Subsystem Recovery

Channel Report
Channel-Report Word

Channel-Subsystem Timing

. 17-6

. 17-6
17-10
17-10
17-12
17-12
17-12
17-13
17-13
17-13
17-14
17-15

The channel-sub system-timing facility provides the
channel subsystem with the capability of measuring
the elapsed time required for performing several dif­
ferent phases in processing a start function initiated
by START SUBCHANNBL. These elapsed-time meas­
urements are used by both the measurement-block­
update facility and the device-connect-time­
measurement facility to provide subchannel
performance information to the program.

While every channel subsystem has a channel­
subsystem-timing facility, it mayor may not be
provided for use with all subchannels. Subchannels
for which the facility is provided have the timing­
facility bit (bit 14 of word 1) stored as one in the
associated subchannel-information block. (See the
section "Timing Facility (T)" on page 15-4.) If the
channel-subsystem-timing facility is not provided
for the subchannel, its timing-facility bit is stored as
zero.

Subchannels that do not have the channel­
subsystem-timing facility provided are those for
which the characteristics of the associated device,
the manner in which it is attached to the channel
subsystem, or the channel-subsystem resources
required to support the device are such that use of
the channel-subsystem~timing facility is precluded.

The channel-subsystem-iiming facility consists of at
least one channel-subsystem timer and the associ­
ated logic and storage required for computing and
recording the elapsed-time intervals for use by the
two measurement facilities. The aspects of the

Chapter 17. I/O Support Functions 17-1

channel-subsystem-timing facility that are of impor­
tance to the program are described below.

Channel-Subsystem Timer
Each channel-subsystem timer is a binary counter
that is not accessible to the program. The channel­
subsystem timer is incremented by adding a one to
the rightmost bit position every 128 microseconds.
When incrementing the channel-subsystem timer
causes a carry out of the leftmost bit position, the
carry is ignored, and counting continues from zero.
No indications are generated as a result of the over­
flow.

Just as every CPU has access to a TOO clock, every
channel subsystem has access to at least one
channel-subsystem timer. When multiple channel­
subsystem timers are provided, synchronization
among these timers is also provided, creating the
effect that all the timing facilities of the channel
subsystem share a single timer. Synchronization
among these timers may be supplied either through
some TOO clock or independently by the channel
subsystem.

If the TO 0 clocks are not synchronized, the elapsed
times measured by the channel-subsystem-timing
facility may, depending upon the model, have
unpredictable values for some or all of the sub­
channels, depending on the particular channel­
subsystem timer and the way the associated devices
are physically attached to the system. The values
are unpredictable for those devices attached to the
system by separately configurable channel paths
whose associated CPU TOO clocks are not synchro­
nized.

Synchronization: If either the measurement­
block-update mode or device-connect-time­
measurement mode is active and any of the
channel-subsystem timers are found to be out of
synchronization, a channel-subsystem-timer-sync
check is recognized, and a channel report is gener­
ated to alert the program (see the section
"Channel-Subsystem Recovery" on page 17-13). If
neither of these modes is active, the lack of syn­
chronization is not recognized.

17-2 ESA/370 Principles of Operation

Measurement-Block Update

The measurement-block-update facility provides the
program with the capability of accumulating per­
formance information for subchannels that are
enabled for the measurement-block-update mode
when the measurement-block-update mode is
active. A subchannel is enabled for measurement­
block-update mode by setting bit 11 of word 1 of
the SCHIB operand to one and then executing
MODIFY SUBCHANNEL. Measurement-block­
update mode is made active by executing SET

CHANNEL MONITOR when bit 30 of general register
1 is one.

When the measurement-block-update mode is
active and the subchannel is enabled for the
measurement-block-update mode information is
accumulated in a measurement block associated
with the subchannel. A measurement block is a
32-byte area in main storage that is associated with
a subchannel for the purpose of accumulating
measurement data. The program specifies a contig­
uous area of absolute storage, referred to as the
measurement-block area, and subdivides this area
into 32-byte blocks, one block for each subchannel
for which measurement data is to be accumulated.
The measurement-block-update facility uses the
measurement-block index contained at the sub­
channel in conjunction with the measurement­
block origin established by the execution of SET

CHANNEL MONITOR to compute· the absolute
address of the measurement block associated with a
sub channel. Measurement data is stored in the
measurement block associated with the subchannel
each time an I/O operation or chain of I/O opera­
tions initiated by START SUBCHANNEL is suspended
or completed. The completion of an I/O operation
or chain of I/O operations is normally signaled by
the primary interruption condition. Five fields are
dermed in the measurement block in which meas­
urement data is accumulated by the measurement­
block-update facility: SSCH + RSCH count, sample
count, device-connect time, function-pending time,
and device-disconnect time.

Measurement Block
The measurement block is a 32-byte area at the
location designated by the program, using the
measurement-block origin in conjunction with the
measurement-block index. The measurement block
contains the accumulated values of the measure­
ment data described below. When the
measurement-block-update mode is active and the
subchannel is enabled for measurement-block

update, the measurement-block-update facility
accumulates the values for the measurement data
that accrue during the execution of an I/O operation
or chain of I/O operations initiated by START SUB­
CHANNEL.

When the I/O operation or chain of I/O operations
is suspended or completed at the subchannel and
no error condition is encountered, the accrued
values are added to the accumulated values in the
measurement block for that subchannel. If an error
condition is detected and subchannel-Iogout infor­
mation is stored in the extended-status word (ESW),
the accrued values are not added to the accumu­
lated values in the measurement block for the sub­
channel, and the two count fields are not incre­
mented.

If any of the accrued time values is detected to
exceed the internal storage provided for accruing
these values, none of the accrued values are added
to the measurement block for the subchannel, the
sample count is not incremented, but the
SSCH + RSCH count is incremented.

Accesses to the measurement block by the
measurement-block-update facility, in order to
accumulate measurement data at the suspension or
completion of an I/O function, appear block­
concurrent to CPUs. CPU accesses to the block,
either fetches or stores, are inhibited during the
time the measurement-block update is being per­
formed by the measurement-block-update facility.

The measurement block has the following format:

Word e SSCH+RSCH countl Sample Count

1 Device-Connect Time

2 Function-Pending Time

3 Devi~e-Disconnect Time

4

5
Reserved

6

7

SSCH + RSCH Count: Bits 0-15 of word 0 are
used as a binary counter. When either the suspend
function is performed or the primary interruption
condition is recognized during the performance of'a
start function, the counter is incremented by adding
one in bit position 15, and the measurement data is
stored. The counter wraps around from the
maximum value of 65,535 to O. The program is
not alerted when counter overflow occurs.

If the measurement-block-update mode is active
and the subchannel is enabled for measuring, the
SSCH + RSCH count is incremented even when the
lack of measured values for an individual start func­
tion precludes the updating of the sample count
and words 1-3, or when the timing-facility bit for
the subchannel is zero. The SSCH + RSCH count is
not incremented if the measurement-block-update
mode is inactive, if the subchannel is not enabled
for the measurement-block update, or if
subchannel-Iogout information has been generated
for the start function.

Sample Count: Bits 16-31 of word 0 are used as a
binary counter. When words 1, 2, and 3 of the
measurement block are updated, the counter is
incremented by adding one in bit position 31. On
some models, certain conditions may preclude the
measurement-block-update facility obtaining the
accrued values of the measurement data for an indi­
vidual start function, even when the measurement­
block-update mode is active and the subchannel is
enabled for that mode. In this situation, the
sample-count field is not incremented.

The counter wraps around from the maximum
value of 65,535 to O. The program is not alerted
when counter overflow occurs. This field is not
updated if the channel-subsystem-timing facility is
not provided for the subchannel.

The System Library publication for the system
model specifies the conditions, if any, that preclude
the updating of the sample count and words I, 2,
and 3 of the measurement block.

Device-Connect Time: Bits 0-31 of word 1
contain the accumulation of measured device­
connect-time intervals. The device-connect-time
interval (DCTI) is the sum of the time intervals
measured whenever the device is logically con­
nected to a channel path for purposes of trans­
ferring information. between it and the channel sub­
system.

Chapter 17. 1/0 Support Functions t 7-3

The time intervals are measured using a resolution
of 128 microseconds. The accumulated value is
modulo approximately 152.71 hours, and the
program is not alerted when an overflow occurs.
This field is not updated if (1) the channel­
subsystem-timing facility is not provided for the
subchannel, (2) the measurement-block-update
mode is inactive, or (3) any of the three time
values accrued for the current start function has
been detected to exceed the internal storage in
which it was accrued.

Accumulation of device-connect-time intervals for a
subchannel and storing this data in the ESW are not
affected by whether the measurement-block-update
mode is active. (See the section "Device-Connect­
Time Measurement" on page 17-5.)

Function-Pending Time: Bits 0-31 of word 2
contain the accumulated SSCH- and RscH-function­
pending time. Function-pending time is the time
interval between acceptance of the start function
(or resume function if the sub channel is in the sus­
pended state) at the subchannel and acceptance of
the fust command associated with the initiation or
resumption of channel-program execution at the
device.

When channel-program execution is suspended
because of a suspend flag in the ftrst ccw of a
channel program, the suspension occurs prior to
transferring the ftrst command to the device. In
this case, the function-pending time accumulated
up to that point is added to the value in the
function-pending-time field of the measurement
block. Function-pending time is not accrued while
the sub channel is suspended. Function-pending
time begins to be accrued again, in this case, when
RESUME SUBCHANNEL is subsequently executed
while the designated subchannel is in the suspended
state.

The function-pending-time interval is measured
using a resolution of 128 microseconds. The accu­
mulated value is modulo approximately 152.71
hours, and the program is not alerted when an
overflow occurs. This field is not updated if the
channel-subsystem-timing facility is not provided
for the subchannel.

Device-Disconnect Time: Bits 0-31 of word 3
contain the accumulated device-disconnect time.
Device-disconnect time is the sum of the time inter­
vals measured whenever the device is logically dis-

17-4 ESA/370 Principles of Operation

connected from the channel subsystem while the
subchannel is subchannel-active.

Device-disconnect time is not accrued while the
subchannel is in the suspended state. Device­
disconnect time begins to be accrued again, in this
case, on the fust device disconnection after channel­
program execution has been resumed at the device
(the sub channel is again subchannel-active).

The device-disconnect-time interval is measured by
using a resolution of 128 microseconds. The accu­
mulated value is modulo approximately 152.71
hours; the program is not alerted when an overflow
occurs. This field is not updated if the channel­
subsystem-timing facility is not provided for the
subchannel.

Words 4-7 of the measurement block are not
updated, but are reserved for future use.

Time-Interval-Measurement Accuracy
On some models, when time intervals are to be
measured and condition code 0 is set for START
SUBCHANNEL (or RESUME SUBCHANNEL in the
case of a suspended subchannel), a period of
latency may occur prior to the initiation of the
function-pending time measurement. The System
Library publication for the system model specifies
the mean latency value and variance for each of the
measured time intervals.

Programming Notes:

1. Excessive delays may be encountered by the
channel subsystem when attempting to update
measurement data if the program is concur­
rently accessing the same measurement-block
area. A programming convention should
ensure that the storage block designated by SET
CHANNEL MONITOR is made read-only while
the measurement-block-update mode is active.

2. To ensure that programs written to support
measurement functions are executed properly,
the program should initialize all the measure­
ment blocks to zeros prior to making the
measurement-block-update mode active. Only
zeros should appear in the unused words
(words 4-7) of the measurement blocks.

3. When the incrementing of an accumulated
value causes a carry to be propagated out of bit
position 0, the carry is ignored, and accumu­
lating continues from zero on.

Device-Connect-Time Measurement

The device-connect-time-measurement facility pro­
vides the program with the capability of retrieving
the length of time that a device is actively commu­
nicating with the channel subsystem while exe­
cuting a channel program. The measured length of
time that the device is actively communicating on a
channel path during the execution of a channel
program is called the device-connect-time interval
(OCTI). If the channel-subsystem-timing facility is
available for the subchannel, the OCTI value is
passed to the program in the extended-status word
(ESW) at the completion of the operation when
TEST SUBCHANNEL (1) clears the primary inter­
ruption condition or (2) clears the intermediate
interruption condition alone while the subchannel
is suspended. The DCTI value passed in the ESW
pertains to the previous subchannel-active period.
The storing of the DCTI value in the ESW is under
program control by means of the measurement.;.
mode-control bit for device-connect time as speci­
fied by the execution of SET CHANNEL MONITOR,
and by the device-connect-time-measurement­
enable bit as specified by the execution of MODIFY
SUBCHANNEL. However, the DCTI value is not
stored in the ESW if the start function initiated by
START SUBCHANNEL is terminated because of an
error condition that is described by subchannel
logout (see the section "Subchannel Logout" on
page 16-36). In this case, the extended-status­
word-format bit of the scsw is stored as one, indi­
cating that the ESW contains subchannel-Iogout
information describing the error condition. See the
section "Subchannel Logout" on page 16-36 for
the description of the subchannel-Iogout informa­
tion. If the accrued DCTI value exceeded 8.388608
seconds during the previous subchannel-active
period, then the maximum value (FFFF hex) is
passed in the ESW.

Signals and Resets
During system operation, it may become necessary
to terminate an I/O operation or to reset either the
I/O system or a portion of the I/O system. (The I/O
system consists of the channel subsystem plus all of
the attached control units and devices.) Various
signals and resets are provided for this purpose.
Three signals are provided for the channel sub­
system to notify an I/O device to terminate an oper­
ation or perform a reset function or both. Two
resets are provided to cause the channel subsystem
to reinitialize certain information contained either
at the I/O device or at the channel subsystem.

Signals

The request that the channel subsystem initiate a
signaling sequence is made by one of the following:

1. The program executing the CLEAR SUB­
CHANNEL, HALT SUBCHANNEL, or RESET
CHANNEL PATH instruction

2. The I/O device signaling I/o-error alert

3. The channel subsystem itself upon detecting
certain error conditions or equipment malfunc­
tions

The three signals are the halt signal, the clear
signal, and the reset signal.

Halt Signal
The halt signal is provided so the channel sub­
system can terminate an I/O operation. The halt
signal is issued by the channel subsystem as part of
the halt function performed subsequent to the exe­
cution of HALT SUBCHANNEL. The halt signal is
also issued by the channel subsystem when certain
error conditions are encountered. The halt signal
results in the channel subsystem using the interface­
disconnect sequence control dermed in the System
Library publication IBM System/360 and
System/370 I/O Interface Channel to Control Unit
OEM I, GA22-6974.

Clear Signal
The clear signal is provided so the channel sub­
system can terminate an I/O operation and reset
status and control information contained at the
device. The clear signal is issued as part of the
clear function performed subsequent to the exe­
cution of CLEAR SUBCHANNEL. The clear signal is
also issued by the channel subsystem when certain
error conditions or equipment malfunctions are
detected by the I/O device or the channel sub­
system. The clear signal results in the channel sub­
system using the selective-reset sequence control
dermed in the System Library publication IBM
System/360 and System/370 I/O Interface Channel
to Control Unit OEMI, GA22-6974.

If an I/O operation is in progress at the device and
the device is actively communicating over a channel
path in the execution of that I/O operation when a
clear signal is Jeceived on that channel path, the
device immediately disconnects from that channel
path. Data transfer and any operation using the
facilities of the control unit are immediately con­
cluded, and the I/O device is not necessarily posi-

Chapter 17. I/O Support Functions 17-5

tioned at the beginning of a block. Mechanical
motion not involving the .use of the control unit,
such as rewinding magnetic tape or positioning a
disk -access mechanism, proceeds to the normal
stopping point, if possible. The device may appear
busy until termination of the mechanical motion or
the inherent cycle of operation, if any, whereupon
it becomes available. Status information in the
device and control unit is reset, but an interruption
condition may be generated upon the completion
of any mechanical operation.

Reset Signal
The reset signal is provided so the channel sub­
system can reset all I/O devices on a channel path.
The reset signal is issued by the channel subsystem
as part of the channel-path-reset function per­
formed subsequent to the execution of RESET

CHANNEL PATH. The reset signal is also issued by
the channel subsystem as part of the I/o-system­
reset function. The reset signal results in the
channel subsystem using the system -reset sequence
control dermed in the System Library publication
IBM System/360 and System/370 I/O Interface
Channel to Control Unit OEMI, GA22-6974.

Resets

Two resets are provided so the channel subsystem
can reinitialize certain information contained at
either the I/O device or the channel subsystem. The
request that the channel subsystem initiate one of
the reset functions is made by one of the following:

1. The program executing the RESET CHANNEL

PATH instruction

2. The operator activating a system-reset-clear or
system-reset-normal key or a load-clear or
load-normal key

3. The channel subsystem itself upon detecting
certain error conditions or equipment malfunc­
tions

The resets are channel-path reset and I/o-system
reset.

Channel-Path Reset
The channel-path-reset facility provides a mech­
anism to reset certain indications that pertain to a

, designated channel path at all associated subchan­
nels. Channel-path reset occurs when the channel
subsystem performs the channel-path-reset function
initiated by RESET CHANNEL PATH. (See the
section "Reset Channel Path" on page 14-7.) All
internal indications of dedicated allegiance, control

17 -6 ESA/370 Principles of Operation

unit busy, and device busy that pertain to the desig­
nated channel path are cleared in all subchannels,
and reset is signaled on that channel path. The
receipt of the reset signal by control units attached
to that channel path causes all operations in
progress and all status, mode settings, and alle­
giance pertainirig to that channel path of the
control unit and its attached devices to be reset.
(See also the description of the system-reset-signal
actions in the section "I/O-System Reset.")

The results of. the channel-path-reset function on
the designated channel path are communicated to
the program by means of a subsequent machine­
check -interruption condition generated by the
channel subsystem (see the section "Channel- .
Subsystem Recovery" on page 17-13).

I/O-System Reset

The I/o-system-reset function is performed when
the channel subsystem is powered on, when· initial
program loading is initiated manually (see the
section "Initial Program Loading" on page 17-10),
and when the system-reset-clear or system-reset­
normal key is activated. The I/o-system-reset func­
tion cannot be initiated under program control; it
must be initiated manually. I/o-system reset may
fail to complete due to malfunctions detected at the
channel subsystem or at a channel path. I/o-system
reset is performed as part of subsystem reset, which
also resets all floating interruption requests,
including pending I/O interruptions. (See the
section "Subsystem Reset" in Chapter 4,
"Control. ") Detailed descriptions of the effects of
I/o-system reset on the various components of the
I/O system appear later in this chapter.

I/o-system reset provides a means for placing the
channel subsystem and its attached I/O devices in
the initialized state. I/o-system reset affects only the
channel-subsystem configuration in which it is per­
formed, including all channel-subsystem compo­
nents configured to that channel subsystem.
I/o-system reset has no effect on any system com­
ponents that are not part of the channel-subsystem
configuration that is being reset. The effects of
I/o-system reset on the configured components of
the channel subsystem are described in the fol­
lowing sections.

Channel-Subsystem State: I/o-system reset causes
the channel subsystem to be placed in the initial­
ized state, with all the channel-subsystem compo­
nents in the states described in the following

sections. All operations in progress are terminated
and reset, and all indications of prior conditions are
reset. These indications include status information,
interruption conditions (but not pending inter­
ruptions), dedicated-allegiance conditions, pending
channel reports, and all internal information
regarding prior conditions and operations. In the
initialized state, the channel -subsystem has no
activity in progress and is ready .to perfoml the
inltial-program-loading (IPL) function or respond to
I/O instructions, as described in Chapter 14, "I/O
Instructions"- on page 14-1.

Control Units and Devices: I/o-system reset
causes -a reset signal to be sent on all configured
channel paths, including those which are not phys­
ically available (as indicated by the PAM bit being
zero) because of a permanent error condition
detected earlier. When the reset signal is received
by a control unit, control-unit functions in
progress, control-unit status, control-unit allegiance,
and control-unit modes for the resetting channel
path are reset. Device operations in progress,
device status, device allegiance, and the device
mode for the resetting channel path are also reset.
Control-unit and device mode, allegiance, status,
and I/O functions in progress -for other channel
paths are not affected.

-For devices that are operating in single-path mode,
an operation can be in progress for, at most, one
channel path. Therefore, if the reset signal is
received on that channel path, the operation in
progress is reset. Devices that have the dynamic­
reconnection feature and are operating in multipath
mode, however, have the capability to establish an
allegiance to a group of channel paths during an I/O
operation, where all the channel paths of the path
group are configured to the same channel sub­
system. If an operation is in progress for a device
that is operating in multipath mode and the reset
signal is received on one of the channel paths of
that path group, then the operation in progress is
reset for the resetting channel path only. Although
the operation in progress cannot continue on the
resetting channel path, it can continue on the other
channel paths of the path group, subject to the fol­
lowing restrictions:

1. If the device is actively communicating with the
channel subsystem on a channel path when it
receives the reset signal on that channel path,
then the operation is reset unconditionally,
regardless of path groups.

2. If the operation is in progress in multipath
mode but the path group consists only of the
resetting path, then the operation is reset.

3. Except as noted in item 2, if the operation in
progress is currently in a disconnected state
(device not actively communicating with the
channel subsystem) or is active on another
channel path of a path group,. system reset has
no effect _upon continued execution of the
operation.

A control unit is completely reset after the reset
sign3.1 has been received on all its channel paths,
provided no new activity is initiated at the control
unit between the receipt of the frrst and last reset
signal. "Completely reset" means that the current
operation, if any, at the control unit is terminated
and that control-unit allegiance, control-unit status,
and the control-unit mode, if any, are reset.

An I/O device is completely reset after the reset
signal has been received on all channel paths of all
control units by which the device is accessible, pro­
vided no new activity is initiated at the device
between the receipt of the frrst and last reset signal.
"Completely reset" means that the current opera­
tion, if any, at the device is terminated and that
device allegiance, device status, and the device
mode are reset.

In summary, system reset always causes an opera­
tion in progress to be reset for the channel path on
which the reset signal is received. If the resetting
channel path is the only channel path for which the
operation is in progress, then the operation is com­
pletely reset. If a device is actively communicating
on a channel path over which the reset signal is
received, then the operation in progressjis uncondi­
tionallyand completely reset.

The reset signal is not received by control units and
devices on channel paths from which the control
unit has been partitioned. A control unit is parti­
tioned from a channel path by means of an
enable/disable switch on the control unit for each
channel path by which it is accessible. Multi­
tagged, unsolicited status, if any, remains pending
at the control unit for such a channel path in this
case. However, from the point of view of the
program, the control unit and device appear to be
completely reset if the reset signal is received by the
control unit on all the channel paths by which it is
currently accessible.

Chapter 17. I/O Support Functions 17-7

The resultant reset state of individual control units
and devices is described in the System Library pub­
lication for the control unit.

Channel Paths: I/o-system reset causes a reset
signal to be sent on all configured channel paths
and causes the channel subsystem to be placed in
the reset and initialized state, as described in the
previous sections. As a result of these actions, all
communication between the channel subsystem
and its attached control units and devices is termi­
nated and the components reset, and all configured
channel paths are made quiescent or are deconfig­
ured. The channel subsystem uses the system-reset
sequence control dermed in the System Library
publication IBM System/360 and System/370 I/O
Interface Channel to Control Unit OEMI,
GA22-6974, to bring the channel paths into the
quiescent state.

Subchannels: I/o-system reset causes all opera­
tions on all subchannels to be concluded. Status
information, all interruption conditions (but not
pending interruptions), dedicated -allegiance condi­
tions' and internal indications regarding prior con­
ditions and operations at all subchannels are reset,
and all valid subchannels are placed in the initial­
ized state.

In the initialized state, the subchannel parameters
of all valid subchannels have their initial values.
The initial values of the following subchannel
parameters are zeros:

• Interruption parameter
• I/o-interruption subclass code (ISC)
• Enabled
• Limit mode
• Multipath mode
• Measurement mode
• Path-not-operational mask
• Last-path-used mask
• Measurement-block index

The initial values of the following subchannel
parameters are assigned as part of the installation
procedure for the device associated with each valid
subchannel:

• Timing facility
• Device number
• Logical-path mask (same value as path-

installed mask)
• Path-installed mask
• Path-available mask
• Channel-path ID 0-7

17-8 ES~/370 Principles of Operation

The values assigned may depend upon the partic­
ular system model and the configuration; dependen­
cies, if any, are described in the System Library
publication for the system model. Programming
considerations may further constrain the values
assigned.

The initial value of the path-operational mask is all
ones.

The device-number-valid bit is one for all subchan­
nels having an assigned I/O device.

The initial value of the model-dependent area of
the subchannel-information block is described in
the System Library publication for the system
model.

The initial value of the subchannel-status word and
extended-status word is all zeros.

The initialized state of the subchannel is the state
specified by the initial values for the subchannel
parameters described above. The description of the
subchannel parameters can be found in the section
"Subchannel-Information Block" on page 15-1; the
section "Subchannel-Status Word" on page 16-6;
and in the section "Extended-Status Word" on
page 16-36.

Channel·Path-Reset Facility: I/o-system reset
causes the channel-path-reset facility to be reset. A
channel-path-reset function initiated by RESET
CHANNEL PATH, either pending or in progress, is
overridden by I/o-system reset. The machine­
check -interruption condition, which normally
signals the completion of a channel-path-reset func­
tion, is not generated for a channel-path-reset func­
tion that is pending or in progress at the time
Ifo-system reset occurs.

Address-Limit-Checking Facility: I/o-system reset
causes the address-limit-checking facility to be reset.
The address-limit value is initialized to all zeros and
validated.

Channel-Subsystem-Monitoring Facilities:
I/o-system reset causes the channel-subsystem­
monitoring facilities to be reset. The measurement­
block-update mode and the device-connect-time­
measurement mode, if active, are made inactive.
The measurement-block origin and the
measurement-block key are both initialized to zeros
and validated.

Pending Channel Reports: I/o-system reset causes
pending channel reports to be reset.

Pending 1/0 Interruptions: I/o-system reset does
not affect pending I/O interruptions. However,
during subsystem reset, I/O interruptions are cleared
concurrently with the performance of I/o-system
reset. See the section "Subsystem Reset" in
Chapter 4, "Control."

\
I Channel.Subsystem Timer: I/o-system reset does

not necessarily affect the contents of the channel­
subsystem timer. In models that provide channel­
subsystem-timer checking, I/o-system reset may
cause the channel-subsystem timer to be validated.

Area Affected

Channel-subsystem state
Control units and devices
Channel paths
Subchannels
Interruption parameter
I/O-interruption subclass code (ISC)
Enabled bit
Limit-mode bits
Timing-facility bit
Multipath-mode bit
Measurement-mode bits
Device-number-valid bit
Device number
Logical-path mask
Path-not-operational mask
Last-path-used mask
Path-installed mask
Measurement-block index
Path-operational mask
Path-available mask
Channel-path ID 0-7
Subchannel-status word
Extended-status word
Model~dependent area

Channel-path-reset facility
Address-limit-checking facility
Address-limit value

Channel-subsystem-monitoring facility
Measurement-block-updatemode
Device-connect-time-measurement mode
Measurement-block origin
Measurement-block key

Pending channel-report words
Channel-subsystem timer

Explanation:

Effect of I/O-System Resetl

Reset and initialized
Reset
Quiescent or deconfigured 2

Reset and initialized
Zeros3
Zeros3
Zer03
Zeros3
Installed value3
Zer03
Zeros3
Installed value3
Installed value3
Equal to path-installed mask value3
Zeros3
Zeros3
Installed value3
Zeros3
Ones3
Installed value3 4

Installed value3
Zeros3
Zeros3
Model-dependent3
Reset
Reset and initialized
Zeros3
Reset and initialized
Inactive3
Inactive3
Zeros3
Zeros3
Cleared
Unchanged/validated

1 For a detailed description of the effect of I/O-system reset on each
area, see the text.

2 Channel-path malfunctions may cause a channel path to be deconfigured.

3 Initialized value.

4 Also subject to model-dependent configuration controls, if any.

Figure 17-1. Summary of I/O-System-Reset Actions

Chapter 17. I/O Support Functions 17-9

•

Externally Initiated Functions
I/o-system reset, which is an externally initiated
function, is described in the section "I/O-System
Reset" on page 17-6.

Initial Program Loading

Initial program loading (IPL) provides a manual
means for causing a program to be read from a des­
ignated device and for initiating execution of that
program.

Some models may provide additional controls and
indications relating to IPL; this additional informa­
tion is specified in the System Library publication
for the model.

IPL is initiated manually by setting the load-unit­
address controls to a four-digit number to designate
an input device and by subsequently activating the
load-clear or load-normal key.

Activating the load-clear key causes a clear reset to
be performed on the configuration.

Activating the load-normal key causes an initial
CPU reset to be performed on this CPU, CPU reset
to be propagated to all other CPUs in the configura­
tion, and a subsystem reset to be performed on the
remainder of the configuration.

In the loading part of the operation, after the resets
have been performed, this CPU enters the load
state. This CPU does not necessarily enter the
stopped state during performance of the reset. The
load indicator is on while the CPU is in the load
state.

Subsequently, if conditions allow, a read operation
is initiated from the designated input device and
associated subchannel. The read operation is exe­
cuted as if a START SUBCHANNEL instruction were
executed that designated (1) the subchannel corre­
sponding to the device number specified by the
load-unit-address controls and (2) an ORB con­
taining all zeros, except for a byte of all ones in the
logical-path mask field. The ORB parameters are
interpreted by the channel subsystem as follows:

Interruption parameter: all zeros
Subchannel key: all zeros
Suspend control: zero (suspension not allowed)
ccw format: zero
ccw prefetch: zero (prefetching not allowed)

17 -10 ESAj370 Principles of Operation

Initial-status-interruption control: zero (no request)
Address-limit-checking control: zero (no checking)
Suppress suspended interruption: zero (suppression

not allowed)
Logical-path mask: ones (all channel paths logically

available)
Incorrect-length-suppression mode: zero (ignored

because format-O ccws are specified)
Channel-program address: absolute address 0

The frrst ccw to be executed may be either an
actuat ccw stored at absolute location 0, or the
frrst ccw to be executed may be implied. In either
case, the effect is as if a format-O ccw were exe­
cuted that had this format:

Loc.

ee eeeeeele eeeeeeee eeeeeeeeeeeeeeee

e4 e11eeeee 1IIIIIIIIeeeeeeeeeee11eee

8 16 31

In the illustration above, the ccw specifies a read
command with the modifier bits zeros, a data
address of 0, a byte count of 24, the chain­
command flag one, the suppress-incorrect-Iength­
indication flag one, the chain-data flag zero, the
skip flag zero, the program-controlled-interruption
(PCI) flag zero, the indirect-data-address (IDA) flag
zero, and the suspend flag zero. The ccw fetched,
as a result of command chaining, from location 8
or 16, as well as any subsequent ccw in the IPL
sequence, is interpreted the same as a ccw in any
I/O operation, except that any PCI flags that are
specified in the IPL channel program are ignored.

At the time the subchannel is made start-pending
for the IPL read, it is also enabled, which ensures
proper handling of subsequent status from the
device by the channel subsystem and facilitates sub­
sequent I/O operations using the IPL device.
(Except for the subchannel used by the IPL I/O
operation, each subchannel must frrst be made
enabled by MODIFY SUBCHANNEL before it can
accept a start function or any status from the
device.) When the IPL subchannel becomes status­
pending for the last operation of the IPL channel
program, no I/o-interruption condition is generated.
Instead, the subsystem 10 is stored in absolute
locations 184-187, zeros are stored in absolute
locations 188-191, and the sub channel is cleared of
the pending status as if TEST SUBCHANNEL had
been executed, but without storing info1lllation
usually stored in an IRB. If the subchannel-status

field is all zeros and the device-status field contains
only the channel-end indication, with or without
the device-end indication, the IPL I/O operation is
considered to be completed successfully. If the
device-end status for the IPL I/O operation is pro­
vided separately after channel-end status, it causes
an I/o-interruption condition to be generated.
When the IPL I/O operation is completed success­
fully, a new psw is loaded from absolute locations
0-7. If the psw loading is successful and if no mal­
functions are recognized which preclude the com­
pletion of IPL, then the CPU leaves the load state,
and the load indicator is turned off. If the rate
control is set to the process position, the CPU
enters the operating state, and CPU operation pro­
ceeds under control of the new psw. If the rate
control is set to the instruction-step. position, the
CPU enters the stopped state, with the manual indi­
cator on, after the new psw has been loaded.

If the IPL I/O operation or the psw loading is not
completed successfully, the CPU remains in the load
state, and the load indicator remains on.

IPL does not complete when any of the following
occurs:

• No subchannel contains a valid device number
equal to the IPL device number specified by the
load-unit-address controls.

• A malfunction is detected in the CPU, main
storage, or channel subsystem which precludes
the completion of IPL.

• Unsolicited alert status is presented by the
device subsequent to the subchannel becoming
start-pending for the IPL read and before the
IPL subchannel becomes subchannel-active.
The IPL read operation is not initiated in this
case.

• The IPL device appeared not operational on all
available channel paths to the device, or there
were no available channel paths.

• The IPL device presented a status byte con­
taining indications other than channel end,
device end, status modifier, control-unit end,
control unit busy, device busy, or retry status
during the IPL I/O operation. Whenever
control-unit end, control unit busy, or device
busy is presented in the status byte, nonnal
path-management actions are taken.

• A subchannel-status indication other than PCI
was generated during the IPL I/O operation.

• The psw loaded from absolute locations 0-7
has a psw-format error of the type that is
recognized early.

Except in the cases of no corresponding subchannel
for the device number entered or a machine mal­
function, the subsystem ID of the IPL device is
stored in absolute locations 184-187; otherwise, the
contents of these locations are unpredictable. In all
cases of unsuccessful IPL, the contents of absolute
locations 0-7 are unpredictable.

Subsequent to a successful IPL, the subchannel
parameters contain the normal values as if an
actual START SUBCHANNEL had been executed, des­
ignating the ORB as described above.

Programming Notes:

1. The information read and placed at absolute
locations 8-15 and 16-23 may be used as ccws
for reading additional information during the
IPL I/O operation: the ccw at location 8 may
specify reading additional ccws elsewhere in
storage, and the ccw at absolute location 16
may specify the transfer-in-channel command,
causing transfer to these ccws.

2. The status-modifier bit has its normal effect
during the IPL I/O operation, causing the
channel subsystem to fetch and chain to the
ccw whose address is 16 higher than that of
the current ccw. This applies also to the initial
chaining that occurs after completion of the
read operation specified by the implicit ccw.

3. The psw that is loaded at the completion· of
the IPL operation may be provided by the fust
eight bytes of the IPL I/O operation or may be
placed at absolute locations 0-7 by a subse­
quent ccw.

4. Activating the load-nonnal key implicitly speci­
fies the use of the fust 24 bytes of main storage
and the eight bytes at absolute locations
184-191. Since the remainder of the IPL
program may be placed in any part of storage,
it is possible to preserve such areas of storage
as may be helpful in debugging or recovery.
When the load-clear key is activated, the IPL
program starts with a cleared machine in a
known state, except that information on
external storage remains unchanged.

5. When the psw at absolute location 0 has bit 14
set to one, the CPU is placed in the wait state
after the IPL operation is completed; at that

Chapter 17. I/O Support Functions 17 -11

point, the load and manual indicators are off,
and the wait indicator is on.

Reconfiguration of the 1/0 System

Reconfiguration of the I/O system is handled in a
model-dependent manner. For example, changes
may be made under program control, by using the
model-dependent DIAGNOSE instruction; or manu­
ally, by using system-operator configuration con­
trols; or by using a combination of DIAGNOSE and
manual controls. The method used depends on the
system model. The System Library publication for
the system model specifies how the changes are
made. The partitioning of channel paths because
of reconfiguration is indicated by the setting of the
PAM bits in the SCHIB stored if jSTORE SUB­

CHANNEL is executed (see the section "Path­
Available Mask (PAM)" on page 15-7).

Status Verification
The status-verification facility provides the channel
subsystem with a means of indicating that a device
has presented a device-status byte that has valid
csc but that contained a combination of bits that
was inappropriate when the status byte was pre­
sented to the channel subsystem. The indication
provided to the program in the ESW by the channel
subsystem is called device-status check. When the
channel subsystem recognizes a device-status-check
condition, an interface-control-check condition is
also recognized. For a summary of the status com­
binations considered to be appropriate or inappro­
priate, see the System Library publication IBM
System/360 and System/370 I/O Interface Channel
to Control Unit OEMI, GA22-6974.

Address-Limit Checking
The address-limit-checking facility provides a
storage-protection mechanism for I/O data accesses
to storage that augments key-controlled protection.
When address-limit checking is used, absolute
storage is divided into two parts by a program­
controlled address-limit value. I/O data accesses can
then be optionally restricted to only one of the two
parts of absolute storage by the limit mode at each
subchannel. The address-limit constraint operates
at a higher priority than key-controlled protection
so that I/O data accesses to the protected part of
main storage are prevented even when the sub­
channel key is zero or matches the key in storage.

17-12 ESA/370 Principles of Operation

The address-limit-checking facility consists of the
following elements:

• The I/0 instruction SET ADDRESS LIMIT.

• The limit mode at each sub channel.

• The address-limit-checking-control bit in the
ORB.

Execution of SET ADDRESS LIMIT passes the con­
tents of general register 1 to the address-limit­
checking facility to be used as the address-limit
value. Bits 0 and 16-31 of general register 1 must
contain zeros to designate a valid absolute address
on a 64K-byte boundary; otherwise, an operand
exception is recognized, and execution of the
instruction is suppressed.

The limit mode at each subchannel indicates the
manner in which address-limit checking is to be
performed. The limit mode is set by placing the
desired value in bits 9-10 of word 1 in the SCHIB

and executing MODIFY SUBCHANNEL. The settings
of these bits in the SCHIB have the following
meanings:

00 No limit checking (initialized value).

01 Data address must be equal to or greater than
the current address limit.

10 Data address must be less than the current
address limit.

11 Reserved. This combination of limit-mode
bits causes an operand exception· to be recog­
nized when MODIFY SUBCHANNEL is exe- I

cuted.

The address-limit-checking-control bit in the ORB

(bit 11 of word 1) specifies whether address-limit
checking is to be used for the start function that is
accepted when execution of START SUBCHANNEL

causes the contents of the ORB to be passed to the
sub channel. If the address-limit-checking-control
bit is zero when the contents of the ORB are passed,
address-limit checking is not ·specified for that start
function. If the bit is one, address-limit checking is
specified and is under the control of the current
address limit and the current setting of the limit
mode at the sub channel.

During the performance of the start function, an
attempt to access an absolute storage location for
data that is protected by an address limit (either
high or low) is recognized as an address-limit vio­
lation, and the access is not allowed. A program­
check condition is recognized, and channel-program

execution is terminated, just as when an attempt is
made to access an invalid address.

Configuration Alert
The configuration -alert facility provides a detection
mechanism for devices that are not associated with
a subchannel in the configuration. The
configuration-alert facility notifies the program by
means of a channel report that a device which is
not associated with a subchannel has attempted to
communicate with the program.

Each device must be assigned to a subchannel
during an installation procedure; otherwise, the
channel subsystem is unable to generate an
I/o-interruption condition for the device. This is
because the I/o-interruption code contains the sub­
channel number which identifies the particular
device causing the I/o-interruption condition.
When a device that is not associated with a sub­
channel attempts to communicate with the channel
subsystem, ~the configuration-alert facility generates
a channel report in which the unassociated device is
identified. For a description of the means by which
the program is notified of a pending channel report
and how the information in the channel report is
retrieved, see the section "Channel Report" on
page 17-14.

Incorrect-Length-Indication
Suppression
The incorrect-length-indication-suppression facility
allows the indication of incorrect length for imme­
diate operations to be suppressed in the same
manner when using format-l ccws as when using
format-O CCws or ccws in the System/370 mode.
When the incorrect-length-indication-suppression
facility is installed, bit 24, word 1 of the ORB speci­
fies whether the channel subsystem is to suppress
the indication of incorrect length for an immediate
operation when format-l ccws are used or whether
this indication will remain under the control of the
SLI flag of the current ccw (as is the case for ccws
not executed as immediate operations). This bit
provides the capability for a channel program to
operate in the same manner regarding the indi­
cation of incorrect length regardless of whether
format-O or format-l ccws are used.

Channel-Subsystem Recovery
The channel subsystem provides a recovery mech­
anism for extensive detection of malfunctions and
other conditions to ensure the integrity of channel­
subsystem operation and to achieve automatic
recovery of some malfunctions. Various reporting
methods are used by the channel-subsystem
recovery mechanism to assist in program recovery,
maintenance, and repair.

The method used to report a particuiar malfunction
or other condition is dependent upon the severity
of the malfunction or other condition and the
degree to which the malfunction or other condition
can be isolated. A malfunction or other condition
in the channel subsystem may be indicated to the
program by information being stored by one of the
following methods:

1. Information is provided in the IRB describing a
condition that has been recognized by either
the channel subsystem or device that must be
brought to the attention of the program. Gen­
erally, this information is made available to the
program by the execution of TEST SUB­
CHANNEL, which is usually executed in
response to the occurrence of an I/O inter­
ruption. (See "Interruption Action" on
page 16-5,. for a defmition of the information
stored, as well as Chapter 6, "Interruptions.")

2 .. Information is provided in a channel report
describing a machine malfunction affecting the
identified facility within the channel subsystem.
This information is made available to the
program by the execution of STORE CHANNEL
REPORT WORD, which is usually executed in
response to the occurrence of a machine-check
interruption. (See Chapter 11, "Machine­
Check Handling," for a description of the
machine-check-interruption mechanism and the
contents of the machine-check-interruption
code.)

3. Information is provided in a channel report
describing a malfunction or other condition
affecting a collection of channel-subsystem
facilities. This information is made available to
the program as indicated in item 2.

4. Information is provided in the machine-check­
interruption code (MCIC) describing a malfunc­
tion affecting the continued operational integ­
rity of the channel subsystem. (See the section
"Channel-Subsystem Damage" in Chapter 11,
"Machine-Check Handling.")

Chapter 17. I/O Support Functions 17 -13

5. Infonnation is provided in the MCIC describing
a malfunction affecting the continued opera­
tional integrity of a process or of the system.
(See the sections "Instruction-Processing
Damage" and "System Damage" in Chapter
11, "Machine-Check Handling.")

Channel reports are used to report malfunctions or
other conditions only when the use of the I/o-inter­
ruption facility is not appropriate and in preference
to reporting channel-subsystem damage,
instruction-processing damage, or system damage.

Channel Report

When a malfunction or other condition affecting
elements of the channel subsystem has been recog­
nized, a channel report is generated. Execution of
recovery actions by the program or by external
means may be required to gain recovery from the
error condition. The channel report indicates the
source of the channel report and the recovery state
to the extent necessary for detennining the proper
recovery action. A channel report consists of one
or more channel-report words (CRWS) that have
been generated from an analysis of the malfunction
or other condition. The inclusion of two or more
CRWs within a channel report is indicated by the
chaining flag being stored as one in all of the CRWS
of the channel report except the last one in the
chain." .

When a channel report is made pending by the
channel subsystem for retrieval and analysis by the
program (by means of the execution of STORE
CHANNEL REPORT WORD), a malfunction or other
condition that affects the normal operation of one
or more of the channel-subsystem facilities has
been recognized. If the channel report that is made
pending is an initial channel report, a machine­
check-interruption condition is generated that indi­
cates one or more CRWS are pending at the channel
subsystem. A channel report is initial either if it is
the frrst channel report to be generated after the
most recent I/o-system reset or if no previously
generated reports are pending and the last STORE
CHANNEL REPORT WORD instruction that was exe­
cuted resulted in the setting of condition code I,
indicating that no channel report was pending.
When the machine-check interruption occurs and
bit 9 of the machine-cheek-interruption code
(channel report pending) is one, a channel report is
pending. If the program clears the frrst CRW of a
channel report before the associated machine-check
interruption has occurred, some models may reset
the machine-cheek-interruption condition, and the

17 -14 ESAj370 Principles of Operation

associated machine-check interruption does not
occur. A machine-check interruption indicating
that a channel report is pending occurs only if the
machine-check mask (psw bit 13) and the channel­
report-pending subclass mask (bit 3 of control reg­
ister 14) are both ones.

If the channel report that is made pending is not an
initial channel report, a machine-cheek-interruption
condition is not generated. The CRW that is pre­
sented to the program in response to the frrst
STORE CHANNEL REPORT WORD instruction that is
executed after a machine-check interruption mayor
may not be part of the initiaJ. channel report that
caused the machine-check condition to be gener­
ated. A pending channel-report word is cleared by
any CPU executing STORE CHANNEL REPORT
WORD~ regardless of whether a machine-check
interruption has occurred in any CPU. If a CR W is
not pending and STORE CHANNEL REPORT WORD is
executed, condition code I is set, and zeros are
stored at the location designated by the second­
operand address. During execution of STORE
CHANNEL REPORT WORD as a result of receiving a
machine-check interruption, condition code 1 may
be set, and zeros may be stored because (I) the
related channel report has been cleared by another
CPU or (2) a malfunction occurred during the gen­
eration of a channel report. In the latter case, if,
during a subsequent attempt, a valid channel report
can be made pending, an additional machine-check­
interruption condition is generated.

When a channel report consists of mUltiple chained
CRWS, they are presented to the program in the
same order that they are placed in the chain by the
channel subsystem as the result of consecutive exe­
cutions of STORE CHANNEL REPORT WORD. If, for
example, the frrst CRW of a chain is presented to
the program as a result of executing STORE
CHANNEL REPORT WORD, then the CRW that is
presented as a result of the next execution of STO RE
CHANNEL REPORT WORD is the second CRW of the
same chain, and not a CRW that is part of another
channel report. Channel reports are not presented
to the program in any special order, except for
channel reports whose ftrst or only CRW indicates
the same reporting-source code and the same
reporting-source ID. These channel reports are pre­
sented to the program in the same order that they
are generated by the channel subsystem, but they
are not necessarily presented consecutively. For
example, suppose the channel subsystem generates
channel reports A, B, and C, in that order. The
frrst CR W of channel reports B and C indicates the

same reporting-source code and the same reporting­
source ID. Channel report B is presented to the
program before channel report C is presented, but
channel report A may be presented after channel
report B and before channel report C.

Programming Notes:

I. The information that is provided in a single
CRW may be made obsolete by another CRW
that is subsequently generated for the same
channel-subsystem facility. Therefore, the
information that is provided in one channel
report should be interpreted in light of the
information provided by all of the channel
reports that are pending at a given instant.

"2. A machine-cheek-interruption condition is not
always generated when a channel report is
made pending. The conditions that result in a
machine-check -interruption condition being
generated are described earlier in this section.

3. After a machine-check interruption has
occurred with bit 9 of the machine-check­
interruption code set to one, STORE CHANNEL
REPORT WORD should be executed repeatedly
until all of the pending channel reports have
been cleared and condition code I has been set.

4. A cRw-overflow condition can occur if the
program does not execute successive STORE
CHANNEL REPORT WORD instructions in a
timely manner after the machine-check inter­
ruption occurs.

5. The number of CRWS that can be pending at
the same time is model-dependent. During the
existence of an overflow condition, CR ws that
would have otherwise been made pending are
lost and are never presented to the program.

Channel-Report Word

The channel-report word (CRW) provides informa­
tion to the program that can be used to facilitate
the recovery of an I/O operation, a device, or some
element of the channel subsystem, such as a
channel path or sub channel. The format of the
CRW is as follows. Bits 0 and 8-9 are reserved and
are always stored as zeros.

Reporting-source 10

e 1 2 3 4 8 Ie 16 31

Solicited CRW (S):. Bit I, when one, indicates a
solicited CRW. A CRW is considered by the channel
subsystem to be solicited if it is made pending as
the direct result of some action that is taken by the
program. When bit I is zero, the CRW is unsolic­
ited and has been made pending as the result of an
action taken by the channel subsystem that is inde­
pendent of the program.

Overflow (R): Bit 2, when one, indicates that a
cRw-overflow condition has been recognized since
this CRW became pending and that one or more
CRWs have been lost. This bit is one in the CRW
that has most recently been set pending when the
overflow condition is recognized. When bit 2 is
zero, a cRw-overflow condition has not been recog­
nized.

A CRW that is part of a channel report is not made
pending, even though the overflow condition does
not exist, if an overflow condition prevented a pre­
vious CRW of that report from being made pending.

Chaining (C): Bit 3, when one, and when the
overflow flag is zero, indicates chaining of associ­
ated CRWs. Chaining of CRWs is indicated when­
ever a malfunction or other condition is described
by more than a single CRW. The chaining flag is
zero if the channel report is described by a single
CRW or if the CRW is the last CRW of a channel
report.

The chaining flag is not meaningful if the overflow
bit, bit 2, is one.

Reporting-Source Code (RSC): Bits 4-7 identify
the channel-subsystem facility that has been associ­
ated with the malfunction or other condition.
Some facilities are further identified in the
reporting-source-identification field (see below).
The following combinations of bits identify the
facilities:

Bits
4 5 6 7 Designation
0 0 I 0 Monitoring facility
0 0 I I Subchannel
0 I 0 0 Channel path
I 0 0 I Configuration -alert facility

All other bit combinations in the reporting-source­
code field are reserved.

Chapter 17. I/O Support Functions 17 -15

Error-Recovery Code (ERC): Bits 10-15 contain
the error-recovery code which defmes the recovery
state of the channel-subsystem facility identified in
the reporting-source code. This field, when used in
conjunction with the reporting-source code, can be
used by the program to determine whether the
identified facility has already· been recovered and is
available for use or whether recovery actions are
still required. The following error-recovery codes
are possible:

Bits
10 11 12 13 14 15 State
0 0 0 0 0 1 Available
0 0 0 0 1 0 Initialized
0 0 0 0 1 1 Temporary error
0 0 0 1 0 0 Installed parameters initial-

ized
0 0 0 1 0 1 Terminal
0 0 0 1 1 0 Permanent error with

facility not initialized
0 0 0 1 1 Permanent error with

facility initialized

All other bit combinations in theerror-recovery­
code field are reserved.

The specific ineaning of each . error-recovery code
depends on the particular reporting-source code
that accompanies it in a CRW. The error-recovery
codes are defmed as follows:

Available: The identified facility is in the same
state that the program would expect if the CRW had
not been generated.

Initialized: The identified facility is in the same
state that existed immediately following the
I/o-system reset that was part of the most recent
system IPL.

Temporary: The identified facility is not operating
in a normal manner or has recognized the occur­
rence of an abnormal event. It is expected that
subsequent actions either will restore the facility to

17-16 ESA/370 Principles of Operation

normal operation or will record the appropriate
information describing the abnormal event.

Installed Parameters Initialized: This state is the
same as the initialized state, except that one or
more parameters that are associated witl:- the facility
and that are not modifiable by the program may
have been changed

Terminal: The identified facility is' in a state such
that an operation which was in progress can neither
be completed nor terminated in the normal
manner.

Permanent Error With Facility Not Initialized:
The identified facility is in a state of malfunction,
and the channel subsystem has not caused a reset
function to be perfonned for that facility.

Permanent Error With Facility Initialized: The
identified facility is in a state of malfunction, and
the channel subsystem has caused or may have
caused a reset function to be performed for that
facility.

Reporting-Source ID (RSID): Bits 16-31 contain
the reporting-source ID which· may, depending
upon the malfunction or other condition and on
the reporting-source code, either further identify the
affected channel-subsystem facility or provide addi­
tional information describing the malfunction or
other condition. The RSID field has the following
format as a function of the bit settings of the
reporting-source code.

Reporting-Source Code Reporting-Source ID
4 5 6 7 Bits 16-31
0 0 1 0 0000 0000 0000 0000
0 0 1 1 xxxx xxxx xxxx xxxx
0 1 0 0 0000 0000 yyyy yyyy
1 0 0 1 0000 0000 yyyy yyyy

Note:

xxxx xxxx xxxx xxxx Subchannel number
yyyy yyyy Channel-path ID (CHPID)

Appendix A. Number Representation and Instruction-Use
Examples

Number Representation A-2
Binary Integers A -2

Signed Binary Integers A -2
Unsigned Binary Integers A-4

Decimal Integers A-S
Floating-Point Numbers A-S
Conversion Example A-7

Instruction-Use Examples A-7
Machine Format A-7
Assembler-Language Format A-7

Addressing Mode in Examples A-8
General Instructions A -8

Add Halfword (AH) A-8
AND (N, NC, NI, NR) A-8

NI Example A-8
Linkage Instructions (BAL, BALR, BAS,

BASR, BASSM, BSM) A-8
Other BALR and BASR Examples A-IO

Branch and Stack (BAKR) A-IO
BAKR Example 1 A-ll
BAKR Example 2 A-ll
BAKR Example 3 A-12

Branch on Condition (BC, BCR) A-12
Branch on Count (BCT, BCTR) A-12
Branch on Index High (BXH) A-13

BXH Example 1 A-I3
BXH Example 2 A-13

Branch on Index Low or Equal (BXLE) A-I4
BXLE Example 1 A-I4
BXLE Example 2 A-14

Compare Halfword (CH) A-IS
Compare Logical (CL, CLC, CLI, CLR) A-IS

CLC Example A-IS
CLI Example A -16
CLR Example A-16

Compare Logical Characters under Mask
(CLM) A-16

Compare Logical Long (CLCL) A -17
Convert to Binary (CVB) A-18
Convert to Decimal (CVD) A-18
Divide (D, DR) A-19
Exclusive OR (X, XC, XI, XR) A-19

XC Example A-I9
XI Example A-20

Execute (EX) A-21
Insert Characters under Mask (ICM) .. A-21
Load (L, LR) A-22
Load Address (LA) A-22
Load Halfword (LH) A-23
Move (MVC, MVI) A-23

MVC Example
MVI Example

Move Inverse (MVCIN)
Move Long (MVCL)
Move Numerics (MVN)
Move with Offset (MVO)
Move Zones (MVZ)
Multiply (M, MR)
Multiply Halfword (MH)
OR (0, OC, 01, OR)

01 Example
Pack (PACK)
Shift Left Double (SLDA)
Shift Left Single (SLA)
Store Characters under Mask (STCM)
Store Multiple (STM) '"
Test under Mask (TM)
Translate (TR)
Translate and Test (TR T)
Unpack (UNPK)

Decimal Instructions
Add Decimal (AP)
Compare Decimal (CP)
Divide Decimal (DP)
Edit (ED)
Edit and Mark (EDMK)
Multiply Decimal (MP)
Shift and Round Decimal (SRP)

Decimal Left Shift
Decimal Right Shift
Decimal Right Shift and Round '"
Multiplying by a Variable Power of 10

Zero and Add (ZAP)
Floating-Point Instructions

Add Normalized (AD, ADR, AE, AER,
AXR)

Add Unnormalized (AU, AUR, AW,
AWR)

Compare (CD, CDR, CE, CER)
Divide (DD, DDR, DE, DER)
Halve (HDR, HER)
Multiply (MD, MDR, ME, MER, MXD,

MXDR, MXR)
Floating-Point-Number Conversion

Fixed Point to Floating Point·
Floating Point to Fixed Point

Multiprogramming and Multiprocessing
Examples

Example of a Program Failure Using OR
Innrnediate

A-23
A-24
A-24
A-2S
A-2S
A-26
A-26
A-27
A-27
A-28
A-28
A-28
A-28
A-29
A-29
A-30
A-30
A-30
A-3I
A-33
A-33
A-33
A-33
A-34
A-34
A-3S
A-36
A-36
A-36
A-37
A-37
A-37
A-38
A-38

A-38

A-39
A-39
A-40
A-40

A-40
A-41
A-41
A-4I

A-42

A-42

Appendix A. Number Representation and Instruction-Use Examples A-I

Conditional Swapping Instructions (CS,
CDS)

Setting a Single Bit
Updating Counters ..

Bypassing Post and Wait .
Bypass Post J:.toutine
Bypass Wait Routine

Number Representation

Binary Integers

Signed Binary Integers

A-43
A-43
A-44
A-44
A-44
A-45

Signed binary integers are most commonly repres­
ented as halfwords (16 bits) or words (32 bits). In
both ,lengths, the leftmost bit (bit 0) is the sign of
the number. The remaining bits (bits 1-15 for
half words and 1-31 for words) are used to specify
the magnitude of the number. Binary integers are
also referred to as fixed-point numbers, because the

. radix point (binary point) is considered to be fixed
at the right, and any scaling is done by the pro­
grammer.

Positive binary integers are in true binary notation
with a zero sign bit. Negative binary integers are in
two's-complement notation with a one bit in the
sign position. In all cases, the bits between the sign
bit and the leftmost significant bit of the integer are
the same as the sign bit (that is, all zeros for posi­
tive numbers, all ones for negative numbers).

Negative binary integers are formed in two's­
complement notation by inverting each bit of the
positive binary integer and adding one. As an
example using the halfword format, the binary
number with the decimal value + 26 is made nega­
tive (-26) in the following manner:

+26 0 000 00e0 0001 1010
Invert 1 111 1111 1110 0101
Add 1 1

-26 1 111 1111 1110 0110 (Two's comple­
ment form)

(S is the sign bit.)

This is equivalent to subtracting the number:

00000000 00011010
from

1 00000000 00000000

Negative binary integers are changed to positive in
the same manner.

A -2 ESA/370 Principles of Operation

Lock/Unlock
Lock/Unlock with LIFO Queuing for

Contentions
Lock/Unlock with FIFO Queuing for

Contentions
Free-Pool Manipulation

A-45

A-45

A-46
A-47

The following addition examples illustrate two's­
complement arithmetic and overflow conditions.
Only eight bit positions are used.

1. +57 = 0011 1001
+35 = 0010 0011

+92 = 0101 1100

2. +57 = 0011 1001
-35 = 1101 1101

+22 = 0001 0110 No overflow -- carry into
leftmost position and
carry out

3. +35 = 0010 0011
-57 = 1100 0111

-22 = 1110 1010 Sign change only -- no
carry into leftmost posi­
tion and no carry out

4. -57 = 1100 0111
-35 = 1101 1101

-92 = 1010 0100 No overflow -- carry into
leftmost position and
carry out

5. +57 = 0011 1001
+92 = 0101 1100

+149 =*1001 0101 *Overflow -- carry into
leftmost position, no
carry out

6. -57 = 1100 0111
-92 = 1010 0100

-149 =*0110 1011 *Overflow -- no carry into
leftmost position but carry
out

The presence or absence of an overflow condition
may be recognized from the carries:

• There is ~o overflow:

1. If there is no carry into the leftmost bit
position and no carry out (examples I and
3).

2. If there is a carry into the leftmost position
and also a carry out (examples 2 and 4).

• There is an overflow:

1. If there is a carry into the leftmost position
but no carry out (example 5).

2. If there is no carry into the leftmost posi-
tion but there is a carry out (example 6).

The following are l6-bit signed binary integers.
The fust is the maximum positive l6-bit binary
integer. The last is the maximum negative l6-bit

binary integer (the negative l6-bit binary integer
with the greatest absolute value).

215-1 = 32,767 = 0 111 1111 1111 1111
20 1 = 0 000 0000 0000 0001
o 0 = 0 000 0000 0000 0000

_20 -1 = 1 111 1111 1111 1111
_2 15 = -32,768 = 1 000 0000 0000 0000

Figure A-I illustrates several 32-bit signed binary
integers arranged in descending order. The fust is
the maximum positive binary integer that can be
represented by 32 bits, and the last is the maximum
negative binary integer that can be represented by
32 bits.

231-1 = 2 147 483 647 = 0 111 1111 1111 1111 1111 1111 1111 1111
216 65 536 = 0 000 0000 e00e 0e01 0000 0000 eee0 0000
20 1 = 0 00e 0e00 e000 0000 0000 0000 0ee0 0001
o 0 = 0 000 0000 e000 0000 0000 0000 0ee0 0000

_20 -1 = 1 111 1111 1111 1111 1111 1111 1111 1111
_21 -2 = 1 111 1111 1111 1111 1111 1111 1111 1110
_216 -65 536 = 1 111 1111 1111 1111 00e0 0000 0ee0 0e00
-231+1 = -2 147 483 647 = 1 00e 0e00 e000 0000 0000 0000 00e0 0001
_2 31 = -2 147 483 648 = 1 0e0 e000 e000 0000 0000 0000 00e0 0000

Figure A-I. 32-Bit Signed Binary Integers

Appendix A. Number Representation and Instruction-Use Examples A-3

Unelgned Binary Integers
Certain instructions, such as ADD LOGICAL, treat
binary integers as unsigned rather than signed.
Unsigned binary integers have the same fonnat as
signed binary integers, except that the leftmost bit
is interpreted as another numeric bit rather than a
sign bit. There is no complement notation because
all unsigned binary integers are considered positive.

The following examples illustrate the addition of
unsigned binary integers. Only eight bit positions
are used. The examples are numbered the same as
the corresponding examples for signed binary inte­
gers.

1. 57 = ee11 1ee1
35 = ee1e ee11

92 = e101 11ee

2. 57 = ee11 1ee1
221 = 11e1 11e1

278 =*eeel e11e *Carry out of leftmost
position

3. 35 = ee1e ee11
199 = 11ee e111

234 = 111e 1e1e

4. 199 = 11ee e111
221 = 11tH 11e1

42e =*le1e e1ee *Carry out of leftmost
position

5. 57 = ee11 1ee1
92 = e1e1 nee

149 = 1ee1 e1e1

6. 199 = 11ee e111
164 = 1e1e e1ee

363 =*e11e 1e11 *Carry out of leftmost
position

A carry out of the leftmost bit position mayor may
not imply an overflow, depending on the applica­
tion.

Figure A-2 illustrates several 32-bit unsigned binary
integers arranged in descending order.

232-1
231
231_1

4 294 967 295 = 1111 1111 1111 1111 1111 1111 1111 1111
2 147 483 648 = 1eee eeee eeee eeee eeee eeee eeee eeee
2 147 483 647 = e111 1111 1111 1111 1111 1111 1111 1111

216

2°
e =

65 536 = eeee eeee eeee eeel aeee eeee eeae eeee
1 = eeee eeee eeee eeee aeee eeee eeee eeel
e = eeee eeee eeee eeee aeee eaee eeee eeee

Figure A-2. 32-Bit Unsigned Binary Integers

A-4 ESAj370 Principles of Operation

Decimal Integers

Decimal integers consist of one or more decimal
digits and a sign. Each digit and the sign are
represented by a 4-bit code. The decimal digits are
in binary-coded decimal (Bcn) form, with the
values 0-9 encoded as 0000-1001. The sign is
usually represented as 1100 (c hex) for plus and
1101 (n hex) for minus. These are the preferred
sign codes, which are generated by the machine for
the results of decimal-arithmetic operations. There
are also several alternate sign codes (1010, 1110,
and 1111 for plus; 1011 for minus). The alternate
sign codes are accepted by the machine as valid in
source operands but are not generated for results.

Decimal integers may have different lengths, from
one to 16 bytes. There are two decimal formats:
packed and zoned. In the packed format, each byte
contains two decimal digits, except for the right­
most byte, which contains the sign code in the right
half. For decimal arithmetic, the number of
decimal digits in the packed format can vary from
one to 31. Because decimal integers must consist
of whole bytes and there must be a sign code on
the right, the number of decimal digits is always
odd. If an even number of significant digits is
desired, a leading zero must be inserted on the left.

In the zoned format, each byte consists of a
decimal digit on the right and the zone code 1111
(F hex) on the left, except for the rightmost byte
where the sign code replaces the zone code. Thus,
a decimal integer in the zoned format can have
from one to 16 digits. The zoned format may be
used directly for input and output in the extended
binary-coded-decimal interchange code (EBCDIC),

except that the sign must be separated from the
rightmost digit and handled as a separate character.
For positive (unsigned) numbers, however, the sign
can simply be represented by the zone code of the
rightmost digit because the zone code is one of the
acceptable alternate codes for plus.

In either format, negative decimal integers are
represented in true notation with a separate sign.
As for binary integers, the radix point (decimal
point) of decimal integers is considered to be fixed
at the right, and any scaling is done by the pro­
grammer.

The following are some examples of decimal inte­
gers shown in hexadecimal notation:

Decimal
Value Packed Format Zoned Format

+123 12 3C F1 F2 C3
or or
12 3F F1 F2 F3

-4321 e4 32 10 F4 F3 F2 01

+eeee5e ee ee e5 ec Fe Fe Fe Fe F5 ce
or or
ee ee e5 eF Fe Fe Fe Fe F5 Fe

-7 70 07

eeeee ee ee ec Fe Fe Fe Fe ce
or or
ee ee eF Fe Fe Fe Fe Fe

Under some circumstances, a zero with a minus
sign (negative zero) is produced. For example, the
multiplicand:

ee 12 3D (-123)

times the multiplier:

ec (+e)

generates the product:

ee e0 eo (-e)

because the product sign follows the algebraic rule
of signs even when the value is zero. A negative
zero, however, is equivalent to a positive zero in
that they compare equal in a decimal comparison.

Floating-Point Numbers

A floating-point number is expressed as a
hexadecimal fraction multiplied by a separate
power of 16. The term floating point indicates that
the placement, of the radix (hexadecimal) point, or
scaling, is automatically maintained by the
machine.

The part of a floating-point number which repres­
ents the significant digits of the number is called the
fraction. A second part specifies the power (expo­
nent) to which 16 is raised and indicates the
location of the radix point of the number. The
fraction and exponent may be represented by 32
bits (short format), 64 bits (long format), or 128
bits (extended format).

Appendix A. Number Representation and Instruction-Use Examples A-5

Short Floating-Point Number

S Characteristic 6-Digit 'ractionl
I

o 1 B 31

Long Floating-Point Number

II----------~-----/------~
S Characteristic 14-Digit Fraction

/-------..1
o 1 B 63

Extended Floating-Point Number

High-Order Part
IT----------~-----/------~

High-Order Leftmost 14 Digits
S Characteristic of 2B-Digit Fraction

/------l
o 1 B 63

Low-Order Part
rI-----------.------/------~

Low-Order Rightmost 14 Digits
S Characteristic of 2B-Digit Fraction

/-------l
64 72 127

A floating-point number has two signs: one for the
fraction and one for the exponent. The fraction
sign, which is also the sign of the entire number, is
the leftmost bit of each format (0 for plus, 1 for
minus). The numeric part of the fraction is in true
notation regardless of the sign. The numeric part is
contained in bits 8-31 for the short format, in bits
8-63 for the long format, and in bits 8-63 followed
by bits 72-127 for the extended format.

The exponent sign is obtained by expressing the
exponent in excess-64 notation; that is, the expo­
nent is added as a signed number to 64. The
resulting number is called the characteristic. It is
located in bits 1-7 for all formats. The character-

istic can vary from 0 to 127, permitting the expo­
nent to vary from -64 through 0 to + 63. This pro­
vides a scale multiplier in the range of 16-64 to
16 + 63. A nonzero fraction, if normalized, -has a
value less than one and _ greater than or equal to
1/16, so that the range covered by the magnitude M

of a normalized floating-point number is:

16-65 S M < 1663

In decimal terms:

16-65 is approximately 5.4 x 10- 79

1663 is approximately 7.2 x 1075

More precisely,

In the short format:

16-65 IS M S (1 - 16- 6) x 1663

In the long format:

16-65 S M S (1 - 16- 14) x 1663

In the extended format:

16-65 S M S (1 - 16-28) x 1663

Within a given fraction length (6, 14, or 28 digits),
a floating-point operation will provide the greatest
precision if the fraction is normalized. A fraction is
normalized when the leftmost digit (bit positions 8,
9, 10, and 11) is nonzero. It is unnormalized if the
leftmost digit contains all zeros.

If normalization of the operand is desired, the
floating-point instructions that provide automatic
normalization are used. This automatic normaliza­
tion is accomplished by left-shifting the fraction
(four bits per shift) until a nonzero digit occupies
the leftmost digit position. The characteristic is
reduced by one for each digit shifted.

Figure A-3 illustrates sample normalized short
floating-point numbers. The last two numbers rep­
resent the smallest and the largest positive normal­
ized numbers.

1.0 = +1/16x16 1 = 0 100 0001 0001 0000 0000 0000 0000 00002
0.5 = +B/16x16° = 0 100 0000 1000 0000 00000000 0000 00002
1/64 = +4/16x16- 1 = 0 011 1111 0100 0000 0000 0000 0000 00002
0.0 = +0 x16- 64 = 0 000 0000 0000 0000 0000 0000 0000 00002

-15.0 = -15/16x16 1 = 1 100 0001 1111 0000 0000 0000 0000 00002
5.4x10- 79 = +1/16x16- 64 = 0 000 0000 0001 0000 0000 0000 0000 00002
7.2x10 75 = (1-16- 6)x1663 = 0 111 1111 1111 1111 1111 1111 1111 11112

Figure A-3. Normalized Short Floating-Point Numbers

A-6 ESA/370 Principles of Operation

Conversion Example

Convert the decimal number 59.25 to a short
floating-point number. (In another appendix are
tables for the conversion of hexadecimal and
decimal integers and fractions.)

1. The number is separated into a decimal integer
and a decimal fraction.

59.25 = 59 plus 0.25

2. The decimal integer is converted to its
hexadecimal representation.

59u = 3B16

3. The decimal fraction is converted to its
hexadecimal representation.

o . 25 u = 0. 41 6

4. The integral and fractional parts are combined
and expressed as a fraction times a power of 16
(exponent).

3B.416 = 0.3B416 X 162

5. The characteristic is developed from the expo­
nent and converted to binary.

base + exponent = characteristic
64 + 2 = 66 = 1000010

6. The fraction is converted to binary and
grouped hexadecimally.

.3B416 = .0011 1011 0100

7. The characteristic and the fraction are stored in
the short format. The sign position contains
the sign of the fraction.

S Char Fraction
o 1000010 0011 1011 0100 0000 0000 0000

Examples of instruction sequences that may be
used to convert between signed binary integers and
floating-point numbers are shown in the section
"Floating-Point-Number Conversion" later in this
appendix.

Instruction-Use Examples
The following examples illustrate the use of many
of the unprivileged instructions. Before studying
one of these examples, the reader should consult
the instruction description.

The instruction-use ex~ples are written principally
for assembler-language progranuners, to be used in
conjunction with the appropriate assembler­
language publications.

Most examples present one particular instruction,
both as it is written in an assembler-language state­
ment and as it appears when assembled in storage
(machine format).

Machine Format

All machine-format values are given in hexadecimal
notation unless otherwise specified. Storage
addresses are also given in hexadecimal.
Hexadecimal operands are shown converted into
binary, decimal, or both if such conversion helps to
clarify the example for the reader.

Assembler-Language Format

In assembler-language statements, registers and
lengths are presented in decimal. Displacements,
immediate operands, and masks may be shown in
decimal, hexadecimal, or binary notation; for
example, 12, X I C I, and B I 11 00 I represent the
same value. Whenever the value in a register or
storage location is referred to as "not significant,"
this value is replaced during the execution of the
instruction.

When ss-format instructions are written in the
assembler language, lengths are given as the total
number of bytes in the field. This differs from the
machine defmition, in which the length field speci­
fies the number of bytes to be added to the field
address to obtain the address of the last byte of the
field. Thus, the machine length is one less than the
assembler-language length. The assembler program
automatically subtracts one from the length speci­
fied when the instruction is assembled.

In some of the examples, symbolic addresses are
used in order to simplify the examples. In
assembler-language statements, a symbolic address
is represented as a mnemonic term written in all
capitals, such as FLAGS, which may denote the
address of a storage location containing data or
program -control information. When symbolic
addresses are used, the assembler supplies actual
base and displacement values according to the pro­
granuner's specifications. Therefore, the actual
values for base and displacement are not shown in
the assembler-language format or in the machine­
language format. For assembler-language formats,
in the labels that designate instruction fields, the
letter "S" is used to indicate the combination of
base and displacement fields for an operand
address. (For example, S2 represents the combina-

Appendix A. Number Representation and Instruction-Use Examples A-7

tion of B2 and D2.) In the machine-language
format, the base and displacement address compo­
nents are shown as asterisks (++++).

Addressing Mode In Examples
Except where otherwise specified, the examples
assume the 24-bit addressing mode.

General Instructions
(See Chapter 7 for a complete description of the
general instructions.)

Add Halfword (AH)

The ADD HALFWORD instruction algebraically adds
the contents of a two-byte field in storage to the
contents of a register. The storage operand is
expanded to 32 bits after it is· fetched and before it
is used in the add operation. The expansion con­
sists in propagating the leftmost (sign) bit 16 posi­
tions to the left. For example, assume that the
contents of storage locations 2000-2001 are to be
added to register 5. Initially:

Register 5 ,?ontains 00 00 00 19 = 2510.

Storage locations 2000-2001 contain FF FE =
-210.

Register 12 contains 00 00 18 00.

Register 13 contains 00 00 01 50.

The format of the required instruction is:

Machine Format

Op Code R1 X2 B2 02

4A 5 Del 66el

Assembler Format

Op Code R1,02(X2,B2)

AH 5,X'6B0'(13,12)

Mter the instruction is executed, register 5 contains
00 00 00 17 = 231 a. Condition code 2 is set to
indicate a result greater than zero.

A-8 ESA/370 Principles of Operation

AND (N, NC, NI, NR)

When the Boolean operator AND is applied to two
bits, the result is one when both bits are one; oth­
erwise, the result is zero. When two bytes are
ANDed, each pair of bits is handled separately; there
is no connection from one bit position to another.
The following is an example of ANDing two bytes:

First-operand byte: 0011 01012
Second-operand byte: 0101 11002

Result byte: 0001 01002

NI Example
A frequent use of the AND instruction is to set a
particular bit to zero. For example, assume that
storage location 4891 contains 0100 00112. To set
the rightmost bit of this byte to zero without
affecting the other bits, the following instruction
can be used (assume that register 8 contains 00 00
48 90):

Machine Format

Op Code 12 B1 01

94 FE

Assembler Format

Op Code D1(B1),12

NI 1(8),X'FE'

When this instruction is executed, the byte in
storage is ANDed with the immediate byte (the 12

field of the instruction):

Location 4891: 0100 00112
Immediate byte: 1111 11102

Result: 0100 00102

The resulting byte, with bit 7 set to zero, is stored
back in location 4891. Condition code 1 is set.

Linkage Instructions (BAL, BALR,
BAS,BASR, BASSM, BSM)

Four unpriVileged instructions (BRANCH AND LINK,
BRANCH AND SAVE, BRANCH AND SAVE AND SET
MODE, and BRANCH AND SET MODE) are available,
together with the unconditional branch (BRANCH
ON CONDITION with a mask of 15), to provide
linkage between subroutines. BRANCH AND LINK

(BAL or BALR) is provided primarily for compat­
ibility with programs written for System/370;
BRANCH AND SAVE (BAS or BASR) is recommended
instead . for programs which are to be executed
using FSA/370. The instructions BRANCH AND SAVE
AND SET MODE (BASSM) and BRANCH AND SET
MODE (BSM) provide subroutine linkage together
with switching between the 24-bit and the 31-bit
addressing modes. The use of these instructions is
discussed in a programming note at the end of the
section "Subroutine Linkage without the Linkage
Stack" in Chapter 5, "Program Execution." (See
also the semiprivileged instruction BRANCH AND
STACK.)

The following example compares the operation of
these instructions and of the unconditional~branch
instruction BRANCH ON CONDITION (Be or BCR
with a mask of 15). Assume that· each instruction
in tum is located at the current instruction address,
ready to be executed next. For the fIrst set of
examples, the addressing-mode bit, psw bit 32, is
initially zero (24-bit addressing in effect). For the
second set, psw bit 32 is initially one (31-bit
addressing). Assume also that general register 5 is
to receive the linkage information, and that general
register 6 contains the branch address.

The format of the BALR instruction is:

Machine Format

Op Code Rl R2

(:)5 5

Assembler Fonnat

Op Code Rl,R2

BALR 5,6

6

The other linkage instructions in the RR format
have the same format but different op codes:

BASR (:)0
BASSM (:)C
BSM (:)B

For comparison with the RR-format instructions,
the results of two RX -format instructions are also
shown.

The format of the BAL instruction is:

Machine Format

Op Code RI X2 B2 02

45 5 9 6 0901

Assembler Format

Op Code Rl,02(X2,B2)

BAL 5,(:)((:),6)

The BAS instruction has the same format, but the
op code is 4D.

The BCR instruction specifies only one register:

Machine Format

Op Code MI R2

(:)7 F

Assembler Format

Op Code MI,R2

BCR 15,6

Assume that:

6

Register 5 contains BB BB BB BB.

Register 6 contains 82 46 8A CEo

psw bits 32-63 contain

00 00 10 D6 (for 24-bit addressing).
80 00 10 D6 (for 31-bit addressing).

Condition code is 012.

Program mask is 11002.

Appendix A. Number Representation and Instruction-Use Examples A-9

The effect of executing each instruction in tum is as
follows:

24-Bit Mode Initially

Instruction Register 5 PSW (32-63)

8efore 88 88 88 8B 00 00 10 06

8CR 15,6 88 88 88 8B 00 46 8A CE
8AL 5,0(0,6) 9C 00 10 OA 00 46 8A CE
8AS 5,0(0,6) 00 00 10 OA 00 46 8A CE
8ALR 5,6 5C 00 10 08 00 46 8A CE
8ASR 5,6 00 00 10 08 00 46 8A CE
8ASSM 5,6 00 00 10 08 82 46 8A CE
8SM 5,6 38 88 88 8B 82 46 8A CE

31-Bit Mode Initially

Instruction

8efore

8CR 15,6
SAL 5,0(0,6)
8AS 5,0(0,6)
8ALR 5,6
8ASR 5,6
8ASSM 5,6
8SM 5,6

Register 5 PSW (32-63)

88 88 88 8B 80 00 10 06

88 88 88 8B 82 46 8A CE
80 00 10 OA 82 46 8A CE
80 00 10 OA 82 46 8A CE
80 00 10 08 82 46 8A CE
80 00 10 08 82 46 8A CE
80 00 10 08 82 46 8A CE
88 88 88 8B 82 46 8A CE

Note that a value of zero in the R2 field of any of
the RR-format instructions indicates that the
branching function is not to be performed; it does
not refer to register o. Likewise, a value of zero in
the Rl field of the BSM instruction indicates that the
old value of psw bit 32 is not to be saved and that
register 0 is to be left unchanged. Register 0 can be
designated by the R 1 field of instructions BAL,
BALR, BAS, BASR, and BASSM, however. In the
RX -format branch instructions, branching occurs
independent of whether there is a value of zero in
the B 2 field or X 2 field of the instruction. However,
when the field is zero, instead of using the contents
of general register 0, a value of zero is used for that
component of address generation.

Programming Note: It should be noted that exe­
cution of BAL in the 24-bit addressing mode results
in bit 0 of register 5 being set to one. This is
because the ILC for an Rx-format instruction is 10.
This is the only case in which bit zero of the return
register does not correctly reflect the addressing
mode of the caller. Thus, BSM may be used to
return for BALR, BAS, BASR, and BASSM in both the
24-bit and the 31-bit addressing modes, but it

A-IO ESA/370 Principles of Operation

cannot be used to return if the program was called
by using BAL in the 24-bit addressing mode.

Other BALR and BASR Examples
The BALR or BASR instruction with the R2 field set
to zero may be used to load a register for use as a
base register. For example, in the assembler lan­
guage, the two statements:

8ALR 15,0
USING *,15

or

8ASR 15,0
USING *,15

indicate that the address of the next sequential
instruction following the BALR or BASR instruction
will be placed in register 15, and that the assembler
may use register 15 as a base register until other­
wise instructed. (The USING statement is an
"assembler instruction" and is thus not a part of
the object program.)

Branch and Stack (BAKR)

The semiprivileged BRANCH AND STACK instruction
facilitates linkage between subroutines by saving
status in a linkage-stack state entry (sometimes
called a branch state entry to distinguish it from a
program-call state entry). When BRANCH AND
STACK has been used, the return from the called
program is made by means of the PROGRAM
RETURN instruction. PROGRAM RETURN restores
access registers 2-14, general registers 2-14, and the
psw with values saved in the state entry, except
that it leaves the PER mask unchanged and sets the
condition code to an unpredictable value. The use
of BRANCH AND STACK is discussed in the section
"Branching Using the Linkage Stack" in Chapter 5,
"Program Execution."

BRANCH AND STACK can be used to perform a
calling linkage, or it can be used at or near the
entry point of the called program, depending on
whether the R 1 field of the instruction is zero or
nonzero, respectively. If the Rl field is zero, bits
32-63 of the psw saved in the state entry indicate
the current addressing mode (24-bit or 31-bit) and
the address of the next sequential instruction after
the BRANCH AND STACK instruction or an
EXECUTE instruction. If the Rl field is nonzero,
bits 32-63 of the psw saved in the state entry are
set. with a value generated from the contents of
general register Rl: bit 32 of the psw is set equal to
bit 0 of the register, and bits 1-31 of the PSWare set

with an address generated from bits 1-31 of the reg­
ister under the control of bit 0 of the register. Bits
32-63 of the psw saved in the state entry are
referred to in the following examples as the return
value.

The branch address for the instruction is generated
from the contents of general register R2 under the
control of the current addressing mode. Bit 0 of
general register R2 does not affect the operation. If
the R2 field of the instruction is zero, the operation
is performed without branching. .

In addition to saving a complete psw (except with
an unpredictable PER mask) in the state entry,
BRANCH AND STACK saves the new value of bits
32-63 of the current psw in the state entry. Bits
32-63 are referred to in the following examples as
the branch value.

The following examples contain cases in which bit
32 of the current psw is either zero or one (24-bit
or 31-bit addressing) before BRANCH AND STACK is
executed and in which bit 0 of the general register
designated by a nonzero Rl or R2 field is either zero
or one.

BAKR Example 1
This example shows BAKR used in a calling
program. BAKR performs a branch, and the return
is to be to the next sequential instruction.

The format of the BAKR instruction is:

Machine Format

Op Code

B240

Assembler Format

Op Code Rl,R2

BAKR 0,6

o 6

Assume four cases of initial values, as follows:

PSW (32-63) Register 6

1. 00 00 10 06 02 46 8A CE
2. 00 00 10 06 82 46 8A CE
3. 80 00 10 06 02 46 8A CE
4. 80 00 10 06 82 46 8A CE

The results in the four cases are as follows:

Return
Value

Branch Value
and PSW (32-63)

1. 00 00 10 OA 00 46 8A CE
2. 00 00 10 OA 00 46 8A CE
3. 80 00 10 OA 82 46 8A CE
4. 80 00 10 OA 82 46 8A CE

BAKR Example 2
This example shows BAKR used in a called
program. BAKR does not perform a branch, and
the return is to be as specified in general register R 1.

The format of the BAKR instruction is:

Machine Format

Op Code

B240

Assembler Format

Op Code Rl,R2

BAKR 5,0

5 o

Assume four cases of initial values, as follows:

Register 5 . PSW (32-63)

1. 04 00 10 06 00 46 8A CE
2. 04 00 10 06 82 46 8A CE
3. 84 00 10 06 00 46 8A CE
4. 84 00 10 06 82 46 8A CE

The results in the four cases are as follows:

Return Branch Value
Value and PSW (32-63)

1. 00 00 10 06 00 46 8A 02
2. 00 00 10 06 82 46 8A 02
3. 84 00 10 06 00 46 8A 02
4. 84 00 10 06 82 46 8A 02

Appendix A. NU!1lber Representation and Instruction-Use Examples A-tt·

BAKR Example 3
This example shows BAKR used in a called
program. BAKR perfonns a branch, and the return
is to be as specified in general register Rl.

The fonnat of the BAKR instruction is:

Machine Fonnat

Op Code

B240

Assembler Fonnat

Op Code Rl,R2

BAKR 5,6

5 6

Assume eight cases of initial values, as follows:

Register 5 Register 6 PSW (32-63)

1. 04 00 10 06 06 99 99 00 00 46 8A CE
2. 04 00 10 06 06 99 99 00 82 46 8A CE
3. 04 00 10 06 86 99 99 00 00 46 8A CE
4. 04 00 10 06 86 99 99 00 82 46 8A CE
5. 84 00 10 06 06 99 99 00 00 46 8A CE
6. 84 00 10 06 06 99 99 00 82 46 8A CE
7. 84 00 10 06 86 99 99 00 00 46 8A CE
8. 84 00 10 06 86 99 99 00 82 46 8A CE

The results in the eight cases are as follows:

Return Branch Value
Value and PSW (32-63)

1. 00 00 10 06 00 99 99 00
2. 00 00 10 06 86 99 99 00
3. 00 00 10 06 00 99 99 00
4. 00 00 10 06 86 99 99 00
5. 84 00 10 06· 00 99 99 00
6. 84 00 10 06 86 99 99 00
7. 84 00 10 06 00 99 99 00
8. 84 00 10 06 86 99 99 00

Branch on Condition (BC, BCR)

The BRANCH ON CONDITION instruction tests the
condition code to see whether a branch should or
should not occur. The branch occurs only if the
current condition code corresponds to a one bit in
a mask specified by the instruction.

A-12 ESAj370 Principles of Operation

Condition
Code

o
1
2
3

Instruction
(Mask) Bit

8
9
10
11

Mask Value
8
4
2
1

For example, assume that an ADD (A or AR) opera­
tion has been perfonned and that a branch to
address 6050 is desired if the sum is zero or less
(condition code is 0 or 1). Also assume:

Register 10 contains 00 00 so 00.

Register 11 contains 00 00 10 00.

The RX fonn of the instruction performs the
required test (and branch if necessary) when written
as:

Machine Format

Op Code Ml X2 B2 02

47 C B A 1
050

1

Assembler Format

Op Code Ml,02(X2,B2)

BC 12,X ' 50 1 (11,10)

A mask of 121 e means that there are ones in
instruction bits 8 and 9 and zeros in bits 10 and 11,
so that branching takes place when the condition
code is either 0 or 1.

A mask of 15 would indicate a branch on any con­
dition (an unconditional branch). A mask of zero
would indicate that no branch is to occur (a no­
operation).

(See also the section on "Linkage Instructions
(BAL, BALR, BAS, BASR, BASSM, BSM)" for
an example of the BCR instruction.)

Branch on Count (BCT, BCTR)

The BRANCH ON COUNT instruction is often used
to execute a program loop for a specified number
of times. For example, assume that the following
represents some lines of coding in an assembler­
language program:

LUPE AR 8,1

BACK BCT 6,LUPE

where register 6 contains 00 00 00 03 and the
address of LUPE is 6826. Assume that, in order to
address this location, register lOis used as a base
register an4 contains 00 00 68 00.

The format of the BCT instruction is:

Machine Format

Op Code Rl X2 B2 D2

46 6 9 A 9261

Assembler Format

Op Code R1,02(X2,B2)

BCT 6,X ' 26 1 (0,10)

The effect of the coding is to execute three times
the loop defmed by the instructions labeled LUPE

through BACK, while register 6 is decremented from
three to zero.

Branch on Index High (BXH)

BXH Example 1
The BRANCH ON INDEX HIGH instruction is an
index-incrementing. and loop-controlling instruction
that causes a branch whenever the sum of an index
value and an increment value is greater than some
compare value. For example, assume that:

Register 4 contains 00 00 00 8A = 13811:1 =
the index.

Register 6 contains 00 00 00 02 = 210 = the
increment.

Register 7 contains 00 00 00 AA = 17010 =
the compare value.

Register 10 'contains 00 00 71 30 = the branch
address.

The format of the BXH instruction is:

Machine Format

Op Code R1 R3 B2 02

86 4 6 A I aeel

Assembler Format

Op Code R1,R3,02(B2)

BXH 4,6,O(10)

When the instruction is executed, frrst the contents
of register 6 are added to register 4, second the sum
is compared with the contents of register 7, and
third the decision whether to branch is made. After
execution:

Register 4 contains 00 00 00 8C = 14010.

Registers 6 and 7 are unchanged.

Since the new value in register 4 is not yet greater
than the value in register 7, the branch to address
7130 is not taken. Repeated use of the instruction
will eventually cause the branch to be taken when
the value in register 4 reaches 17210.

BXH Example 2
When the register used to contain the increment is
odd, that register also becomes the compare-value
register. The following assembler-language subrou­
tine illustrates how this may be used to search a
table.

Table

2 Bytes 2 Bytes

ARG1 FUNCT1
ARG2 FUNCT2
ARG3 FUNCT3
ARG4 FUNCT4
ARG5 FUNCT5
ARG6 FUNCT6

Assume that:

Register 8 contains the search argument.

Register 9 contains the width of the table in
bytes (00 00 00 04).

Register 10 contains the length of the table in
bytes (00 00 00 18).

Register 11 contains the starting address of the
table.

Appendix A. Number Representation and Instruction-Use Examples A-t3

Register 14 contains the return address to the
main program.

As the following subroutine is executed, the argu­
ment in register 8 is successively compared with the
arguments in the table, starting with argument 6
and working backward to argument 1. If an
equality is found, the corresponding function
replaces the argument in register 8. If an equality is
not found, zero replaces the argument in register 8.

SEARCH LNR 9,9
NOTEQUAL BXH 10,9,LOOP
NOT FOUND SR 8,8

BCR 15,14
LOOP CH 8,O(1O,11)

BC 7,NOTEQUAL
LH 8,2(10,11)
BCR 15,14

The first instruction (LNR) causes the value in reg­
ister 9 to be made negative. After execution of this
instruction, register 9 contains FF FF FF FC =
-41 e. Considering the case when no equality is
found, the BXH instruction will be executed seven
times. Each time BXH is executed, a value of -4 is
added to register 10, thus reducing the value in reg­
ister 10 by 4. The new value in register 10 is com­
pared with the -4 value in register 9. The branch is
taken each time until the value in register lOis -4.
Then the . branch is not taken, and the SR instruc­
tion sets register 8 to zero.

Branch on Index low or Equal.
(BXlE)

The BRANCH ON INDEX LOW OR EQUAL instruction
performs the same operation as BRANCH ON INDEX
HIGH, except that branching occurs when the sum
is lower than or equal to (instead of higher than)
the compare value. As the instruction which incre­
ments and tests an index value in a program loop,
BXLE is useful at the end of the loop and BXH at
the beginning. The following assembler-language
routines illustrate loops with BXLE.

aXLE Example 1
Assume that a group of ten 32-bit signed binary
integers are stored at consecutive locations, starting
at location GROUP. The integers are to be added
together, and the sum is to be stored at location
SUM.

A ·14 ESAj370 Principles of Operation

SR 5,5
LA 6,GROUP
SR 7,7
LA 8,4
LA 9,39

LOOP A 5,O(7,6)
BXLE 7,8,LOOP
ST 5,SUM

Set sum to zero
Load first address
Set index to zero
Load increment 4
Load compare value
Add integer to sum
Test end of loop
Store sum

The two-instruction loop contains an ADD (A)
instruction which adds each integer to the contents
of general register 5. The ADD ,instruction uses the
contents of general register 7 as an index value to
modify the starting address obtained from register
6. Next, BXLE increments the index value by 4, the
increment previously loaded into register 8, and
compares it with the compare value in register 9,
the odd register of this even -odd pair. The
compare value was previously set to 39, which is
one less than the number of bytes in the data area;
this is also the address, relative to the starting
address, of the rightmost byte of the last integer to
be added. When the last integer has been added,
BXLE increments the index value to the next rela­
tive address (40), which is found to be greater than
the compare value (39) so that no branching takes
place.

aXLE Example 2
The technique illustrated in Example 1 is restricted
to loops containing instructions in the RX instruc­
tion format. That format allows both a base reg­
ister and an index register to be specifted (double
indexing).

For instructions in other formats, where an index
register cannot be specifted, the previous technique
may be modifted by having the address itself serve
as the index value in a BXLE instruction and by
using as the compare value the address of the last
byte rather than its relative address. The base reg­
ister then provides the address directly at each iter­
ation of the loop, and it is not necessary to specify
a second register to hold the index value (single
indexing).

In the following example, an AND (NI) instruction
in the SI. instruction format sets to zero the right­
most bit of each of the same group of integers as in
Example 1, thus making all of them even. The 12

field of the NI instruction contains the byte X I FE I ,
which consists of seven ones and a zero. That byte
is ANDed into byte 3, the rightmost byte, of each of
the integers in tum.

LA 6,GROUP Load first address
LA 8,4 Load increment 4
LA 9,GROUP+39 Load compare value

LOOP NI 3(6),X'FE' AND immediate
BXLE 6,8,LOOP Test end of loop

The technique shown in Example 2 does not work,
however, on an ESA/370 system when it is in the
31-bit addressing mode and the data is located at
the rightmost end of a 31-bit address space. In this
case, the compare value would be set to 231 _1,
which is the largest possible 32-bit signed binary
value. The reason the technique does not work is
that the BXLE and BXH instructions treat their oper­
ands as 32-bit signed binary integers. When the
address in general register 6 reaches the value 231 _4,
BXLE increments it to a value that is interpreted as
_231

, rather than 231
, and the comparison remains

low, which causes looping to continue indefmitely.

This situation can be avoided by not allowing data
areas to extend to the rightmost location in a 31-bit
address space or by using other techniques; these
may include double indexing when possible, as in
Example 1, or starting at the end and stepping
downward through the data area with a negative
increment.

Compare Halfword (CH)

The COMPARE HALFWORD instruction compares a
16-bit signed binary integer in storage with the con­
tents of a register. For example, assume that:

Register 4 contains FF FF 80 00 = -32,76811:).

Register 13 contains 00 01 60 50.

Storage locations 16080-16081 contain 8000
-32,768le.

When the instruction:

Machine Format

Op Code R1 X2 B2 D2

49 4 o

Assembler Format

Op Code Rl,02(X2,B2)

CH 4,X'30 1 (0,13)

is executed, the contents of locations 16080-16081
are fetched, expanded to 32 bits (the sign bit is

propagated to the left), and compared with the con­
tents of register 4. Because the two numbers are
equal, condition code 0 is set.

Compare logical (Cl, ClC, Cll, ClR)

The COMPARE LOGICAL instruction differs from the
signed-binary comparison instructions (c, CH, CR)

in that all quantities are handled as unsigned binary
integers or as unstructured data.

CLC Example
The COMPARE LOGICAL (CLC) instruction can be
used to perform the byte-by-byte comparison of
storage fields up to 256 bytes in length. For
example, assume that the following two fields of
data are in storage:

Field 1

1886

Field 2

1900

Also assume:

Register 9 contains 00 00 18 80.

Register 7 contains 00 00 19 00.

Execution of the instruction:

Machine Format

Op Code L

1891

190B

D5 0B 9 I aS61 7 I aS01

Assembler Format

Op Code D1(L,Bl),D2(B2)

CLC

sets condition code 1, indicating that. the contents
of field 1 are lower in value than the contents of
field 2.

Appendix A. Number Representation and Instruction-Use Examples A-IS

Because the collating sequence of the EBCDIC code
is determined simply by a logical comparison of the
bits in the code, .the CLC instruction can be used to
collate EBCDIc-coded. fields. For example, in
EBCDIC, the above two' data fields are:

Field 1: JOHNSON,A.B.
Field 2: JOHNSON,A.C.

Condition code I indicates that JOHNSON,A.B.
should precede JOHNSON,A.C. for the fields to be in
alphabetic sequence.

Cli Example
The COMPARE LOGICAL (CLI) instruction compares
a byte from the instruction stream with a byte· from
storage. For example, assume that:

Register 10 contains 00 00 17 00.

Storage location 1703 contains 7E.

Execution of the instruction:

Machine Format

Op Code 12 B1 01

95 AF

Assembler Format

Op Code 01(Bl),12

CLI 3(18),X'AF'

sets condition code I, indicating that the f11'st
operand (the quantity in main st9rage) is lower
than the second (immediate) operand.

ClR Example
Assume that:

Register 4 contains 00 00 00 0 I = I.

Register 7 contains FF FF FF FF = 232 - 1.

Execution of the instruction:

Machine Format

Op Code Rl R2

15 4 7

A-16 ESA/370 Principles of Operation

Assembler Format

Op Code Rl,R2

CLR 4,7

sets condition code 1. Condition code 1 indicates
that the f11'st operand is lower than the second.

If, instead, the signed-binary comparison instruc­
tion COMPARE (CR) had been executed, the con­
tents of register 4 would have been interpreted as
+ 1 and the contents of register 7 as -1. Thus, the
first operand would have been higher, so that con­
dition code 2 would have been set.

Compare logical Characters under
Mask (ClM)

The COMPARE LOGICAL CHARACTERS UNDER
MASK (CLM) instruction provides a means of com­
paring bytes selected from a generru register to a
contiguous field of bytes in storage. The M 3 field
of the CLM instruction is a four-bit/ mask that
selects zero to four bytes from a general register,
each mask bit corresponding, left to right, to a reg­
ister byte. In the comparison, the register bytes
corresponding to ones in the mask are treated as a
contiguous field. The operation proceeds left to
right. For example, assume that:

Storage locations 10200-10202 contain FO BC
7B.

Register 12 contains 00 01 00 00.

Register 6 contains FO BC SC 7B.

Execution of the instruction:

Machine Format

Op Code Rl M3 B2 02

SO 6 0 C I 2eal

Assembler Format

Op Code Rl,M3,02(B2)

CLM 6,B'1181',X'288'(12)

causes the following comparison:

Register 6: F0 BC 5C 7B
Mask M3: 1 1 0 1

Storage
locations
10200-10202:

F0 BC 7B

Because the selected bytes are equal, condition code
o is set.

Compare Logical Long (CLCL)

The COMPARE LOGICAL LONG (CLCL) instruction
is used to compare two operands in storage, byte
by byte. Each operand can be of any length. Two
even-odd pairs of general registers (four registers in
all) are used to locate the operands and to control
the execution of the CLCL instruction, as illustrated
in the following diagram. The first register of each
pair must be an even register, and it contains the
storage address of an operand. The odd register of
each pair contains the length of the operand it
covers, and the leftmost byte of the second-operand
odd register contains a padding byte which is used
to extend the shorter operand, if any, to the same
length as the longer operand.

The following illustrates the assignment of registers:

Rl
(even)

Rl+1
(odd)

R2
(even)

R2+1
(odd)

o

o

o

o

8 31

8 31

8 31

8 31

Since the CLCL instruction may be interrupted
during execution, the interrupting program must
preserve the contents of the four registers for use
when the instruction is resumed.

The following instructions set up two register pairs
to control a text-string comparison. For example,
assume:

Operand 1
Address: 2080016
Length: l00 H)

Operand 2
Address: 20A0016
Length: 132 H)

Padding Byte
Address: 2000316
Length: 1
Value: 4016

Register 12 contains 00 0200 00.

The setup instructions are:

LA 4,X' 800'(12) Set register 4 to start of
frrst operand

LA 5,100 Set register 5 to length
of frrst operand

LA 8,X'AOO'(12) Set register 8 to start of
second operand

LA 9,132 Set register 9 to length
of second operand

ICM 9,B'1000',3(12) Insert padding byte in
leftmost byte position
of register 9

Register pair 4,5 defmes the frrst operand. Bits
8-31 of register 4 contain the storage address of the
start of an EBCDIC text string, and bits 8-31 of reg­
ister 5 contain the length of the string, in this case
100 bytes.

Register pair 8,9 defmes the second operand, with
bits 8-31 of register 8 containing the. starting
location of the second operand and bits 8-31 of reg­
ister 9 containing the length of the second operand,
in this case 132 bytes. Bits 0-7 of register 9 contain
an EBCDIC blank character (X '40') to pad the
shorter operand. In this example, the padding byte
is used in the frrst operand, after the 100th byte, to
compare with the remaining bytes in the second ,
operand.

With the register pairs thus set up, the fonnat of
the CLCL instruction is:

Appendix A. Number Representation and Instruction-Use Examples A-l7

Machine Fonnat

Op Code Rl R2

0F 4 8

Assembler Fonnat

Op Code Rl,R2

CLCL 4,8

When this instruction is executed, the comparison
starts at the left end of each operand and proceeds
to the right. The operation ends as soon as an ine­
quality is detected or the end of the longer operand
is reached.

If this CLCL instruction is interrupted after 60 bytes
have compared equal, the operand lengths in regis­
ters 5 and 9 will have been decremented to 40 and
72, respectively. The operand addresses in registers
4 and 8 will have been incremented to X 12083C I
and XI 20A3C I; the leftmost byte of registers 4 and
8 will have been set to zero. The padding byte
X 1401 remains in register 9. When the CLCL

instruction is reexecuted with these register con­
tents, the comparison resumes at the point of inter­
ruption.

Now, assume that the instruction is interrupted
after 110 bytes. That is, the frrst 100 bytes of the
second operand have compared equal to the frrst
operand, and the next 10 bytes of the second
operand have compared equal to the padding byte
(blank). The residual operand lengths in registers 5
and 9 are 0 and 22, respectively, and the operand
addresses in registers 4 and 8 are X 1208641 (the
value when the frrst operand was exhausted) and
XI 20A6E 1 (the current value for the second
operand).

When the comparison ends, the condition code is
set to 0, 1, or 2, depending on whether the first
operand is equal to, less than, or greater than the
second operand, respectively.

When the operands are unequal, the addresses in
registers 4 and 8 indicate the bytes that caused the
mismatch.

A-IS ESA/370 Principles of Operation

Convert to Binary (CVB)

The CONVERT TO BINARY instruction converts an
eight-byte, packed-decimal number into a signed
binary integer and loads the result into a general
register. After the conversion operation is com­
pleted, the number is in the proper fonn for use as
an operand in signed binary. arithmetic. For
example, assume:

Storage locations 7608-760F contain a decimal
number in the packed fonnat: 00 00 00 00 00
25 59 4C (+ 25,594).

The contents of register 7 are not significant.

Register 13 contains 00 00 76 00.

The fonnat of the conversion instruction is:

Machine Fonnat

Op Code Rl X2

4F 7 0

Assembler Fonnat

Op Code Rl,02(X2,B2)

CVB 7,8(0,13)

o \ e9a\

After the instruction is executed, register 7 contains
000063 FA.

Convert to Decimal (CVD)

The CONVERT TO DECIMAL instruction is the oppo­
site of the CONVERT TO BINARY instruction. CVD

converts a signed binary integer in a register to
packed decimal and stores the eight-byte result.
For example, assume:

Register 1 contains the signed binary integer: 00
00 OF OF.

Register 13 contains 00 00 76 00.

The fonnat of the instruction is:

Machine Fonnat

Op Code Rl X2 B2 02

4E 1 e 0 e0a\

Assembler Format

Op Code R1,02(X2,B2)

CVO 1,8(0,13)

Mer the instruction is executed, storage locations
7608-760F contain 00 00 00 00 00 03 85 5C
(+ 3855).

The plus sign generated is the preferred plus sign,
11002.

Divide (D, DR)

The DIVIDE instruction divides the dividend in an
even-odd register pair by the divisor in a register or
in storage. Since the instruction assumes the divi­
dend to be 64 bits long, it is important frrst to
extend a 32-bit dividend on the left with bits equal
to the sign bit. For example, assume that:

Storage locations 3550-3553 contain 00 00 08
DE = 227010 (the dividend).

Storage locations 3554-3557 contain 00 00 00
32 = 50u) (the divisor).

The initial contents of registers 6 and 7 are not
significant.

Register 8 contains 00 00 35 50.

The following assembler-language statements load
the registers properly and perform the divide opera­
tion:

Statement Comments

L 6,0(0,8) Places 00 00 08 DE into reg-
ister 6.

SROA 6,32(0) Shifts 00 00 08 DE into reg-
ister 7. Register 6 is
filled with zeros (sign
bits).

0 6,4(0,8) Performs the division.

The machine format of the above DIVIDE instruc­
tion is:

Machine Format

Op Code R1 X2 B2 02

50 6 o

After the instructions listed above are executed:

Register 6 contains 00 00 00 14 = 201 e = the
remainder.

Register 7 contains 00 00 00 2D = 451 e = the
quotient.

Note that if the dividend had not been frrst placed
in register 6 and shifted into register 7, register 6
might not have been filled with the proper
dividend-sign bits (zeros in this example), and the
DIVIDE instruction might not have given the
expected results.

Exclusive OR (X, XC, XI, XR)

When the Boolean operator EXCLUSIVE OR is
applied to two bits, the result is one when either,
but not both, of the two bits is one; otherwise, the
result is zero. When two bytes are EXCLUSIVE

oRed, each pair of bits is handled separately; there
is no connection from one bit position to another.
The following is an example of the EXCLUSIVE OR
of two bytes:

First-operand byte: 0011 01012
Second-operand byte: 0101 11002

Result byte: 0110 10012

XC Example
The EXCLUSIVE OR (XC) instruction can be used to
exchange the contents of two areas in storage
without the use of an intermediate storage area.
For example, assume two three-byte fields in
storage:

359 35B

Fie 1 d 1 I ee 117199 I

360 362

Field 2 1801141011

Execution of the instruction (assume that register 7
contains 00 00 03 58):

Machine Format

Op Code L

07 02 7 I ee11 7 I 9GSI

Appendix A. Nu~ber Representation and Instruction-Use Examples A-19

Assembler Format

Op Code 01(L,B1),02(B2)

XC 1(3,7),8(7)

Field 1 is EXCLUSIVE oRed with field 2 as follows:

Field 1: eeeeeeee eee1e111 1ee1eeee2 = ee 17 ge16
Field 2: eeeeeeee eee1e1ee eeeeeee12 = ee 14 e116

Result: eeeeeeee eeeeee11 1ee1eee12 = ee e3 9116
The result replaces the former contents of field 1.
Condition code 1 is set to indicate a nonzero result.

Now, execution of the instruction:

Machine Format

Op Code L

07 02

Assembler Format

Op Code D1(L,B1),02(B2)

XC 8(3,7) ,1(7)

pro~uces the following result:.

Field 1: eeeeeeee eeeeee11 1ee1eee12= ee e3 9116
Field 2: eeeeeeee eee1e1ee eeeeeee12 = ee 14 e116

Result: eeeeeeee eee1e111 1ee1eeee2 = ee 17 ge16
The result of this operation replaces the former
contents of field 2. Field 2 now contains the ori­
ginal value of field. 1. Condition code 1 is set to
indicate a nonzero result.

Lastly, execution of the instruction:

Machine Format

Op Code L

07 02

Assembler Format

Op Code 01(L,Bl),02(B2)

XC 1(3,7),8(7)

produces the following result:

A-20 ESAj370 Principles of Operation

Field 1: eeeeeeee eeeeee11 1ee1eee12 = ee e3 9116
Field 2: eeeeeeee eee1e111 1ee1eeee2 = ee 17 ge16

Result: eeeeeeee eee1e1ee eeeeeee12 = ee 14 e116
The result. of this operation replaces the former
contents of field 1. Field 1 now contains the ori­
ginal value of field 2. Condition code 1 is set to
indicate a nonzero result.

XI Example
A frequent use of the EXCLUSIVE OR (XI) instruc­
tion is to invert a bit (change a zero bit to a one or
a one bit to a zero). For example, assume that
storage location 8082 contains 0110 10012. To
invert the leftmost and rightmost bits without
affecting any of the other bits, the following
instruction can be used (assume that register 9 con­
tains 00 00 80 80):

Machine Format

Op Code 12 B1 01

97 81

Assembler Format

Op Code 01(B1),12

XI 2(9),X '81 1

When the instruction is executed, the byte in
storage is EXCLUSIVE oRed with the immediate byte
(the 12 field of the instruction):

Location 8082: 0110 10012
Immediate byte: 1000 00012

Result: 1110 10002

The resulting byte is stored back in location 8082.
Condition code 1 is set to indicate a nonzero result.

Notes:

1. With the XC instruction, fields up to 256 bytes
in length can be exchanged.

2. With the XR instruction, the contents of two
registers can be exchanged.

3. Because the x instruction operates storage to
register only, an exchange cannot be made
solely by the use of x.

4. A field EXCLUSIVE oRed with itself is cleared to
zeros.

5. For additional examples of the use of EXCLU­
SIVE OR, see the section "Floating-Point­
Number Conversion" later in this appendix.

Execute (EX)

The EXECUTE instruction causes one target instruc­
tion in main storage to be executed out of sequence
without actually branching to the target instruction.
Unless the R1 field of the EXECUTE instruction is
zero, bits 8-15 of the target instruction are 0 Red
with bits 24-31 of the R1 register before the target
instruction is executed. Thus, EXECUTE may be
used to supply the length field for an ss instruction
without modifying the ss instruction in storage.
For example, assume that a MOVE (MVC) instruc­
tion is the target that is located at address 3820,
with a format as follows:

Machine Format

Op Code L B1 01 B2 02

02 00

Assembler Format

Op Code 01(L,Bl),02(B2)

MVC 3(1,12),0(13)

where register 12 contains 00 00 89 13 and register
13 contains 00 00 90 AO.

Further assume that at storage address 5000, the
following EXECUTE instruction is located:

Machine Format

Op Code R1 X2 B2 02

44 1 o A I eeel

Assembler Format

Op Code R1,02(X2,B2)

EX 1,0(0,10)

where register 10 contains 00 00 38 20 and register
1 contains 00 OF FO 03.

When the instruction at 5000 is executed, the right­
most byte of register 1 is oRed with the second byte
of the target instruction:

Instruction byte:
Register byte:

Result:

0000 00002 = 00
0000 00112 = 03

0000 00112 = 03

causing the instruction at 3820 to be executed as if
it originally were:

Machine Format

Op Code L B1 01 B2 02

02 03

Assembler Format

Op Code 01(L,Bl),02(B2)

MVC 3(4,12) ,0(13)

However, after execution:

Register 1 is unchanged.

The instruction at 3820 is unchanged.

The contents of the four bytes starting at
location 90AO have been moved to the four
bytes starting at location 8916.

The CPU next executes the instruction at
address 5004 (psw bits 40-63 contain 00 50 04).

Insert Characters under Mask (ICM)

The INSERT CHARACTERS UNDER MASK (ICM)
instruction may be used to replace all or selected
bytes in a general register with bytes from storage
and to set the condition code to indicate the value
of the inserted field.

For example, if it is desired to insert a three-byte
address from FIELDA into register 5 and leave the
leftmost byte of the register unchanged, assume:

Machine Format

Op Code Rl M3

BF 5 7 * * * *

Appendix A. Number Representation and Instruction-Use Examples A-21

Assembler Format

Op Code R1,M3,S2

ICM 5,B I 0111 1
, FJElDA

FIElDA:
Register 5 (before):
Register 5 (after):
Condition code (after):

As another example:

Machine Format

Op Code R1 M3

FE DC BA
12 34 56 78
12 FE DC BA
1 (leftmost bit of

inserted fi e 1 d
is one)

BF 6 9 * * * *

Assembler Format

Op Code R1,M3,S2

ICM 6,B I 1001 1 ,FIElDB

FIElDB:
Register 6 (before):
Register 6 (after):
Condition code (after):

12 34
00 00 OO 00
12 00 00 34
2 (inserted field is

nonzero with left­
most zero bit)

When the mask field contains 1111, the ICM

instruction produces the same result as LOAD (L)

(provided that the indexing capability of the RX

format is not needed), except that ICM also sets the
condition code. The condition-code setting is
useful when an all-zero field (condition code 0) or a
leftmost one bit (condition code 1) is used as a flag.

Load (L, LR)

The LOAD instruction takes four bytes from storage
or from a general register and place them
unchanged into a general register. For example,
assume that the four bytes starting with location
21003 are to be loaded into register 10. Initially:

Register 5 contains 00 02 00 00.

Register 6 contains 00 00 10 03.

A -22 ESA/370 Principles of Operation

The contents of register 10 are not significant.

Storage locations 21003-21006 contain 00 00
ABCD.

To load register 10, the RX form .of the instruction
can be used:

Machine Format

Op Code R1 X2

58 A 5

Assembler Format

Op Code R1,D2(X2,B2)

l 10,O(5,6)

6 eeel

After the instruction is executed, register 10 con­
tains 00 00 AB CD.

Load Address (LA)

The LOAD ADDRESS instruction provides a conven­
ient way to place a nonnegative binary integer up
to 409510 in a register without frrst defming a con­
stant and then using it as an operand. For
example, the following instruction places the
number 20481 e in register 1:

Machine Format

Op Code R1 X2 B2 02

41 1 ° o I aeel

Assembler Format

Op Code R1,D2(X2,B2)

lA 1,2048(0,0)

The LOAD ADDRESS instruction can also be used to
increment a register by an amount up to 409510
specified in the D 2 field. Depending on the
addressing mode, only the rightmost 24 or 31 bits
of the sum are retained, however. The leftmost bits
of the 32-bit result are set to zeros. For example,
assume that register 5 contains 00 12 34 56.

The instruction:

Machine Fonnat

Op Code Rl X2 B2 02

41 5 0 5 I eeAI

Assembler Fonnat

Op Code Rl,02(X2,B2)

LA 5,10(0,5)

adds 10 (decimal) to the contents of register 5 as
follows:

Register 5 (old): 00 12 34 56
02 field: 00 00 00 0A

Register 5 (new): 00 12 34 60

The register may be specified as either B 2 or X 2.

Thus, the instruction LA 5,1 O(5,0) produces the
same result.

As the most general example, the instruction LA
6,10(5,4) fonns the sum of three values: the con­
tents of register 4, the contents of register 5, and a
displacement of 10 and places the 24-bit or 31-bit
sum with zeros appended on the left in register 6.

Load Halfword (LH)

The LOAD HALFWORD instruction places
unchanged a halfword from storage into the right
half of a register. The left half of the register is
loaded with zeros or ones according to the sign
(leftmost bit) of the halfword.

For example, assume that the two bytes in storage
locations 1803-1804 are to be loaded into register 6.
Also assume:

The contents of register 6 are not significant.

Register 14 contains 00 00 18 03.

Locations 1803-1804 contain 00 20.

The instruction required to load the register is:

Machine Fonnat

O~ Code Rl X2 B2 02

48 6 a E eael

Assembler Fonnat

Op Code Rl,02(X2,B2)

LH 6 , 0 (0, 14)

After the instruction is executed, register 6 contains
00 00 00 20. If locations 1803-1804 had contained
a negative number, for example, A7 B6, a minus
sign would have been propagated to the left, giving
FF FF A 7 B6 as the fmal result in register 6.

Move (MVC, MVI)

MVC Example
The MOVE (MVC) instruction can be used to move
data from one storage location to another. For
example, assume that the following two fields are in
storage:

2048

3840 3848

Fi~ld IF1 IF21F31F41 FS IF61F71F81F91

Also assume:

Register I contains 00 00 20 48.

Register 2 contains 00 00 38 40.

2052

With the following instruction, the frrst eight bytes
of field 2 replace the frrst eight bytes of field 1:

Machine Fonnat

Op Code L B1 01 B2 D2

02 97 1 eeel 2 eeal

Assembler Fonnat

Op Code 01(L,Bl),02(B2)

MVC 0(8,1) ,0(2)

After the instruction is executed, field 1 becomes:

2048 2052

Fi~ld IF1 IF21F31F41FSIF61F71F81C91CAICBI

Field 2 is unchanged.

Appendix A. Number Representation and Instruction-Use Examples A-23

MVC can also be used to propagate a byte through
a field by starting the fIrst-operand field one byte
location to the right of the second-operand field.
For example, suppose that an area in storage
starting with address 358 contains the following
data:

358 360

With the following MVC instruction, the zeros in
location 358 can be propagated throughout the
entire field (assume that register 11 contains 00 00
03 58):

Machine Format

Op Code L

02 07

Assembler Format

Op Code 01(L,81),D2(82)

MVC 1(8,11),0(11)

Because MVC is executed as if one byte were proc­
essed at a time, the above instruction, in effect,
takes the byte at address 358 and stores it at 359
(359 now contains 00), takes the byte at 359 and
stores it at 35A, and so on, until the entire field is
filled with zeros. Note that an MV I instruction
could have been used originally to place the byte of
zeros in location 358.

Notes:

1. Although the field occupying locations 358-360
contains nine bytes, the length coded in the
assembler format is equal to the number of
moves (one less than the field length).

2. The order of operands is important even
though only one field is involved.

MVI Example
The MOVE (MVI) instruction places one byte of
information from the instruction stream into
storage. For example, the instruction:

A-24 ESA/370 Principles of Operation

Machine Format

Op Code 12 81 01

92 S8 1 I 6e61

Assembler Format

Op Code 01(81),12

MVI 0(1),C'$'

may be used, in conjunction. with the instruction
EDIT AND MARK, to insert the EBCDIC code for a
dollar symbol at the storage address contained in
general register 1 (see also the example for EDIT

AND MARK).

Move Inverse (MVCIN)

The MOVE INVERSE (MVCIN) instruction can be
used to move data from one storage location to
another while reversing the order of the bytes
within the field. For example, assume that the fol­
lowing two fields are in storage:

2048 2052

Fi~ld ICIIC21C31C41csIC61c71calc91cAIcai

3840 3848

Fi~ld IF1 IF21F31F41FSIF61F71 FS IF91

Also assume:

Register 1 contains 00 00 20 48.

Register 2 contains 00 00 3840.

With the following instruction, the fIrst eight bytes
of field 2 replace the fIrst eight bytes of field I:

Machine Format

Op Code L

E8 07

Assembler Format

Op Code D1(L,81),02(82)

MVCIN 0(8,1),7(2)

After the instruction is executed, field I becomes:

2048 2052

Fi~ld IFSIF71F61FSIF41F31F21F1IC91CAICBI

Field 2 is unchanged.

Note: This example uses the same general regis­
ters, storage locations, and original values as the
fust example for MVC. For MVCIN, the second­
operand address must designate the rightmost byte
of the field to be moved, in this case location 3847.
This is accomplished by means of the 7 in the 02

field of the instruction.

Move long (MVel)

The MOVE LONG (MVCL) instruction can be used
for moving data in storage as in the fust example of
the MVC instruction, provided that the two oper­
ands do not overlap. MVCL differs from MVC in
that the address and length of each operand are
specified in an even-odd pair of general registers.
Consequently, MVCL can be used to move more
than 256 bytes of data with one instruction. As an
example, assume:

Register 2 contains 00 OA 00 00.

Register 3 contains 00 00 08 00.

Register 8 contains 00 06 00 00.

Register 9 contains 00 00 08 00.

Execution of the instruction:

Machine Format

Op Code Rl R2

0E 8

Assembler Format

Op Code Rl,R2

MVCL 8,2

2

moves 2,04810 bytes from locations AOOOO-A07FF
to locations 60000-607FF. Bits 8-31 of registers 2
and 8 are incremented by 80016, and bits 0-7 of
registers 2 and 8 are set to zeros. Bits 8-31 of regis­
ters 3 and 9 are decremented to zero. Condition
code 0 is set to indicate that the operand lengths
are equal.

If register 3 had contained FO 00 04 00, only the
1,02411:) bytes from locations AOOOO-A03FF would
have been moved to locations 60000-603FF. The
remaining locations 60400-607FF of the fust
operand would have been filled with 1,024 copies
of the padding byte X I FO I, as specified by the left­
most byte of register 3. Bits 8-31 of register 2
would have been incremented by 4001 6, bits 8-31
of register 8 would have been incremented by
8001 6, and bits 0-7 of registers 2 and 8 would have
been set to zeros. Bits 8-31 of registers 3 and 9
would still have been decremented to zero. Condi­
tion code 2 would have been set to indicate that the
fust operand was longer than the second.

The technique for setting a field to zeros that is
illustrated in the second example of MVC cannot be
used with MVCL. If the registers were set up to
attempt such an operation with MVCL, no data
movement would take place and condition code 3
would indicate destructive overlap.

Instead, MVCL may be used to clear a storage area
to zeros as follows. Assume register 8 and 9 are set
up as before. Register 3 contains only zeros, speci­
fying zero length for the second operand and a zero
padding byte. Register 2 is not used to access
storage, and its contents are not significant. Exe­
cuting the instruction MVCL 8,2 causes locations
60000-607FF to be filled with zeros. Bits 8-31 of
register 8 are incremented by 80016, and bits 0-7 of
registers 2 and 8 are set to zeros. Bits 8-31 of reg­
ister 9 are decremented to zero, and condition code
2 is set to indicate that the fust operand is longer
than the second.

Move Numerics (MVN)

Two related instructions, MOVE NUMERICS and
MOVE ZONES, may be used with decimal data in the
zoned format to operate separately on the right­
most four bits (the numeric bits) and the leftmost
four bits (the zone bits) of each byte. Both are
similar to MOVE (MVC), except that MOVE

NUMERICS moves only the numeric bits and MOVE

ZONES moves only the zone bits.

To illustrate the operation of the MOVE NUMERICS

instruction, assume that the following two fields are
in storage:

7090 7093

Field A IC61C71csIC91

Appendix A. Number Representation and Instruction-Use Examples A-25

7041 7046

Also assume:

Register 14 contains 00 007090.

Register 15 contains 00 00 70 40.

After the instruction:

Machine Format

Op Code L

01 03

Assembler Format

Op Code 01(L,B1),02(B2)

MVN 1(4,15),0(14)

is executed, field B becomes:

7041 7046

The numeric bits of the bytes at locations
7090-7093 have been stored in the numeric bits of
the bytes at locations 7041-7044. The contents of
locations 7090-7093 and 7045-7046 are unchanged.

Move with Offset (MVO)

MOVE WITH OFFSET may be used to shift a packed­
decimal number an odd number of digit positions
or to concatenate a sign to an unsigned packed­
decimal number.

Assume that the three-byte unsigned packed­
decimal number in storage locations 4500-4502 is
to be moved to locations 5600-5603 and given the
sign of the packed-decimal number ending at
location 5603. Also assume:

Register 12 contains 00 00 56 00.

Register 15 contains 00 00 45 00.

Storage locations 5600-5603 contain 77 88 99
OC.

Storage locations 4500-4502 contain 12 34 56.

A-26 ESAj370 Principles of Operation

After the instruction:

Machine Format

Op Code L1 L2 B1 01 B2 02

F1 3 2 C I geel F I ge91

Assembler Format

Op Code 01(L1,B1),02(L2,B2)

MVO 0(4,12),0(3,15)

is executed, the storage locations 5600-5603 contain
01 23 45 6C. Note that the second operand is
extended on the left with one zero to fill out the
frrst-operand field.

Move Zones (MVZ)

The MOVE ZONES instruction can operate on over­
lapping or nonoverlapping fields, as can the
instructions MOVE (MVC) and MOVE NUMERICS.

When operating on nonoverlapping fields, MOVE

ZONES works like the MOVE NUMERICS instruction
(see its example), except that MOVE ZONES moves
only the zone bits of each byte. To illustrate the
use of MOVE ZONES with overlapping fields, assume
that the following data field is in storage:

800 805

Also aSSUlne that register 15 contains 00 00 08 00.
The instruction:

Machine Format

Op Code L

03 04 F I e911 F I eeel

Assembler Format

Op Code 01(L,B1),02(B2)

MVZ 1 (5, 15) , 0 (15)

propagates the zone bits from the byte at address
800 through the entire field, so that the field
becomes:

800 805

Multiply (M, MR)

Assume that a number in register 5 is to be multi­
plied by the contents of a four-byte field at address
3750. Initially:

The contents of register 4 are not significant.

Register 5 contains 00 00 00 9A = 15410 =
the multiplicand.

Register 11 contains 00 00 06 00.

Register 12 contains 00 00 30 00.

Storage locations 3750-3753 contain 00 00 00
83 = 13110 = the multiplier.

The instruction required for performing the multi­
plication is:

Machine Format

Op Code Rl X2 B2 02

5C 4 B

Assembler Format

Op Code Rl,02(X2,B2)

M 4,X'150'(11,12)

After the instruction is executed, the product is in
the register pair 4 and 5:

Register 4 contains 00 00 00 00.

Register 5 contains 00 00 4E CE = 20,17410.

Storage locations 3750-3753 are unchanged.

The RR format of the instruction can be used to
square the number in a register. Assume that reg­
ister 7 contains 00 01 00 05. The contents of reg­
ister 6 are not significant. The instruction:

Machine Format

Op Code Rl R2

lC 6 7

Assembler Format

Op Code Rl,R2

MR 6,7

multiplies the number in register 7 by itself and
places. the result in the pair of registers 6 and 7:

Register 6 contains 00 00 00 01.

Register 7 contains 00 OA 00 19.

Multiply Halfword (MH)

The MULTIPLY HALFWORD instruction is used to
multiply the contents of a register by a two-byte
field in storage. For example, assume that:

Register 11 contains 00 00 00 15 = 2110 = the
multiplicand.

Register 14 contains 00 00 01 00.

Register 15 contains 00 00 20 00.

Storage locations 2102-2103 contain FF D9 =
-3910 = the multiplier.

The instruction:

Machine Format

Op Code Rl X2 B2 02

4C B E F 8021

Assembler Format

Op Code Rl,02(X2,B2)

MH 11,2 (14,15)

multiplies the two numbers. The product, FF FF
FC CD = -81910, replaces the original contents of
register 11.

Only the rightmost 32 bits of a product are stored
in a register; any significant bits on the left are lost.
No program interruption occurs on overflow.

Appendix A. Number Representation and Instruction-Use Examples A-27

OR (0, OC, 01, OR)

When the Boolean operator OR is applied to two
bits, the result is one when either bit is one; other­
wise, the result is zero. When two bytes are oRed,
each pair of bits is handled separately; there is no
connection from one bit position to another. The
following is an example of oRing two bytes:

First-operand byte: 0011 ~1012
Second-operand byte: 0101 11002

Result byte: 0111 11012

01 Example
A frequent use of the 0 R instruction is to set a par­
ticular bit to one. For example, assume that
storage location 4891 contains 0100 00102. To set
the rightmost bit of this byte to one without
affecting the other bits, the following instruction
can be used (assume that register 8 contains 00 00
4890):

Machine Format

Op Code 12 B1 01

96 e1 8 1 ee11

Assembler Format

Op Code 01(B1),12

01 1(8),X ' 011

When this instruction is executed,
storage is 0 Red with the immediate
field of the instruction):

Location 4891: 0100 00102
Immediate byte: 0000 00012

Result: 0100 00112

the byte in
byte (the 12

The resulting byte with bit 7 set to one is stored
back in location 4891. Condition code 1 is set.

Pack (PACK)

Assume that storage locations 1000-1003 contain
the following zoned-decimal number that is to be
converted to a packed-decimal number and left in
the same location:

A-28 ESA/370 Principles of Operation

1000 1003

Also assume that register 12 contains 00 00 10 00.
After the instruction:

Machine Format

Op Code L1 L2 B1 01 B2 02

F2 3 3 I c I Beel c I esel

Assembler Format

Op Code 01(L1,B1),02(L2,B2)

PACK 0(4,12),0(4,12)

is executed, the result in locations 1000-1003 is in
the packed-decimal format:

1000 1003

Packed number le91el12314C1

Notes:

1. This example illustrates the operation of PACK

when the fust- and second-operand fields
overlap completely.

2. During the operation, the second operand was
extended on. the left with zeros.

Shift Left Double (SLDA)

The SHIFf LEFf DOUBLE instruction shifts the 63
numeric bits of an even-odd register pair to the left,
leaving the sign bit unchanged. Thus, the instruc­
tion performs an algebraic left shift of a 64-bit
signed binary integer.

For example, if the contents of registers 2 and 3
are:

00 7F 0A 72 FE DC BA 98 =
00000000 01111111 00001010 01110010
11111110 11011100 10111010 100110002

The instruction:

Machine Format

Op Code Rl

SF 2 I1111I e I elFI

Assembler Format

Op Code Rl,D2(B2)

SLDA 2,31(e)

results in registers 2 and 3 both being left-shifted 31
bit positions, so that their new contents are:

7F 6E 50 4C ee ee ee ee =
e1111111 e11el11e e1el11e1 e1ee11ee
eeeeeeee eeeeeeee eeeeeeee eeeeeeee2

Because significant bits are shifted out of bit posi­
tion 1 of register 2, overflow is indicated by setting
condition code 3, and, if the fixed-point-overflow
mask bit in the psw is one, a fixed-point-overflow
program interruption occurs.

Shift Left Single (SLA)

The SHIFf LEFf· SINGLE instruction is similar to
SHIFf LEFf DOUBLE, except that it shifts only the
31 numeric bits of a single register~ Therefore, this
instruction performs an algebraic left shift of a
32-bit signed binary integer.

For example, if the contents of register 2 are:

ee 7F eA 72 = eegeeeee 91111111 ee991919 9111ge192

The instruction:

Machine Format

Op Code Rl

8B 2 1////1 a I aesl

Assembler Format

Op Code Rl,D2(B2)

SLA 2,8(e)

results in register 2 being shifted left eight bit posi­
tions so that its new contents are:

7F 9A 72 a9 = a1111111 9age1e1e 91119919 9a9999992

Condition code 2 is set to indicate that the result is
greater than zero.

If a left shift of nine places had been specified, a
significant bit would have been shifted out of bit
position 1. Condition code 3 would have been set
to indicate this overflow and, if the fixed-point­
overflow mask bit in the psw were one, a fixed­
point overflow interruption would have occurred.

Store Characters under Mask (STCM)

STORE CHARACTERS UNDER MASK (STCM) may be
used to place selected bytes from a register into
storage. For example, if it is desired to store a
three-byte address from general register 8 into
location FIELD3, assume:

Machine Format

Op Code Rl M3 S2

BE 8 7* * * *

Register Format

Op Code Rl,M3,S2

STeM 8,B 'e1111,FIELD3

Register 8: 12 34 56 78
FIELD3 (before): not significant
FIELD3 (after): 34 56 78

As ,another example:

Machine Format

Op Code Rl M3

BE 9 5

Register Format

Op Code R~,M3,S2

'* '* '* *

STCM 9,B 'e1e1 1,FIELD2

Register 9: e1 23 45 67
FIELD2 (before): not significant
FIELD2 (after): 23 67

Appendix A. Number Representation and Instruction-Use Examples A-29

Store Multiple (STM)

Assume that the contents of general registers 14, 15,
0, and 1 are to be stored in consecutive four-byte
fields starting with location 4050 and that:

Register 14 contains 00 0025 63.

Register 15 contains 00 01 27 36.

Register 0 contains 12 43 00 62.

Register 1 contains 73 26 12 57.

Register 6 contains 00 0040 00.

The initial contents of locations 4050-405F are
not significant.

The STORE MULTIPLE instruction allows the use of
just one instruction to store the contents of the
four registers:

Machine Format

Op Code R1 R3 B2 02

90 E 1

Assembler Format

Op Code R1,R3,02(B2)

STM 14,1,X'50' (6)

After the instruction is executed:

Locations 4050-4053 contain 00 00 25 63.

Locations 4054·4057 contain 00 01 27 36.

Locations 4058-405B contain 1243 00 62.

Locations 405C-405F contain 73 26 12 57.

Test under Mask (TM)

The TEST UNDER MASK instruction examines
selected bits of a byte and sets the condition code
accordingly. For example, assume that:

Storage location 9999 contains FB.

Register 7 contains 00 00 99 90.

Assume the instruction to be:

A-30 ESAj370 Principles of Operation

Machine Format

Op Code 12 B1 01

91 C3 7 GG91

Assembler Format

Op Code 01(B1),12

TM 9(7),B I 11000011 1

The instruction tests only those bits of the byte in
storage for which the mask bits are ones:

FB = 1111 10112
Mask = 1100 00112

Test = 11xx xxl12

Condition code 3 is set: all selected bits in the test
result are ones. (The bits marked "x" are ignored.)

If location 9999 had contained B9, the test would
have been:

B9 1011 10012
Mask = 1100 00112

Test = 10xx xx012

Condition code 1 is set: the selected bits are both
zeros and ones.

If location 9999 had contained 3C, the test would
have been:

3C = 0011 11002
Mask = 1100 00112

Test = 00xx xx002

Condition code 0 is set: all selected bits are zeros.

Note: Storage location 9999 remains unchanged.

Translate (TR)

The TRANSLATE instruction can be used to trans­
late data from any character code to any other
desired code, provided that each character code
consists of eight bits or fewer. An appropriate
translation table is required in storage.

In the following example, EBCDIC code is translated
to ASCII code. The fust step is to create a 256-byte
table in storage locations 1000-1 OFF. This table
contains the characters of the ASCII code in the
sequence of the binary representation of the

EBCDIC code; that is, the ASCII representation of a
character is placed in storage at the starting address
of the table plus the binary value of the EBCDIC

representation of the same character.

For simplicity, the example shows only the part of
the table containing the decimal digits:

10F0 leF9

1381311321331341351361371381391

Assume that the four-byte field at storage location
2100 contains the EBCDIC code for the digits 1984:

Locations 2100-2103 contain F 1 F9 F8 F4.

Register 12 contains 00 00 21 00.

Register 15 contains 00 00 10 00.

As the instruction:

Machine Format

Op Code L BIOI B2 02

DC 63 C 0001 F 6001

Assembler Format

Op Code Dl(L,Bl),D2(B2)

TR 0(4,12),0(15)

is executed, the binary value of each EBCDIC byte is
added to the starting address of the table, and the
resulting address is used to fetch an ASCII byte:

Table starting address:
First EBCDIC byte:

Address of ASCII byte:

le00
F1

10Fl

Mter execution of the instruction:

Locations 2100-2103 contain 31 39 38 34.

Thus, the ASCII code for the digits 1984 has
replaced the EBCDIC code in the four-byte field at
storage location 2100.

Translate and Test (TRT)

The TRANSLATE AND TEST instruction can be used
to scan a data field for characters with a special
meaning. To indicate which characters have a
special meaning, a table similar to the one used for
the TRANSLATE instruction is set up, except that
zeros in the table indicate characters without any
special meaning and nonzero values indicate char­
acters with a special meaning.

Figure A-4 that follows has been set up to distin­
guish alphameric characters (A to Z and 0 to 9)
from blanks, certain special symbols, and all other
characters which are considered invalid. EBCDIC

coding is assumed. The 256-byte table is assumed
stored at locations 2000-20FF.

912 3 4 5 6 7 8 9 ABe 0 E F

200_

201_

202_

203_

204_

205

206_

207_

208_

209_

20A_

29B

20E_

20F_

49 49

49 40

40 40

40 40

04 49

14 40

24 28
f-- f---

40 40

40 49

41:) 40

49 40

40 40

40 00

40 00

40 40

00 00

40 40

49 49

49 40

40 40

40 49

40 40

40 40
--

40 40

40 49

40 40

40 40

40 4e

el:) 09

el:) oe

eo 00

e0 00

49 40 49 40

49 49 49 40

40 40 40 49

40 40 49 40

40 40 40 49

40 49 49 40

40 40 40 40

49 40 40 49

49 40 49 49

40 40 49 40

4e 40 49 49

49 40 40 40
--

00 ao 00 a0

09 00 00 00

oe 00 00 00

00 00 00 00

49 40 40 40 49 40 40 49

49 40 49 49 49 49 40 40

40 40 41:) 40 49 40 41:) 40

40 40 49 40 40 40 41:) 40

40 4e 40 08 40 oe 1G 40

40 40 40 18 lC 20 40 49

40 40 40 2C 40 49 40 40

40 40 40 30 34 38 3C 40

49 40 40 40 41:) 49 41:) 49

40 40 40 4a 41:) 40 40 49

49 49 40 40 40 4e 41:) 49

49 40 41:) 40 4a 49 41:) 49

09 00 41:) 40 41:) 49 40 40

09 00 40 41:) 41:) 4e 40 40

00 00 40 40 40 40 40 40

00 00 40 40 41:) 40 40 40

Note: If the character codes in the statement being
translated occupy a range smaller than 00 through
FF 1 5, a table of fewer than 256 bytes can be used.

Figure A-4. Translate and Test Table

The _ table entries for the alphameric characters in
EBCDIC are 00; thus, the letter A (code C1) corre­
sponds to byte location 20C 1, which contains 00.

The 15 special symbols have nonzero entries from
0416 to 3C16 in increments of 4. Thus, the blank

Appendix A. Number Representation and Instruction-Use Examples A-31

(code 40) has the entry 041 IS, the period (code 4B)
has the entry 081 &, and so on.

All other table positions have the entry 401 & to
indicate an invalid character.

The table entries are chosen so that they may be
used to select one of a list of 16 words containing
addresses of different routines to be entered for
each special symbol or invalid character encount­
ered during the scan.

Assume that this list of 16 branch addresses is
stored at locations 3004-3043.

Starting at storage location CA80, there is the fol­
lowing sequence of 2110 EBCDIC characters, where
"b" stands for a blank.

Locations CA80·CA94:
UNPKbPRO UT(9) ,WORD(5)

Also assume:

Register 1 contains 00 00 CA 7F.

Register 2 contains 00 00 30 00.

Register 15 contains 00 00 20 00.

As the instruction:

Machine Fonnat

Op Code L . B1 01 B2 02

DO 14 1 I ee11 F I eeel

Assembler Fonnat

Op Code 01(L,Bl),02(B2)

TRT 1(21,1),0(15)

is executed, the value of the first source byte, the
EBCDIC code for the letter U, is added to the
starting address of the table to produce the address
of the table entry to be examined: .

Table starting address 2000
First source byte (U) E4

Address of table entry 20E4

A-32 ESAj370 Principles of Operation

Because zeros were placed in storage location 20E4,
no special action occurs. The operation continues
with the second and subsequent source bytes until
it reaches the blank in location CA84. When this
symbol is reached, its value is added to the starting
address of the table, as usual:

Table starting address 2000
Source byte (blank) 40

Address of table entry 2040

Because location 2040 contains a nonzero value,
the following actions occur:

The address of the source byte, 00CA84, is
placed in the rightmost 24 bits of register 1.

The table entry, 04, is placed in the rightmost
eight bits of register 2, which now contains 00
003004.

Condition code 1 is set (scan not completed).

The TRANSLATE AND TEST instruction may be fol­
lowed by instructions to branch to the routine at
the address found at location 3004, which corre­
sponds to the blank character encountered in the
scan. When this routine is completed, program
control may return to the TRANSLATE AND TEST

instruction to continue the scan, except that the
length must fust be adjusted for the characters
already scanned.

For this purpose, the TRANSLATE AND TEST may
be executed by the use of an EXECUTE instruction,
which supplies the length specification from a
general register. In this way, a complete -statement
scan can be perfonned with a single TRANSLATE

AND TEST instruction used repeatedly by means of
EXECUTE, and without modifying any instructions
in storage. In the example, after the ftfst execution
of TRANSLATE AND TEST, register 1 contains the
address of the last source byte translated. It is then
a simple matter to subtract this address from the
address of the last source byte (CA94) to produce a
length specification. This length minus one is
placed in the register that is referenced as the R1

field of the EXECUTE instruction. (Note that the
length code in the machine format is one less than
the total number of bytes in the field.) The
second-operand address of the EXECUTE instruction
points to the TRANSLATE AND TEST instruction,
which is the same as illustrated above, except for
the length (L) which is set to zero.

Unpack (UNPK)

Assume that storage locations 2501-2502 contain a
signed, packed-decimal number that is to be
unpacked and placed in storage locations
1000-1004. Also assume:

Register 12 contains 00 00 10 00.

Register 13 contains 00 00 25 00.

Storage locations 2501-2502 contain 12 3D.

The initial contents of storage locations
1000-1004 are not significant.

After the instruction:

Machine Format
Op Code L1 L2 B1 01 B2 02

F3 4 1

Assembler Format

Op Code 01(L1tB1)t02(L2,B2)

UNPK 0(5,12),1(2,13)

is executed, the storage locations 1000-1004 contain
FO FO F1 F2 D3.

Decimal Instructions
(See Chapter 8 for a complete description of the
decimal instructions.)

Add Decimal (AP)

Assume that the signed, packed-decimal number at
storage locations 500-503 is to be added to the
signed, packed-decimal number· at locations
2000-2002. Also assume:

Register 12 contains 00 00 20 00.

Register 13 contains 00 00 05 00.

Storage locations 2000-2002 contain 38 46 OD
(a negative number).

Storage locations 500-503 contain 01 12 34 5C
(a positive number).

After the instruction:

Machine Format

Op Code L1 L2 B1 01 B2 02

FA 2 3 C 0gel 0 I 0e01

Assembler Format

Op Code 01(L1,B1),02(L2,B2)

AP 0(3 t12)t0(4,13)

is executed, the storage locations 2000-2002 contain
73 88 5C; condition code 2 is set to indicate that
the result is greater than zero. Note that:

1. Because the two numbers had different signs,
they were in effect subtracted.

2. Although the second operand is longer than the
ftrst operand, no overflow interruption occurs
because the result can be entirely contained
within the frrst operand.

Compare Decimal (CP)

Assume that the signed, packed-decimal contents of
storage locations 700-703 are to be) algebraically
compared with the signed, packed-decimal contents
of locations 500-502. Also assume:

Register 12 contains 00 00 06 00.

Register 13 contains 00 00 03 00.

Storage locations 700-703 contain 17 25 35 6D.

Storage locations 500-502 contain 72 14 2D.

After the instruction:

Machine Format

Op Code Ll L2 B1 01 B2 02

F9 3 2 C 10al 0 20el

Assembler Format

Op Code 01(L1tB1)t02(L2tB2)

CP X'100 1 (4,12),X'200 1 (3,13)

is executed, condition code I is set, indicating that
the frrst operand (the contents of locations 700-703)
is less than the second.

Appendix A. Number Representation and Instruction-Use Examples A-33

Divide Decimal (DP)

Assume that the signed, packed-decimal number at
storage locations 2000-2004 (the dividend) is to be
divided by the signed, packed-decimal number at
locations 3000-3001 (the divisor). Also assume:

Register 12 contains 00 0020 00.

Register 13 contains 00 00 30 00.

Storage locations 2000-2004 contain 0 I 23 45
678C.

Storage locations 3000-3001 contain 32 ID.

After the instruction:

Machine Format

Op Code Ll L2 B1 01 B2 02

FO 4 1 C a9al 0 ee91

Assembler Format

Op Code 01(Ll,Bl),02(L2,B2)

OP

is executed, the dividend is entirely replaced by the
signed quotient and remainder, as follows:

2eee 2004

Locations 2a00-2e94 13s146100101lsci

quotient I remainder

Notes:

1. Because the dividend and divisor have different
signs, the quotient receives a negative sign.

2. The remainder receives the sign of the dividend
and the length of the divisor.

3. If an attempt were made to divide the dividend
by the one-byte field at location 3001, the quo­
tient would be too long to fit within the four
bytes allotted to it. A decimal-divide exception
would exist, causing a program. interruption.

A-34 ESA/370 Principles of Operation

Edit (ED)

Before decimal data in the packed format can be
used in a printed report, digits and signs must be
converted to printable characters. Moreover, punc­
tuation marks, such as commas and dechnal points,
may have to be inserted in appropriate places. The
highly flexible EDIT instruction performs these func­
tions in a single instruction execution.

This example shows step-by-step one way that the
ED IT instruction can be used. The field to be
edited (the source) is four bytes long; it is edited
against a pattern 13 bytes long. The following
symbols are used:

Symbol Meaning

b (Hexadecimal 40) Blank character
((Hexadecimal 21) Significance starter
d (Hexadecimal 20) Digit selector

Assume that register 12 contains:

00 00 10 00

and that the source and pattern fields are:

Source

1200 1203

la2 1s7 H6CI

L+
Pattern

1000 100C

14912912el6BI2al2112014BI2al291491C31091
b d d , d (d • d d b C R

Execution of the instruction:

Machine Format

Op Code L B1 01 B2 02

DE 0C C a0el C 29al

Assembler Format

Op Code Dl(L,Bl),D2(B2)

ED e(13,12),X'2ee ' (12)

alters the pattern field as follows:
-

Significance
Indicator
(Before/ Location

Pattern Digit After) Rule leee-leeC

b off/off leave(l) bdd,d(d.ddbCR
d e off/off fi 11 bbd,d(d.ddbCR
d 2 off/on (2) digit bb2,d(d.ddbCR
, on/on leave same
d 5 on/on digit bb2,5(d.ddbCR
(7 on/on digit bb2,57d.ddbCR
d 4 on/on digit bb2,574.ddbCR

on/on leave same
d 2 on/on digit bb2,574.2dbCR
d 6+ on/off(3) digit bb2,574.26bCR
b off/off fill same
C off/off fi 11 bb2,574.26bbR
R off/off fi 11 bb2,574.26bbb

Notes:

1. This character is the fill byte.

2. First nonzero decimal source digit turns on
significance indicator.

3. Plus sign in the four rightmost bits of the
byte turns off significance indicator.

Thus, after the instruction is executed, the pattern
field contains the result as follows:

Pattern

leee leec

1~1~1~lool~I~I~I~I~lrnl~I~I~1
b b 2 ,57 4 • 2 6 b b b

This pattern field prints as:

2,574.26

The source field remains unchanged. Condition
code 2 is set because the number was greater than
zero.

If the number in the source field is changed to the
negative number 00 00 02 6D and the original
pattern is used, the edited result this time is:

Pattern

leec

14el4el4el4s14el4elFel4BIF21F614elc31091
b b b b b be. 2 6 b C R

This pattern field prints as:

e.26 CR

The significance starter forces the significance indi­
cator to the on state and hence causes a leading
zero and the decimal point to be preserved.
Because the minus-sign code has no effect on the
significance indicator, the characters CR are printed
to show a negative (credit) amount.

Condition code 1 is set (number less than zero).

Edit and Mark (EDMK)

The EDIT AND MARK instruction may be used, in
addition to the functions of EDIT, to insert a cur­
rency symbol, such as a dollar sign, at the appro­
priate position in the edited result. Assume the
same source in storage locations 1200-1203, the
same pattern in locations 1000-1 OOC, and the same
contents of general register 12 as for the EDIT

instruction above. The previous contents of
general register 1 (GRl) are not significant; a LOAD

AD 0 RESS instruction is used to set up the first digit
position that is forced to print if no significant
digits occur to the left.

The instructions:

LA 1,6(0,12) Load address of
forced significant
digit into GRI

EDMK 0(13, 12),X 1200 1 (12) Leave address of
fITst significant digit
in GRI

BCTR 1,0 Subtract 1 from
address in G Rl

MVI O(I),C'$' Store dollar sign at
address in G Rl

produce the following results for the two examples
under EDIT:

Appendix A. Number Representation and Instruction-Use Examples A-35

Pattern

leee leec

14915BIF216BIF51F71F414BIF21F614e14e14el
b $ 2 , 574 . 2 6 b b b

This pattern field prints as:

$2,574.26

Condition code 2 is set to indicate that the number
edited was greater than zero.

Pattern

1eee leec

14el4el4el4el4el5BIFel4BIF21F614ejc31091
b b b b b $ e . 2 6 b C R

This pattern field prints as:

$e.26 CR

Condition code 1 is set because the number is less
than zero.

Multiply Decimal (MP)

Assume that the signed, packed-decimal number in
storage locations 1202-1204 (the multiplicand) is to
be multiplied by the signed, packed-decimal
number in locations 500-501 (the multiplier).

12e2 12e4

Multiplicand 1381461eol

5ee 5el

Multiplier ~

The multiplicand must fust be extended to have at
least two bytes of leftmost zeros, corresponding to
the multiplier~ length, so as to avoid a data excep­
tion during the multiplication. ZERO AND ADD can
be used to move the multiplicand into a longer
field. Assume:

Register 4 contains 00 00 12 00.

Register 6 contains 00 00 05 00.

Then execution of the instruction:

ZAP X' 100 1 (5,4),2(3,4)

A-36 ESA/370 Principles of Operation

sets up a new multiplicand m storage locations
1300-1304:

13ee 13e4

Multiplicand (new) leeleel381461901

Now, after the instruction:

Machine Format

Op Code L1 L2 B1 D1 B2 D2

FC 4 1 4 I 1eel 6 I eeel

Assembler Format

Op Code D1(L1,B1),D2(L2,B2)

MP X' 1ee ' (5,4),0(2,6)

is executed, storage locations 1300-1304 contain the
product: 01 23 45 66 OC.

Shift and Round Decimal (SRP)

The SHIFf AND ROUND DECIMAL (SRP) instruction
can be used for shifting decimal numbers in storage
to the left or right. When a number is shifted right,
rounding can also be done.

Decimal Left Shift
In this example, the contents of storage location
FIELDt are shifted three places to the left, effectively
multiplying the contents of FIELD! by 1000.
FIELDl is six bytes long. The following instruction
performs the operation:

Machine Fonnat

Op Code L1 13 S1 B2

Fe 5

Assembler Format

Op Code Sl(L1),S2,I3

SRP FIELD1(6),3,e

FIELDl (before): 0e 01 23 45 67 BC

FIELD1 (after): 12 34 56 78 ee ec

The second-operand address in this instruction
specifies the shift amount (three places). The
rounding digit, 13, is not used in a left shift, but it
must be a valid decimal digit. Mter execution, con­
dition code 2 is set to show that the result is greater
than zero.

Decimal Right Shift
In this example, the contents of storage location
FIELD2 are shifted one place to the right, effectively
dividing the contents of FIELD2 by 10 and dis­
carding the remainder. FIELD2 is five bytes in
length. The following instruction perfonns this
operation:

Machine Fonnat

Op Code L1 13 S1 82 D2

Assembler Fonnat

Op Code S1(L1),S2,I3

SRP FIELD2(5),64-1,0

00111111

r
6-bit two's
complement
for -1

FIELD 2 (before): 01 23 45 67 BC

FIELD 2 (after): 00 12 34 56 7C

In the SRP instruction, shifts to the right are speci­
fied in the second-operand address by negative shift
values, which are represented as a six-bit value in
two's complement form.

The six-bit two's complement of a number, n, can
be specified as 64 - n. In this example, a right shift
of one is represented as 64 - 1.

i

Condition code 2 is set.

Decimal Right Shift and Round
In this example, the contents of storage location
FIELD3 are shifted three places to the right and
rounded, in effect dividing by 1000 and rounding
up. FIELD3 is four bytes in length.

Machine Format

Op Code L1 13 S1 82 D2

Assembler Format

Op Code S1(L1),S2,I3

SRP FIELD3(4),64-3,5

00111101

r
6-bit two's
complement
for -3

FIELD 3 (before): 12 39 60 0D

FIELD 3 (after): 00 01 24 0D

The shift amount (three places) is specified in the
D2 field. The 13 field specifies a rounding digit of 5.
The rounding digit is added to the last digit shifted
out (which is a 6), and the carry is propagated to
the left. The sign is ignored during the addition.

Condition code 1 is set because the result is less
than zero.

Multiplying by a Variable Power of 10
Since the shift value specified by the SRP instruc­
tion specifies both the direction and amount of the
shift, the operation is equivalent to_multiplying the
decimal ftrst operand by 10 raised to the power
specified by the shift value.

If the shift value is to be variable, it may be speci­
fied by the B 2 field instead of the displacement D 2

of the SRP instruction. The general register desig­
nated by B 2 should contain the shift value (power
of 10) as a signed binary integer.

Appendix A. Number Representation and Instruction-Use Examples A-37

A fixed scale factor modifying the variable power of
10 may be specified by using both the B 2 field (var­
iable part in a general register) and the D 2 field
(fixed part in the displacement).

The SRP instruction uses only the rightmost six bits
of the effective address D2(B2) and interprets them
as a six-bit signed binary integer to control the left
or right shift as in the preceding shift examples.

Zero and Add (ZAP)

Assume that the signed, packed-decimal number at
storage locations 4500-4502 is to be moved to
locations 4000-4004 with four leading zeros in the
result field. Also assume:

Register 9 contains 00 0040 00.

Storage locations 4000-4004 contain 12 34 56
7890.

Storage locations 4500-4502 contain 38 46 OD.

Mter the instruction:

Machine Format

Op Code L1 L2 B1 01 B2 02

F8 4 2 9 eeel 9 5eel

Assembler Format

Op Code 01(L1,B1),02(L2,B2)

I ZAP 0(5,9),X'500'(3,9)

is executed, the storage locations 4000-4004 contain
00 00 38 46 OD; condition code 1 is set to indicate
a negative result without overflow.

Note that, because the frrst operand is not checked
for valid sign and digit codes, it may contain any
combination of hexadecimal digits before the oper­
ation.

Floating-Point Instructions
(See Chapter 9 for a complete description of the
floating-point instructions.)

In this section, the abbreviations FPRO, FPR2,
FPR4, and FPR6 stand for floating-point registers
0, 2,4, and 6 respectively.

A-38 ESAj370 Principles of Operation

Add Normalized (AD, ADR, AE, AER,
AXR)

The ADD NORMALIZED instruction performs the
addition of two floating-point numbers and places
the normalized result in a floating-point register.
Neither of the two numbers to be added must nec­
essarily be in normalized form before addition
occurs. For example, assume that:

FPR6 contains the unnormalized number C3
08 21 00 00 00 00 00 = -82.116 = -130.0611:)
approximately.

Storage locations 2000-2007 contain the nor­
malized number 41 12 34 56 00 00 00 00
+ 1.2345616 = + 1.1410 approximately.

Register 13 contains 00 00 20 00.

The instruction:

Machine Format

Op Code R1 X2 B2 02

7A 6 o o I aeel

Assembler Format

Op Code Rl,02(X2,B2)

AE 6,0(0,13)

performs the short-precision addition of the two
operands, as follows.

The characteristics of the two numbers (43 and 41)
are compared. Since the number in storage has a
characteristic that is smaller by 2, it is right-shifted
two hexadecimal digit positions. One guard digit is
retained on the right. The fractions of the two
numbers are then added algebraically:

Fraction GOI
FPR6 -43 08 21 00
Shifted number from storage +43 00 12 34 5

Intermediate sum
Left-shifted sum

1 Guard digit

-43 08 0E CB B
-42 80 EC BB

Because the intermediate sum is unnormalized, it is
left-shifted to form the normalized floating-point
number -80.ECBB16 = -128.921(:) approximately.
Combining the sign with the characteristic, the
result is C2 80 EC BB, which replaces the left half

of FPR6. The right half of FPR6 and the contents
of storage locations 2000-2007 are unchanged.
Condition code 1 is set to indicate a result less than
zero.

If the long-precision instruction AD were used, the
result in FPR6 would be C2 80 BC BA AO 00 00
00. Note that use of the long-precision instruction
would avoid a loss of precision in this example.

Add Unnormalized (AU, AUR, AW,
AWR)

The ADD UNNORMALIZED instruction operates the
same as the ADD NORMALIZED instruction, except
that the fmal result is not normalized. For
example, using the the same operands as in the
example for ADD NORMALIZED, when the short­
precision instruction:

Machine Format

Op Code Rl X2 B2 02

7E 6 0 0 eeel

Assembler Format

Op Code Rl,02(X2,B2)

AU 6,0(0,13)

is executed, the two numbers are added as follows:

Fraction GOl
FPR6 -43 08 21 00
Shifted number from storage +43 00 12 34 5

Intermediate sum -43 08 0E CB B

1 Guard di git

The guard digit participates in the addition but is
discarded. The unnormalized sum replaces the left
half of FPR6. Condition code 1 is set because the
result is less than zero.

The truncated result in FPR6 (C3 08 OE CB 00 00
00 00) shows a loss of a significant digit when com­
pared to the result of short-precision normalized
addition.

Compare (CD, CDR, CE, CER)

Assume that FPR4 contains 43 00 00 00 00 00 00
00 (zero), and FPR6 contains 35 12 34 56 78 9A
BC DE (a positive number). The contents of the
two registers are to be· compared using a long­
precision co MP ARE instruction.

Machine Format

Op Code Rl R2

29 4 6

Assembler Format

Op Code Rl,R2

COR 4,6

The number with the smaller characteristic, which
is in register FPR6, is right-shifted 43 - 35 hex
(67 - 53 decimal) or 14 digit positions, so that the
two characteristics agree. The shifted number is 43
00 00 00 00 00 00 00, with a guard digit of one.
Therefore, when the two numbers are compared,
condition code 1 is set, indicating that operand I in
FPR4 is less than operand 2 in FPR6.

If the example is changed to a second operand with
a characteristic of 34 instead of 35, so that FPR6
contains 34 12 34 56 78 9A BC DE, the operand is
right-shifted 15 positions, leaving all fractiqn digits
and the guard digit as zeros. Condition code 0 is
set, indicating equality. This example shows that
two floating-point numbers with different character­
istics or fractions may compare equal if the
numbers are unnormalized or zero.

As another example of comparing unnormalized
floating-point numbers, 41 00 12 34 56 78 9A BC
compares equal to all numbers of the form 3F 12
34 56 78 9A BC OX (X represents any hexadecimal
digit). When the COMPARE instruction is executed,
the two rightmost digits are shifted right two places,
the 0 becomes the guard digit, and the X does not
participate in the comparison.

However, when two normalized floating-point
numbers are compared, the relationship between
numbers that compare equal is unique: each digit
in one number must be the same as the corre­
sponding digit in the other number.

Appendix. A. Number Representation and Instruction-Use Examples A-39

Divide (DD, DDR, DE, DER)

Assume that the frrst operand (the dividend) is in
FPR2 and the second operand (the divisor) in
FPRO. If the operands are in the short-precision
format, the resulting quotient is returned to FPR2
by the instruction:

Machine Format

Op Code Rl R2

3D 2 0

Assembler Format

Op Code Rl,R2

OER 2,0

Several examples of short-precision floating-point
division, with the dividend in F PR2 and the divisor

. in FPRO, are shown below. For case A, the result,
which replaces the dividend, is obtained in the fol­
lowing steps.

Case

A
B
C
D
E

7.2522F

.1234001.821000
7F6C00

2A400 0
24680 0

5D80 00
5B04 00

27C 000
246 800

35 8000
24 6800

11 18009
11 10C09

7409

FPR2 Before FPRB
(Dividend) (Divisor)

-43 082100 +43 001234
+42 101010 +45 111111
+48 30000F +41 400000
+48 30000F +41 200000
+48 180007 +41 200000

A-40 ESA/370 Principles of Operation

FPR2 After
(Quotient)

-42 72522F
+3D F0F0F0
+47 C0003C
+48 180007
+47 C00038

-

Case c shows a number being divided by 4.0. Case
D divides the same number by 2.0, and case E

divides the result of case D again by 2.0. The results
of cases c and E differ in the rightmost hexadecimal
digit position, which illustrates an effect of result
truncation.

Halve (HDR, HER)

HALVE produces the same result as floating-point
DIVIDE with a divisor of 2.0. Assume FPR2 con­
tains the long-precision number + 48 30 00 00 00
00 00 OF. The following HALVE instruction
produces the result + 48 18 00 00 00 00 00 07 in
FPR2:

Machine Format

Op Code Rl R2

24 2

Assembler Format

Op Code Rl,R2

HDR 2,2

2

Multiply (MD, MDR, ME, MER, MXD,
MXDR, MXR)

For this . example, the following long-precision
operands are in FPRO and FPR2:

FPR9: -33 606060 60606069
FPR2: -5A 200000 20000020

A long-precision product is generated by the
instruction:

Machine Format

Op Code Rl R2

2C o 2

Assembler Format

Op Code Rl,R2

MDR 0,2

If the operands were not already normalized, the
instruction would frrst normalize them. It then

generates an intermediate result cons~sting of. the
full 28-digit hexadecimal product fractIOn obtamed
by multiplying the 14-digit hexadecimal operand
fractions, together with the appropriate sign and a
characteristic that is the sum of the operand charac­
teristics less 64 (40 hex):

The fraction multiplication is performed as follows:

.60606060606060

.20000020000020

C0C0C0C0C0C0C00
C0C0C0C0C0C0C0

C0C0C0C0C0C0C0

.0C0C0C181818241818180C0C0C00

Attaching the sign and characteristic to the fraction
gives:

+40 0C0C0C 18181824 1818180C 0C0C00

Because this intermediate product has a leading
zero, it is then normalized. The truncated fmal
result placed in FPRO is:

+4C C0C0C1 81818241

Floating-Point-Number Conversion

The following examples illustrate one method of
converting between binary fixed-point numbers
(32-bit signed binary integers) and normalized
floating-point numbers. Conversion must provide
for the different representations used with negative
numbers: the two's-complement form for signed
binary integers, and the signed-absolute-value form
for the fractions of floating-point numbers.

Fixed Point to Floating Point
The method used here inverts the leftmost bit of
the 32-bit signed binary integer, which is equivalent
to adding 231 to the number and considering the
result to be positive. This changes the number
from a signed integer in the range 231

- 1 through
_231 to an unsigned integer in the range 232

- I
through O. Mter conversion to the long floating­
point fonnat, the value 231 is subtracted again.

Assume that general register 9 (G R9) contains the
integer -59 in two's-complement form:

GR9: FF FF FF C5

Further, assume two eight-byte fields in storage:
TEMP, Jor use as temporary storage, and TW031 ,

which ~ontains the floating-point constant 231 in
the following format:

TW031: 4E 00 00 00 80 00 00 00

This is an unnormalized long floating-point
number with the characteristic 4E, which corre­
sponds to a radix point (hexadecimal point) to the
right of the number.

The following instruction sequence performs the
conversion:

Result
X 9,TW031 + 4 GR9:

7FFF FFCS
ST 9,TEMP+4 TEMP:

xxxx xxxx 7FFF FFC5
MVC TEMP(4),TW031 TEMP:

4EOO 0000 7FFF FFCS
LD 2,TEMP FPR2:

4EOO 0000 7FFF FFC5
SD 2,TW031 FPR2:

C23B 0000 0000 0000

The EXCLUSIVE OR (X) instruction inverts the left­
most bit in general register 9, using the right half of
the constant as the source for a leftmost one bit.
The next two instructions assemble the modified
number in an unnormalized long floating-point
format, using the left half of the constant as the
plus sign, the characteristic, and the leading zeros of
the fraction. LOAD (LD) places the number
unchanged in floating-point register 2. The SUB­

TRACT NORMALIZED (SD) instruction performs the
fmal two steps by subtracting 231 in floating-point
form and normalizing the result.

Floating Point to Fixed Point
The procedure described here consists basically in
reversing the steps of the previous procedure. Two
additional considerations must be taken into
account. First: the floating-point number may not
be an exact integer. Truncating the excess
hexadecimal digits on the right requires shifting the
number one digit position farther to the right than
desired for the fmal result, so that the units digit
occupies the position of the guard digit. Second:
the floating-point number may have to be tested as
to whether it is outside the range of numbers repre­
sentable as a 32-bit signed binary integer.

Assume that floating-point register 6 contains the
number 59.251 a = 3B.416 in normalized form:

FPR6: 42 3B 40 00 00 00 00 00

Further, assume three eight-byte fields in storage:
TEMP, for use as temporary storage, and the con-

Appendix A. Number Representation and Instruction-Use Examples A·41

stants 232 (TW032) and 231 (TW031R) in the fol­
lowing fO,rmats:

TW032:
TW031R:

4E 00 00 01 00 00 00 00
4F 00 00 00 0S 00 00 00

The constant TW031 R is shifted right one more
position than the constant TW031 of the previous
example, so as to force the units digit into the
guard-digit position.

The following instruction sequence performs the
integer truncation, range tests, and conversion to a
signed binary integer in general register 8 (GRS):

Result
SD 6,TW031R FPR6:

C87F FFFF C500 0000
BC II,OVERFLOW Branch to overflow

routine if result is
greater than or equal to
zero

AW 6,TW032 FPR6:
4EOO 0000 8000 003B

BC 4,OVERFLOW Branch to overflow
routine if result is less
than zero

STD 6,TEMP TEMP:
4EOO 0000 8000 003B

XI TEMP+4,X'80' TEMP:
4EOO 0000 0000 003B

L 8,TEMP+4 GR8:
0000003B

The SUBTRACT NORMALIZED (SD) instruction shifts
the fraction of the number to the right until it lines
up with TW031 R, which causes the fraction digit 4
to fall to the right of the guard digit and be lost; the
result of subtracting 231 from the remaining digits is
renormalized. The result should be less than zero;
if not, the original number was too large in the
positive direction. The frrst BRANCH ON CONDI­

TION (BC) performs this test.

The ADD UNNORMALIZED (AW) instruction adds
232: 231 to correct for the previous subtraction and
another 231 to change to an all-positive range. The
second BC tests for a result less than zero, showing
that the original number was too large in the nega­
tive direction. The unnormalized result is placed in
temporary storage by the STORE (STD) instruction.
There the leftmost bit of the binary integer is
inverted by the EXCLUSIVE OR (XI) instruction to
subtract 231 and thus convert the unsigned number
to the signed format. The final result is loaded into
GRS.

A-42 ESA/370 Principles of Operation

Multiprogramming and
Multiprocessing Examples

'"
When two or more programs sharing common
storage locations are being executed concurrently in
a multiprogramming or multiprocessing environ­
ment, one program may, for example, set a flag bit
in the common-storage area for testing by another
program; It should be noted that the instructions
AND (NI or NC), EXCLUSIVE OR (XI or XC), and OR

(01 or oc) could be used to set flag bits in a multi­
programming environment; but the same
instructions may cause program logic errors in a
multiprocessing configuration where two or more
cpus can fetch, modify, and store data in the same
storage locations simultaneously.

Example of a Program Failure Using
OR Immediate

Assume that two independent programs try to set
different bits to one in a common byte in storage.
The following example shows how the use of the
instruction OR immediate (01) can fail to accom­
plish this, if the programs are executed simultane­
ously on two different cpus. One of the possible
error situations is depicted.

Execution of Execution of
instruction instruction
01 FLAGS t X'01' FLAGS 01 FLAGS t X'S0'
on CPU A on CPU B

X'00' Fetch
FLAGS X'00'

Fetch X'00'
FLAGS X'00'

X'00' OR X'S0'
into X'00'

OR X'01' X'00'
into X'00'

X'S0' Store X'S0'
into FLAGS

Store X'01' X'01'
into FLAGS

FLAGS should have value of X'Sl' follow-
ing both updates.

The problem shown here is that the value stored by
the 01 instruction executed on CPU A overlays the
value that was stored by CPU B. The X' 80 I flag bit

was erroneously turned off, and the data is now
invalid.

The COMPARE AND SWAP instruction has been pro­
vided to overcome this and similar problems.

Conditional Swapping Instructions
(CS, CDS)

The COMPARE AND SWAP (cs) and COMPARE

DOUBLE AND SWAP (CDS) instructions can be used
in multiprogramming or multiprocessing environ­
ments to serialize access to counters, flags, control
words, and other common storage areas.

The following examples of the use of the COMPARE

AND SWAP and COMPARE DOUBLE AND SWAP

instructions illustrate the applications for which the
instructions are intended. It is important to note
that these are examples of functions that can be
performed by programs while the CPU is enabled
for interruption (multiprogramming) or by pro­
grams that are being executed in a multiprocessing
configuration. That is, the routine allows a
program to modify the contents of a storage
location while the CPU is enabled, even though the
routine may be interrupted by another program on
the same CPU that will update the location, and
even though the possibility exists that another CPU

may simultaneously update the same location.

The COMPARE AND SWAP instruction frrst checks
the value of a storage location and then modifies it
only if the value is what the program expects;
normally this would be a previously fetched value.
If the value in storage is not what the program
expects, then the location is not modified; instead,
the current value of the location is loaded into a
general register, in preparation for the program to
loop back and try again. During the execution of
COMPARE AND SWAP, no other CPU can perform a
store access or interlocked-update access at the
specified location.

Setting a Single Bit
The following instruction sequence shows how the
COMPARE AND SWAP instruction can be used to set
a single bit in storage to one. Assume that the frrst
byte of a word in storage called "WORD" contains
eight flag bits.

LA 6,X'B0 1 Put bit to be ORed into GR6
SLL 6,24 Shift left 24 places to

L 7,WORD
RETRY LR B,7

OR B,6
CS 7,B,WORD

align the byte to be ORed
with the location of the
flag bits within WORD

Fetch current flag values
Load flags into GRB
Set bit to one
Store new flags if current

flags unchanged, or re­
fetch current flag values
if changed

BC 4,RETRY If new flags are not stored,
try again

The format of the COMPARE AND SWAP instruction
is:

Machine Format

Op Code Rl R3 S2

BA 7

Assembler Format

Op Code Rl,R3,S2

CS 7,8,WORD

The COMPARE AND SWAP instruction compares the
frrst operand (general register 7 containing the
current flag values) to the second operand in
storage (WORD) while no CPU other than the one
executing the COMPARE AND SWAP instruction is
permitted to perform a store access or interlocked­
update access at the specified storage location.

If the comparison is successful, indicating that the
flag bits have not been changed since they were
fetched, the modified copy in general register 8 is
stored into WORD. If the flags have been changed,
the compare will not be successful, and their new
values are loaded into gener~l register 7.

The conditional branch (BC) instruction tests the
condition code and reexecutes the flag-modifying
instructions if the COMPARE AND SWAP instruction
indicated an unsuccessful comparison (condition
code 1). When the COMPARE AND SWAP instruc­
tion is successful (condition code 0), the flags
contain valid data, and the program exits from the
loop.

The branch to RETRY will be taken only if some
other program modifies the contents of WORD.

Appendix A. Number Representation and Instruction-Use Examples A-43

1ms type of a loop differs from the typical "bit­
spin" loop. In a bit-spin loop, the program con­
tinues to loop until the bit changes. In this
example, the program continues to loop only if the
value does change during each iteration. If a
number of CPUs simultaneously attempt to modify
a single location by using the sample instruction
sequence, one CPU will fall through on the rust try,
another wi11loop once, and so on until all cpus
have succeeded.

Updating Counters
In this example, a 32-bit counter is updated by a
program using the COMPARB AND SWAP instruction
to ensure that the counter will be correctly updated.
The original value of the counter is obtained by
loading the word containing the counter into
general register 7. 1ms value is moved into general
register 8 to provide a modifiable copy, and general
register 6 (containing an increment to the counter)
is added to the modifiable copy to provide the
updated counter value. The COMPARB AND SWAP
instruction is used to ensure valid storing of the
counter.

The program updating the counter checks the result
by examining the condition code. The condition
code 0 indicates a successful update, and the
program can proceed. If the counter had been
changed between the time that the program loaded
its original value and the time that it executed the
COMPARB AND SWAP instruction, the execution
would have loaded the new counter value into
general register 7 and set the condition code to I,
indicating an unsuccessful update. The program
must then repeat the update sequence until the exe­
cution of the COMPARB AND SWAP instruction
results in a successful update.

The following instruction sequence performs the
above procedure:

LA 6,1 Put increment (1) into GR6
L 7,CNTR Put original counter value

into GR7
LOOP LR 8,7 Set up copy in GR8 to modify

AR 8,6 Increment copy
CS 7,8,CNTR Update counter in storage
BC 4,LOOP If original value had changed,

update new value

The following shows two Cpus, A and B, executing
this instruction sequence simultaneously: both
CPus attempt to add, one to CNTR.

A-44 ESAj370 Principles of Operation

CPU A CPU B Comments
GR7 GR8 CNTR GR7 GR8

16
16 16 CPU A loads GR7 and

GR8 from CNTR
16 16 CPU B loads GR7 and

GR8 from CNTR
17 CPU B adds one to GR8

17 CPU A adds one to GR8
17 CPU A executes CSj

successful match,
store

17 CPU B executes CS; no
match, GR7 changed
to CNTR value

18 CPU B loads GR8 from
GR7, adds one to GR8

18 CPU B executes CS;
successful match,
store

Bypassing Post and Wait

Bypass Post Routine
The following routine allows the svc "POST" as
used in MVS/ESA to be bypassed whenever the cor­
respondmg WAIT has not yet been executed, pro­
vided that the supervisor WAIT and POST routines
use COMPARB AND SWAP to manipulate event
control blocks (BCBS).

Initial Conditions:

GRO contains the POST code.

GRl contains the address of the BCB.

G RS contains 40 00 00 0016

HSPOST OR 0,5 Set bit 1 of GR1 to
to one

L 3,0(1) GR3 = contents of ECB
LTR 3,3 ECB marked 'waiting'?
BC 4,PSVC Yes, execute post

SVC
CS 3,0,0(1) No, store post code
BC 8,EXITHP Continue

PSVC POST (1),(0) ECB address is in GR1,
post code in GR0

EXITHP [Any instruction]

The following routine may be used in place of the
previous HSPOST routine if it is assumed that bit I
of the contents of GRO is already set to one and if
the BCB is assumed to contain zeros when it is not
marked "WAITING."

HSPOST SR 3,3
CS 3,O,O(1)
BC 8,EXITHP
POST (1),(O)

EXITHP [Any instruction]

Bypass Walt Routine
A BYPASS WAIT function, corresponding to the
B YP ASS POST, does not use the cs instruction, but
the FIFO LOCK/UNLOCK routines which follow
assume its use.

HSWAIT TM
BC

0(1),X'40'
1,EXITHW If bit 1 ;s one, then

ECB is already posted;
branch to exit

WAIT ECB=(1)
EXITHW [Any instruction]

Lock/Unlock

When a common storage area larger than a
doubleword is to be updated, it is usually necessary
to provide special interlocks to ensure that a single
program at a time updates the common area. Such
an area is called a serially reusable resource (SRR).

In general, updating a list, or even scanning a list,
cannot be safely accomplished without frrst
"freezing" the list. However, the COMPARE AND

SWAP and COMPARE DOUBLE AND SWAP

instructions can be used in certain restricted situ­
ations to perform queuing and list manipulation.
Of prime importance is the capability to perform
the lock/unlock functions and to provide sufficient
queuing to resolve contentions, either in a LIFO or
FIFO manner. The lock/unlock functions can then
be used as the interlock mechanism for updating an
SRR of any complexity.

The lock/unlock functions are based on the use of
a "header" associated with the SRR. The header is
the common starting point for determining the
states of the SRR, either free or in use, and also is
used for queuing requests when contentions occur.
Contentions are resolved using WAIT and POST.

The general programming technique requires that
the program that encounters a "locked" SRR must
"leave a mark on the wall" indicating the address of
an EeB on which it will WAIT. The "unlocking"
program sees the mark and posts the ECB, thus per­
mitting the waiting program to continue. In the
two examples given, all programs using a particular

SRR must use either the LIFO queuing scheme or
the FIFO scheme; the two cannot be mixed. When
more complex queuing is required, it is suggested
that the queue for the SRR be locked using one of
the two methods shown.

Lock/Unlock with LIFO Queuing for
Contentions
The header consists of a word, that is, a four-byte
field aligned on a word· boundary. The word can
contain zero, a positive value, or a negative value.

• A zero value indicates that the serially reusable
resource (SRR) is free.

• A negative value indicates that the SRR is in use
but no additional programs are waiting for the
SRR.

• A positive value indicates that the SRR is in use
and that one or more additional programs are
waiting for the SRR. Each waiting program is
identified by an element in a chained list. The
positive value in the header is the address of
the element most recently added to the list.

Each element consists of two words. The frrst
word is used as an ECB; the second word is used as
a pointer to the next element in the list. A negative
value in a pointer indicates that the element is the
last element in the list. The element is required
only if the program fmds the SRR locked and
desires to be placed in the list.

The following chart describes the action taken for
LIFO LOCK and LIFO UNLOCK routines. The rou­
tines following the chart allow enabled code to
perform the actions described in the chart.

Action

Header Contains Header Contains Header Contains
Functi on Zero Positive Value Negative Value

LIFO LOCK SRR is free. SRR is in use. Store the
(the incoming Set the header contents of the header into
element is at to a negative location A+4. Store address A
location A) value. Use the into the header. WAIT: the ECB

SRR. is at location A.

LIFO UNLOCK Error Some program is The list is
waiting for the empty. Store
SRR. Move the zeros into the
poi nter from header. The SRR
the "last in" is free.
element into
the header.
POST: the ECB
is in the Rlast
in" element.

Appendix A. Nu~ber Representation and Instruction-Use Examples A-45

LIFO LOCK Routine:

Initial Conditions:

GRt contains the address of the incoming
element.

G R2 contains the address of the header.

LLOCK SR 3,3 GR3 = 0
ST 3,0(1) Initialize the ECB
LNR 0,1 GR0 =a negative value

TRYAGN CS 3,0,0(2) Set the header to a nega-

BC 8,USE

ST 3,4(1)

CS 3,1,0(2)

tive value if the header
contains zeros

Did the header contain
zeros?

No, store the value of the
header into the pointer
in the incoming element

Store the address of the
incoming element into
the header

LA 3,0(0) GR3 = 0
BC 7,TRYAGN Did the header get up-

dated?
WAIT ECB=(l) Yes, wait for the re­

source; the ECB is in
the incoming element

USE [Any instruction]

LIFO UNLOCK Routine:

Initial Conditions:

G R2 contains the address of the header.

LUNLK L 1,0(2) GR1 = the contents of the
header

A LTR 1,1 Does the header contain a
BC 4,B negative value?
L 0,4(1) No, load the pointer from
CS 1,0,0(2) the "last in" element and

store it in the header
BC 7,A Did the header get updated?
POST (1) Yes, post the "last in"

element
BC 15,EXIT Continue

B SR 0,0 The header contains a neg-
CS 1,0,0(2) ative value; free the
BC 7,A header and continue

EXIT [Any instruction]

Note that the LOAD instruction L 1,0(2) at location
LUNLK would have to be CS I, I ,0(2) if it were not
for the rule concerning storage-operand consistency.
This rule requires the LOAD instruction to fetch a
four-byte operand aligned on a word boundary
such that, if another CPU changes the word being
fetched by an operation which is also at least word-

A -46 ESA/370 Principles of Operation

consistent, either the entire new or the entire old
value of the word is obtained, and not a combina­
tion of the two. (See the section "Storage-Operand
Consistency" in Chapter 5, "Program Execution.")

Lock/Unlock with FIFO Queuing for
Contentions
The header always contains the address of the most
recently entered elemet;lt. The header is originally
initialized .to contain the address of a posted ECD.

Each program using the serially reusable resource
(SRR) must provide an element regardless of
whether contention occurs. Each program then
enters the address of the element which it has pro­
vided into the header, while simultaneously it
removes the address previously contained in the
header. Thus, associated with any particular
program attempting to use the SRR are two ele­
ments, called the "entered element" and the
"removed element." The "entered element" of one
program becomes the "removed element" for the
immediately following program. Each program
then waits on the removed element, uses the SRR,

and then posts the entered element.

When no contention occurs, that is, when the
second program does not attempt to use the SRR

until after the frrst program is fmished, then the
POST of the frrst program occurs before the WAIT of
the second program. In this case, the bypass-post
and bypass-wait routines described in the preceding
section are applicable. For simplicity, these two
routines are shown only by name rather than as
individual instructions.

In the example, the element need be only a single
word, that is, an ECB. However, in actual practice,
the element could be made larger to include a
pointer to the previous element, along with a
program identification. Such information would be
useful in an error situation to permit starting with
the header and chaining through the list of elements
to fmd the program currently holding the SRR.

It should be noted that the element provided by the
program remains pointed to by the header until the
next program attempts to lock. Thus, in general,
the entered element cannot be reused by the
program. However, the removed element is avail­
able, so each program gives up one element and
gains a new one. It is expected that the element
removed by a particular program during one use of
the SRR would then be used by that program as the
entry element for the next request to the SRR.

It should be noted that, since the elements are
exchanged from one program to the next, the ele­
ments cannot be allocated from storage that would
be freed and reused when the program ends. It is
expected that a program would obtain its fust
element and release its last element by means of the
routines described in the section "Free-Pool
Manipulation" in this appendix.

The following chart describes the action taken for
FIFO LOCK and FIFO UNLOCK.

Function Action

FIFO LOCK Store address A into the
header.

(the incoming WAIT; the ECB is at the
element is at location addressed by the
1 ocati on A) old contents of the header.

FIFO UNLOCK POST; the ECB is at loca-
tion A.

The following routines allow enabled code to
perform the actions described in the previous chart.

FIFO Lock Routine:

Initial conditions:

G R3 contains the address of the header.

GR4 contains the address, A, of the element
currently owned by this program. This element
becomes the entered element.

FLOCK LR 2,4

SR 1,1
ST 1,0(2)
L 1,0(3)

TRYAGN CS 1,2,0(3)

BC 7,TRYAGN

LR 4,1

HSWAIT

GR2 now contains address
of element to be
entered

GR1 = 0
Initialize the ECB
GR1 = contents of the

header
Enter address A into

header while remember­
ing old contents of
header into GR1; GRl
now contains address
of removed element

Removed element becomes
new currently owned
element

Pel'form bypass-wai t
routine; if ECB al­
ready posted, con­
tinue; if not, wait;
GR1 contains the ad­
dress of the ECB

USE [Any instruction]

FIFO Unlock Routine:

Initial conditions:

GR2 contains the address of the removed
element, obtained during the FLOCK routine.

G RS contains 40 00 00 001 6

FUNLK LR 1,2

SR 0,0

OR 0,5
HSPOST

Place address of entered
element in GR1; GR1 = ad­
dress of ECB to be posted

GR0 = 0; GR0 has a post code
of zero

Set bit 1 of GR0 to one
Perform bypass-post routine;

if ECB has not been waited
on, then mark posted and
continue; if it has been
waited on, then post

CONTI NUE [Any instruction]

Free-Pool Manipulation

It is anticipated that a program will need to add
and delete items from a free list without using the
lock/unlock routines. This is especially likely since
the lock/unlock routines require storage elements
for queuing and may require working storage. The
lock/unlock routines discussed previously allow
simultaneous lock routines but permit only one
unlock routine at a time. In such a situation, mul­
tiple additions and a single deletion to the list may
all occur simultaneously, but multiple deletions
cannot occur at the same time. In the case of a
chain of pointers containing free storage buffers,
multiple deletions along with additions can occur
simultaneously. In this case, the removal cannot
be done using the COMPARE AND SWAP instruction
without a certain degree of exposure.

Consider a chained list of the type used in the LI FO

lock/unlock example. Assume that the fust two
elements are at locations A and B, respectively. If
one program attempted to remove the fust element
and was interrupted between the fourth and fUth
instructions of the LUNLK routine, the list could be
changed so that elements A and C are the fust two
elements when the interrupted program resumes
execution. The COMPARE AND SWAP instruction
would then succeed in storing the value B into the
header, thereby destroying the list.

The probability of the occurrence of such list
destruction can be reduced to near zero by
appending to the header a counter that indicates

Appendix A. NUf!lber Representation and Instruction-Use Examples A-47

the number of times elements have been added to
the list. The use of a 32-bit counter guarantees that
the list will not be destroyed unless the following
events occur, in the exact sequence:

1. An unlock routine is interrupted between the
fetch of the pointer from the first element and
the update of the header.

2. The list is manipulated, including the deletion
of the element referenced in 1, and exactly
232_1 additions to the list are performed. Note
that this takes on the order of days to perform
in any practical situation.

3. The element referenced in 1 is added to the list.

4. The unlock routine interrupted in 1 resumes
execution.

The following routines use such a counter in order
to allow multiple, simultaneous additions and
removals at the head of a chain of pointers.

The list consists of a doubleword header and a
chain of elements. The first word of the header
contains a pointer to the frrst element in the list.
The second word of the header contains a 32-bit
counter indicating the number of additions that
have been made to the list. Each element contains
a pointer. to the next element in the list. A zero
value indicates the end of the list.

The following chart describes the free-pool-list
manipulation.

Action

Function Header • a,Count Header • A,Count

ADD TO LIST Store the first word of the header into
(the incoming location A. Store the address A into the
element is at first word of the header. Decrement the
location A) second word of the,header by one.

DELETE FROM The list is empty. Set the first word of
LIST the header to the value

of the contents of loca-
tion A. Use element A.

The following routines allow enabled code to
perform the free-pool-list manipulation described in
the above chart.

A -48 ESA/370 Principles of Operation

ADD TO FREE LIST Routine:

Initial Conditions:

GR2 contains the address of the element to be
added.

GR4 contains the address of the header.

ADDQ LM O,1,O(4) GR0,GR1 = contents of the
header

TRYAGN ST O,O(2) Point the new element to
the top of the list

LR 3,1 Move the count to .GR3
BCTR 3,O Decrement the count
CDS O,2,O(4) Update the header
BC 7,TRYAGN

DELETE FROM FREE LIST Routine:

Initial conditions:

GR4 contains the address of the header.

DELETQ LM

TRYAGN LTR
BC
L

2,3,O(4)

2,2
8, EMPTY
O,O(2)

GR2,GR3 = contents of
the header

Is the list empty?
Yes, get help
No, GR0 = the pointer

from the first ele-
ment

LR 1,3 Move the count GR1
CDS 2,O,O(4) Update the header
BC 7,TRYAGN

USE [Any instruction] The address of the re-
moved element is in
GR2

Note that the LM (LOAD MULTIPLE) instructions at
locations ADDQ and DELETQ would have to be CDS

(COMPARE DOUBLE AND SWAP) instructions if it
were not for the rule concerning storage-operand
consistency. This rule requires the LOAD MUL­

TIPLE instructions to fetch an eight-byte operand
aligned on a doubleword boundary such that, if
another CPU changes the doubleword being fetched
by an operation which is also at least doubleword­
consistent, either the entire new or the entire old
value of the doubleword is obtained, and not a
combination of the two. (See the section "Storage­
,Operand Consistency" in Chapter 5, "Program
Execution. ")

Appendix B. Lists of Instructions

The following figures list instructions by name,
mnemonic, and operation code. Some models may
offer instructions that do not appear in the figures,
such as those provided for assists or as part of
special or custom features.

The operation codes for the vector facility and for
interpretive execution are not included in this
appendix. See the publications Enterprise Systems
Architecture/370 and System/370 Vector Operations,
SA22-7125, and IBM System/370 Extended Archi­
tecture Interpretive Execution, SA22-7095, for oper­
ation codes associated with these facilities.

The operation code 00 hex with a two-byte instruc­
tion format is allocated for use by the program
when an indication of an invalid operation is
required. It is improbable that this operation code
will ever be assigned to an instruction implemented
in the CPU.

Explanation of Symbols In "Characteristics" and
"Page" Columns:

¢ Causes serialization and checkpoint syn­
chronization.

¢1 Causes serialization and checkpoint syn­
chronization when the M 1 and R2 fields
contain all ones and all zeros, respectively.

$ Causes serialization.
A Access exceptions for logical addresses.
A 1 Access exceptions; not all access

exceptions may occur; see instruction
description for details.

AI Access exceptions for instruction address.
AS ASN-translation-specification and special-

operation exceptions.
AT ASN-translation-specification exception.
B PER branch event.
Bl Bl field designates an access register in the

access-register mode.
B2 B2 field designates an access register in the

access-register mode.
BP B2 field designates an access register when

psw bits 16 and 17 have the value 01.
e Condition code is set.
D Data exception.
DF Decimal-overflow exception.
DK Decimal-divide exception.
DM Depending on the model, DIAONOSE may

generate various program exceptions and
may change the condition code.

E

EO
EU
EX
FK
00

01

02

OM

OS

IF

II

IK
11

14

L

LS

MD

MI
MK

MO
OP
P

Q

R

Rl

RR

RRE
RS
RX
S

SE

SF

SI
SO
SP

E instruction format.
Exponent-overflow exception.
Exponent-underflow exception.
Execute exception.
Floating-point-divide exception.
Instruction execution includes the implied
use of general register O.
Instruction execution includes the implied
use of general register 1.
Instruction execution includes the implied
use of general register 2.
Instruction execution includes the implied
use of multiple general registers.
Instruction execution includes the implied
use of general register 1 as the subsystem­
identification word.
Fixed-point-overflow exception.
Interruptible instruction.
Fixed-point-divide exception.
Access register 1 is implicitly designated in
the access-register mode.
Access register 4 is implicitly designated in
the access-register mode.
New condition code is loaded.
Significance exception.
Designation of access registers in the
access-register mode is model-dependent.
Move-inverse facility.
Move-with-source-or-destination-key
facility.
Monitor event.
Operand exception.
Privileged-operation exception.
Privileged-operation exception for semi­
privileged instructions.
PER general-register alteration event.
Rl field designates an access register in the
access-register mode.
R2 field designates an access register in the
access-register mode.
RR instruction format.
RRE instruction format.
RS instruction format.
RX instruction format.
S instruction format.
Special operation, stack-empty, stack­
specification, and stack-type exceptions.
Special-operation, stack-full, and stack­
specification exceptions.
SI instruction format.
Special-operation exception.
Specification exception.

• Appendix B. Lists of Instructions 8-1

SS
SSE
ST
SU
SW

T

U

U.

UB

z·

ss instruction format.
SSE instruction format.
PER storage-alteration event.
PER store-using-real-address event.
Special-operation exception and space­
switch event.
Trace exceptions (which include trace
table, addressing, and low-address pro­
tection).
Condition code is unpredictable.
R. field designates an access register
unconditionally.
R2 field designates an access register
unconditionally.
R. and R, fields designate access registers
unconditionally, and B2 field designates an
access register in the access-register mode.
Additional exceptions and events for
PROGRAM CALL (which include
AFX -translation, ASN -translation-
,specification, ASX -translation, EX -trans­
lation, Lx-translation, pc-translation-

B-2 ESA/370 Principles of Operation

specification, special-operation, stack -full,
and stack -specification exceptions and
space-switch event).
Additional exceptions and events for
PROGRAM TRANSFER (which include
AFX -translation, ASN -translation­
specification, ASX -translation, primary­
authority, and special-operation exceptions
and space-switch event).
Additional exceptions for SET SECONDARY
ASN (which include AFX translation,
ASN-translation specification, ASX trans­
lation, secondary authority, and special
operation).
Additional exceptions and events for
PROGRAM RETURN (which include
AFx-translation, ASN-translation-
specification, ASX -translation, secondary­
authority, special-operation, stack -empty,
stack-operation, stack-specification, and
stack-type exceptions and space-switch
event).

Mne- Op Page
Name monic Characteristics Code No.

ADD AR RR C IF R lA 7-8
ADD A RX C A IF R B2 5A 7-8
ADD DECIMAL AP SS C A 0 OF ST Bl B2 FA 8-5
ADD HALFWORD AH RX C A IF R B2 4A 7-8
ADD LOGICAL ALR RR C \ R IE 7-9

ADD LOGICAL AL RX C A R B2 5E 7-9
ADD NORMALIZED (extended) AXR RR C XP SP EU EO LS 36 9-7
ADD NORMALIZED (long) ADR RR C SP EU EO LS 2A 9-7
ADD NORMALIZED (long) AD RX C A SP EU EO LS B2 6A 9-7
ADD NORMALIZED (short) AER RR C SP EU EO LS 3A 9-7

ADD NORMALIZED (short) AE RX C A SP EU EO LS B2 7A 9-7
ADD UNNORMALIZED (long) AWR RR C SP EO LS 2E 9-8
ADD UNNORMALIZED (long) AW RX C A SP EO LS B2 6E 9-8
ADD UNNORMALIZED (short) AUR RR C SP EO LS 3E 9-8
ADD UNNORMALIZED (short) AU RX C A SP EO LS B2 7E 9-8

AND NR RR C R 14 7-9
AND N RX C A R B2 54 7-9
AND (character) NC SS C A ST Bl B2 04 7-9
AND (immediate) NI SI C A ST Bl 94 7-9
BRANCH AND LI NK BALR RR T B R 05 7-10

BRANCH AND LI NK BAL RX B R 45 7-10
BRANCH AND SAVE BASR RR T B R 00 7-11
BRANCH AND SAVE BAS RX B R 40 7-11
BRANCH AND SAVE AND SET MODE BASSM RR T B R 0C 7-11
BRANCH AND SET MODE BSM RR B R 0B 7-12

BRANCH AND STACK BAKR RRE Al SF T B ST B240 10-5
BRANCH ON CONDITION BCR RR ¢1 B 07 7-12
BRANCH ON CONDITION BC RX B 47 7-12
BRANCH ON COUNT BCTR RR B R 06 7-13
BRANCH ON COUNT BCT RX B R 46 7-13

BRANCH ON INDEX HIGH BXH RS B R 86 7-14
BRANCH ON INDEX LOW OR EQUAL BXLE RS B R 87 7-14
CLEAR SUBCHANNEL CSCH S C P OP ¢ GS B230 14-4
COMPARE CR RR C 19 7-15
COMPARE C RX C A B2 59 7-15

COMPARE (long) CDR RR C SP 29 9-9
COMPARE (long) CD RX C A SP B2 69 9-9
COMPARE (short) CER RR C SP 39 9-9
COMPARE (short) CE RX C A SP B2 79 9-9
COMPARE AND FORM CODEWORD CFC S C A SP II GM R 11 B21A 7-15

COMPARE AND SWAP CS RS C A SP $ R ST B2 BA 7-19
COMPARE DECIMAL CP SS C A 0 Bl B2 F9 8-5
COMPARE DOUBLE AND SWAP CDS RS C A SP $ R ST B2 BB 7-19
COMPARE HALFWORD CH RX C A B2 49 7-20
COMPARE LOGICAL CLR RR C 15 7-21

Figure B-1 (Part 1 of 6). Instructions Arranged by Name

Appendix B. Lists of Instructions B-3

Mne- Op Page
Name monic Characteristics Code No.

COMPARE LOGICAL CL RX C A B2 55 7-21
COMPARE LOGICAL (character) CLC SS C A B1 B2 05 7-21
COMPARE LOGICAL (immediate) CLI SI C A B1 95 7-21
COMPARE LOGICAL C. UNDER MASK CLM RS C A B2 BD 7-21
COMPARE LOGICAL LONG CLCL RR C A SP II R R1 R2 0F 7-22

CONVERT TO BINARY CVB RX A 0 IK R B2 4F 7-23
CONVERT TO DECIMAL CVD RX A ST B2 4E 7-24
COPY ACCESS CPYA RRE U1 U2 B24D 7-24
DIAGNOSE OM P OM MD 83 10-7
DIVIDE DR RR SP IK R 10 7-25

\

DIVIDE 0 RX A SP IK R \ B2 50 7-25
DIVIDE (extended) DXR RRE SP EU EO FK B22D 9-9
DIVIDE (long) DDR RR SP EU EO FK 20 9-9
DIVIDE (long) DO RX A SP EU EO FK B2 60 9-9
DIVIDE ·(short) DER RR SP EU EO FK 3D 9-9

DIVIDE (short) DE RX A SP EU EO FK B2 70 9-9
DIVIDE DECIMAL DP SS A SP 0 OK ST B1 B2 FD 8-6
EDIT ED SS C A 0 ST B1 B2 DE 8-6
ED IT AND MARK EDMK SS C A 0 G1 R ST B1 B2 OF 8-10
EXCLUSIVE OR XR RR C R 17 7-25

EXCLUSIVE OR X RX C A R B2 57 7-25
EXCLUSIVE OR (character) XC SS C A ST B1 B2 07 7-25
EXCLUSIVE OR (immediate) XI SI C A ST B1 97 7-25
EXECUTE EX RX AI SP EX 44 7-26
EXTRACT ACCESS EAR RRE R U2 B24F 7-27

EXTRACT PRIMARY ASN EPAR RRE Q SO R B226 10-7
EXTRACT SECONDARY ASN ESAR RRE Q SO R B227 10-8
EXTRACT STACKED REGISTERS EREG RRE A1 SE R U1 U2 B249 10-8
EXTRACT STACKED STATE ESTA RRE C A1 SP SE R B24A 10-9
HALT SUBCHANNEL HSCH S C P OP ¢ GS B231 14-4

HALVE (long) HDR RR SP EU 24 9-11
HALVE (short) HER RR SP EU 34 9-11
INSERT ADDRESS SPACE CONTROL lAC RRE C Q SO R B224 10-12
INSERT CHARACTER IC RX A R B2 43 7-27
INSERT CHARACTERS UNDER MASK ICM RS C A R B2 BF 7-27

INSERT PROGRAM MASK IPM RRE R B222 7-28
INSERT PSW KEY IPK S Q G2 R B20B 10-12
INSERT STORAGE KEY EXTENDED ISKE RRE P A1 B229 10-13
INSERT VIRTUAL STORAGE KEY IVSK RRE Q- A1 SO R R2 B223 10-13
INVALIDATE PAGE TABLE ENTRY IPTE RRE P A1 $ B221 10-14

LOAD LR RR R 18 7-28
LOAD L RX A R B2 58 7-28
LOAD (long) LOR RR SP 28 9-12
LOAD (long) LD RX A SP B2 68 9-12
LOAD (short) LER RR SP 38 9-12

Figure 8-1 (Part 2 of 6). Instructions Arranged by Name

8-4 ESA/370 Principles of Operation

Mne- Op Page
Name monic Characteristics Code No.

LOAD (short) LE RX A SP B2 78 9-12
LOAD ACCESS MULTIPLE LAM RS A SP UB 9A 7-28
LOAD ADDRESS LA RX R 41 7-29
LOAD ADDRESS EXTENDED LAE RX R Ul BP 51 7-29
LOAD ADDRESS SPACE PARAMETERS LASP SSE C P Al SP AS Bl E500 10-16

LOAD AND TEST LTR RR C R 12 7-30
LOAD AND TEST (long) LTDR RR C SP 22 9-12
LOAD AND TEST (short) LTER RR C SP 32 9-12
LOAD COMPLEMENT LCR RR C IF R 13 7-30
LOAD COMPLEMENT (long) LCDR RR C SP 23 9-12

LOAD COMPLEMENT (short) LCER RR C SP 33 9-12
LOAD CONTROL LCTL RS P A SP B2 B7 10-23
LOAD HALFWORD LH RX A R B2 48 7-30
LOAD MULTIPLE LM RS A R B2 98 7-31
LOAD NEGATIVE LNR RR C R 11 7-31

LOAD NEGATIVE (long) LNDR RR C SP 21 9-13
LOAD NEGATIVE (short) LNER RR C SP 31 9-13
LOAD POSITIVE LPR RR C IF R 10 7-31
LOAD POSITIVE (long) LPDR RR C SP 20 9-13
LOAD POSITIVE (short) LPER RR C SP 30 9-13

LOAD PSW LPSW S L P A SP ¢ B2 82 10-24
LOAD REAL ADDRESS LRA RX C P Al AT R BP B1 10-25
LOAD ROUNDED (ext. to long) LRDR RR SP EO 25 9-14
LOAD ROUNDED (long to short) LRER RR SP EO 35 9-14
LOAD USING REAL ADDRESS LURA RRE P Al SP R B24B 10-27

MODIFY STACKED STATE MSTA RRE Al SP SE ST B247 10-27
MODIFY SUBCHANNEL MSCH S C P A SP OP ¢ GS B2 B232 14-6
MONITOR CALL MC SI SP MO AF 7-32
MOVE (character) MVC SS A ST Bl B2 02 7-32
MOVE (immediate) MVI SI A ST Bl 92 7-32

MOVE INVERSE MVCIN SS MI A ST Bl B2 E8 7-33
MOVE LONG MVCL RR C A SP II R ST Rl R2 0E 7-33
MOVE NUMERICS MVN SS A ST Bl B2 01 7-37
MOVE TO PRIMARY MVCP SS C Q A SO ¢ ST DA 10-29
MOVE TO SECONDARY MVCS SS C Q A SO ¢ ST DB 10-29

MOVE WITH DESTINATION KEY MVCDK SSE MK Q A GM ST Bl B2 E50F 10-30
MOVE WITH KEY MVCK SS C Q A ST Bl B2 09 10-31
MOVE WITH OFFSET MVO SS A ST Bl B2 F1 7-37
MOVE WITH SOURCE KEY MVCSK SSE MK Q A GM ST Bl B2 E50E 10-32
MOVE ZONES MVZ SS A ST Bl B2 03 7-38

MULTIPLY MR RR SP R lC 7-38
MULTIPLY M RX A SP R B2 5C 7-38
MULTIPLY (extended) MXR RR SP EU EO 26 9-14
MULTIPLY (long to extended) MXDR RR SP EU EO 27 9-14
MULTIPLY (long to extended) MXD RX A SP EU EO B2 67 9-14

Figure B-1 (Part 3 of 6). Instructions Arranged by Name

Appendix B. Lists of Instructions 8-5

Mne- Op Page
Name monic Characteristics Code No.

MULTIPLY (long) MDR RR SP EU EO 2C 9-14
MULTIPLY (long) MD RX A SP EU EO B2 6C 9-14
MULTIPLY (short to long) MER RR SP EU EO 3C 9-14
MULTIPLY (short to long) ME RX A SP EU EO B2 7C 9-14
MULTIPLY DECIMAL MP SS A SP 0 ST B1 B2 FC 8-10

MULTIPLY HALFWORD MH RX A R B2 4C 7-39
OR OR RR C R 16 7-40
OR 0 RX C A R B2 56 7-40
OR (character) OC SS C A ST B1 B2 06 7-40
OR (immediate) 01 SI C A ST B1 96 7-40

PACK PACK SS A ST B1 B2 F2 7-40
PROGRAM CALL PC S Q Al Z1 T ¢ GM B R ST B218 10-34
PROGRAM RETURN PR E U A1 Z4 T ¢2 B R ST 0101 10-44
PROGRAM TRANSFER PT RRE Q A1 SP Z2 T ¢ B B228 10-47
PURGE ALB PALB RRE P $ B248 10-52

PURGE TLB PTLB S P $ B20D 10-53
RESET CHANNEL PATH RCHP S C P OP ¢ Gl B23B 14-7
RESET REFERENCE BIT EXTENDED RRBE RRE C P A1 B22A 10-53
RESUME SUBCHANNEL RSCH S C P OP ¢ GS B238 14-8
SET ACCESS SAR RRE Ul B24E 7-41

SET ADDRESS LIMIT SAL S P OP ¢ Gl B237 14-10
SET ADDRESS SPACE CONTROL SAC S Q SP SW ¢ B219 10-54
SET CHANNEL MONITOR SCHM S P OP ¢ GM B23C 14-10
SET CLOCK SCK S C P A SP B2 B204 10-55
SET CLOCK COMPARATOR SCKC S P A SP B2 B206 10-56

SET CPU TIMER SPT S P A SP B2 B208 10-56
SET PREFIX SPX S P A SP $ B2 B210 10-56
SET PROGRAM MASK SPM RR L 04 7-41
SET PSW KEY FROM ADDRESS SPKA S Q B20A 10-57
SET SECONDARY ASN SSAR RRE A1 za T ¢ B225 10-58

SET STORAGE KEY EXTENDED SSKE RRE P A1 ¢ B22B 10-61
SET SYSTEM MASK SSM S P A SP SO B2 80 10-61
SHIFT AND ROUND DECIMAL SRP SS C A 0 OF ST B1 F0 8-11
SHIFT LEFT DOUBLE SLDA RS C SP IF R 8F 7-42
SHIFT LEFT DOUBLE LOGICAL SLDL RS SP R 80 7-42 .

SHIFT LEFT SINGLE SLA RS C IF R 8B 7-43
SHIFT LEFT SINGLE LOGICAL SLL RS R 89 7-43
SHIFT RIGHT DOUBLE SRDA RS C SP R 8E 7-43
SHIFT RIGHT DOUBLE LOGICAL SRDL RS SP R 8C 7-44
SHIFT RIGHT SINGLE SRA RS C R 8A 7-44

SHIFT RIGHT SINGLE LOGICAL SRL RS R 88 7-45
SIGNAL PROCESSOR SIGP RS C P $ R AE 10-61
START SUBCHANNEL SSCH S C P A SP OP ¢ GS B2 B233 14-12
STORE ST RX A ST B2 50 7-45
STORE (long) STD RX A SP ST B2 60 9-16

Figure 8-1. (Part 4 of 6). Instructions Arranged by Name

8-6 ESA/370 Principles of Operation

Mne- Op Page
Name monic Characteristics Code No.

STORE (short) STE RX A SP ST B2 70 9-16
STORE ACCESS MULTIPLE STAM RS A SP ST UB 9B 7-45
STORE CHANNEL PATH STATUS STCPS S P A SP ¢ ST B2 B23A 14-14
STORE CHANNEL REPORT WORD STCRW S C P A SP ¢ ST B2 B239 14-14
STORE CHARACTER STC RX A ST B2 42 7-45

STORE CHARACTERS UNDER MASK STCM RS A ST B2 BE 7-46
STORE CLOCK STCK S C A $ ST B2 B205 7-46
STORE CLOCK COMPARATOR STCKC S P A SP ST B2 B207 10-63
STORE CONTROL STCTL RS P A SP ST B2 B6 10-63
STORE CPU ADDRESS STAP S P A SP ST B2 B212 10-63

STORE CPU 10 STIDP S P A SP ST B2 B202 10-64
STORE CPU TIMER STPT S P A SP ST B2 B209 10-64
STORE HALFWORD STH RX A ST B2 40 7-47
STORE MULTIPLE STM RS A ST B2 90 7-47
STORE PREFIX STPX S P A SP ST B2 B211 10-65

STORE SUBCHANNEL STSCH S C P A SP OP ¢ GS ST B2 B234 14-15
STORE THEN AND SYSTEM MASK STNSM SI P A ST B1 AC 10-65
STORE THEN OR SYSTEM MASK STOSM SI P A SP ST B1 AD 10-65
STORE USING REAL ADDRESS STURA RRE P A1 SP SU B246 10-66
SUBTRACT SR RR C IF R 1B 7-48

SUBTRACT S RX C A IF R B2 5B 7-48
SUBTRACT DECIMAL SP SS C A 0 OF ST B1 B2 FB 8-12
SUBTRACT HALFWORD SH RX C A IF R B2 4B 7-48
SUBTRACT LOGICAL SLR RR C R 1F 7-48
SUBTRACT LOGICAL SL RX C A R B2 5F 7-48

SUBTRACT NORMALIZED (ext.) SXR RR C SP EU EO LS 37 9-16
SUBTRACT NORMALIZED (long) SDR RR C SP EU EO LS 2B 9-16
SUBTRACT NORMALIZED (long) SO RX C A SP EU EO LS B2 6B 9-16
SUBTRACT NORMALIZED (short) SER RR C SP EU EO LS 3B 9-16
SUBTRACT NORMALIZED (short) SE RX C A SP EU EO LS B2 7B 9-16

SUBTRACT UNNORMALIZED (long) SWR RR C SP EO LS 2F 9-17
SUBTRACT UNNORMALIZED (long) SW RX C A SP EO LS B2 6F 9-17
SUBTRACT UNNORMALIZED (short) SUR RR C SP EO LS 3F 9-17
SUBTRACT UNNORMALIZED (short) SU RX C A SP EO LS B2 7F 9-17
SUPERVISOR CALL SVC RR ¢ 0A 7-49

TEST ACCESS TAR RRE C A1 AS U1 B24C 10-66
TEST AND SET TS S C A $ ST B2 93 7-49
TEST BLOCK TB RRE C P A1 II $ G0 R B22C 10-69
TEST PENDING INTERRUPTION TPI S C P A1 SP ¢ ST B2 B236 14-16
TEST PROTECTION TPROT SSE C P A1 B1 E501 10-71

TEST SUBCHANNEL TSCH S C P A SP OP ¢ GS ST B2 B235 14-17
TEST UNDER MASK TM SI C A B1 91 7-50
TRACE TRACE RS P A SP T ¢ 99 10-73
TRANSLATE TR SS A ST B1 B2 DC 7-50
TRANSLATE AND TEST TRT SS C A GM R B1 B2 DO 7-51

Figure 8-1 (Part 5 of 6). Instructions Arranged by Name

Appendix B. Lists of Instructions B-7

Mne- Op Page
Name monic Characteristics Code No.

..

UNPACK UNPK 55 A 5T Bl B2 F3 7-52
UPDATE TREE UPT E C A 5P II GM R 5T 14 0102 7-52
ZERO AND ADD ZAP 55 C A 0 OF 5T Bl B2 F8 8-12

Figure 8-1 (Part 6 of 6). Instructions Arranged by Name

8-8 ESA/370 Principles of Operation

Mne- Op Page
monic Name Characteristics Code -No.

DIAGNOSE OM P OM MD 83 10-7
A ADD RX C A IF R B2 5A 7-8
AD ADD NORMALIZED (long) RX C A SP EU EO LS B2 6A 9-7
ADR ADD NORMALIZED (long) RR C SP EU EO LS 2A 9-7
AE ADD NORMALIZED (short) RX C A SP EU EO LS B2 7A 9-7

AER ADD NORMALIZED (short) RR C SP EU EO LS 3A 9-7
AH ADD HALFWORD RX C A IF R B2 4A 7-8
AL ADD LOGICAL RX C A R B2 5E 7-9
ALR ADD LOGICAL RR C R IE 7-9
AP ADD DECIMAL SS C A 0 OF ST Bl B2 FA 8-5

AR ADD RR C IF R lA 7-8
AU ADD UNNORMALIZED (short) RX C A SP EO LS B2 7E 9-8
AUR ADD UNNORMALIZED (short) RR C SP EO LS 3E 9-8
AW ADD UNNORMALIZED (long) RX C A SP EO LS B2 6E 9-8
AWR ADD UNNORMALIZED (long) RR C SP EO LS 2E 9-8

AXR ADD NORMALIZED (extended) RR C XP SP EU EO LS 36 9-7
BAKR BRANCH AND STACK RRE Al SF T B ST B240 10-5
BAL BRANCH AND LI NK RX B R 45 7-10
BALR BRANCH AND LI NK RR T B R 05 7-10
BAS BRANCH AND SAVE RX B R 40 7-11

BASR BRANCH AND SAVE RR T B R 00 7-11
BASSM BRANCH AND SAVE AND SET MODE RR T B R 0C 7-11
BC BRANCH ON CONDITION RX B 47 7-12
BCR BRANCH ON CONDITION RR ¢1 B 07 7-12
BCT BRANCH ON COUNT RX B R 46 7-13

BCTR BRANCH ON COUNT RR B R 06 7-13
BSM BRANCH AND SET MODE RR B R 0B 7-12
BXH BRANCH ON INDEX HIGH RS B R 86 7-14
BXLE BRANCH ON INDEX LOW OR EQUAL RS B R 87 7-14
C COMPARE RX C A B2 59 7-15

CD COMPARE (long) RX C A SP B2 69 9-9
CDR COMPARE (long) RR C SP 29 9-9
CDS COMPARE DOUBLE AND SWAP RS C A SP $ R ST B2 BB 7-19
CE COMPARE (short) RX C A SP B2 79 9-9
CER COMPARE (short) RR C SP 39 9-9

CFC COMPARE AND FORM CODEWORD S C A SP II GM R 11 B21A 7-15
CH COMPARE HALFWORD RX C A B2 49 7-20
CL COMPARE LOGICAL RX C A B2 55 7-21
CLC COMPARE LOGICAL (character) SS C A Bl B2 05 7-21
CLCL COMPARE LOGICAL LONG RR C A SP II R Rl R2 0F 7-22

CLI COMPARE LOGICAL (immediate) SI C A B1 95 7-21
CLM COMPARE LOGICAL C. UNDER MASK RS C A B2 BD 7-21
CLR COMPARE LOGICAL RR C 15 7-21
CP COMPARE DECIMAL SS C A 0 Bl B2 F9 8-5
CPYA COPY ACCESS RRE Ul U2 B24D 7-24

Figure B-2 (Part 1 of 6). Instructions Arranged by Mnemonic

Appendix B. Lists of Instructions 8-9

Mne- Op Page
monic Name Characteristics Code No.

CR COMPARE RR C 19 7-15
CS COMPARE AND SWAP RS C A SP $ R ST B2 BA 7-19
CSCH CLEAR SUBCHANNEL S C P OP ¢ GS B230 14-4
CVB CONVERT TO BINARY RX A 0 IK R B2 4F 7-23
CVD CONVERT TO DECIMAL RX A ST B2 4E 7-24

0 DIVIDE RX A SP IK R B2 50 7-25
00 DIVIDE (long) RX A SP EU EO FK B2 60 9-9
DDR DIVIDE (long) RR SP EU EO FK 20 9-9
DE DIVIDE (short) RX A SP EU EO FK B2 70 9-9
DER DIVIDE (short) RR SP EU EO FK 3D 9-9

DP DIVIDE DECIMAL SS A SP 0 OK ST B1 B2 FD 8-6
DR DIVIDE RR SP IK R 10 7-25
DXR DIVIDE (extended) RRE SP EU EO FK B22D 9-9
EAR EXTRACT ACCESS RRE R U2 B24F 7-27
ED EDIT SS C A 0 ST B1 B2 DE 8-6

EDMK EDIT AND MARK SS C A 0 Gl R ST B1 B2 OF 8-10
EPAR EXTRACT PRIMARY ASN RRE Q SO R B226 10-7
EREG EXTRACT STACKED REGISTERS RRE A1 SE (R U1 U2 B249 10-8
ESAR EXTRACT SECONDARY ASN RRE Q SO R 8227 10-8
ESTA EXTRACT STACKED STATE RRE C A1 SP SE R B24A 10-9

EX EXECUTE RX AI SP EX 44 7-26
HDR HALVE (long) RR SP EU 24 9-11
HER HALVE (short) RR SP EU

~

34 9-11
HSCH HALT SUBCHANNEL S C P OP ¢ GS B231 14-4
lAC INSERT ADDRESS SPACE CONTROL RRE C Q SO R B224 10-12

IC INSERT CHARACTER RX A R B2 43 7-27
ICM INSERT CHARACTERS UNDER MASK RS C A R B2 BF 7-27
IPK INSERT PSW KEY S Q G2 R B20B 10-12
IPM INSERT PROGRAM MASK RRE R B222 7-28
IPTE INVALIDATE PAGE TABLE ENTRY RRE P Al $ 8221 10-14

ISKE INSERT STORAGE KEY EXTENDED RRE P Al B229 10-13
IVSK INSERT VIRTUAL STORAGE KEY RRE Q Al SO R R2 8223 10-13
L LOAD RX A R 82 58 7-28
LA LOAD ADDRESS RX R 41 7-29

Ii

LAE LOAD ADDRESS EXTENDED RX R U1 BP 51 7-29

LAM LOAD ACCESS MULTIPLE RS A SP UB 9A 7-28
LASP LOAD ADDRESS SPACE PARAMETERS SSE C P Al SP AS B1 E500 10-16
LCDR LOAD COMPLEMENT (long) RR C SP 23 9-12
LGER LOAD COMPLEMENT (short) RR C SP 33 9-12
LCR LOAD COMPLEMENT RR C IF R 13 7-30

LCTL LOAD CONTROL RS P A SP B2 B7 10-23
LD LOAD (long) RX A SP B2 68 9-12
LOR LOAD (long) RR SP 28 9-12
LE LOAD (short) RX A SP B2 78 9-12
LER LOAD (short) RR SP 38 9-12

Figure 8-2 (Part 2 of 6). Instructions Arranged by Mnemonic

8-10 ESAj370 Principles of Operation

Mne- Op Page
monic Name Characteristics Code No.

LH LOAD HALFWORD RX A R B2 48 7-3(:)
LM LOAD MULTIPLE RS A R B2 98 7-31
LNDR LOAD NEGATIVE (long) RR C SP 21 9-13
LNER LOAD NEGATIVE (short) RR C SP 31 9-13
LNR LOAD NEGATIVE RR C R 11 7-31

LPDR LOAD POSITIVE (long) RR C SP 2(:) 9-13
LPER LOAD POSITIVE (short) RR C SP 3(:) 9-13
LPR LOAD POSITIVE RR C IF R 1(:) 7-31
LPSW LOAD PSW S L P A SP ¢ B2 82 1(:)-24
LR LOAD RR R 18 7-28

LRA LOAD REAL ADDRESS RX C P Al AT R BP B1 1(:)-25
LRDR LOAD ROUNDED (ext. to long) RR SP EO 25 9-14
LRER LOAD ROUNDED (long to short) RR SP EO 35 9-14
LTDR LOAD AND TEST (long) RR C SP 22 9-12
LTER LOAD AND TEST (short) RR C SP 32 9-12

LTR LOAD AND TEST RR C R 12 7-3(:)
LURA LOAD USING REAL ADDRESS RRE P Al SP R B24B 1(:)-27
M MULTIPLY RX A SP R B2 5C 7-38
MC MONITOR CALL SI SP MO AF 7-32
MD MUL TIPLY (long) RX A SP EU EO B2 6C 9-14

MDR MULTIPLY (long) RR SP EU EO 2C 9-14
ME MULTIPLY (short to long) RX A SP EU EO B2 7C 9-14
MER MULTIPLY (short to long) RR SP EU EO 3C 9-14
MH MULTIPLY HALFWORD RX A R B2 4C 7-39
MP MULTIPLY DECIMAL SS A SP 0 ST B1 B2 FC 8-1(:)

MR MULTIPLY RR SP R lC 7-38
MSCH MODIFY SUBCHANNEL S C P A SP OP ¢ GS B2 B232 14-6
MSTA MODIFY STACKED STATE RRE Al SP SE ST B247 1(:)':'27
MVC MOVE (character) SS A ST B1 B2 02 7-32
MVCDK MOVE WITH DESTINATION KEY SSE MK Q A GM ST B1 B2 E50F 10-30

MVCIN MOVE INVERSE SS MI A ST Bl B2 E8 7-33
MVCK MOVE WITH KEY SS C Q A ST Bl B2 09 10-31
MVCL MOVE LONG RR C A SP II R ST R1 R2 0E 7-33
MVCP MOVE TO PRIMARY SS C Q A SO ¢ ST DA 10-29
MVCS MOVE TO SECONDARY SS C Q A SO ¢ ST DB 10-29

MVCSK MOVE WITH SOURCE KEY SSE MK Q A GM ST Bl B2 E50E 10-32
MVI MOVE (immediate) SI A ST Bl 92 7-32
MVN MOVE NUMERICS SS A ST Bl B2 01 7-37
MVO MOVE WITH OFFSET 55 A 5T Bl B2 Fl 7-37
MVZ MOVE ZONES 55 A ST Bl B2 03 7-38

MXD MULTIPLY (long to extended) RX A SP EU EO B2 67 9-14
MXDR MULTIPLY (long to extended) RR SP EU EO 27 9-14
MXR MULTIPLY (extended) RR SP EU EO 26 9-14
N AND RX C A R B2 54 7-9
NC AND (character) SS C A ST Bl B2 04 7-9

Figure 8-2 (Part 3 of 6). Instructions Arranged by Mnemonic

Appendix B. Lists of Instructions 8-11

Mne- Op Page
monic Name Characteristics Code No.

NI AND (immedi ate) SI C A ST B1 94 7-9
NR AND RR C R 14 7-9
0 OR RX C A R B2 56 7-40
OC OR (character) SS C A ST B1 B2 06 7-40
01 OR (immediate) SI C A ST B1 96 7-40

OR OR RR C R 16 7-40
PACK PACK SS A ST B1 B2 F2 7-40
PALB PURGE ALB RRE P $ B248 10-52
PC PROGRAM CALL S Q Al Zl T ¢ GM B R ST B218 10-34
PR PROGRAM RETURN E U Al Z4 T ¢2 B R ST 0101 10-44

PT PROGRAM TRANSFER RRE Q Al SP Z2 T ¢ B B228 10-47
PTLB PURGE TLB S P $ B20D 10-53
RCHP RESET CHANNEL PATH S C P OP ¢ G1 B23B 14-7
RRBE RESET REFERENCE BIT EXTENDED RRE C P Al B22A 10-53
RSCH RESUME SUBCHANNEL S C P OP ¢ GS B238 14-8

S SUBTRACT RX C A IF R B2 5B 7-48
SAC SET ADDRESS SPACE CONTROL S Q SP SW ¢ B219 10-54
SAL SET ADDRESS LIMIT S P OP ¢ G1 B237 14-10
SAR SET ACCESS RRE Ul B24E 7-41
SCHM SET CHANNEL MONITOR S P OP ¢ GM B23C 14-10

SCK SET CLOCK S C P A SP B2 B204 10-55
SCKC SET CLOCK COMPARATOR S P A SP B2 B206 10-56
SD SUBTRACT NORMALIZED (long) RX C A SP EU EO LS B2 6B 9-16
SDR SUBTRACT NORMALIZED (long) RR C SP EU EO LS 2B 9-16
SE SUBTRACT NORMALIZED (short) RX C A SP EU EO LS B2 7B 9-16

SER SUBTRACT NORMALIZED (short) RR C SP EU EO LS 3B 9-16
SH SUBTRACT HALFWORD RX C A IF R B2 4B 7-48
SIGP SIGNAL PROCESSOR RS C P $ R AE 10-61
SL SUBTRACT LOGICAL RX C A R B2 5F 7-48
SLA SHIFT LEFT SINGLE RS C IF R 8B 7-43

SLDA SHIFT LEFT DOUBLE RS C SP IF R 8F 7-42
SLDL SHIFT LEFT DOUBLE LOGICAL RS SP R 8D 7-42
SLL SHIFT LEFT SINGLE LOGICAL RS R 89 7-43
SLR SUBTRACT LOGICAL RR C R 1F 7-48
SP SUBTRACT DECIMAL SS C A D DF ST B1 B2 FB 8-12

SPKA SET PSW KEY FROM ADDRESS S Q B20A 10-57
SPM SET PROGRAM MASK RR L 04 7-41
SPT SET CPU TIMER S P A SP B2 B208 10-56
SPX SET PREFIX S P A SP $ B2 B210 10-56
SR SUBTRACT RR C IF R 1B 7-48

SRA SHIFT RIGHT SINGLE RS C R 8A 7-44
SRDA SHIFT RIGHT DOUBLE RS C SP R 8E 7-43
SRDL SHIFT RIGHT DOUBLE LOGICAL RS SP R 8C 7-44
SRL SHIFT RIGHT SINGLE LOGICAL RS R 88 7-45
SRP SHIFT AND ROUND DECIMAL SS C A 0 OF ST Bl F0 8-11

Figure B-2 (Part 4 of 6). Instructions Arranged by Mnemonic

8-12 ESAj370 Principles of Operation

Mne- Op Page
monic Name Characteristics Code No.

SSAR SET SECONDARY ASN RRE Al Z3 T ¢ 8225 10-58
SSCH START SU8CHANNEL S C P A SP OP ¢ GS 82 8233 14-12
SSKE SET STORAGE KEY EXTENDED RRE P Al ¢ 8228 10-61
SSM SET SYSTEM MASK S P A SP SO 82 80 10-61
ST STORE RX A ST 82 50 7-45

STAM STORE ACCESS MULTIPLE RS A SP ST U8 98 7-45
STAP STORE CPU ADDRESS S P A SP ST 82 8212 10-63
STC STORE CHARACTER RX A ST 82 42 7-45
STCK STORE CLOCK S C A $ ST 82 8205 7-46
STCKC STORE CLOCK COMPARATOR S P A SP ST 82 8207 10-63

STCM STORE CHARACTERS UNDER MASK RS A ST 82 8E 7-46
STCPS STORE CHANNEL PATH STATUS S P A SP ¢ ST 82 823A 14-14
STCRW STORE CHANNEL REPORT WORD S C P A SP ¢ ST 82 8239 14-14
STCTL STORE CONTROL RS P A SP ST 82 86 10-63
STD STORE (long) RX A SP ST 82 60 9-16

STE STORE (short) RX A SP ST 82 70 9-16
STH STORE HALFWORD RX A ST 82 40 7-47
STIDP STORE CPU ID S P A SP ST 82 8202 10-64
STM STORE MULTIPLE RS A ST 82 90 7-47
STNSM STORE THEN AND SYSTEM MASK SI P A ST 81 AC 10.;.65

STOSM STORE THEN OR SYSTEM MASK SI P A SP ST 81 AD 10-65
STPT STORE CPU TIMER S P A SP ST 82 8209 10-64
STPX STORE PREFIX S P A SP ST . 82 8211 10-65
STSCH STORE SU8CHANNEL S C P A SP OP ¢ GS ST 82 8234 14-15
STURA STORE USING REAL ADDRESS RRE P Al SP SU 8246 10-66

SU SU8TRACT UNNORMALIZED (short) RX C A SP EO LS 82 7F 9-17
SUR SU8TRACT UNNORMALIZED (short) RR C SP EO LS 3F 9-17
SVC SUPERVISOR CALL RR ¢ 0A 7-49
SW SU8TRACT UNNORMALIZED (long) RX C A SP EO LS 82 6F 9-17
SWR SU8TRACT UNNORMALIZED (long) RR C SP . EO LS 2F 9-17.

SXR SU8TRACT NORMALIZED (ext.) RR C SP EU EO LS 37 9-16
TAR TEST ACCESS RRE C Al AS Ul 824C 10-66
T8 TEST 8LOCK RRE C P A1 II $ G'0 R 822C 10-69
TM TEST UNDER MASK SI C A 81 91 7-50
TPI TEST PENDING INTERRUPTION S C P A1 SP ¢ ST 82 8236 14-16

TPROT TEST PROTECTION SSE C P A1 81 E501 10-71
TR TRANSLATE SS A ST 81 82 DC 7-50
TRACE TRACE RS P A SP T ¢ 99 10-73
TRT TRANSLATE AND TEST SS C A GM R 81 82 DD 7-51
TS TEST AND SET S C A $ ST 82 93 7-49

TSCH TEST SU8CHANNEL S C P A SP OP ¢ GS ST 82 8235 14-17
UNPK UNPACK SS A ST 81 82 F3 7-52
UPT UPDATE TREE E C A SP II GM R ST 14 0102 7-52
X EXCLUSIVE OR RX C A R 82 57 7-25
XC EXCLUSIVE OR (character) SS C A ST 81 82 D7 7-25

Figure 8-2 (Part 5 of 6). Instructions Arranged by Mnemonic

Appendix 8. Lists of Instructions B-13

Mne- Op Page
monic Name Characteristics Code No.

XI EXCLUSIVE OR (immediate) SI C A ST B1 97 7-25
XR EXCLUSIVE OR RR C R 17 7-25
ZAP ZERO AND ADD SS C A 0 OF ST B1 B2 F8 8-12

Figure 8-2 (Part 6 of 6). Instructions Arranged by Mnemonic

8-14 ESA/370 Principles of Operation

Op Mne- Page
Code Name monic Characteristics No.

0101. PROGRAM RETURN PR E U Al Z4 T ¢2 B R ST 10-44
0102 UPDATE TREE UPT E C A SP II GM R ST 14 7-52
04 SET PROGRAM MASK SPM RR L 7-41
05 BRANCH AND LI NK BALR RR T B R 7-10
06 BRANCH ON COUNT BCTR RR B R 7-13

07 BRANCH ON CONDITION BCR RR ¢l B 7-12
0A SUPERVISOR CALL SVC RR ¢ 7-49
0B BRANCH AND SET MODE BSM RR B R 7-12
0C BRANCH AND SAVE AND SET MODE BASSM RR T B R 7-11
00 BRANCH AND SAVE BASR RR T B R 7-11

0E MOVE LONG MVCL RR C A SP II R ST Rl R2 7-33
0F COMPARE LOGICAL LONG CLCL RR C A SP II R Rl R2 7-22
10 LOAD POSITIVE LPR RR C IF R 7-31
11 LOAD NEGATIVE LNR RR C R 7-31
12 LOAD AND TEST LTR RR C R 7-30

13 LOAD COMPLEMENT LCR RR C IF R 7-30
14 AND NR RR C R 7-9
15 COMPARE LOGICAL CLR RR C 7-21
16 OR OR RR C R 7-40
17 EXCLUSIVE OR XR RR C R 7-25

18 LOAD LR RR R 7-28
19 COMPARE CR RR C 7-15
lA ADD AR RR C IF R 7-8
IB SUBTRACT SR RR C IF R 7-48
lC MULTIPLY MR RR SP R 7-38

10 DIVIDE DR RR SP IK R 7-25
IE ADD LOGICAL ALR RR C R 7-9
IF SUBTRACT LOGICAL SLR RR C R 7-48
20 LOAD POSITIVE (long) LPDR RR C SP 9-13
21 LOAD NEGATIVE (long) LNDR RR C SP 9-13

22 LOAD AND TEST (long) LTDR RR C SP 9-12
23 LOAD COMPLEMENT (long) LCDR RR C SP 9-12
24 HALVE (long) HDR RR SP EU 9-11
25 LOAD ROUNDED (ext. to long) LRDR RR SP EO 9-14
26 MULTIPLY (extended) MXR RR SP EU EO 9-14

27 MULTIPLY (long to extended) MXDR RR SP EU EO 9-14
28 LOAD (long) LOR RR SP 9-12
29 COMPARE (long) CDR RR C SP 9-9
2A ADD NORMALIZED (long) ADR RR C SP EU EO LS 9-7
2B SUBTRACT NORMALIZED (long) SDR RR C SP EU EO· LS 9-16

2C MULTIPLY (long) MDR RR SP EU EO 9-14
20 DIVIDE (long) DDR RR SP EU EO FK 9-9
2E ADD UNNORMALIZED (long) AWR RR C SP EO LS 9-8
2F SUBTRACT UNNORMALIZED (long) SWR RR C SP EO LS 9-17
30 LOAD POSITIVE (short) LPER RR C SP 9-13

Figure B-3 (Part 1 of 6). Instructions Arranged by Operation Code

Appendix B. Lists of Instructions B-15

Op Mne- Page
Code Name monic Characteristics No.

31 LOAD NEGATIVE (short) LNER RR C SP 9-13
32 LOAD AND TEST (short) LTER RR C SP 9-12
33 LOAD COMPLEMENT (short) LCER RR C SP 9-12
34 HALVE (short) HER RR SP EU 9-11
35 LOAD ROUNDED (long to short) LRER RR SP EO 9-14

36 ADD NORMALIZED (extended) AXR RR C XP SP EU EO LS 9-7
37 SUBTRACT NORMALIZED (ext.) SXR RR C SP EU EO LS 9-16
38 LOAD (short) LER RR SP 9-12
39 COMPARE (short) CER RR C SP 9-9
3A ADD NORMALIZED (short) AER RR C SP EU EO LS 9-7

3B SUBTRACT NORMALIZED (short) SER RR C SP EU EO LS 9-16
3C MULTIPLY (short to long) MER RR SP EU EO 9-14
3D DIVIDE (short) DER RR SP EU EO FK 9-9
3E ADD UNNORMALIZED (short) AUR RR C SP EO LS 9-8
3F SUBTRACT UNNORMALIZED (short) SUR RR C SP EO LS 9-17

40 STORE HALFWORD STH RX A ST B2 7-47
41 LOAD ADDRESS LA RX R 7-29
42 STORE CHARACTER STC RX A ST B2 7-45
43 INSERT CHARACTER IC RX A R B2 7-27
44 EXECUTE EX RX AI SP EX 7-26

45 BRANCH AND LINK BAL RX B R 7-10
46 BRANCH ON COUNT BCT RX B R 7-13
47 BRANCH ON CONDITION BC RX B 7-12
48 LOAD HALFWORD LH RX A R B2 7-30
49 COMPARE HALFWORD CH RX C A B2 7-20

4A ADD HALFWORD AH RX C A IF R B2 7-8
4B SUBTRACT HALFWORD SH RX C A IF R B2 7-48
4C MULTIPLY HALFWORD MH RX A R B2 7-39
40 BRANCH AND SAVE BAS RX B R 7-11
4E CONVERT TO DECIMAL CVD RX A ST B2 7-24

4F CONVERT TO BINARY CVB RX A 0 IK R B2 7-23
50 STORE ST RX A ST. B2 7-45
51 LOAD ADDRESS EXTENDED LAE RX R Ul BP 7-29
54 AND N RX C A R B2 7-9
55 COMPARE LOGICAL CL RX C A B2 7-21

56 OR 0 RX C A R B2 7-40
57 EXCLUSIVE OR X RX C A R B2 7-25
58 LOAD L' RX A R B2 7-28
59 COMPARE C RX C A B2 7-15
5A ADD A RX C A IF R B2 7-8

5B SUBTRACT S RX C A IF R B2 7-48
5C MUL TIPLY M RX A SP R B2 7-38
50 DIVIDE 0 RX A SP IK R B2 7-25
5E ADD LOGICAL AL RX C A R B2 7-9
5F SUBTRACT LOGICAL SL RX C A R B2 7-48

Figure 8-3 (Part 2 of 6). Instructions Arranged by Operation Code

8-16 ESA/370 Principles of Operation

Op Mne- Page
Code Name monic Characteristics No.

60 STORE (long) STD RX A SP ST B2 9-16
67 MULTIPLY (long to extended) MXD RX A SP EU EO B2 9-14
68 LOAD (long) LD RX A SP B2 9-12
69 COMPARE (long) CD RX C A SP B2 9-9
6A ADD NORMALIZED (long) AD RX C A SP EU EO LS B2 9-7

6B SUBTRACT NORMALIZED (long) SO RX C A SP EU EO LS B2 9-16
6C MUL TIPLY (long) MD RX A SP EU EO B2 9-14
60 DIVIDE (long) DO RX A SP EU EO FK B2 9-9
6E ADD UNNORMALIZED (long) AW RX C A SP EO LS B2 9-8·
6F SUBTRACT UNNORMALIZED (long) SW RX C A SP EO LS B2 9-17

70 STORE (short) STE RX A SP ST B2 9-16
78 LOAD (short) LE RX A SP B2 9-12
79 COMPARE (short) CE RX C A SP B2 9-9
7A ADD NORMALIZED (short) AE RX C A SP EU EO LS B2 9-7
7B SUBTRACT NORMALIZED (short) SE RX C A SP EU EO LS B2 9-16

7C MULTIPLY (short to long) ME RX A SP EU EO B2 9-14
7D DIVIDE (short) DE RX A SP EU EO FK B2 9-9
7E ADD UNNORMALIZED (short) AU RX C A SP EO LS B2 9-8
7F SUBTRACT UNNORMALIZED (short) SU RX C A SP EO LS B2 9-17
80 SET SYSTEM MASK SSM S P A SP SO B2 10-61

82 LOAD PSW LPSW S L P A SP ¢ B2 10-24
83 DIAGNOSE DM P DM MD 10-7
86 BRANCH ON INDEX HIGH BXH RS B R 7-14
87 BRANCH ON INDEX LOW OR EQUAL BXLE RS B R 7-14
88 SHIFT RIGHT SINGLE LOGICAL SRL RS R 7-45

89 SHIFT LEFT SINGLE LOGICAL SLL RS R 7-43
8A SHIFT RIGHT SINGLE SRA RS C R 7-44
8B SHIFT LEFT SINGLE SLA RS C IF R 7-43
8C SHIFT RIGHT DOUBLE LOGICAL SRDL RS SP R 7-44
8D SHIFT LEFT DOUBLE LOGICAL SLDL RS SP R 7-42

8E SHIFT RIGHT DOUBLE SRDA RS C SP R 7-43
8F SHIFT LEFT DOUBLE SLDA RS C SP IF R 7-42
90 STORE MULTIPLE STM RS A ST B2 7-47
91 TEST UNDER MASK TM SI C A B1 7-50
92 MOVE (immediate) MVI SI A ST B1 7-32

93 TEST AND SET TS S C A $ ST B2 7-49
94 AND (immediate) NI SI C A ST B1 7-9
95 COMPARE LOGICAL (immediate) CLI SI C A B1 7-21
96 OR (immediate) 01 SI C A ST B1 7-40
97 EXCLUSIVE OR (immediate) XI SI C A ST B1 7-25

98 LOAD MULTIPLE LM RS A R B2 7-31
99 TRACE TRACE RS P A SP T ¢ 10-73
9A LOAD ACCESS MULTIPLE LAM RS A SP UB 7-28
9B STORE ACCESS MULTIPLE STAM RS A SP ST UB 7-45
AC STORE THEN AND SYSTEM MASK STNSM SI P A ST B1 10-65

Figure 8-3 (Part 3 of 6). Instructions Arranged by Operation Code

Appendix B. Lists of Instructions B-17

Op Mne- Page
Code Name monic Characteristics No.

AD STORE THEN OR SYSTEM MASK STOSM SI P A SP ST B1 10-65
AE SIGNAL PROCESSOR SIGP RS C P $ R 10-61
AF MONITOR CALL MC SI SP MO 7-32
B1 LOAD REAL ADDRESS LRA RX C P A1 AT R BP 10-25
B202 STORE CPU 10 STIDP S P A SP ST B2 10-64

B204 SET CLOCK SCK S C P A SP B2 10-55
B205 STORE CLOCK STCK S C A $ ST B2 7-46
B206 SET CLOCK COMPARATOR SCKC S P A SP B2 10-56
B207 STORE CLOCK COMPARATOR STCKC S P A SP ST B2 10-63
B208 SET CPU TIMER SPT S P A SP B2 10-56

B209 STORE CPU TIMER STPT S P A SP ST B2 10-64
820A SET PSW KEY FROM ADDRESS SPKA S

.
Q 10-57

B20B INSERT PSW KEY IPK S Q G2 R 10-12
8200 PURGE TL8 PTLB S P $ 10-53
8210 SET PREFIX SPX S P A SP $ B2 10-56

B211 STORE PREFIX STPX S P A SP ST B2 10-65
8212 STORE CPU ADDRESS STAP S P A SP ST B2 10-63
8218 PROGRAM CALL PC S Q A1 Z1 T ¢ GM B R ST 10-34
8219 SET ADDRESS SPACE CONTROL SAC S Q SP SW ¢ 10-54
821A COMPARE AND FORM CODEWORD CFC S C A SP II GM R 11 7-15

8221 INVALIDATE PAGE TABLE ENTRY IPTE RRE P A1 $ 10-14
8222 INSERT PROGRAM MASK IPM RRE R 7-28
8223 INSERT VIRTUAL STORAGE KEY IVSK RRE Q A1 SO R R2 10-13
8224 INSERT ADDRESS SPACE CONTROL lAC RRE C Q SO R 10-12
8225 SET SECONDARY ASN SSAR RRE A1 Z3 T ¢ 10-58

8226 EXTRACT PRIMARY ASN EPAR RRE Q SO R 10-7
8227 EXTRACT SECONDARY ASN ESAR RRE Q SO R 10-8
8228 PROGRAM TRANSFER PT RRE Q A1 SP Z2 T ¢ B 10-47
B229 INSERT STORAGE KEY EXTENDED ISKE RRE P A1 10-13
B22A RESET REFERENCE BIT EXTENDED RRBE RRE C P A1 10-53

822B SET STORAGE KEY EXTENDED SSKE RRE P A1 ¢ 10-61
822C TEST BLOCK TB RRE C P A1 II $ G0 R 10-69
B22D DIVIDE (extended) DXR RRE SP EU EO FK 9-9
B230 CLEAR SUBCHANNEL CSCH S C P OP ¢ GS 14-4
B231 HALT SUBCHANNEL HSCH S C P OP ¢ GS 14-4

8232 MODIFY SU8CHANNEL MSCH S C P A SP OP ¢ GS 82 14-6
8233 START SUBCHANNEL SSCH S C P A SP OP ¢ GS 82 14-12
8234 STORE SUBCHANNEL STSCH S C P A SP OP ¢ GS ST 82 14-15
8235 TEST SU8CHANNEL TSCH S C P A SP OP ¢ GS ST B2 14-17
8236 TEST PENDING INTERRUPTION TPI S C P A1 SP ¢ ST 82 14-16

8237 SET ADDRESS LIMIT SAL S P OP ¢ G1 14-10
8238 RESUME SU8CHANNEL RSCH S C P OP ¢ GS 14-8
B239 STORE CHANNEL REPORT WORD STCRW S C P A SP ¢ ST B2 14-14
823A STORE CHANNEL PATH STATUS STCPS S P A SP ¢ ST 82 14-14
823B RESET CHANNEL PATH RCHP S C P OP ¢ G1 14-7

Figure B-3 (Part 4 of 6). Instructions Arranged by Operation Code

B-18 ESA/370 Principles of Operation

Op Mne- Page
Code Name monic Characteristics No.

B23C SET CHANNEL MONITOR SCHM S P OP ¢ GM 14-10
B240 BRANCH AND STACK BAKR RRE Al SF T B ST 10-5
B246 STORE USING REAL ADDRESS STURA RRE P Al SP SU 10-66
B247 MODIFY STACKED STATE MSTA RRE Al SP SE ST 10-27
B248 PURGE ALB PALB RRE P $ 10-52

B249 EXTRACT STACKED REGISTERS EREG RRE Al SE R Ul U2 10-8
B24A EXTRACT STACKED STATE ESTA RRE C Al SP SE R 10-9
B24B LOAD USING REAL ADDRESS LURA RRE P Al SP R 10-27
B24C TEST ACCESS TAR RRE C Al AS Ul 10-66
B24D COPY ACCESS CPYA RRE Ul U2 7-24

B24E SET ACCESS SAR RRE Ul 7-41
B24F EXTRACT ACCESS EAR RRE R U2 7-27
B6 STORE CONTROL STCTL RS P A SP ST B2 10-63
B7 LOAD CONTROL LCTL RS P A SP B2 10-23
BA COMPARE AND SWAP CS RS C A SP $ R ST B2 7-19

BB COMPARE DOUBLE AND SWAP CDS RS C A SP $ R ST B2 7-19
BD COMPARE LOGICAL C. UNDER MASK CLM RS C A B2 7-21
BE STORE CHARACTERS UNDER MASK STCM RS A ST B2 7-46
BF INSERT CHARACTERS UNDER MASK ICM RS C A R B2 7-27
D1 MOVE NUMERICS MVN SS A ST Bl B2 7-37

D2 MOVE (character) MVC SS A ST Bl B2 7-32
D3 MOVE ZONES MVZ SS A ST B1 B2 7-38
D4 AND (character) NC SS C A ST B1 B2 7-9
D5 COMPARE LOGICAL (character) CLC SS C A B1 B2 7-21
D6 OR (character) OC SS C A ST B1 B2 7-40

D7 EXCLUSIVE OR (character) XC SS C A ST B1 B2 7-25
D9 MOVE WITH KEY MVCK SS C Q A ST B1 B2 10-31
DA MOVE TO PRIMARY MVCP SS C Q A SO ¢ ST 10-29
DB MOVE TO SECONDARY MVCS SS C Q A SO ¢ ST 10-29
DC TRANSLATE TR SS A ST BI B2 7-50

DD TRANSLATE AND TEST TRT SS C A GM R B1 B2 7-51
DE EDIT ED SS C A 0 ST B1 B2 8-6
DF EDIT AND MARK EOMK SS C A 0 G1 R ST B1 B2 8-10
E500 LOAD ADDRESS SPACE PARAMETERS LASP SSE C P Al SP AS B1 10-16
E501 TEST PROTECTION TPROT SSE C P Al B1 10-71

E50E MOVE WITH SOURCE KEY MVCSK SSE MK Q A GM ST B1 B2 10-32
E50F MOVE WITH DESTINATION KEY MVCOK SSE MK Q A GM ST B1 B2 10-30
E8 MOVE INVERSE MVCIN SS MI A ST B1 B2 7-33
F0 SHIFT AND ROUND DECIMAL SRP SS C A 0 DF ST B1 8-11
F1 MOVE WITH OFFSET MVO SS A ST B1 B2 7-37

F2 PACK PACK SS A ST B1 B2 7-40
F3 UNPACK UNPK SS A ST B1 B2 7-52
Fa ZERO AND ADD ZAP SS C A 0 OF ST B1 B2 8-12
F9 COMPARE DECIMAL CP SS C A 0 B1 B2 8-5
FA ADD DECIMAL AP SS C A 0 OF ST B1 B2 8-5

Figure 8-3 (Part 5 of 6). Instructions Arranged by Operation Code

Appendix B. Lists of Instructions B-19

Op Mne- Page
Code Name monic Characteristics No.

FB SUBTRACT DECIMAL SP SS C A 0 OF ST B1 B2 8-12
FC MULTIPLY DECIMAL MP SS A SP 0 ST B1 B2 8-10
FD DIVIDE DECIMAL DP SS A SP 0 OK ST B1 B2 8-6

Figure B-3 (Part 6 of 6). Instructions Arranged by Operation Code

B·20 ESA/370 Principles of Operation

Appendix C. Condition-Code Settings

This appendix lists the condition -code setting for
instructions in 370-XA which set the condition code.
In addition to those instructions listed which set
the condition code, the condition code is set unpre­
dictably by PROGRAM RETURN, and it may be
changed by DIAGNOSE and the target of EXECUTE.

The condition code is loaded by LOAD psw, by SET

PROGRAM MASK, and by an interruption. The
condition code is set to zero by initial CPU reset
and is loaded by the successful conclusion of the
initial-program-Ioading sequence.

The condition codes for the vector facility are· not
included in this appendix. See the publication
Enterprise Systems Architecture/370 and
System/370 Vector Operations, SA22-7125, for the
condition codes set by vector instructions.

Instruction 0

ADD, ADD HALFWORD (Zero
ADD DECIMAL Zero
ADD LOGICAL Zero,

no carry
ADD NORMALIZED Zero
ADD UNNORMALIZED Zero

AND Zero
CLEAR SUBCHANNEL Function

initiated
COMPARE (gent f1 pt) Equal
COMPARE HALFWORD Equal
COMPARE AND FORM CODEWORD Equal

COMPARE AND SWAP Equal

COMPARE DECIMAL Equal
COMPARE DOUBLE AND SWAP Equal
COMPARE LOGICAL Equal
COMPARE LOGICAL CHARACTERS Equal

UNDER MASK
COMPARE LOGICAL LONG Equal

EDIT, EDIT AND MARK Zero
EXCLUSIVE OR Zero
EXTRACT STACKED STATE Branch state

entry
HALT SUBCHANNEL Function

initiated

INSERT ADDRESS SPACE CONTROL Primary-space
mode

INSERT CHARACTERS UNDER MASK All zeros

Some models may offer instructions which set the
condition code and do not appear in this docu­
ment, such as those provided for assists or as part
of special or custom features.

Condition Code

1 2 3

< zero > zero Overflow
< zero > zero Overflow
Not zero, Zero, Not zero,

no carry carry carry
< zero > zero --
< zero > zero --
Not zero -- --
-- -- Not operational

Low High --
Low High --
OCB=0: low OCB=0: high --
OCB=l: high OCB=l : low
Not equal -- --

Low High --
Not equal -- --
Low High --
Low High --

Low High --

< zero > zero --
Not zero -.- --
Program-call -- --

state entry
Status-pending Busy Not operational

with other
than interme-
diate status

Secondary-space Access-register Home-space mode
mode mode

Fi rst bi tone First bit zero --

Figure C-l (Part 1 of 3). Summary of Condition-Code Settings

Appendix C. Condition-Code Settings C-l

Condition Code

Instruction e 1 2 3

LOAD ADDRESS SPACE Parameters Primary ASN Secondary ASN Space-switch
PARAMETERS loaded not available not available event

or not
authorized

LOAD AND TEST (gen, fl pt) Zero < zero > zero --
LOAD COMPLEMENT (gen) Zero < zero > zero Overflow
LOAD COMPLEMENT (fl pt) Zero < zero > zero --
LOAD NEGATIVE (gen, fl pt) Zero < zero -- --
LOAD POSITIVE (gen) Zero -- > zero Overflow
LOAD POSITIVE (fl pt) Zero -- > zero --
LOAD REAL ADDRESS Translation ST entry PT entry ST designation

available invalid invalid not available
or length
violation

MODIFY SUBCHANNEL SCHIB informa- Status-pending Busy Not operational
tion placed
in subchannel

MOVE LONG Length equal Length low Length high Destructive
overlap

MOVE TO PRIMARY, MOVE TO Length =< 256 -- -- Length > 256
SECONDARY

MOVE WITH KEY Length =< 256 -- -- Length > 256
OR Zero Not zero -- --
RESET CHANNEL PATH Function -- Busy Not operational

initiated
RESET REFERENCE BIT R bit zero, R bit zero, R bit one, R bit one,

EXTENDED C bit zero C bit one C bit zero C bit one
RESUME SUBCHANNEL Function Status pending Function not Not operational

initiated applicable
SET CLOCK Set Secure -- Not operational
SHIFT AND ROUND DECIMAL Zero < zero > zero Overflow
SHIFT LEFT (DOUBLE/SINGLE) Zero < zero > zero Overflow
SHIFT RIGHT (DOUBLE/SINGLE) Zero < zero > zero --

SIGNAL PROCESSOR Order accepted Status stored Busy Not operational
START SUBCHANNEL Function Status-pending Busy Not operational

initiated
STORE CHANNEL REPORT WORD CRW stored Zeros stored -- --
STORE CLOCK Set Not set Error Not operational
STORESUBCHANNEL SCHIB stored -- -- Not operational

Figure C-l (Part 2 of 3). Summary of Condition-Code Settings

C-2 ESAj370 Principles of Operation

Instruction e

SUBTRACT, SUBTRACT HALFWORD Zero
SUBTRACT DECIMAL Zero
SUBTRACT LOGICAL --
SUBTRACT NORMALIZED Zero
SUBTRACT UNNORMALIZED Zero

TEST ACCESS ALET e

TEST AND SET Left bit zero
TEST BLOCK Usable
TEST PENDING INTERRUPTION Interruption

code not
stored

TEST PROTECTION Can fetch,
can store

TEST SUBCHANNEL IRB stored;
subchannel
status-
pending

TEST UNDER MASK All zeros
TRANSLATE AND TEST All zeros
UPDATE TREE Equal

ZERO AND ADD Zero

Explanation:

> zero
< zero
=< 256
> 256
High
Low
length
OCB

Result greater than zero
Result less than zero
Equal to, or less than, 256
Greater than 256
First operand high
First operand low
Length of first operand
Operand-control bit

Condition Code

1 2 3

< zero > zero Overflow
< zero > zero Overflow
Not zero, Zero, Not zero,

no carry carry carry
< zero > zero --
< zero > zero --
DU access list, PS access list, ALET 1 or

no exceptions no exceptions exceptions
Left bit one -- -- ,
Not usable -- --
Interruption -- --

code stored

Can fetch, Cannot fetch, Translation not
cannot store cannot store avail abl e

IRB stored; -- Not operational
subchannel
not status-
pending

Mixed -- All ones
Incomplete Complete --
Not equal or -- Method 2,

no comparison GR5 nonzero,
GRe negative

< zero > zero Overflow

Figure C-l (Part 3 of 3). Summary of Condition-Code Settings

Appendix C. Condition-Code Settings C-3

Appendix D. Comparison Between 370-XA and ESA/370

New Facilities in ESA/370 D-l
Access Registers D-l
Home Address Space . '0 • • • • •• D-l
Linkage Stack D-l
Load and Store Using Real Address D-2
Move with Source or Destination Key D-2
Private Space D-2

Comparison of Facilities D-2
Summary of Changes D-2

New Instructions Provided ... D-2
Comparison of PSW Formats D-3
New Control-Register Assignments ... D-3
New Assigned Storage Locations D-3
New Exceptions D-3
Change to Secondary-Space Mode D-4

This appendix provides (1) a list of the facilities
that are new in ESA/370 and not provided in 370-XA,

(2) a description of the handling in ESA/370 of the
facilities available in 370-XA, (3) a list of changes
between 370-XA and ESA/370, and (4) a list of how
370-XA facilities are affected by the new translation
modes in ESA/370.

New Facilities in ESA/370
The . following facilities are new in ESA/370 and are
not provided in 370-XA. Access registers, home
address space, linkage stack, and load and store
using real address are provided by all ESA/370

models. Move with source or destination key and
private space are provided by some ESA/370 models.

Access Registers

Sixteen access registers and a translation mode
named the access-register mode allow designation
of storage operands in up to sixteen different
address spaces by means of the B fields of
instructions and the R fields of certain instructions.
The dispatchable-unit and primary-space access
lists contain the addressing capabilities that are
usable by means of the access registers. The use of
an access-list entry is controlled by the extended
authorization index in control register 8.

Changes to ASN-Second-Table Entry and
ASN Translation D-4

Changes to Entry-Table Entry and
PC-Number Translation D-4

Changes to PROGRAM CALL . . D-4
Changes to SET ADDRESS SPACE

CONTROL D-4
Effects in New Translation Modes D-4

Effects on Interlocks for Virtual-Storage
References D-5

Effect on INSERT ADDRESS SPACE
CONTROL D-5

Effect on LOAD REAL ADDRESS D-5
Effect on TEST PENDING

INTERRUPTION D-5
Effect on TEST PROTECTION D-5

Instructions are provided for exammmg and
changing the contents of the access registers and for
purging the access-register-translation-Iookaside
buffer.

Home Address Space

A translation mode named the home-space mode
allows the control program to quickly gain control
in and access the home address space, which is
where the control program keeps the principal
control blocks for a dispatchable unit. The space­
switch event can indicate a transfer of control to or
from the home address space.

Linkage Stack

A bit in the entry-table entry controls whether
PROGRAM CALL performs the 370-XA, or basic,
operation or the stacking operation. The stacking
operation allows increased status changing, and it
saves status in a linkage-stack state entry, from
which status is restored by the PROGRAM RETURN

instruction. The linkage stack can also be used in a
branch-type linkage. Instructions are provided for
examining and changing the contents of the last
state entry and for testing the contents of an access
register by means of a specified- extended authori­
zation index.

Appendix D. Comparison Between 370-XA and ESAj370 D-l

Load and Store Using Real Address

Instructions are provided for loading and storing
from a general register through the use of a real
address. The storing operation can be indicated by
a store-using-real-address PER event.

Move with Source or Destination Key

Instructions are provided for moving data with a
specified access key that applies to the references to
either the source or the destination storage area; the
psw key applies to the references to the other
storage area.

Private Space

A bit in the segment-table designation can be set to
one to prevent the use of translation-lookaside­
buffer entries for common segments and to prevent
the application of low-address protection and fetch­
protection override to the specified address space.

Comparison of Facilities
Figure D-l shows the facilities offered in 370-XA

and how each facility is provided in BSA/370.

370-XA Facility

Basic 370-XA facilities
Expanded storage
Move inverse
Vector

Explanation:

Avail a­
bil i ty in

ESA/370

B1
ES
MI
V

1 Compatibility for privileged programs is
not provided when the address-space­
function control, bit 15 of control
register 0, is one.

B Basic in ESA/370 mode.
ES Provided in both 370-XA and ESA/370 as the

expanded-storage facility.
MI Provided in both 370-XA and ESA/370 as the

move-inverse facility.
V Provided in both 370-XA and ESA/370 as the

vector facility.

Figure D-1. Availability of 370-XA Facilities in
ESA/370

D·2 ESA/370 Principles of Operation

Summary of Changes
This section summarizes the changes between
370-XA and BSA/370. Most of these changes are
simply additions in BSA/370 beyond 370-XA or apply
only when the BSA/370 address-space-function (ASF)

control, bit 15 of control register 0, is one. Some
of the changes apply regardless of the value of the
ASF control.

New Instructions Provided

Figure D-2 shows those instructions which are
basic or optional in BSA/370 but not provided in
370-XA. All 370-XA instructions are provided in
BSA/370.

Mne- Op Availa-
Instruction Name monic Code bil ity

BRANCH AND STACK BAKR B24a B1
COPY ACCESS CPYA B24D B
EXTRACT ACCESS EAR B24F B
EXTRACT STACKED REGISTERS EREG B249 B1
EXTRACT STACKED STATE ESTA B24A B1

LOAD ACCESS MULTIPLE LAM 9A B
LOAD ADDRESS EXTENDED LAE 51 B
LOAD USING REAL ADDRESS LURA B24B B
MODIFY STACKED STATE MSTA B247 B1
MOVE WITH DESTINATION KEY MVCDK E5aF MK

MOVE WITH SOURCE KEY MVCSK E5aE MK
PROGRAM RETURN PR alaI B1
PURGE ALB PALB B248 B
SET ACCESS SAR B24E B
STORE ACCESS MULTIPLE STAM 9B B

STORE USING REAL ADDRESS STURA B246 B
TEST ACCESS TAR B24C B1

Explanation:

1 Instruction can be executed successfully
only when the address-space-function
control, bit 15 of control register a, is
one.

B Instruction is basic.
MK Move-wi th-source-or-desti nati on-key

facil ity.

Figure D-2. New Instructions Provided

Comparison of PSW Formats

In 370-XA, psw bit 16 is the address-space control,
and a one in bit position 17 of the psw is invalid.
In BSA/370, psw bits 16 and 17 are the address­
space control.

New Control-Register Assignments

Figure 0-3 shows those assignments of control­
register bits and fields that are new in FSA/370 com­
pared to 370-XA.

Ctrl
Reg Bits Name of Bit or Field

0 15 Address-space-function control

1 0 Primary space-switch-event control 1

1 23 Primary private-space control

2 1-25 Dispatchable-unit-control-table
origin

5 1-25 Primary-ASN-second-table-entry
origin 2

7 23 Secondary private-space control

8 0-15 Extended authorization index

9 4 Store-using-real-address-event mask

13 0 Home space-switch-event control
13 1-19 Home segment-table origin
13 23 Home private-space control
13 25-31 Home segment-table length

15 1-28 Linkage-stack-entry address

Explanation:

1 Only the name of this bit is new. The
bit has the same position and function as
the space-switch-event control of 370-XA.

2 This assignment applies only if bit 15 of
control register 0 is one. If bit 15 is
zero, control register 5 contains the
linkage-table designation as in 370-XA.

Figure D-3. New Control-Register Assignments

In 370-XA, and in FSA/370 when the address-space­
function (ASF) control, bit 15 of control register 0,

is zero, control register 5 contains the linkage-table
designation. In FSA/370 when the ASF control is
one, control register 5 contains the primary
ASN-second-table-entry origin, and the linkage-table
designation is in the primary ASN -second-table
entry.

New Assigned Storage Locations

Figure 0-4 shows those storage locations that are
assigned in ESA/370 and not assigned in 370-XA.

Name of Field

Assigned
Storage
Location
and
Length*

Exception access identification R 160 1
PER access identification R 161 1
Machine-check access-register R 288 64

save area
Store-status access-register A 288 64

save area

Explanation:

* The first number is the address, the
second the length.

A Absolute location.
R Real location.

Figure D-4. New Assigned Storage Locations

Bit 33 of the machine-check -interruption code, the
access-register-validity bit, is assigned in FSA/370

and not assigned in 370-XA.

In both 370-XA and FSA/370, the translation­
exception identification is stored at real locations
144-147 during a program interruption due to a
segment-translation or page-translation exception.
In 370-XA, bits 20-31 of this translation-exception
identification are unpredictable. In ESA/370, bits
20-29 are unpredictable, and bits 30-31 are set to
identify the type of virtual address that caused the
exception.

New Exceptions

Figure 0-5 on page 0-4 shows those new
exceptions that may be recognized in ESA/370 and
are not recognized in 370-XA.

APPetldix D. Comparison Between 370-XA and ESA/370 D-3

J

Interrup-
tion Code

Exception Name (hex)

ALET specification l e028
ALEN translation l e029
ALE sequence l e02A
ASTE validityl e028
ASTE sequence l e02C
Extended authorityl e020
Stack fu11 2 e03e
Stack empty2 e031
Stack specification2 e032
Stack type2 e033
Stack operation 2 e034

Explanation:

1 May be recognized during
access-register translation.

2 May be recognized during
linkage-stack operations.

Figure D-5. New Exceptions

Change to Secondary-Space Mode

In 370-XA in the secondary-space mode, it is unpre­
dictable whether instructions are fetched from the
primary address space or the secondary address
space. In FSA/370 in the secondary-space mode,
instructions are fetched from the primary address
space.

Changes to ASN-Second-Table Entry
and ASN Translation

In 370-XA, and in FSA/370 when the address-space­
function (ASF) control, bit 15 of control register 0 is
zero, the ASN-second-table entry has a length of 16
bytes and is aligned on a 16-byte boundary. In
FSA/370 when the ASF control is one, the
ASN-second-table entry has a length of 64 bytes and
is aligned on a 64-byte boundary. ASN translation
is affected by this change.

D-4 ESA/370 Principles of Operation

Changes to Entry-Table Entry and
PC-Number Translation

In 370-XA, and in FSA/370 when the address-space­
function (ASF) control, bit 15 of control register 0 is
zero, the entry-table entry has a length of 16 bytes.
In FSA/370 when the ASF control is one, the entry­
table entry has a length of 32 bytes. pc-number
translation is affected by this change and also by
the change to the location of the linkage-table des­
ignation described in "New Control Register
Assignments" in this appendix.

Changes to PROGRAM CALL

In 370-XA, and in FSA/370 when the address-space­
function (ASF) control, bit 15 of control register 0 is
zero, a space-switching PROGRAM CALL obtains the
address of the ASN-second-table entry for the new
primary address space by means of ASN translation.
In FSA/370 when the ASF control is one, PROGRAM
CALL obtains the address of the ASN-second-table
entry either by means of ASN translation or directly
from the entry-table entry, and which of these
occurs is unpredictable.

In 370-XA, and in FSA/370 when the ASF control is
zero, PROGRAM CALL performs the 370-XA opera­
tion, called the basic operation. In FSA/370 when
the ASF control is one and the pc-type bit, bit 128
of the 32-byte entry-table entry, is one, PROGRAM
CALL performs a different operation, called the
stacking operation.

Changes to SET ADDRESS SPACE
CONTROL

In 370-XA, for SET ADDRFSS SPACE CONTROL, bit 22
of the second-operand address must be zero; other­
wise, a specification exception is recognized. In
FSA/370, bit 22 may be one in order to specify the
setting of either the access-register mode or the
home-space mode, depending on bit 23.

Effects in New Translation
Modes
FSA/370 has two new translation modes named the
access-register mode and the home-space mode.
These modes result when DAT is on and psw bits
16 and 17 are 01 or 11 binary, respectively. This
section summarizes the effects of the new trans­
lation modes on operations that would otherwise

be the same as in 370-XA. For LOAD REAL

ADDRESS, the effect applies whether DAT is on or
off.

Effects on Interlocks for
Virtual-Storage References

In 370-XA and ESA/370, in the real mode, primary­
space mode, or secondary-space . mode, when a
store is made to a location from which a succeeding
instruction is fetched and the same effective address
is used for both the store and the fetch, the results
of the store appear to be completed before the
fetch. Thus, it is possible for an instruction to
modify the next succeeding instruction in storage.
In ESA/370, in the access-register mode or home­
space mode, an instruction that is a store-type
operand of a preceding instruction may appear to
be fetched before the store occurs. Thus, it is not
assured that an instruction can modify the suc­
ceeding instruction.

In 370-XA and ESA/370, for those instructions which
alter the contents of storage and have more than
one operand, the instruction defmition normally
describes the results that are obtained when the
operands overlap in storage. In 370-XA, and in
ESA/370 in other than the access-register mode,
operand overlap is recognized if the effective
addresses of the two operands are the same. In
ESA/370, in the access-register mode, recognition of
operand overlap additionally requires that the effec­
tive space designations of the two operands be the
same. The effective space designation for an
operand is the contents of the access register used
to access the operand, except that, if access register
o is used, the contents are treated as being all zeros.

Effect on INSERT ADDRESS SPACE
CONTROL

In 370-XA, INSERT ADDRESS SPACE CONTROL sets
bit 22 of general register R 1 to zero, and it sets the
condition code to 0 or 1. In ESA/370, because of
the new translation modes, INSERT ADDRESS SPACE

CONTROL may set bit 22 to one, and it may set the
condition code to 2 or 3.

Effect on LOAD REAL ADDRESS

In 370-XA, when LOAD REAL ADDRESS sets any of
condition codes 1-3, indicating an exception situ­
ation, it places an address related to the situation in
general register R 1, and it sets bit 0 of the register to
zero. Condition code 3 indicates that the segment­
table or page-table length is exceeded. In ESA/370,

when psw bits 16 and 17 are 01 binary, condition
code 3 may alternatively indicate an· exception situ­
ation encountered during access-register translation,
in which case the interruption code assigned to the
exception is placed in general register R 1, and bit 0
of the register is set to one.

Effect on TEST PENDING
INTERRUPTION

In 370-XA and ESA/370, a zero second-operand
address of TEST PENDING INTERRUPTION specifies
a store at real locations 184-191. In this case, in
ESA/370 in the access-register mode, it is unpredict­
able whether access-register translation occurs for
the access register designated by the B 2 field. If
access-register translation occurs and the access reg­
ister is in error, an exception is recognized. If the
translation occurs and there is no exception, the
resulting segment-table designation is not used; that
is, the store still occurs at reallocations 184-191.

Effect on TEST PROTECTION

In 370-XA, TEST PROTECTION sets condition code 3
if it encounters an exception situation during
dynamic address translation. In ESA/370 in the
access-register mode, TEST PROTECTION may alter­
natively set condition code 3 because of an excep­
tion situation encountered during access-register
translation.

Appendix D. Comparison Between 370-XA and ESAj370 D-5

Appendix E. Comparison Between System/370 and 370-XA

New Facilities in 370-XA E-I
Bimodal Addressing E-l
31-Bit Logical Addressing E-l
31-Bit Real and Absolute Addressing E-l
Page Protection E-l
Tracing E-2
Incorrect-Length-Indication Suppression . E-2
Status Verification .. E-2

Comparison of Facilities E-2
Summary of Changes E-3

This appendix provides (1) a list of the facilities
that are new in 370-XA and not provided in
System/370, (2) a description of the handling in
370-XA of the facilities available in System/370, and
(3) a list of changes between System/370 and
370-XA.

New Facilities in 370-XA
The following facilities are new in 370-XA and are
not provided in System/370.

Bimodal Addressing

Two modes of operation are provided: a 24-bit
addreSSing m()de, for the execution of old pro­
graniS, and a 31-bit addressing mode. The mode is
controlled by bit 32 in the PSW, and unprivileged
instructions are provided that examine and set the
mode. These instructions conveniently permit
combining old programs, which must operate in
the 24-bit addressing mode, and new programs
which can take advantage of the 31-bit addressing
mode.

3i-Bit Logical Addressing

The 31-bit logical addressing includes the ability to
perform either 24-bit or 31-bit address arithmetic
for operand address generation and includes exten­
sions to the following addresses, which are always
31 bits, regardless of the addressing mode:

• Instruction address in psw bits 33-63
• PER starting address in control register 10
• PER ending address in control register 11
• Translation-exception identification stored at

reallocations 144-147

Changes in Instructions Provided E-3
Input/Output Comparison E-4
Comparison of PSW Formats .. E-5
Changes in Control-Register Assignments E~6

Changes in Assigned Storage Locations E-6
SIGNAL PROCESSOR Changes . E-7
Machine-Check Changes E-7
Changes to Addressing Wraparound E-8
Changes to LOAD REAL ADDRESS E-8
Changes to 31-Bit Real Operand Addresses E-8

• PER address stored at reallocations 152-155
• Monitor code stored at reallocations 156-159
• Entry instruction address in the entry-table

entry

3i-Bit Real and Absolute Addressing

The following fields provide the leftmost part of
31-bit addresses, or the entire address, as appro­
priate, regardless of the setting of the addressing
mode. Except where indicated, the addresses are
real.

• Prefix register (absolute)
• Primary segment-table origin· in control reg­

ister 1
• Linkage-table origin in control register 5
• Secondary segment-table origin· in control reg-

ister 7
• ASN-frrst-table origin in control register 14
• Page-table origin in tbe segment-table entry
• Page-frame real address in the page-table entry
• ASN-second-table origin in the AFT entry
• Segment-table origin· f linkage-table origin, and

authority-table origin in the AST entry
• Entry-table origin in the linkage-table entry
• Address in ronnat-l CCws (absolute)

·Unpredictable whether address is real or abso­
lute

Page Protection

A page-protection bit is provided in the page-table
entry. Page protection can be used in a manner
similar to the System/370 segment protection,
which is not included in 370-XA.

Appen4ix E. Comparison Between Systemj370 and 370-XA E-l

Tracing

Included are a trace-table ongm, branch trace
control, ASN trace control, and explicit trace­
control bits in control register 12. Also included
are the instruction TRACE and a new program­
interruption condition called trace-table exception.
When branch tracing is on, a trace entry is made
for the successful execution of the following
instructions:

• BRANCH AND LINK (BALR) when the R2 field is
nonzero

• BRANCH AND SAVE (BASR) when the R2 field is
nonzero

• BRANCH AND SAVE AND SET MODE (BASSM)

when the R2 field is .nonzero

When ASN tracing is ·on, an entry is made in the
trace table for each execution of the following
instructions:

• PROGRAM CALL
• PROGRAM TRANSFER

• SET SECONDARY ASN

When explicit tracing is on, execution of TRACE

causes a trace entry to be made.

Incorrect-Length-Indicatlon
Suppression

The incorrect-Iength-indication-suppression facility
allows the indication of incorrect length to be sup­
pressed when using format-l ccws in ·the same
manner as when using format-O ccws or
System/370 ccws. Bit 24 of word 1 of the ORB
provides the capability of indicating or suppressing
recognition of incorrect length for an immediate
operation.

Status Verification

The status-verification facility provides an indi­
cation (bit 26 of the subchannel logout in the
extended-status word) when the channel subsystem
detects device status with a combination of bits that
was inappropriate at the time status was presented.

E-2 ESA/370 Principles of Operation

Comparison of Facilities
Figure E-l shows the facilities offered in
System/370 and whether or not each facility is pro­
vided in 370-XA.

Availa-
bility

System/379 Facility in 379-XA

Conmercial instruction set p1
Block-multiplexer channels F
Branch and save B
Byte-multiplexer channels F
Channel indfrect data addressing B

Channel-set switching F
Clear I/O F
Conmand retry B
Conditional o swapping B
CPU timer and clock comparator B

Direct control -
Dual address space p2
Expanded storage ES
Extended p3
Extended-precision floating.PQinr B

Extended real addressing R4
External signals -
Fast release F
Floating point B
Halt device F

I/O extended logout -
Limited Channel logout F
Move inverse MI
Multiprocessing B5
PSW-key handling B

Recovery extensions -
Segment protection R6
Selector channels F
Service signal B
Start-I/O-fast queuing F

Storage-key-instruction extensions B
Storage-key 4K-byte block p7
Suspend and resume F
Test block B
Translation p8

Vector V
31-bi t IDAWs· B

Figure E-l (Part 1 of 2). Availability of System/370
Facilities in 370-XA

Explanation:

- Not provided in 370-XA.
1 The following items, which are part of the

basic computing function in System/37B, are
not provided in 37B-XA: BC mode, interval
timer, and 2K-byte protection blocks. Also
see the following instructions lists for
those instructions basic in System/370
which are not provided in 370-XA.

2 All of the dual-address-space facility is
provided except for DAS tracing.

3 See the following instruction list for
those instructions that are part of the
System/37B extended facility and that are
provided in 370-XA.

4 Replaced with 31-bit real addressing.
5 With the exception of the inclusion of more

than one CPU, all the functions associated
with the System/370 multiprocessing facil­
ity are basic.

6 Replaced by page protection.
7 Only single-key 4K-byte protection blocks

are provided, but the storage-key-exception
control is not.

e The 370-XA translation provides only the
4K-byte page size and only the 1M-byte seg­
ment size. See also the following instruc­
tion lists.

B Basic in 370-XA.
ES Provided in both System/37B and 370-XA as

the expanded-storage facility.
F Not provided, but a comparable function is

provided by the channel subsystem.
MI Provided in both System/370 and 370-XA as

the move-inverse facility.
P Partially available in 370-XA.
R Replaced with a comparable facility.
V Provided in both System/370 and 370-XA as

the vector facility.

Figure E-l (Part 2 of 2). Availability of Systemj370
Facilities in 370-XA

Summary of Changes

Changes in Instructions Provided

The following figures show those instructions
which are optional or not provided in either
System/370 or 370-XA. Those instructions which
are basic in both System/370 and 370-XA are not
shown.

~lne- Op System/
Instruction Name* monic Code 379 379-XA

BRANCH AND SAVE BASR 90 BS B
BRANCH AND SAVE BAS 40 BS B
BRANCH AND SAVE AND SET MODE BASSt1 9C - B
BRANCH AND SET MODE BSM 9B - B
COMPARE AND FORM CODEWORD CFC B21A - B

COMPARE AND SWAP CS BA SW B
COMPARE DOUBLE AND SWAP CDS BB SW B
DIVIDE (extended) DXR B22D - B
INSERT PROGRAM MASK IPM B222 - B
MOVE INVERSE MVCIN Ea MI MI
UPDATE TREE UPT 9192 - B

Explanation:

Instruction is not provided.
* Those instructions which are part of the floating­

point and extended-precision floating-point facil­
ities in System/379 are basic in 379-XA and are
not shown. Similarly, those unprivileged instruc­
tions which are part of the vector facility are
not shown.

B
BS
MI
SW

Instruction is basic.
Branch-and-save facility.
Move-inverse facility.
Conditional-swapping facility.

Figure E-2. Unprivileged Instructions Provided

Appendix E. Comparison Between Systemj370 and 370-XA E-3

Mne- Op System/
Instruction Name* monic Code 370 370-XA

CONNECT CHANNEL SET CONCS B200 CS -
DISCONNECT CHANNEL SET DISCS B201 CS -
EXTRACT PRIMARY ASN EPAR B226 OU B
EXTRACT SECONDARY ASN ESAR B227 DU B
INSERT ADDRESS SPACE CONTROL lAC B224 DU B

INSERT PSW KEY IPK B20B PK B
INSERT STORAGE KEY ISK 09 B -
INSERT STORAGE KEY EXTENDED ISKE B229 EK B
INSERT VIRTUAL STORAGE KEY IVSK B223 DU B
INVALIDATE PAGE TABLE ENTRY IPTE B221 EF B

LOAD ADDRESS SPACE PARAMETERS LASP E500 DU B
LOAD REAL ADDRESS LRA B1 TR B
MOVE TO PRIMARY MVCP DA DU B
MOVE TO SECONDARY MVCS DB DU B
MOVE WI TH KEY MVCK 09 DU B

PROGRAM CALL PC B218 DU B
PROGRAM TRANSFER PT B228 DU B
PURGE TLB PTLB B2ElD TR B
READ DIRECT ROD 85 DC -
RESET REFERENCE BIT RRB B213 TR -
RESET REFERENCE BIT EXTENDED RRBE B22A EK B
SET ADDRESS SPACE CONTROL SAC B219 DU B
SET CLOCK COMPARATOR SCKC 82El6 CK B
SET CPU TIMER SPT B208 CK B
SET PREFIX SPX B210 MP B

SET PSW KEY FROM ADDRESS SPKA B29A PK B
SET SECONDARY ASN SSAR B225 DU B
SET STORAGE KEY SSK El8 B -
SET STORAGE KEY EXTENDED SSKE B22B EK. B
SIGNAL PROCESSOR SIGP AE MP B

STORE CLOCK COMPARATOR STCKC B297 CK B
STORE CPU ADDRESS STAP B212 MP B
STORE CPU TIMER STPT B299 CK B
STORE PREFIX STPX B211 MP B
STORE THEN AND SYSTEM MASK STNSM AC TR B

STORE THEN OR SYSTEM MASK STOSM AD TR B
TEST BLOCK T8 B22C TB B
TEST PROTECTION TPROT E591 EF B
TRACE TRACE 99 - B
WRITE DIRECT WRD 84 DC -
Explanation:

- Instruction is not provided.
* Those privileged instructions which are part of the

vector facility are not shown.
8 Instruction is basic.
CK CPU-timer and clock-comparator facility.
CS Channel-set-switching facility.
DC Direct-control facility.
DU Dual-address-space facility.
EF Extended facility.
EK Storage-key-instruction-extension facility.
MP Multiprocessing facility.
PK PSW-key-handling facility.
T8 Test-block facility.
TR Translation facility.

Figure E-3. Control Instructions Provided

E-4 ESA/370 Principles of Operation

Mne- Op System/
Instruction Name monic Code 379 37El-XA

CLEAR CHANNEL CLRCH 9FEl1 RE -
CLEAR I/O CLRIO 9DEl1 B -
HALT DEVICE HDV 9EEl1 HD -
HALT I/O HIO 9EElO B -
RESUME I/O RIO 9C02 SR -
START I/O SIO 9COO B -
START I/O FAST RELEASE SIOF 9CEl1 FR -
STORE CHANNEL 10 STIDC 82El3 8 -
TEST CHANNEL TCH 9F90 B -
TEST I/O TIO 9DOEl B -

CLEAR SUBCHANNEL CSCH B23El - B
HALT SUBCHANNEL HSCH B231 - B
MODIFY SU8CHANNEL MSCH 8232 - B
RESET CHANNEL PATH RCHP 8238 - 8
RESUME SUBCHANNEL RSCH B238 - B

SET ADDRESS LIMIT SAL B237 - B
SET CHANNEL MONITOR SCHM B23C - B
START SUBCHANNEL SSCH B233 - B
STORE CHANNEL PATH STATUS STCPS B23A - B
STORE CHANNEL REPORT WORD STCRW B239 - B

STORE SUBCHANNEL STSCH B234 - B
TEST PENDING INTERRUPTION TPI B236 - B
TEST SU8CHANNEL TSCH 8235 - 8

Explanation:

- Instruction is not provided.
8 Instruction is basic.
FR Performs the SIOF function only when the fast-

release facility is installed in the channel.
HD Performs the HDV function only when the halt-device

facility is installed in the channel.
RE Performs the CLRCH function only when the recovery-

extension facility is installed in the channel.
SR Suspend-and-resume facility.

Figure E-4. I/O Instructions Provided

Input/Output Comparison

The channel subsystem has a different logical struc­
ture from that of the I/O facilities provided in
System/370, with .the result that I/O instructions,
channels, channel sets, and I/O addressing are
replaced in 370-XA by a new set of I/O instructions,
by logical device addressing, and by device­
accessing mechanisms.

Compatibility with System/370 has been main­
tained in the ccws (format 0), 31-bit IDAWS, and
channel programs.

In System/370, subchannels are not shared among
channels, and each subchannel is associated with
only one channel path. In 370-XA, each subchannel
is uniquely associated with one I/O device, and that
I/O device is uniquely associated with that one sub­
channel within the channel subsystem, regardless of
the number of channel paths by which the I/O
device is accessible to the channel subsystem.

Functions are provided in the channel subsystem in
370-XA to detect malfunctions and recover from
them if possible.. Malfunctions are reported to the
program by means of a channel report.

In System/370, I/O interruptions are accepted only
by the CPU to which the channel set is currently
connected. The I/O interruption causes the I/O
address identifying the channel and device causing
the interruption to be stored at locations 186-187,
and the measurement byte to be stored at real
location 185. In 370-XA, I/O interruptions can be
accepted by any CPU in the configuration. The
subsystem ID and I/o-interruption parameter are
stored in the doubleword at reallocation 184.

Associated with the new I/O instructions is a new
program-interruption condition called operand
exception.

Comparison of PSW Formats

Figure E-5 shows those bits and fields in the psw
which are different between System/370 and 370-XA.

PSW System/
Name of Bit or Field Bit 370 370-XA

PER Mask 1 TR B
OAT Mode 5 TR B
EC Mode 12

Bit 12 = 0 (BC Mode) B -
Bit 12 = 1 (EC Mode) TR B1

Address-space control 16 DU B
Addressing mode 32 - B
Instruction address * B B

Explanation:

- Mode is not provided.
* The instruction address is in PSW bits 40-

63 in System/370 and bits 33-63 in 370-XA.
1 In 370-XA, PSW bit 12 must be one, and the

term "EC mode" is not used.
B Basic.
DU Provided as part of the dual-address-space

facility.
TR Provided as part of the translation fa-

ci lity.

Figure E-S. Comparison of PSW Formats

Append:ix E. Comparison Between Systemj370 and 370-XA E-5

Changes in Control-Register
Assignments

Figure E-6 shows those bits and fields in the
control registers which are different between
System/370 and 370-XA.

Control-Register Position
for

Name of Bit or Field System/37a 37a-XA

Block-multiplexing control a.a -
Fetch-protection override - a.6
Storage-key-exception control a.7 -
Page-fault-assist control 9.13 -
Interval-timer subclass mask 9.24 -

External-signal subclass mask 9.26 -
Space-switch-event control 1.31 La
Primary segment-table origin 1.8-1.25 1.1-1.19
Primary segment-table length 1. a-I. 7 1. 25-1. 31
Channel masks 2.a-2.31 -
linkage-table origin 5.8-5.24 5.1-5.24
I/O-interruption subclass mask - 6.9-6.7
Secondary segment-table length 7.a-7.7 7.25-7.31
Secondary segment-table origin 7.8-7.25 7.1-7.19
PER starting address 19.8-1a.31 la.l-la.31

PER ending address 11. 8-11. 31 11.1-11.31
Branch-trace control - 12.a
Trace-entry address - 12.1-12.29
ASN-trace control - 12.3a
Explicit-trace control - 12.31

Check-stop control 14.a -
Synchronous-HCEl control 14.1 -
I/O-extended-logout control 14.2 -
Channel-report-pending subclass - 14.3

mask
Asynchronous-HCEl control 14.8 -
Asynchronous-fixed-log control 14.9 -
ASN-first-table origin 14.29-14.31 14.13-14.31
HCEl address 15.8-15.28 -
Explanation:

- Bit or field is not provided.

Figure E-6. Differences in Control-Register Assign­
ments

E-6 ESA/370 Principles of Operation

Changes in Assigned Storage
Locations

Figure E-7 shows those assigned storage locations
where I changes have been made between
System/370 and 370-XA.

Name of Field

Channel-status word
Channel-address word
Interval timer
Trace-table designation
Channel ID

IOEL address
Limited channel logout
Subsystem ID
Measurement byte
I/O address

I/O-interruption parameter
Region code
Fixed-logout area
Store-status model-dependent

save area
CPU identity

Explanation:

Field is not provided.

Assigned
Storage
Location and
Length* for

System/
370 370-XA

64 8 -
72 4 -
80 4 -
84 4 -

168 4 -

172 4 -
176 4 -
- 184 4

185 1 -
186 2 -

- 188 4
252 4 -
256 96 256 16
268 4 -

795 1 -

* The first number is the address) the
second the length.

Figure E-7. Differences in Assigned Storage Locations

SIGNAL PROCESSOR Changes

Figure E-8 and Figure E-9 show those SIGNAL

PROCESSOR orders and status codes where changes
have been made between System/370 and 370-XA.

In addition to these changes, a parameter is pro­
vided as part of the SIGNAL PROCESSOR instruction
in 370-XA. The parameter is used by the store­
status-at-address and set-prefix orders.

Order Code

System/
Name of Order 370 370-XA

Initial program reset 07 -
Program reset 08 -
Initial microprogram load 0A -
Set prefix - 00
Store status at address - 0E

Explanation:

- Order is not provided.

Figure 'E-8. Signal-Processor Orders

Bit Position.

Name of Status Bit System/370 370-XA

Incorrect state - 22
Invalid parameter - 23
Not ready 28 -
Explanation:

- Status bit is not provided.

Figure E-9. Signal-Processor Status Bits

Machine-Check Changes

Figure E-I0 summarizes those bits and fields in the
machine-cheek-interruption code (MCIC) where
changes have been made between System/370 and
370-XA. In addition to these changes, the region
code, the machine-cheek-extended logout, and
asynchronous fixed logouts have been eliminated in
370-XA.

MCIC Bits

Machine-Cheek-Interruption System/
Condition or Field 370 370-XA

Interval-timer damage 3 -
Channel report pending - 9
Channel-subsystem damage - 11
Delayed 15 -
Region-code validity 25 -
Logout validity 30 -
MCEL length 48-63 -
Explanation:

- Condition or field is not provided.

Figure E-IO. Machine-Check-Interruption-Code Bits

Appendix E. Comparison Between Systemj370 and 370-XA E-7

Changes to Addressing Wraparound

In System/370, addresses wrap from 224 - 1 to
zero (or vice versa). In 370-XA, for the 24-bit
addressing mode, effective addresses wrap from
224 - 1 to zero (or vice versa). For the 31-bit
addressing mode, effective addresses wrap from
231

- 1 to zero (or vice versa). Except as noted
below, real and absolute addresses wrap from
231

- 1 to zero.

In 370-XA, the following items cause an I/O program
check instead of wraparound:

• Successive CCws of a ccw list
• Successive IDAWS of an IDAW list
• Successive bytes of I/O data

For DAT-table entries, it is model-dependent
whether addresses wrap or cause an addressing
exception.

E-8 ESAj370 Principles of Operation

Changes to LOAD REAL ADDRESS

For LOAD REAL ADDRFSS, the addressing of DAT
tables is changed to be unpredictable with respect
to whether prefixing is applied and to be unpredict­
able with respect to whether an addressing excep­
tion is recognized or wraparound occurs when the
calculated address of a page-table or segment-table
entry exceeds 231

- 1.

Changes to 31-Bit Real Operand
Addresses

The following instructions operate by using 31-bit
real addresses in System/370. In 370-XA, these
instructions operate under control of the addressing
mode, bit 32 of the psw. As a result, in the 24-bit
addressing mode, these instructions operate by
using 24-bit addresses.

• INSERT STORAGE KEY EXTENDED
• RFSET REFERENCE BIT EXTENDED
• SET STORAGE KEY EXTENDED
• TFST BLOCK

Appendix F. Table of Powers of 2

PLUS
1
2
4
8

16
32
64

128

256
512

1,024
2,048

4,096
8,192

16,384
32,768

65,536
131,072
262,144
524,288

1,048,576
2,097,152
4,194,304
8,388,608

16,777,216
33,554,432
67,108,864

134,217,728

268,435,456
536,870,912

1,073,741,824
2,147,483,648

4,294,967,296
8,589,934,592

17,179,869,184
34,359,738,368

68 719,476,736
137:438,953,472
274,877,906,944
549,755,813,888

1,099,511,627,776
2,199,023,255,552
4,398,046,511,104
8,796;093,022,208

17,592,186,044,416
35,184,372,088,832
70,368,744,177,664

140,737,488,355,328

281,474,976,710,656
562,949,953,421,312

1,125,899,906,842,624
2,251,799,813,685,248

4,503,599,627,370,496
9,007,199,254,740,992

18,014,398,509,481,984
36,028,797,018,963,968

72,057,594,037,927,936
144,115,188,075,855,872
288,230,376,151,711,744
576,460,752,303,423,488

1,152,921,504,606,846,976
2,305,843,009,213,693,952
4,611,686,018,427,387,904
9,223,372,036,854,775,808

18,446,744,073,709,551,616

0
1
2
3

4
5
6

-7

8
9

10
11

12
13
14
15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31

32
33
34
35

36
37
-38
39

40
41
42
43

44
45
46
47

48
49
50
51

52
53
54
55

56
57
58
59

60
61
62
63

64

MINUS
1.
0.5
0.25
0.125

0.0625
0.03125
0.01562 5
0.00781 25

0.00390 625
0.00195 3125

- 0.00097 65625
0.00048 82812 5

0.00024 41406 25
0.00012 20703 125
0.00006 10351 5625
0.00003 05175 78125

0.00001 52587 89062 5
0.00000 76293 94531 25
0.00000 38146 97265 625
0.00000 19073 48632 8125

0.00000 09536 74316 40625
0.00000 04768 37158 20312 5
0.00000 02384 18579 10156 25
0.00000 01192 09289 55078 125

0.00000 00596 04644 77539 0625
0.00000 00298 02322 38769 53125
0.00000 00149 01161 19384 76562 5
0.00000 00074 50580 59692 38281 25

0.00000 00037 25290 29846 19140 625
0.00000 00018 62645 14923 09570 3125
0.00000 00009 31322 57461 54785 15625
0.00000 00004 65661 28730 77392 57812 5

0.00000 00002 32830 64365 38696 28906 25
0.00000 00001 16415 32182 69348 14453 125
0.00000 00000 58207 66091 34674 07226 5625
0.00000 00000 29103 83045 67337 03613 28125

0.00000 00000 14551 91522 83668 51806 64062 5
0.00000 00000 07275 95761 41834 25903 32031 25
0.00000 00000 03637 97880 70917 12951 66015625

- 0.00000 00000 01818 98940 35458 56475 83007 8125

0.00000 00000 00909 49470 17729 28237 91503 90625
0.00000 00000 00454 74735 08864 64118 95751 95312 5
0.00000 00000 00227 37367 54432 32059 47875 97656 25
0.00000 00000 00113 68683 77216 16029 73937 98828 125

0.00000 00000 00056 84341 88608 08014 86968 99414 0625
0.00000 00000 00028 42170 94304 04007 43484 49707 03125
0.00000 00000 00014 21085 47152 02003 71742 24853 51562 5
0.00000 00000 00007 10542 73576 01001 85871 12426 75781 25

0.00000 00000 00003 55271 36788 00500 92935 56213 37890 625
0.00000 00000 00001 77635 68394 00250 46467 78106 68945 3125
0.00000 00000 00000 88817 84197 00125 23233 89053 34472 65625
0.00000 00000 00000 44408 92098 50062 61616 94526 67236 32812 5

0.00000 00000 00000 22204 46049 25031 30808 47263 33618 16406 25
0.00000 00000 00000 11102 23024 62515 65404 23631 66809 08203 125
0.00000 00000 00000 05551 11512 31257 82702 11815 83404 54101 5625
0.00000 00000 00000 02775 55756 15628 91351 05907 91702 27050 78125

0.00000 00000 00000 01387 77878 07814 45675 52953 95851 13525 39062 5
0.00000 00000 00000 00693 88939 03907 22837 76476 97925 56762 69531 25
0.00000 00000 00000 00346 94469 51953 61418 88238 48962 78381 34765 625
0.00000 00000 00000 00173 47234 75976 80709 44119 24481 39190 67382 8125

0.00000 00000 00000 00086 73617 37988 40354 72059 62240 69595 33691 40625
0.00000 00000 00000 00043 36808 68994 20177 36029 81120 34797 66845 70312 5
0.00000 00000 00000 00021 68404 34497 10088 68014 90560 17398 83422 85156 25
0.00000 00000 00000 00010 84202 17248 55044 34007 45280 08699 41711 42578 125

0.00000 00000 00000 00005 42101 08624 27522 17003 72640 04349 70855 71289 0625

Figure F -1 (Part 1 of 2). Powers of 2

Appendix F. Table of Powers of 2 F -1

18,446,744,073,709,551,616 64
36,893,488,147,419,103,232 65
73,786,976,294,838,206,464 66

147,573,952,589,676,412,928 67

295,147,905,179,352,825,856 68
590,295,810,358,705,651,712 69

1,180,591,620,717,411,303,424 70
2,361,183,241,434,822,606,848 71

4,722,366,482,869,645,213,696 72
9,444,732,965,739,290,427,392 73

18,889,465,931,478,580,854,784 74
37,778,931,862,957,161,709,568 75

75,557,863,725,914,323,419,136 76
151,115,727,451,828,646,838,272 77
302,231,454,903,657,293,676,544 78
604,462,909,807,314,587,353,088 79

1,208,925,819,614,629,174,706,176 80
2,417,851,639,229,258,349,412,352 81
4,835,703,278,458,516,698,824,704 82
9,671,406,556,917,033,397,649,408 83

19,342,813,113,834,066,795,298,816 84
38,685,626,227,668,133,590,597,632 85
77,371,252,455,336,267,181,195,264 86

154,742,504,910,672,534,362,390,528 87

309,485,009,821,345,068,724,781,056 88
618,970,019,642,690,137,449,562,112 89

1,237,940,039,285,380,274,899,124,224 90
2,475,880,078,570,760,549,798,248,448 91

4,951,760,157,141,521,099,596,496,896 92
9,903,520,314,283,042,199,192,993,792 93

19,807,040,628,566,084,398,385,987,584 94
39,614,081,257,132,168,796,771,975,168 95

79,228,162,514,264,337,593,543,950,336 96
158,456,325,028,528,675,187,087,900,672 97
316,912,650,057,057,350,374,175,801,344 98
633,825,300,114,114,700,748,351,602,688 99

1,267,650,600,228,229,401,496,703,205,376 100
2,535,301,200,456,458,802,993,406,410,752 101
5,070,602,400,912,917,605,986,812,821,504 102

10,141,204,801,825,835,211,973,625,643,008 103

20,282,409,603,651,670,423,947,251,286,016 104
40,564,819,207,303,340,847,894,502,572,032 105
81,129,638,414,606,681,695,789,005,144,064 106

162,259,276,829,213,363,391,578,010,288,128 107

324,518,553,658,426,726,783,156,020,576,256 108
649,037,107,316,853,453,566,312,041,152,512 109

1,298,074,214,633,706,907,132,624,082,305,024 110
2,596,148,429,267,413,814,265,248,164,610,048 111

5,192,296,858,534,827,628,530,496,329,220,096 112
10,384,5~3,717,069,655,257,060,992,658,440,192 113
20,769,187,434,139,310,514,121,985,316,880,384 114
41,538,374,868,278,621,028,243,970,633,760,768 115

83,076,749,736,557,242,056,487,941,267,521,536 116
166,153,499,473,114,484,112,975,882,535,043,072 117
332,306,998,946,228,968,225,951,765,070,086,144 118
664,613,997,892,457,936,451,903,530,140,172,288 119

1,329,227,995,784,915,872,903,807,060,280,344,576 120
2,658,455,991,569,831,745,807,614,120,560,689,152 121
5,316,911,983,139,663,491,615,228,241,121,378,304 122

10,633,823,966,279,326,983,230,456,482,242,756,608 123

21,267,647,932,558,653,966,460,912,964,485,513,216 124
42,535,295,865,117,307,932,921,825,928,971,026,432 125
85,070,591,730,234,615,865,843,651,857,942,052,864 126

170,141,183,460,469,231,731,687,303,715,884,105,728 127

340,282,366,920,938,463,463,374,607,431,768,211,456 128

Figure F -1 (Part 2 of 2). Powers of 2

F -2 ESAj370 Principles of Operation

Appendix G. Hexadecimal Tables

The following tables aid in converting hexadecimal values
to decimal values, or the reverse.

Direct Conversion Table

This table provides direct conversion of decimal and
hexadecimal numbers in these ranges:

Hexadecimal
000 to FFF

Decimal
0000 to 4095

To convert numbers outside these ranges, and to con­
vert fractions, use the hexadecimal and decimal conver­
sion tables that follow the direct conversion table in this
Appendix.

0 1 2 3 4 5 6

00_ 0000 0001 0002 0003 0004 0005 0006
01_ 0016 0017 0018 0019 0020 0021 0022
02_ 0032 0033 0034 0035 0036 0037 0038
03_ 0048 0049 0050 0051 0052 0053 0054
04_ 0064 0065 0066 0067 0068 0069 0070
05_ 0080 0081 0082 0083 0084 0085 0086
06_ 0096 0097 0098 0099 0100 0101 0102
07_ 0112 0113 0114 0115 0116 0117 0118
08_ 0128 0129 0130 0131 0132 0133 0134
09_ 0144 0145 0146 0147 0148 0149 0150
OA_ 0160 0161 0162 0163 0164 0165 0166
OB_ 0176 0177 0178 0179 0180 0181 0182
OC_ 0192 0193 0194 0195 0196 0197 0198
OD_ 0208 0209 0210 0211 0212 0213 0214
OE_ 0224 0225 0226 0227 0228 0229 0230
OF_ 0240 0241 0242 0243 0244 0245 0246

10_ 0256 0257 0258 0259 0260 0261 0262
11_ 0272 0273 0274 0275 0276 0277 0278
12_ 0288 0289 0290 0291 0292 0293 0294
13_ 0304 0305 0306 0307 0308 0309 0310
14_ 0320 0321 0322 0323 0324 0325 0326
15_ 0336 0337 0338 0339 0340 0341 0342
16_ 0352 0353 0354 0355 0356 0357 0358
17_ - 0368 0369 0370 0371 0372 0373 0374
18_ 0384 0385 0386 0387 0388 0389 0390
19_ 0400 0401 0402 0403 0404 0405 0406
lA_ 0416 0417 0418 0419 0420 0421 0422
1B_ 0432 0433 0434 0435 0436 0437 0438
lC_ 0448 0449 0450 0451 0452 0453 0454
ID_ 0464 0465 0466 0467 0468 0469 0470
lE_ 0480 0481 0482 0483 0484 0485 0486
IF_ 0496 0497 0498 0499 0500 0501 0502

7

0007
0023
0039
0055
0071
0087
0103
0119
0135
0151
0167
0183
0199
0215
0231
0247

0263
0279
0295
0311
0327
0343
0359
0375
0391
0407
0423
0439
0455
0471
0487
0503

8 9 A B C D E F

0008 0009 0010 0011 0012 0013 0014 0015
0024 0025 0026 0027 0028 0029 0030 0031
0040 0041 0042 0043 0044 0045 0046 0047
0056 0057 0058 0059 0060 0061 0062 0063
0072 0073 0074 0075 0076 0077 0078 0079
0088 0089 0090 0091 0092 0093 0094 0095
0104 0105 0106 0107 0108 0109 0110 0111
0120 0121 0122 0123 0124 0125 0126 0127
0136 0137 0138 0139 0140 0141 0142 0143
0152 0153 0154 0155 0156 0157 0158 0159
0168 0169 0170 0171 0172 0173 0174 0175
0184 0185 0186 0187 0188 0189 0190 0191
0200 0201 0202 0203 0204 0205 0206 0207
0216 0217 0218 0219 0220 0221 0222 0223
0232 0233 0234 0235 0236 0237 0238 0239
0248 0249 0250 0251 0252 0253 0254 0255

0264 0265 0266 0267 0268 0269 0270 0271
0280 0281 0282 0283 0284 0285 0286 0287
0296 0297 0298 0299 0300 0301 0302 0303
0312 0313 0314 0315 0316 0317 0318 0319
0328 0329 0330 0331 0332 0333 0334 0335
0344 0345 0346 0347 0348 0349 0350 0351
0360 0361 0362 0363 0364 0365 0366 0367
0376 0377 0378 0379 0380 0381 0382 0383
0392 0393 0394 0395 0396 0397 0398 0399
0408 0409 0410 0411 0412 0413 0414 0415
0424 0425 0426 0427 0428 0429 0430 0431
0440 0441 0442 0443 0444 0445 0446 0447
0456 0457 0458 0459 0460 0461 0462 0463
0472 0473 0474 0475 0476 0477 0478 0479
0488 0489 0490 0491 0492 0493 0494 0495
0504 0505 0506 0507 0508 0509 0510 0511

Appendix G. Hexadecimal Tables G-l

0 1 2 3 4 5 6 7 8 9 A B C D E F

20_ 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
21_ 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
22_ 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
23_ 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575
24_ 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
25_ 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
26_ 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
27_ 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639
28_ 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
29_ 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2A_ 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 06"84 0685 0686 0687
2B_ 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703
2C_ 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2D_ 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2E_ 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2F_ 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767
30_ 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
31_ 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
32_ 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
33_ 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831
34_ 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
35_ 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
36_ 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
37_ 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895
38_ 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
39_ 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3A_ 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3B_ 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959
3C_ 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3D_ 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3E_ 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3F_ 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

0 1 2 3 4 5 6 7 8 9 A B C D E F

40_ 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
41_ 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
42_ 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
43_ 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
44_ 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
45_ 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
46_ 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
47_ 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
48_ 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
49_ 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4A_ 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
4B_ 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
4C_ 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4D_ 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4E_ 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4F_ 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
50_ 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
51_ 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
52_ 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
53_ 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
54_ 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
55_ 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
56_ 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
57_ 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
58_ 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
59_ 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
5.L 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
5B_ 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
5C_ 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
5D_ 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5E_ 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5F_ 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

G·2 ESAj370 Principles of Operation

0 1 2 3 4 5 6 7 8 9 A B C D E F

60_ 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
61_ 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
62_ 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
63_ 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599
64_ 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
65_ 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
66_ 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
67_ 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
68_ 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
69_ 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6A- 1696 1697 1698 1699 1700 1701 1702 1703 1704· 1705 1706 1707 1708 1709 1710 1711
6B_ 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
6C_ 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6D_ 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6E_ 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6F_ 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

70_ 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
71_ 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
72_ 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
73_ 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
74_ 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
75_ 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
76_ 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
77_ 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
78_ 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 J935
79_ 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7A_ 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
7B_ 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 198.1 1982 1983
7C_ 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
7D_ 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7E_ 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7F_ 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

0 1 2 3 4 5 6 7 8 9 A B C D E F

80_ 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
81_ 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
82_ 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 ·2092 2093 2094 2095
83_ 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
84_ 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
85_ 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
86_ 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
87_ 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
88_ 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
89_ 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8A_ 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8B_ 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
8C_ 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8D_ 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8E_ 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8F_ 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
90_ 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
9L 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
92_ 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
93_ 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
94_ 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
95_ 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
96_ 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2':1:14 2415
97_ 2416 2417 2418 2419 2420', 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
98_ 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
99_ 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9A_ 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
9B_ 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
9C_ 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
9D_ 2512 2513 2514 2515 2516 2517 2518 25·19 2520 2521 2522 2523 2524 2525 2526 2527
9E_ 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9F_ 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

Appendix G. Hexadecimal Tables G-3

0 1 2 3 4 5 6 7 8 9 A B C D E F

AO_ 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
AL 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A2_ 2592 2593 2594 2595 2596 2597 2598 2599. 2600 2601 2602 2603 2604 2605 2606 2607
A3_ 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
A4_ 2624 2625 2626. 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A5_ 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A6_ 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A7_ 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
A8_ 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A9_ 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AA_ 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
AB_ 2736 2737 2738 2739 27.40 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
AC_ 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
AD_ 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AE_ 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AF_ 2800 2801 2802 2803 28Q4 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
BO_ 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 ·2829 2830 2831
BL 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B2_ 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B3_ 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
B4_ 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
B5_ 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B6_ 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B7_ 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 '2939 2940 2941 2942 2943
B8_ 2944 2945 . 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B9_ 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BA_ 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BB_ 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
BC_ 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 . 3022 3023
BD_ 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BE_ 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BF_ 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

0 1 2 3 4 5 6 7 8 9 A B C D E F

CO_ 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
CL 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C2_ 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C3_ 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
C4_ 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C5_ 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C6_ 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C7_ 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
C8_ 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C9_ 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CA_ 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CB_ 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
CC_ 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CD_ 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CE_ 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CF_ 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
DO_ 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
DL 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D2_ 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D3_ 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
D4_ 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D5_ 3-408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D6_ 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D7_ 3440 3441 3442 3443 3444 3445 3446 .3447 3448 3449 3450 3451 3452 3453 3454 3455
D8_ 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
D9_ 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487
DA_ 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DB_ 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
DC_ 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
DD_ 3536 3537 3538 3539 3540 3541 3542 3543 3.544 3545 3546 3547 3548 3549 3550 3551
DE_ 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DF - 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

G-4 ESAj370 Principles of Operation

0 1 2 3 4 5 6 7 8 9 A B C D E F

EO_ 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
El_ 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E2_ 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E3_ 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 36~2 3643 3644 3645 3646 3647
E4_ 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E5_ 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E6_ 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
E7_ 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
E8_ 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E9_ 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EA- 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EB_ 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775
EC_ 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
ED_ 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EE_ 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EF_ 3824 3825 3826 3827. 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

FO_ 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
Fl_ 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F2_ 3872 3873' 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F3_ 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
F4_ 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F5_ 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F6_ 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F7_ 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
F8_ 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F9_ 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FA_ 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FB_ 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
FC_ 4032 '4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FD_ 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FE_ 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FF_ 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

Appendix G. Hexadecimal Tables G-5

Conversion Table: Hexadecimal and Decima/Integers

HALFWORD

BYTE BYTE

BITS: 0123 4567 0123 4567

Hex Decimal Hex Decimal Hex Decimal Hex Decimal

0 0 0 0 0 0 0 0
1 268,435 456 j 16 m,216 1 1 048,576 1 • 65,536
2 53";870,912 2 33,554,432 2 2,097,152 2 131,072
3 ROS, 306,368 3 50 331 648 3 3 145,728 3 196,608
4 1,073,741 824 4 67 108 864 4 4 194304 4 262,144
5 1,342, In ,280 5 83,886,080 5 5,242,880 5 327,680
6 1,610,612,736 6 100,663,296 6 6,291,456 6 393,216
7 1,879,048,192 7 117,440,512 7 7 340,032 7 458,752
8 2,1.47,483,648 8 134,217,728 8 8,388,608 8 524,288
9 2,415,'11'1,104 9 150 994,944 9 9,437,184 9 589,824
A 2,684,354,560 A 167,n2,160 A 10485,760 A 655,360
B 2,952 790,016 B 184,549,376 B 11 534 336 B 720,896
C 3,221 225 472 C 201,326 592 C 12,582 912 C 786 432
0 3,489,660,928 0 218 103 808 0 13 631 488 0 851,968

'E 3,758,096,384 E 234,881,024 E 14,680,064 E 917,504
F 4,026,531,840 F 251,658,240 F 15,728,640 F 983,040

8 7 6 5

TO CONVERT HEXADECIMAL TO DECIMAL
EXAMPLE

1. Locate the column of decimal numben corresponding to Convenion of
the left-most digit or letter of the hexadecimal; select Hexadecimal Value
from this column and record the number that corresponds
to the position of the hexadecimal digit or letter. 1. 0

2. Repeat step I for the next (second from the left)
2. 3

position.

3. Repeat step 1 for the units (third from the left) 3. 4
position.

4. Add the numben selected from the table to form the
4. Decimal

decimal number.

TO CONVERT DECIMAL TO HEXADECIMAL
EXAMPLE

1. (a) Select from the table the highest decimal number
Convenion of

that is equal to or less than the number to be COi"l-
Decimal Value

verted.
(b) Record the hexadecimal of the column containing

1. 0
the selected number.
(c) Subtract the selected decimal from the number to
be converted. 2. 3

2. Using the remainder from step I (c) repeat all ofstep 1
to develop the second position of the hexadecimal
(and a remainder) . 3. 4

3. Using the remainder from step 2 repeat all ofstep 1 to 4. Hexadecimal
develop the units position of the hexadecimal.

4. Combine terms to form the hexadecimal number.

POWERS OF 16 TABLE

Example: 268,435,45610 = (2.68435456 x 108)10 = 1000 000016 = (l07h6
16n

1
16

256
4096

65 536
1 048 576

16 m 216
268 435 456

4 294967 296
68 719 476 736

1 099 511 627 n6
17 592 186 044 416

281 474 976 710 656
4 503 599 627 370 496

72 OS7 594 037 927 936
\.1 152 921 504 606 846 976

v
Decimal Values

n

o
1
2
3
4
5
6
7
8
9

10 = A
11 = B
12 =C
13 = 0
14 = E
15 = F

j

G-6 ESA/370 Principles of Operation

Hex

0
1
2
3
4
5
6
7
8
9
A
B
C
0

·E
F

034

3328

48

4

3380

3380

-3328
---s2

-48
--4

-4

034

HAlfWORD

BYTE BYTE

0123 4567 0123 4567

Decimal Hex Decimal Hex Decimal Hex Decimal

0 0 0 0 0 0 0
4,096 1 256 1 16 1 1
8,192 2 512 2 32 2 2

12,288 3 768 3 48 3 J
16384 4 1 024 4 64 4 4
20,480 5 1,280 5 80 5 5
24,576 6 1,536 6 V6 6 6
28,672 7 1,792 7 112 7 7
32768 8 2,048 8 128 8 8
36 864 9 2,304 9 144 9 9
40 960 A 2,560 A 160 A 10
45 056 B 2816 B 176 8 11
49 152 C 3,072 C 192 C 12
53248 0 3,328 0 208 0 13
57,344 E 3,584 E 224 E 14
61,440 F 3,840 F 240 F 15

4 3 2 1

To convert integer numben greater than the capacity of
table, use the techniques below:

HEXADECIMAL TO DECIMAL

Successive cumulative multiplication from left to right,
adding units position.

Example: 03416 = 338010

DECIMAL TO HEXADECIMAL

0= 13
..ill..
208

3 = + 3
lIT
x16

3376
4= +4

3380

Divide and collect the remainder in reverse order.

Conversion Table: Hexadecimal and Decimal Fractions

BYTE

BITS 0123 4567

Hex Decimal Hex Decimal Hex

.0 .0000 .00 .0000 0000 .000 .0000

.1 .0625 .01 .0039 0625 .001 .0002

.2 .1250 .02 .0078 1250 .002 .0004

.3 ;1875 .03 .0117 1875 .003 .0007

.4 .2500 .04 .0156 2500 .004 .0009

.5 .3125 .05 .0195 3125 .005 .0012

.6 .3750 .06 .0234 3750 .006 .0014

.7 .4375 .07 .0273 4375 .007 .0017

.8 .5000 .08 .0312 5000 .008 .0019

.9 .5625 .09 .0351 5625 .009 .0021

.A .6250 .OA .0390 6250 :OOA .0024

.B .6875 .OB .0429 6875 .OOB .0026

.C .7500 .OC .0468 7500 .OOC .0029

.0 .8125 .00 .0507 8125 .000 .0031

.E .8750 .Of .0546 8750 .OOE .0034

.F .9375 .OF .0585 9375 .OOF .0036

1 2

TO CONVERT .ABC HEXADECIMAL TO DECIMAL

Find.A in position 1 .6250

Find .OB in position 2 .0429 6875

Find .OOC in position 3 .0029 2968 7500

• ABC Hex is equal to .6708 9843 7500

TO CONVERT .13 DECIMAL TO HEXADECIMAL

HALFWORD

3

BYTE

0123 4567

Decimal Hex Decimal Equivalent

0000
4414
8828
3242
7656
2070

··6484
0898
5312
9726
4140
8554
2968
7382
1796
6210

0000 .0000 .0000 0000 0000 0000
0625 .0001 .0000 1525 8789 0625
1250 .0002 .0000 3051 7578 T250
1875 .0003 .0000 4577 6367 1875
2500 .0004 .0000 6103 5156 2500
3125 .0005 .0000 7629 3945 3125
3750 .0006 .0000 9155 2734 3750
4375 .0007 .0001 0681 1523 4375
5000 .0008 .0001 2207 0312 5000
5625 .0009 .0001 3732 9101 5625
6250 .000A .0001 5258 7890 6250
6875 .000B .0001 6784 6679 6875
7500 .000C .0001 8310 5468 7500
8125 .0000 .0001 9836 4257 8125
8750 .OOOE .0002 1362 3046 8750
9375 .000F .0002 2888 1835 9375

4

To convert fractions beyond the capacity of table, use techniques below:

HEXADECIMAL FRACTION TO DECIMAL

Convert the hexadecimal fraction to its decimal equivalent using the same
technique as for integer numben. Divide the results by 16n (n is the
number of fraction positions) •
Example: .8A7 = .54077110

8A716 = 221510 .540771
163 = 4096 409612215.000000

1. Find .1250 next lowest to
subtract

.1300
-.1250 = .2Hex

2. Find .0039 0625 next lowest to .0050 0000
-.0039 0625 = .01

3. Find.OOO9 7656 2500 .00109375 0000
- .0009 7656 2500 = .004

4. Find .0001 0681 1523 4375 .0001 1718 7500 0000
-.0001 0681 1523 4375 = .0007

.0000 1037 5976 5625 = .2147Hex

5 •• 13 Decimal is approximately equal to _______ -"'4

DECIMAL FRACTION TO HEXADECIMAL

Collect integer parts of product in the order of calculation.

Example: .540810 = .8A716

.5408
x16

1
8 ~ (]J.6528

x16
A ~ [Q).4448

x16
7 .- 1].1168

Appendix G. Hexadecimal Tables G-7

Hexadecimal Addition and Subtraction Table

Example: 6 + 2 = 8, 8 - 2 = 6, and 8 - 6 = 2

1 2 3 4 5 6 7 8 9 A 8 C 0 E F

1 02 03 04 05 06 07 08 09 OA 08 OC 00 OE OF 10

2 03 ,04 05 06 07 08 09 OA 08 OC OD OE OF 10 11

3 04 05 06 07 08 09 OA 08 OC OD OE OF 10 11 12

4 'OS < 06 07 08 09 OA 08 OC OD _ OE OF 10 11 12 13

5 06 07 08 09 OA 08 OC 00 'OE OF 10 11 12 13 14

6 07 08 09 OA 08 OC OD OE OF 10 11 12 13 14 15

7 08 09 OA 08 OC 00 OE OF 10 11 12 13 14 15 16

8 09 OA 08 OC 00 OE OF 10 11 12 13 14 15 16 17

9 OA 08 OC OD OE OF 10 11 12 13 14 15 16 17 18

A 08 OC 00 OE OF 10 11 12 13 14 15 16 17 18 19

8 OC 00 OE OF 10 11 12 13 14 15 16 17 18 19 lA

C OD OE OF 10 11 12 13 14 15 16 17 18 19 lA 18

0 OE OF 10 11 12 13 14 15 16 17 18 19 lA 18 lC

E OF 10 11 12 13 14 15 16 17 18 19 lA 18 lC 10

F 10 11 12 13 14 15 16 17 18 19 lA 18 lC 10 1E

Hexadecimal Multiplication Table
Example: 2 x 4= 08, F x 2 = IE

1 2 3 4 5 6 7 8 9 A 8 C 0 E F

1 01 02 03 04 05 06 07 08 09 OA 08 OC 00 OE OF

2 02 04 06 08 OA OC OE 10 12 14 16 18 lA lC 1E

3 03 06 09 OC OF 12 15 18 18 IE 21 24 27 2A 20

4 04 08 OC 10 14 18 lC 20 24 28 2C 30 34 38 3C

5 05 OA OF 14 19 IE 23 28 20 32 37 3C 41 46 48

6 06 OC 12 18 1E 24 2A 30 36 3C 42 48 4E 54 SA

7 07 OE 15 lC 23 2A 31 38 3F 46 40 54 58 62 69

8 08 10 18 20 28 30 38 40 48 50 58 60 68 70 78

9 09 12 18 24 20 36 3F 48 51 SA 63 6C 75 7E 87

A OA 14 IE 28 32 3C 46 50 SA 64 6E 78 82 8C 96

8 08 16 21 2C 37 42 40 58 63 6E 79 84 8F 9A AS

C OC 18 24 30 3C 48 54 60 6C 78 84 90 9C AS B4

0 00 lA 27 34 41 4E 58 68 75 82 8F 9C A9 86 C3

E OE lC 2A 38 46 54 62 70 7E 8C 9A AS 86 C4 02

F OF 1E 20 3C 48 SA 69 78 87 96 AS B4 C3 02 El

G;;'S ESA/370 Principles of Operation

Appendix H. . EBCDIC Chart

Extended Binary-Coded-Decimal Interchange Code
(EBCDIC)

The 256-position EBCDIC table shows graphic­
character, control-character, and formatting­
character representations for EBCDIC. The bit­
position numbers, bit patterns, hexadecimal
representations, and card-hole patterns for these
and other possible EBCDIC characters are also
shown.

To fmd the card-hole pattern for most characters,
partition the table into four blocks, as follows:

1

2

Block 1:

Block 2:

Block 3:

Block 4:

3

4

Zone punches at top of table; digit
punches at left

Zone punches at bottom of table; digit
punches at left

Zone punches at top of table; digit
punches at right

Zone punches at bottom of table; digit
punches at right

Fifteen positions in the table are exceptions to the
above arrangement. Each such position is indi­
cated by a circled number in the upper right comer
of the box for that position. The card-hole pat­
terns for these positions are shown beneath the
table. Bit-position numbers, bit patterns, and
hexadecimal representations for these positions are
found in the usual manner.

The EBCDIC table shows 94 graphic-character posi­
tions. Some products have used an 88-character,
63-character, or 62-character subset of these graphic
characters.

The 94-character set consists of all graphic charac­
ters shown in the EBCDIC table. This character set
can be used for interchange with other systems;
those systems may use codes, other than EBCDIC,

which have 94 graphic characters.

An 88-character set that has been used consists of
the 94-character set with the graphic characters at
6A, 79, AI, CO, DO, and EO hex omitted. This
character set has been used for 44-key keyboard
applications which require both uppercase and low­
ercase alphabetic characters.

A 63-character set that has been used consists of
the 94-character set with the lowercase alphabetic
characters omitted and with the graphic characters
at 6A, 79, AI, CO, and DO hex omitted. This char­
acter set has been used for interchange with other
systems; those systems may have used codes, other
than EBCDIC, which have 63 graphic characters.

A 62-character set that has been used consists of
the 63-character set with the graphic character at
EO hex omitted. This character set has been used
for 44-key keyboard applications which do not
require lowercase alphabetic characters.

Thirteen positions (4A, 4F, 5A, 5B, 5F, 6A, 79,
7B, 7C, AI, CO, DO; and EO hex) are defmed in the
table as Data Processing National Use positions.
Each such position contains a shaded triangle in
the top left comer of the box for that position.
The graphic characters provided in these positions
on printing and display devices may differ from one
language to another or from one country to
another. The characters provided for use in data­
processing applications by the English (U.S.)
version of EBCDIC are shown in the table.

Appendix H. EBCDIC Chart 8-1

The other graphic characters shown in the EBCDIC
table are provided for data-processing applications
in the English (U.S.) version of EBCDIC and in
additional versions of EBCDIC in other languages
which use a Latin-based alphabet. Products
designed for data-processing applications in a lan­
guage which does not use a Latin-based alphabet
support character sets meeting the particular
requirements of that language.

Character Type Bit Pattern Hex Hole Pattern

Word-processing products·normally support a char­
acter set slightly different from the one shown in
the table. Additionally, a number of application
areas (such as printing and publishing, magnetic-ink
character recognition, and some programming lan­
guages) also require unique character-set support.

Some examples of the use of the EBCDIC table are
shown in the following figure:

Zone Punches I Digit Punches

SEl Control Character
0/0 Special Graphic
R Upper Case
a lower Case

Control Character,
function not yet
assigned

00000100
01 10 1100
1101 1001

·10000001
00 II 0000

.. .
Bit Positions
01 234567

04
6C
09
81
30

8-2 ESAj370 Principles of Operation

12 - 9'- 4
0-8-4

11,- 9
12 - 01- 1

12 - 11 - 0 - 9,- 8 - 1
I ,

,.... :~
Q

~ 1 ...,'
~ .' ~ ~ ;

~ ~

~ ii III

RSP

DC2 FS SYN K

DC3 WUS IR C

RES{
EN

BYP/ PP INP D M U 4

Nl IF TRN N V

BS ETB NBS 0 W

POC ESC EOT G X

CAN SA SBS H Q Y

EM SFE IT Z

UBS SM/SW RFF SHY

CUI CSP CU3

IFS MFA DC4 < % @

IGS ENQ NAK

IRS ACK >

S;ard Hale Patterns Formatting Character Representations

<D 12-0-9-8-1 CD 12-11-0-9-8-1 CD 11 ® 11-0 @ 0-1 NSP Numeric Space
RSP Required Space 0 12-11-9-8-1 CD No Punches 0 12-11-0

~
0-8-2 ® 11-0-9-1 SP Space

<D 11-0-9-8-1 0' CD 12 0 @ 12-11 SHY Syllable Hyphen
12 12-0

Control Character Representations Special Graphic Characters

ACK Acknowledge E1X End of Text RFF ~uired Form Feed Cent Sign Comma
BEL Bell FF Form Feed RNL Required New Line Period, Decimal Point % Percent
8S Backspace FS Field Separator RPT Repeat < Less-than Sign Underscore
BYP/INP Bypass/lnhibit Presentation GE Graphi c Escape SA Set Attribute (Left Parenthesis > Greater-than Sign CAN Cancel HT Horizontal Tab SBS Subscript
CR Carriage Return IFS Interchange Fi Ie Separator SEt Selp.ct Plus Sign '? Question Mark
CSP Control Sequence Prefix IGS Interchange Group Separator SFE Start Field Extenc!ed- I Logical OR Grave Accent
CUI Cu~tamer Use 1 IR I ndex Return SI Shift In & Ampersand Colon
CU3 Custamer Use 3 IRS Interchange Record Separator SM/~ Set Made/Switch Exclamation Point # Number Sign
DCl Device Control 1 IT Indent Tab SO Shift Out Dollor Sign @ At Sign
DC2 Device Control 2 IUS/lTB Interchange Unit Separator/ SOH Start of Headi ng Asterisk Prime, Apastrophe
DC3 Device Control 3 Intermediate Transmission Block SOS Start of Signifi cance Right Parenthesis Equal Sign. DC4 Device Control 4 LF Line Feed SPS ~~r~r~frt~t DEL Delete MFA Modify Field Attribute STX ; Semicolon Quotation Mark
OLE Data Link Escape NAK Negative Acknowledge SUB Substitute --, Logicol NOT Tilde
OS Digit Select NBS Numeri c Backspace SYN Synchronous Idle Minus Sign, Hyphen { Opening Brace
EM End of Medium NL New Line TRN Transparent / Slash } Closing Brace ENQ Enquiry NUL Null UBS Unit Ilackspace Vertical Line , Reverse Slant EO Eight Ones POC Program-Opera tar VT Vertical Tab
EOT End of Transmission Communi cation WUS Word Underscore
ESC EscaDe PP Presenta tion Posi ti on
ETB End of Transmission Block RES~NP Restore~noble Presentation

Appendix H. EBCDIC Chart H-3

Index

A
A (AD D) binary instruction 7-8
absolute address 3-4
absolute storage 3-4
access-control bits in storage key 3-7
access exceptions 6-29,6-34

priority of 6-34
recognition of 6-29

access key 3-8
for channel-program execution 3-8,15-21
for channel-subsystem monitoring 3-8
for CPU 3-8

access list 5-39
(See also access-list entry)
accessing capability, revocation of 5-33
allocation and invalidation of entries in 5-30
authorizing the use of entries in 5-31
concepts 5-29
designation (ALD) 5-38
length (ALL) 5-38
origin (ALO) 5-38

access-list entry (ALE) 5-39
authorization index (ALEAX) 5-39
number (See ALEN)
sequence exception 6-16

as an access exception 6-29
sequence number (ALESN)

in ALE 5-39
in ALET 5-36

token (See ALET)
access-register mode 3-24
access-register translation (ART) 5-35

as part of LOAD REAL ADDRESS, TEST
ACCESS, and TEST PROTECfION 5-41

introduction to 5-29
lookaside buffer (See ALB)
process 5-41
sequence of table fetches 5-71
tables 5-37

access registers D-l,2-3
designation of 5-28
functions 5-27
instructions for use of 5-34
save areas for 3-42
validity bit for 11-21

access to storage 5-65
(See also reference)

active
device 16-15
subchannel 16-15

active allegiance 15-11
active communication 15-11
activity-control field (SCSW) 16-13

following TEST SUBCHANNEL 14-17
AD (ADD NORMALIZED) instruction 9-7

example A-38
ADD (A,AR) binary instructions 7-8
ADD DECIMAL (AP) instruction 8-5

example A-33

ADD HALFWORD (AH) instruction 7-8
example A-8

ADD LOGICAL (AL,ALR) instructions 7-9
ADD NORMALIZED (AD,ADR,AE,AER,AXR)

instructions 9-7
example A-38

ADD UNNORMALIZED (AU,AUR,AW,AWR)
instructions 9-8

example A-39
address 3-2

absolute 3-4
arithmetic 3-5,5-6

unsigned binary 7-3
backward stack-entry 5-58
base (See base address)
branch (See branch address)
channel-program (See channel-program address)
comparison 12-1

controls for 12-1
effect on CPU state 4-2

CPU (See CPU address)
data (I/O) (See data address)
effective (See effective address)
failing-storage (See failing-storage address)
format 3-2
forward-section-header 5-58
generation 5-5

for storage addressing 3-5
I/O 13-5
instruction (See instruction address)
invalid 6-14
logical (See logical address)
numbering of for byte locations 3-2
PER (See PER address)
prefixing (See prefix)
primary virtual (See primary virtual address)
real 3-4
secondary virtual (See secondary virtual address)
size of 3-5

controlled by addressing mode 5-5
storage 3-2
summary information 3-35
translation (See dynamic address translation,

prefix)
types 3-3
virtual 3-4
wraparound (See wraparound)
24-bit and 31-bit E-l,3-5

in branch-address generation 5-7
in operand-address generation 5-6

31-bit real and absolute E-l
address-limit checking (I/O) 17-12

effect of I/O-system reset on 17-8
limit mode (bits in PM CW) 15-2

address-limit-checking control (I/O) 15-22,16-11
used for IPL 17-10

address space 3-13
AR-specified 5-27
changing of 3-13

Index X-I

control bits
control bit 5-54
in PSW 4-5
use in address translation 3-24

created by DAT 3-23
number (See ASN)

address-space-function (ASF) control bit 5-35
use in ASN translation 3-15
use in PC-number translation 5-21

addressing exception 6-14
as an access exception 6-29,6-34

addressing mode 5-5
bit in entry-table entry 5-23
bit in linkage-stack state entry 5-60
bit in PSW 4-6
effect on address size 3-5
effect on operand-address generation 5-6
effect on sequential instruction-address generation

5-6
effect on wraparound 3-5
in branch-address generation 5-7
in examples A-8
in operand-address generation 5-6
set by BRANCH AND SAVE AND SET MODE

instruction 7-11
set by BRANCH AND SET MODE instruction

7-12
use of 5-10

ADR (ADD NORMALIZED) instruction 9-7
AE (ADD NORMALIZED) instruction 9-7

example A-38
AER (ADD NORMALIZED) instruction 9-7
AFT (ASN first table) 3-15
AFTE (ASN-first-table entry) 3-15
AFTO (ASN-first-table origin) 3-15
AFX (ASN-first-table index) 3-14

invalid bit 3-15
translation exception 6-16

AH (ADD HALFWORD) instruction 7-8
example A-8

AKM (authorization key mask) 5-23
AL (ADD LOGICAL) instruction 7-9
ALB (ART -lookaside buffer) 5-46

entry
clearing of 5-48
effect of translation changes on 5-48
usable state 5-48

ALD (access-list designation) 5-38
ALE (See access-list entry)
ALEAX (access-list-entry authorization index) 5-39
ALEN (access-list-entry number) 5-37

invalid bit 5-39
translation exception 6-16

as an access exception 6-29
alert (class of machine-check condition) 11-12
alert interruption condition (I/O) 16-4
alert-status bit (I/O) 16-16
ALESN (access-list-entry sequence number)

in ALE 5-39
in ALET 5-36

ALET (access-list-entry token) 5-30,5-36
specification exception 6-16

as an access exception 6-29

x -2 ESA/370 Principles of Operation

ALL (access-list length) 5-38
allegiance

active 15-11
channel-path 15-10
dedicated 15-11
effect on CLEAR SUBCHANNEL of 15-10
working 15-11

allowed interruptions 6-6
ALO (access-list origin) 5-38
ALR (ADD LOGICAL) instruction 7-9
alter-and-display controls 12-2
alteration

general-register (PER event) 4-17
storage (PER event) 4-17

AND (N,NC,NI,NR) instructions 7-9
examples A-8

·AP (ADD DECIMAL) instruction 8-5
example A-33

AR (ADD) binary instruction 7-8
AR -specified (access-register-specified) address space

3-13,5-27
AR-specified (access-register-specified) virtual address

3-4
effective segment-table designation for 3-28

architectural mode 1-1
indication of 12-2
selection of by IML controls 12-2
selection of by manual controls 12-2

architecture, compatibility 1-3
arithmetic

address (See address arithmetic)
binary 7-3

examples A -2
decimal 8-2

examples A-5,A-33
floating-point 9-1

examples A-5,A-38
logical (unsigned binary) 7-3

examples A-4
ART (See access-register translation)
ART -lookaside buffer (See ALB)
ASCII character code, handled by architecture v
ASF-control bit (See address-space-function-control bit)
ASN (address-space number) 3-13

authorization 3-19
first table (AFT) 3-15

index (AFX) 3-14
origin (AFTO) 3':15

in entry-table entry 5-23
second table (AST)

index (ASX) 3-14
origin (ASTO) 3-15

second-table entry (ASTE)
address 5-54
address. in ALE 5-39
address, in ETE 5-23
basic (16-byte) 3-16
extended (64-byte) 5-40
primary (PASTE) 5-21
pseudo 3-14
sequence exception 6-17
sequence exception as an access exception

6-29

sequence number (ASTESN) 5-39,5-41
validity exception 6-17
validity exception as an access exception 6-29

trace-control bit 4-9
translation 3-14

exceptions 6-38
specification exception 6-16
specification exception as an access· exception

6-29
translation-control bit 3-15,5-17

assembler language A-7
instruction formats in (See instruction lists and

page numbers in Appendix B)
assigned storage locations 3-39

comparison of ESA/370 with 370-XA 0-3
comparison of 370-XA with System/370 E-6

AST (See ASN seqond table)
AST entry (See ASN-second-table entry)
ASTE (See ASN-second-table entry)
ASTESN (AST-entry sequence number)

in ALE 5-39
in ASTE 5-41

ASTO (ASN-second-table origin) 3-15
ASX (ASN-second-table index) 3-14

invalid bit 3-16
use in ART 5-40

translation exception 6-17
AT (See authority table)
ATL (authority-table length) 3-16

use in ART 5-40
ATO (authority-table origin) 3-16

use in ART 5-40
attached ART-table entry 5-47
attached segment-table or page-table entry 3-32
attachment of I/O devices 13-3
attention (device status) 16-23
AU (ADD UNNORMALIZED) instruction 9-8

example A-39
AUR (ADD UNNORMALIZED) instruction 9-8
authority table (AT) 5-17

designation 3-16,5-40
length 3-16,5-40
origin 3-16,5-40

authorization
ASN 3-19
index (AX) 3-20,5-17
key mask (AKM) 5-23
mechanisms 5-15

summary of 5-19
testing of 5-52

auxiliary storage 3-1,3-22
availability (characteristic of a system) 1-4
A W (ADD UNNORMALIZED) instruction 9-8
AWR (ADD UNNORMALIZED) instruction 9-8
AX (authorization index) 5-17
AXR (ADD NORMALIZED) instruction 9-7

B
B field of instruction 5-6
backed -up bit (machine-check condition) 11-18

backup, processing (synchronous machine-check condi-
tion) 11-18

backward stack-entry address 5-58
backward stack-entry validity bit 5-58
BAKR (BRANCH AND STACK) instruction 10-5

examples A-I 0
BAL (BRANCH AND LINK) instruction 7-10

examples A-8
BALR (BRANCH AND LINK) instruction 7-10

examples A-8
BAS (BRANCH AND SAVE) instruction 7-11

example A-8
base address 5-6

register for 2-3
basic AST entry 3-16
basic entry-table entry 5-22
basic I/O functions 15-1
basic operator facilities 12-1
basic PROGRAM CALL 5-50,10-35
basic sense command 15-37
BASR(BRANCH AND SAVE) instruction 7-11

example A-8
BASSM (BRANCH AND SAVE AND SET MODE)

instruction 7 -11
example A-8

BC (BRANCH ON CONDITION) instruction 7-12
example A -12

BCR (BRANCH ON CONDITION) instruction 7-12
BCf (BRANCH ON COUNT) instruction 7-13

example A -12
BCfR (D-RANCH ON COUNT) instruction 7-13

example A -12
bimodal addressing E-l,5-5

(See also addressing mode)
binary

(See also fixed point)
arithmetic 7-3

examples A -2
negative zero 7 -2
number representation 7-2

examples A -2
overflow 7-3

example A-2
sign bit 7-2

binary-to-decimal conversion 7-24
example A-18

bit 3-2
numbering of within a group of bytes 3-2

block -concurrent storage references 5-74
block of I/O data 15-21
block of storage 3-4

(See also page)
testing for usability of 10-69

borrow 7-49
boundary alignment 3-3

for instructions 5-3
branch address 5-7

in linkage-stack state entry 5-60
in trace entry 4-11

BRANCH AND LINK (BAL,BALR) instructions 7-10
examples A-8

BRANCH AND SAVE (BAS,BASR) instructions 7-11
examples A-8

Index X-3

BRANCH AND SAVE AND SET MODE (BASSM)
instruction 7 -11

examples A-8
BRANCH AND SET MODE (BSM) instruction 7-12

examples A-8
BRANCH AND STACK (BAKR) instruction 10-5

examples A-I 0
BRANCH ON CONDITION (BC,BCR) instructions

7-12
example A -12

BRANCH ON COUNT (BCT,BCTR) instructions 7-13
example A -12

BRANCH ON INDEX HIGH (BXH) instruction 7-14
examples A -13

BRANCH ON INDEX LOW OR EQUAL (BXLE)
instruction 7 -14

examples A -14
branch state entry 5-59,10-5
branch -trace-control bit 4-9
branching

branch-address generation 5-7
in a channel program (See TI C)
to perform decision making, loop control, and sub­

routine linkage 5-7
using the linkage stack 5-51

BSM (BRANCH AND SET MODE) instruction 7-12
example A-8

buffer storage (cache) 3-1
burst mode (channel-path operation) 13-3
bus-out check (bit in I/O sense data) 15-38
busy

as device status (I/O) 16-25
control unit 16-24,16-25
in I/O operations 13-7
in SIGNAL PROCESSOR 4-36

BXH (BRANCH ON INDEX HIGH) instruction 7-14
examples A -13

BXLE (BRANCH ON INDEX LOW OR EQUAL)
instruction 7 -14

examples A -14
bypassing POST and WAIT A -44
byte 3-2

numbering of in storage 3-2
byte index (BX) 3-23
byte-multiplex mode (channel-path operation) 13-3

C
C (COMPARE) binary instruction 7-15
cache 3-1
capability list 5-33
carry 7-3
CBC (checking-block code) 11-2

invalid 11-2
in registers 11-10
in storage 11-6
in storage keys 11-7

near-valid 11-2
valid 11-2

CCC (channel-control check) 16-31
CCW (channel-command word) 15-23

address of 15-22,16-18

X-4 ESA/370 Principles of Operation

byte count in 15-24
chaining 15-26
check (in subchannellogout) 16-37
command codes (See commands)
contents of 15-23
current 15-23
designation of storage area in 15-24,15-25
format control 15-21,16-10

used for IPL 17-10
format-O and format-l 15-23
IDA flag in 15-24
in IPL, assigned storage locations for 3-39
indirect data addressing used in 13-7,15-31
invalid format of 16-30
invalid specification of 16-29
PCI flag in 15-24
prefetch control in 15-21,16-11

used for IPL 17-10
prefetching 15-28
retry of (See command retry)
role in I/O operations of 13-6
skip flag in 15-24
suspend flag in 15-24

CD (COMPARE) floating-point instruction 9-9
CDR (COMPARE) floating-point instruction 9-9

examples A-39
CDS (COMPARE DOUBLE AND SWAP) instruction

7-19
examples A -43

CE (COMPARE) floating-point instruction 9-9
central processing unit (See CPU)
CER (COMPARE) floating-point instruction 9-9
CFC (COMPARE AND FORM CODEWORD)

instruction 7 -15
CH (COMPARE HALFWORD) instruction 7-20

example A -15
chaining check (subchannel status) 16-33
chaining of CCWs 15-26

command (See command chaining of CCWs)
data (See data chaining of CCW s)

chaining of CRWs 17-14,17-15
change bit in storage key 3-7
change recording 3-11
channel-command word (See CCW)
channel commands (See commands)
channel-control check (sub channel status) 16-31
channel-data check (sub channel status) 16-30
channel end (device status) 16-25
channel path 13-1,13-3

active allegiance for 15-11
available for selection 15-12
dedicated allegiance for 15-11
effect of I/O-system reset on 17-8
masks in SCHIB (See LPM, LPUM, PAM, PIM,

PNOM, POM)
multipath mode of 15-3,15-20
not operational 16-12
storing of status for 14-14
type of 13-5
working allegiance for 15-11

channel-path identifier (See CHPID)
channel-path reset 17-6

effect of I/O-system reset on 17-8

channel-path-reset function 15-43
completion of 15-44
initiation by RESET CHANNEL PATH 14-7
reset signal issued as part of 17-6
signaling for 15-43

channel-path -status word 14-14
channel program 15-23

branching in (See TIC)
execution of 13-6,15-19

resumption of 14-9
sequence altered by status modifier 16-23
suspension of 13-8,15-32

serialization 5-77
suspend control for 15-21

channel-program address 15-22,16-18
field-validity flag for in IRB 16-38
used for IPL 17-10

channel report 17-14
generated as a result of RCHP 14-7

channel report pending 11-17,1 7 -14
effect of I/O-system reset on 17-8
subclass-mask bit for 11-24

channel-report word (See CR W)
channel subsystem 2-6,13-2

addressing used in 13-5
damage 11-17
effect of I/O-system reset on 17-6
effect of power-on reset on 4-32

channel-subsystem monitoring 17-1
effect of I/O-system reset on 17-8

channel-subsystem recovery 11-4,17-13
channel-subsystem timer 17-2

effect of I/O-system reset on 17-9
channel-subsystem timing 17 -1
channel-subsystem timing-facility bit (in PMCW) 15-4
channel-to-channel adapter, publication referenced v
characteristic (of floating-point number) 9-1
characters, represented by eight-bit code v
check bits 3-2,11-2
check stop 4-2,11-11

as signal-processor status 4-38
during manual operation 12-1
effect on CPU timer 4-26
entering of 11-13
indicator 12-2
malfunction alert for 6-11
system 11-11

checking block 11-2
checking-block code (See CBC)
checkpoint 11-2
checkpoint synchronization 11-3

action 11-4
operations 11-3

CHPID (channel-path identifier) 13-5
in PMCW 15-7
used in RESET CHANNEL PATH 14-7

CL (COMPARE LOGICAL) instruction 7-21
CLC (COMPARE LOGICAL) instruction 7-21

example A-IS
CLCL (COMPARE LOGICAL LONG) instruction

7-22
example A-I 7

clear function 15-13

bit in SCSW for 16-13
completion of 15-14
initiated by CLEAR SUBCHANNEL 14-4
path management for 15-13
pending 16-15
signaling for 15-14
sub channel modification by 15-13

clear reset 4-31
clear signal 17-5

issued as part of clear function 15-14
CLEAR SUBCHANNEL (CSCH) instruction 14-4

(See also clear function)
effect on device status of 15-14
function initiated by 15-13
use of after RESET CHANNEL PATH 14-8

clearing operation
by clear-reset function 4-31
by load-clear key 12-3
by system-reset-clear key 12-4
by TEST BLOCK instruction 10-69

CLI (COMPARE LOGICAL) instruction 7-21
example A -16

CLM (COMPARE LOGICAL CHARACTERS
UNDER MASK) instruction 7-21

example A -16
clock (See TOD clock)
clock comparator 4-25

external interruption 6-10
save areas for 3-42
validity bit for 11-21

clock unit 4-24-
CLR (COMPARE LOGICAL) instruction 7-21

example A -16
code

ASCII, handled by architecture v
checking-block (See CBC)
command (in CCW) (See command code in CCW)
condition (See condition code)
decimal digit and sign 8-2
deferred condition (I/O) 16-8
EBCDIC

chart for H-l
handled by architecture v

eight-bit, handled by architecture v
error-recovery (I/O) 17-15
exception -extension 6-14
external-damage 11-22

validity bit for 11-21
I/O-interruption subclass 15-2
instruction-length (See ILC)
interruption (See interruption code)
linkage-stack-entry type 5-57
monitor (See monitor code)
operation 5-2
PER (See PER code)
reporting-source (I/O) 17-15
storage-access (in subchannellogout) 16-38
version 10-64

codeword (for sorting operations) 7-15
command chaining of CCW s 15-29

effect of status modifier on 15-29
flag in CCW for 15-24
overview of 13-8

Index X-5

\

command code in CCW 15-24
(See also commands)
invalid 16-29

command reject (bit in I/O sense data) 15-38
command retry 15-41

effect on PCI of 15-31
status modifier used for 16-23

commands (I/O) 15-24,15-34
control 15-36
initial read (for IPL) 15-35
no-operation (control) 15-37
read 15-35
read backward 15-36
sense 15-37
sense ID 15-39
transfer in channel 15-40
write 15-35

common-segment bit 3-26
COMPARE (C,CR) binary instructions 7-15
COMPARE (CD,CDR,CE,CER) floating-point

instructions 9-9
examples A-39

COMPARE AND FORM CODEWORD (CFC)
instruction 7 -15

COMPARE AND SWAP (CS) instruction 7-19
examples A -43

COMPARE DECIMAL (CP) instruction 8-5
example A-33

COMPARE DOUBLE AND SWAP (CDS) instruction
7-19

examples A -43
COMPARE HALFWORD (CH) instruction 7-20

example A -15
COMPARE LOGICAL (CL,CLC,CLI,CLR)

instructions 7-21
examples A -15

COMPARE LOGICAL CHARACfERS UNDER
MASK (CLM) instruction 7-21

example A -16
COMPARE LOGICAL LONG (CLCL) instruction

7-22
example A-I 7

comparison
address (See address comparison)
between System/370 and 370-XA E-l
between 370-XA and ESA/370 D-l
decimal 8-5

example A-33
floating-point 9-9

examples A-39
logical 7-4

examples A -15
signed-binary 7-4
TOD-clock 4-25

compatibility 1-3
among systems implementing different architectures

1-4
among systems implementing same architecture 1-3
between 370-XA and System/370 I/O operations

13-1
control-program 1-4
problem-state 1-4

completion of I/O functions

X-6 ESA/370 Principles of Operation

by channel-path-reset function 15-44
by clear function 15-14
by halt function 15-15
during data transfer 15-42
during initiation 15-41
for immediate commands 15-42

completion of instruction execution 5-12
completion of unit of operation 5-13
conceptual sequence 5-65

as related to storage-operand accesses 5-75
conclusion of I/O operations 13-8,16-1

during data transfer 15-42
during initiation 15-41
for immediate commands 15-42

conclusion of instruction execution 5-12
concurrency of access for storage references 5-74
condition code 4-5

deferred 16-8
in PSW 4-5
summary C-l
tested by BRANCH ON CONDITION instruction

7-12
used for decision making 5-7
validity bit for 11-21

conditional-swapping instructions (See COMPARE
AND SWAP instruction, COMPARE DOUBLE
AND SWAP instruction)

conditions for interruption (See interruption conditions)
configuration 2-1

of storage 3-4
configuration-alert facility (I/O) 17-13
connective (See logical connective) .
consistency (storage operand) 5-74

examples A -46,A -48
console device 12-1
control 4-1

as an I/O command 15-36
instructions 10-1
manual (See manual operation)

control-program compatibility 1-4
control register 2-3,4-6

comparison, ESA/370 with 370-XA D-3
comparison, 370-XA with System/370 E-6
save areas 3-43
validity bit 11-21

control-register assignment 4-7
(CRx.y indicates control register x, bit position y)
CRO.l:

SSM-suppression-control bit 6-25,10-61
CRO.2:

TOD-clock-sync-control bit 4-22,4-25
CRO.3:

low-address-protection-control bit 3-10
CRO.4:

extraction-authority-control bit 5-16
CRO.S:

secondary-space-control bit 3-24,5-17
CRO.6:

fetch-protection-override-control bit 3-9
CRO.8-12:

translation format 3-24
CRO.14:

vector-control bit 4-9

CRO.l5:
I

address-space-function-control bit 5-35
CRO.16:

malfunction-alert subclass-mask bit 6-11
CRO.17:

emergency-signal subclass-mask bit 6-11
CRO.18:

external-call subclass-mask bit 6-11
CRO.19:

TO D-clock sync-check subclass-mask bit 6-12
CRO.20:

clock-comparator subclass-mask bit 6-10
CRO.21:

CPU -timer subclass-mask bit 6-11
CRO.22:

service-signal subclass-mask bit 6-12
CRO.25:

interrupt-key subclass-mask bit 6-11
CRl.0:

primary space-switch-control bit 6-24
primary space-switch-event-control bit 3-24

CR1.1-19:
primary segment-table origin (PSTO) 3-25

CR1.23:
primary private-space-control bit 3-25

CRl.25-31:
primary segment-table length (PSTL) 3-25

CR2.1-25:
dispatchable-unit -control-table origin (D U erO)

5-36
CR3.0-15:

PSW -key mask (PKM) 5-16
CR3.16-31:

secondary ASN (SASN) 3-13
CR4.0-15:

authorization index (AX) 3-20,5-17
CR4.16-31:

primary ASN (PASN) 3-13
CR5.0:

subsystem-linkage-control bit 5-17,5-21
CR5.1-24:

linkage-table origin (LTO) 5-21
CR5.l-25:

primary-AST-entry origin (PASTEO)
5-21,5-36

CR5.25-31:
linkage-table length (LTL) 5-21

CR6.0-7:
I/O-interruption subclass mask 6-13

CR7.1-19:
secondary segment-table origin (SSTO) 3-25

CR7.23:
secondary private-space-control bit 3-25

CR7.25-31:
secondary segment-table length (SSTL) 3-25

CR8.0-15:
extended authorization index (EAX) 5-36

CR8.16-31:
monitor-mask bits 6-20

CR9.0:
PER successful-branching-event- mask bit 4-13

CR9.l:
PER instruction-fetching-event- mask bit 4-13

CR9.2:
PER storage-alteration-event-mask bit 4-13

CR9.3:
PER general-register-alteration- event-mask bit

4-13
CR9.4:, PER store-using-real-address- event-mask

bit 4-13
CR9.16-31:

PER general-register-mask bits 4-13
CRI0.l-31:

PER starting address 4-13
CRl1.1-31:

PER ending address 4-13
CRI2.0:

branch -trace-control bit 4-9
CRI2.1-29:

trace-entry address 4-9
CRI2.30:

ASN -trace-control bit 4-9
CRI2.31:

explicit-trace-control bit 4-10
CR13.0:

home space-switch-event-control bit 3-25,6-24
CRI3.1-19:

home segment-table origin (HSTO) 3-25
CRI3.23:

home private-space-control bit 3-25
CRI3.25-31:

home segment-table length (HSTL) 3-25
CRI4.3:

channel-report-pending subclass-mask bit
11-24

CR14.4:
recovery subclass-mask bit 11-24

CRI4.5:
degradation subclass-mask bit 11-24

CRI4.6:
external-damage subclass-mask bit 11-24

CRI4.7: .
warning subclass-mask bit 11-24

CR14.l2:
ASN-translation-control bit 3-15,5-17

CRI4.13-31 :
ASN-first-table origin (AFTO) 3-15

CRI5.1-28:
linkage-stack-entryaddress 5-56

control unit 2-6,13-4
effect of I/O-system reset on 17-7
model number of (from sense-ID command) 15-39
sharing of 13-4
type number of (from sense-ID command) 15-39
type of 15-12

control unit busy 16-24,16-25
control-unit end (device status) 16-24
conversion

binary-to-decimal 7-24
example A -18

decimal-to-binary 7-24
example A -18

decimal to hexadecimal G-I
floating-point -number

basic example A-7
examples with instructions A -41

Index X-7

hexadecimal-to-decimal G-l
of hexadecimal and decimal fractions 'G-7
of hexadecimal and decimal integers G-6

CONVERT TO BINARY (CVB) instruction 7-23
example A -18

CONVERT TO DECIMAL (CVD) instruction 7-24
example A -18

COpy ACCESS (CPYA) instruction 7-24
count field

" in CCW 15-24
invalid 16-29

in sesw 16-33
counter updating (example) A -44
counting operations 7 -13
CP (COMPARE DECIMAL) instruction 8-5

example A -33
CPA (See channel-program address)
CPU (central processing unit) 2-2

address 4-34
assigned storage locations for 3-39
when stored during external interruptions 6-9

checkpoint 11-2
effect of power-on reset on 4-32
hangup due to string of interruptions 4-3
identification (ID) 10-64
model number 10-64
registers 2-2

save areas for 3-42
reset 4-30

signal-processor order 4-35
retry 11-2
serialization 5-76
signaling 4-34
state 4-1

check-stop 4-2
load 4-2
no effect on TOD clock 4-22
operating 4-2
stopped 4-2

version code 10-64
CPU timer 4-26

external interruption 6-10
save areas for 3-42
validity bit for 11-21

CPYA (COpy ACCESS) instruction 7-24
CR (See control register)
CR (COMPARE) binary instruction 7-15
CRW (channel-report word) 17-15

chaining of 17-14,17-15
error-recovery code (ERC) in 17-15
overflow in 17-15
reporting-source code (RSC) in 17-15
reporting-source ID (RSID) in 17-16
solicited 17-15
storing of 14-14

es (COMPARE AND SWAP) instruction 7-19
examples A -43

esCH (See CLEAR SUBCHANNEL instruction)
current CCW 15-23

(See also CCW)
current PSW 4-3,5-7

(See also PSW)
stored during interruption 6-2

X-8 ESA/370 Principles of Operation

CVB (CONVERT TO BINARY) instruction 7-23
example A -18

CVD (CONVERT TO DECIMAL) instruction 7-24
example A -18

D
D (DIVIDE) binary instruction 7-25

example A-19
D field of instruction 5-6
damage

channel-subsystem 11-17
code" (external) 11-22

validity bit for 11-21
external 11-16

subclass-mask bit for 11-24
instruction -processing 11-16
processing 11-19
service-processor 11-17
system 11-15
timing-facility 11-16

DAT (See dynamic address translation)
DAT mode (bit in PSW) 4-5

use in address translation 3-24
data

blocking of (I/O) 15-21
format for

decimal instructions 8-1
floating-point instructions 9-2
general instructions 7-2

indirect addressing of (I/O) 13-7,15-31
measurement (I/O) (See measurement data)
prefetching of for I/O operation 15-26

data address (I/O) 15-25
invalid 16-29
invalid specification of 16-29

data chaining of CCW s 15-28
flag in CCW for 15-24
overview of 13-8

data check
bit in I/O sense data 15-38
measurement-block 16-37

data exception "6-17
data streaming (I/O) 13-4

effect of CCW count on 15-29
DCTI (device-connect-time interval)

in ESW 16-41
in measurement block 17-3

DD (DIVIDE) floating-point instruction 9-9
DDR (DIVIDE) floating-point instruction 9-9
DE (DIVIDE) floating-point instruction 9-9
decimal

arithmetic 8-2
comparison 8-5
digit codes 8-2
divide exception 6-18
instructions 8-1

examples A-33
number representation 8-1

examples A-5
operand overlap 8-3
overflow

exception 6-18
mask in PSW 4-6

sign codes 8-2
tables for conversion to hexadecimal G~ 1

decimal-to-binary conversion 7-24
example A -18

dedicated allegiance 15-11
deferred condition code 16-8
degradation (machine-check condition) 11-17

subclass-mask bit for 11-24
degradation, storage (machine-check condition) 11-19
delay in storing 5-72
delayed access exception (machine-check condition)

11-18
deletion of malfunctioning unit 11-4
DER (DIVIDE) floating-point instruction 9-9

examples A-40
designation

access-list·5-37
authority-table 3-16
effective segment-table 3-28
entry-table 5-22
home segment-table 3-25
linkage-table 5-21

in AST entry 3-17
of storage area for data (I/O) 15-25
page-table 3-26
primary segment-table 3-24
secondary segment-table 3-25
segment-table 3-24

in AST entry 3-16
destructive overlap 5-75,7-35
device 2-6,13-4

console 12-1
effect of I/O-system reset on 17-7

device-active bit 16-15
device address 13-5
device busy 16-25
device-connect-time interval (See Dcrl)
device-connect-time measurement 17-5

effect of suspension on 15-34
enable 15-3

device-dis connect-time interval (in measurement block)
17-4

device end (device status) 16-26
device identifier 13-5
device model/type (from sense-ID command) 15-39
device-not-ready indication 15-38
device number 13-5

assignment of 13-6
in PMCW 15-4

device-number valid (bit in PMCW) 15-4
device-ready indication

with attention 16-23
with device end 16-26
with unit exception 16-28

device status 16-23
field-validity flag for (in sub channel logout)

16-32,16-38
with inappropriate bit combination 16-38

device status check 16-38
DIAGNOSE instruction 10-7
digit codes (decimal) 8-2

digit selector (in EDIT) 8-7
direct-access storage 3-1
disabling for interruptions 6-6
disallowed interruptions 6-6
dispatchable unit (DU) 5-30

access-list designation (DUAL D) 5-37
control table (DUCT) 5-37

origin (DUcrO) 5-36
displacement (in relative addressing) 5-6
display (manual controls) 12-2
DIVIDE (D,DR) binary instructions 7-25

example A -19
DIVIDE (DD,DDR,DE,DER,DXR) floating-point

instructions 9-9
examples A -40

DIVIDE DECIMAL (DP) instruction 8-6
example A-34

divide exception
decimal 6-18
fixed-point 6-19
floating-point 6-20

divisible instruction execution 5-66
doubleword 3-3
doubleword-concurrent storage references 5-74
DP (DIVIDE DECIMAL) instruction 8-6

example A-34
DR (DIVIDE) binary instruction 7-25
DU (dispatchable unit) 5-30
DUALD (dispatchable-unit access-list designation) 5-37
DUCT (dispatchable-unit control table) 5-37
DUcrO (dispatchable-unit-control-table origin) 5-36
dump (standalone) 12-4
DXR (DIVIDE) floating-point instruction 9-9
dynamic address translation (OAT) 3-22

by LOAD REAL ADDRESS instruction 10-25
control of 3-24
explicit and implicit 3-27
mode bit in PSW 4-5

use in address translation 3-24
sequence of table fetches 5-71

dynamic-reconnection feature 13-3

E
E instruction format 5-4
EAR (EXTRAcr ACCESS) instruction 7-27
early exception recognition 6-8
EAX (See extended authorization index)
EBCDIC (Extended Binary-Coded-Decimal Interchange

Code)
architecture designed for v
character code, chart for H-l

ECC (error checking and correction) 11-2
ECW (extended-control word) 16-43

indication in SCSW 16-11
ED (EDIT) instruction 8-6

examples A-34
EDIT (ED) instruction 8-6

examples A -34
EDIT AND MARK (EDMK) instruction 8-10

example A-35
editing instructions 8-3

Index X-9

(See also ED instruction, EDMK instruction)
EDMK (EDIT AND .MARK) instruction 8-10

example A-35
effective access-list designation 5-37
effective address 3-5

controlled by addressing mode 5-5
generation 5-5
used for storageitlterlocks 5-67

effective segment-table designation 3-28
effective space designation 5-67
EKM (entry key mask) 5-23

use by stacking PROGRAM CALL 5-53
emergency signal (external interruption) 6-11

signal-processor order 4-34
enabled (bit in PMCW) 15-2
enabling for interruptions 6-6

subchannel 16-5
enabling of sub channel 15-2,16-5
ending of instruction execution 5-12
entry

addressing-mode bit 5-53
extended authorization index 5-54
instruction address 5-53
key 5-54
key mask (EKM) 5-23

use by stacking PROGRAM CALL 5-53
parameter 5-53
problem-state bit 5-53

entry (for tracing) 4-10
entry descriptor 5-56
entry index (EX) 5-21
entry table (ET)

designation 5-22
length 5-22
origin 5-22

entry-table entry (ETE)
basic (16-byte) 5-22
extended (32 byte) 5-52

entry-type code 5-57
EPAR (EXTRACf PRIMARY ASN) instruction 10-7
epoch (for TOD clock) 4-23
equipment check

bit in I/O sense data 15-38
in signal-processor status 4-38

ERC (error-recovery code) 17-15
(See also CRW)

EREG (EXTRACf STACKED REGISTERS) instruc­
tion 10-8

error
checking and correction 11-2
from DIAGNOSE instruction 10-7
I/O-error alert 16-39
indirect storage 11-20
intermittent 11-5
PSW -format 6-8
secondary (I/O) 16-38
solid 11-5
state of TO D clock 4-22
storage 11-19
storage-key 11-19

error-recovery code (ERC) 17-15
(See also CRW)

ERW (extended-report word) 16-36,16-40

X -10 ESA/370 Principles of Operation

as result of channel-control check 16-31
as result of channel-data check 16-31

ESA/370 (Enterprise Systems Architecture/370)
architectural-mode controls 12-2
comparison of facilities with 370-XA D-l
highlights of 1-1

ESAR (EXTRACf SECONDARY ASN) instruction
10-8

EST A (EXTRACf STACKED STATE) instruction
10-9

ESW (extended-status word) 16-36
(See also extended status)

ESW format bit (in SCSW) 16-8
ET (See entry table)
ETE (See entry-table entry)
ETL (entry-table length) 5-22
ETO (entry-table origin) 5-22
event 6-13

monitor 7-32
PER 4-12
space-switch 6-24

EX (entry index) 5-21
translation exception 6-19

EX (EXECUTE) (See EXECUTE instruction)
exception access identification 3-41
exception-extension code 6-14
exceptions 6-13

access (collective program-interruption name)
6-29,6-34

addressing 6-14
AFX -translation 6-16
ALE-sequence 6-16
ALEN-translation 6-16
ALET -specification 6-16
ASN -translation (collective program-interruption

name) 6-38
ASN -transhition -specification 6-16
associated with

ART 5-46
stacking process 5-62
unstacking process 5-65

ASTE-sequence 6-17
ASTE-validity 6-17
ASX -translation 6-17
comparison of ESA/370 with 370-XA D-3
data (decimal) 6-17
decimal-divide 6-18
decimal-overflow 6-18
delayed access (machine-check condition) 11-18
during translation 3-31
EX -translation 6-19
execute 6-18
exponent-overflow 6-18
exponent-underflow 6-19
extended-authority 6-19
fixed-point-divide 6-19
fixed-point-overflow 6-19
floating-point-divide 6-20
LX-translation 6-20
operand (of I/O instruction) 6-21
operation 6-21
page-translation 6-21
PC-translation -specification 6-22

primary-authority 6-22
privileged-operation 6-22
protection 6-23
PSW -related 6-8
recognition oft early and late 6-8
secondary-authority 6-24
segment-translation 6-24
significance 6-24
special-operation 6-25
specification 6-26
stack-empty 6-27
stack-full 6-27
stack-operation 6-27
stack -specification 6-27
stack-type 6-27
trace (collective program-interruption name) 6-38
trace-table 6-28
translation-specification 6-28
unnormalized-operand 6-28
vector-operation 6-28

EXCLUSIVE OR (X){C){I){R) instructions 7-25
examples A -19

EXECUTE (EX) instruction 7-26
effect of address comparison on 12-1
example A-21
exceptions while fetching target 6-7
PER event for target of 4-17

execute exception 6-18
exigent machine-check conditions II-II
explicit address translation 3-27
explicit-trace-control bit 4-10
exponent 9-1

(See also floating point)
overflow 9-1

exception 6-18
underflow 9-1

exception 6-19
mask in PSW 4-6

extended AST entry 5-40
extended-authority exception 6-19

as an access exception 6-29
extended authorization index (EAX) 5-36

control bit 5-53
in entry-table entry 5-54
in linkage-stack state entry 5-60

extended control (bit in SCSW) 16-11
extended-control word (See ECW)
extended entry-table entry 5-52
extended floating-point number 9-2
extended-report word (See ERW)
extended status

(See also ESW)
flags in subchannel logout for 16-36
format-O 16-36
format-l 16-40
format-2 16-41
format-3 16-42

extended-status word 16-36
(See also extended status)

extended-status-word-format bit 16-8
external call

external interruption 6-11
pending (signal-processor status) 4-38

signal-processor order 4-34
external damage 11-16

subclass-mask bit for 11-24
external-damage code 11-22

assigned storage locations for 3-42
validity bit for 11-21

external interruption 6-9
clock -comparator 4-25t6-1 0
CPU-timer 4-26t6-10
direct conditions 6-10
emergency-signal 6-11
external-call 6-11
interrupt-key 6-11
malfunction-alert 6-11
mask in PSW 4-5
parameter 6-9

assigned storage locations for 3-39
pending conditions 6-10
priority of conditions 6-10
service-signal 6-12
TOD-clock-sync-check 6-12

externally initiated functions 4-27
I/O 17-10

EXTRACf ACCESS (EAR) instruction 7-27
EXTRACf PRIMARY ASN (EPAR) instruction 10-7
EXTRACf SECONDARY ASN (ESAR) instruction

10-8
EXTRACr STACKED REGISTERS (EREG) instruc­

tion 10-8
EXTRACf STACKED STATE (ESTA) instruction

10-9
extraction-authority-control bit 5-16

F
facilities of ESA/370 (compared with 370-XA) 0-1
facilities of 370-XA (compared with System/370) E-l

I/O 13-1
failing-storage address 11-22

assigned storage locations for 3-42
in ESW 16-36tI6-40

as result of channel-control check 16-31
as result of channel-data check 16-31

validity bit for 11-21
validity flag for (in ER W) 16-40

failuret vector-facility 11-17
fetch protection 3-8

bit in storage key 3-7
override-control bit 3-9

fetch reference 5-72
access exceptions for 6-32

fetching
handling of invalid CBC in storage keys during

11-8
of ART-table and OAT-table entries 5-71
of instructions 5-69
of PSWs during interruptions 5-76
of storage operands 5-72

field 3-2
field separator (in ED IT) 8-7
field-validity flags (in subchannellogout) 16-38

relation to channel-control check of 16-32

Index X-ll

FIFO (first in first out) queuing, example for lock and
unlock A-46

fill byte (in EDIT) 8-7
fixed-length field 3-2
fixed logout·

assigned storage locations for 3-42
machine-check 11-24

fixed point
(See also binary)
divide exception 6-19
overflow exception 6-19

mask in PSW 4-6
floating interruption conditions 6-6,11-23

clearing of 4-31
floating point

(See also exponent)
comparison 9-9
conversion

basic example A-7
examples with instructions A -41

data format 9-2
divide exception 6-20
instructions 9-1

examples A-38
numbers 9-1

examples A-5
registers 2-3

save areas for 3-42
validity bit for 11-21

shifting (See normalization)
format

address 3-2
CCW (See CCW format control)
decimal data 8-1
floating-point data 9-2
general data 7 -2
information 3-2
instruction 5-3
PSW 4-5

format-O access-list designation 5-38
format-O and format-l CCWs 15-23
format-l access-list designation 5-38
forward-section-header address 5-58
forward-section validity bit 5-58
fraction 9-1

conversion of between hexadecimal and decimal
G-7

free-pool manipulation, programming example A -4 7
fullword (See word)
function control (I/O) 16-12
function-pending time 17-2

in measurement block 17-4

G
G (giga) iv
general instructions 7-2

examples A-8
general registers 2-3

alteration-event-mask bit 4-13
alteration of (PER event) 4-17
PER-mask bits 4-13

X-12 ESA/370 Principles of Operation

save areas for 3-42
validity bit for 11-21

glue module 5-11
guard digit 9-3

H
half word 3-3
halfword -concurrent storage references 5-74
halt function 15-14

bit in SCSW for 16-12
completion of 15-15
initiated by HALT SUBCHANNEL 14-4
path management for 15-14
pending 16-14
signaling for 15-15

halt signal 17-5
issued as part of halt function 15-15

HALT SUBCHANNEL '(HSCH) instruction 14-4
(See also halt function)
effect on SCSW count field 15-17
function initiated by 15-14
use of after RESET CHANNEL PATH 14-8

HALVE (HDR,HER) instructions 9-11
example A -40

HD R (HALVE) instruction 9-11
example A -40

header entry 5-58
HER (HALVE) instruction 9-11
hexadecimal (hex) representation 5-4

tables G-l
high-speed data transfer (I/O) 13-4
home address space 0-1,3-13,5-26

facilities 5-26
home segment table

designation (HSTO) 3-25
length (HSTL) 3-25
origin (HSTO) 3-25

home-space mode 3-24
home space-switch event, control bit, in control register

13 3-25
home virtual address 3-4

effective segment-table designation for 3-28
HSCH (See HALT SUBCHANNEL instruction)
HSTD (home segment-table designation) 3-25
HSTL (home segment-table length) 3-25
HSTO (home segment-table origin) 3-25

I field of instruction 5-5
I/O (input/output) 2-4

basic functions of 15-1
blocking of data for 15-21
comparison of 370-XA with System/370 E-4,13-1
effect on CPU timer 4-26
sense data (See sense data)
support functions of 17-1

I/O addressing 13-5
I/O commands (See commands)
I/O device (See device)

I/O-error alert (in subchannel logout) 16-39
I/O instructions 14-1,14-2

deferred condition code for 16-8
operand access by 14-1
role of in I/O operations 13-6

I/O interface, OEMI publication referenced v
I/O interruption 6-12,16-1

(See also interruption)
action for 16-5
masking of 13-9
priority of 16-5
program-controlled interruption (See PCI)

I/O-interruption code 6-12,14-16
stored by TPI 16-6

I/O-interruption condition 13-9,16-2
alert 16-4
intermediate 16-4
primary 13-8,16-4
secondary 13-8,16-4
solicited 16-3
unsolicited 16-3

I/O-interruption parameter
assigned storage locations for 3-42
in I/O-interruption code 16-6
in ORB 15-21
itt PMCW 15-2
used for IPL 17-10

I/O-interruption request
c)earing of 13-9
ft'om sub channels 16-5

I/O-i~terruption subclass 13-9
I/O-interruption subclass code (lSC) 15-2
I/O-irherruption subclass mask 6-13,16-5

relation to priority 16-5
I/O mask in PSW 4-5
I/O operations 13-6

conclusion of (See conclusion of I/O operations)
execution of 15-19
immediate 15-42
initiated indication for 16-11·
t~rmination of (See conclusion of I/O operations)

I/O-system reset 17-6
a~ part of subsystem reset 4-31

lAC (INSERT ADDRESS SPACE CONTROL)
instruction 10-12

IC (INSERT CHARACTER) instruction 7-27
IC (instruction counter) (See instruction address)
ICM (INSERT CHARACTERS UNDER MASK)

instruction 7-27
examples A-21

ID (See CPU identification, sense ID)
IDA On direct-data address) 15-31

fbig in CCW 15-24
IDA W (indirect-data-address word) 15-31

check (in subchannellogout) 16-37
contents of 15-32
invalid address of 16-29
invalid address specification in 16.,29
invalid address specification of 16-29

idle state for subchannel 16-13
IFCC (interface-control check) 16-32
fLC (instruction-length code) 6-7

assigned storage locations for 3-40

for program interruptions 6-13
for supervisor-call interruption 6-39

IML (initial microprogram loading) controls 12-2
immediate operand 5-5
immediate operation (I/O) 15-42
implicit address translation 3-27
incorrect length (subchannel status) 16-28

for immediate operations 15-37
when writing undefined blocks 15-35

incorrect-length-indication mode 15-22
incorrect-Iength-indication-suppression facility E-2,17-13
incorrect-length-suppression mode 15-22
incorrect state (signal-processor status) 4-38
index

for address generation 5-6
instructions for branching on 7-14
into access list 5-37
into ASN first and second tables 3-14
into authority table 5-17
into entry and linkage tables 5-21
register for 2-3

indicator
check-stop 12-2
load 12-3
manual 12-3
mode 12-2
test 12-5
wait 12-5

indirect-data address (See IDA)
indirect-data-address word (See IDA W)
indirect storage error 11-20
information format 3-2
inhibition of unit of operation 5-13
initial CPU reset 4-31

signal-processor order 4-35
initial-microprogram-Ioading (IML) controls 12-2
initial program loading (See IPL)
initial-status-interruption control 15-21,16-11

relation to Z bit 16-11
used for IPL 17-10

inoperative (signal-processor status) 4-38
input/output (See I/O)
INSERT ADDRESS SPACE CONTROL (lAC)

instruction 10-12
INSERT CHARACTER (IC) instruction 7-27
INSERT CHARACTERS UNDER MASK (ICM)

instruction 7-27
examples A -21

INSERT PROGRAM MASK (lPM) instruction 7-28
INSERT PSW KEY (IPK) instruction 10-12
INSERT STORAGE KEY EXTENDED (lSKE)

instruction 10-13
INSERT VIRTUAL STORAGE KEY (IVSK) instruc­

tion 10-13
installation 2-1
instruction address

as a type of address 3-5
handling by DAT 3-24
in entry-table entry 5-23
in PSW 4-6
validity bit for 11-21

instruction-length code (See ILC)
instruction -processing damage 11-16

Index X-13

resulting in processing backup 11-18
resulting in processing damage 11-19

instructions
(See also instruction lists and page numbers in

Appendix B)
backing up of 11-18
classes of 2-2
comparison of ESA/370 with 370-XA D-2
comparison of 370-XA with System/370 E-3
control 10-1
damage to 11-16,11-19
decimal 8-1

examples A-33
divisible execution of 5-66
ending of 5-12
examples of use A-7
execution of 5-7
fetching of 5-69

access exception for 6-31
PER event for 4-17
PER-event mask for 4-13

floating-point 9-1
examples A-38

format of 5-3
general 7-2

examples A-8
interruptible (See interruptible instructions)
length of 5-4
list of B-1
modification by EXECUTE instruction 7-26
prefetching of 5-70
privileged 4-5

for control 10-1
semiprivileged 4-5,10-1
sequence of execution 5-2
stepping of (rate control) 12-3

effect on CPU state 4-2
effect on CPU timer 4·26

unprivileged 4-5,7-2
vector 2-4

integer
binary 7-2

address as 5-6
examples A -2

conversion of between hexadecimal and decimal
G-6

decimal 8-2
integral boundary 3-3
interface, I/O, OEM I publication referenced v
interface-control check (subchannel status) 16-32
interlocked -update storage reference 5-73
interlocks for virtual storage references 5-66
intermediate interruption condition (I/O) 16-4
intermediate-status bit (I/O) 16·17
intermittent errors 11-5
internal storage 2-2
interpretive execution, publication referenced v
interrupt key 12-3

external interruption 6-11
interruptible instructions 5-12

COMPARE AND FORM CODEWORD 7-15
COMPARE LOGICAL LONG 7-23
MOVE LONG 7-35

X -14 ESA/370 Principles of Operation

PER event affecting the ending of 4-15
stopping of 4-2
TEST BLOCK 10-70
UPDATE TREE 7-53
vector instructions 5-12

interruption 6-2
(See also masks)
action 6-2

I/O 16-5
machine-check 11-12

classes of 6-5
effect on instruction sequence 5-12
external (See external interruption)
I/O (See I/O interruption)
machine-check (See machine-check interruption)
masking of 6-6
pending 6-6

external 6-10
machine-check 11-13
relation to CPU state 4-2

priority of (See priority)
program (See program interruption)
program-controlled (I/O) (See PCI)
restart 6-38
string (See string of interruptions)
supervisor-call 6-38

interruption code 6-5
external 6-9
I/O (See I/O-interruption code)
machine-check (MCIC) 3-42,11-14
program 6-13
summary of 6-2
supervisor-call 6-39

interruption conditions 6-2
clearing of 4-30
floating 6-6,11-23
I/O (See I/O-interruption condition)

interruption parameter
external (assigned storage locations) 3-39
I/O (See I/O-interruption parameter)

interruption-response block (See IRB)
interruption subclass (See I/O-interruption subclass)
intervention required (bit in I/O sense data) 15-38
invalid

address 6-14
bit in access-list entry 5-39
bit in ASN -first-table entry 3-15
bit in ASN -second-table entry 3-16
bit in linkage-table entry 5-22
bit in page-table entry 3-27
bit in segment-table entry 3-26
CBC 11-2

in registers 11-10
in storage 11-6
in storage keys 11-7

operation code 6-21
order (signal-processor status) 4-38
parameter (signal-processor status) 4-38
translation address 3-31
translation format 3-24

exception recognition 3-31
invalid address specification

in channel-program address 16-29

in IDAW 16-29
of data in CCW 16-29
of IDAW 16-29
of TIC CCW 16-29

invalid CCW field
command code 16-29
count 16-29
data address 16-29
suspend flag 16-30

invalid format
ofCCW 16-30
of ORB 16-30

invalid sequence of CCWs 16-30
INVALIDATE PAGE TABLE ENTRY (I PTE)

instruction 10-14
effect of when CPU is stopped 4-2

inverse move (See MOVE INVERSE instruction, move;'
inverse facility)

IPK (INSERT PSW KEY) instruction 10-12
IPL (initial program loading) 4-32,17~10

assigned storage locations for 3-39
effect on CPU state 4-2

IPM (INSERT PROGRAM MASK) instruction 7-28
IPTE (INVALIDATE PAGE TABLE ENTRY)

instruction 10-14
IRB (interruption-response block) 16-6

(See also ECW, ERW, ESW, SCSW)
storage requirements for 16-11

ISC (I/O-interruption subclass code) 15-2
ISKE (INSERT STORAGE KEY EXTENDED)

instruction 10-13
IVSK (INSERT VIRTUAL STORAGE KEY) instruc­

tion 10-13

K
K (kilo) iv
key

access (See access key)
manual (See manual operation)
PSW (See PSW key)
storage (See storage key)
subchannel (See subchannel key)

key check (in subchannellogout) 16-36
key-controlled protection 3-8

exception for 6-23
key mask

L

authorization 5-23
entry 5-23
PSW (PKM) 5-16

L (LOAD) binary instruction 7-28
example A-22

L fields of instruction 5-5
LA (LOAD ADDRESS) instruction 7-29

examples A -22
LAE (LOAD ADDRESS EXTENDED) instruction

7-29
LAM (LOAD ACCESS MULTIPLE) instruction 7-28

LASP (LOAD ADDRESS SPACE PARAMETERS)
instruction 10-16

last-path-used mask (See LPUM)
late exception recognition 6-9
LCDR (LOAD COMPLEMENT) floating-point

instruction 9-12
LCER (LOAD COMPLEMENT) floating-point instruc­

tion 9-12
LCR (LOAD COMPLEMENT) binary instruction

7-30
LCTL (LOAD CONTROL) instruction 10-23
LD (LOAD) floating-point instruction 9-12
LOR (LOAD) floating-point instruction 9-12
LE (LOAD) floating-point instruction 9-12
left-to-right addressing 3-2
length

field 3-2
instruction 5-4
register-operand 5-5
second operand same as first 5-5
variable (storage operand) 5-5

LER (LOAD) floating-point instruction 9-12
LH (LOAD HALFWORD) instruction 7-30

examples A-23
LIFO (last in first out) queuing, example for lock and

unlock A-45
light (See indicator)
limit mode (I/O) 15-2
link information

for BRANCH AND LINK instruction 7-10
for BRANCH AND SAVE AND SET MODE

instruction 7-11
for BRANCH AND SAVE instruction 7-11

linkage for subroutines 5-8
linkage index (LX) 5-21
linkage stack 0-1,5-48,5-56

associated PER events 5-52
associated trace entries 5-52
branch state entry 10-5
entry address 5-56
entry descriptor 5-56
entry-type code 5-57
functions 5-49
handling ofinformation in 5-51
header entry 5-58
instructions 5-49
. introduction 5-54
next-entry size 5-57
operations 5-54

control 5-56
program-call state entry 10-36
remaining free space 5-57
section 5-54

identification 5-57
state entry 5-59
trailer entry 5-58

linkage table (L T) 5-22
designation (LTD) 5-21

in AST entry 3-17
length (L TL) 5-21

in primary AST entry 5~21

origin (L TO) 5-21
in primary AST entry 5-21

Index X-IS

LM (LOAD MULTIPLE) instruction 7-31
LNDR (LOAD NEGATIVE) floating-point instruction

9-13
LNER (LOAD NEGATIVE) floating-point instruction

9-13
LNR (LOAD NEGATIVE) binary instruction 7-31
LOAD (L,LR) binary instructions 7-28

example A -22
LOAD (LD,LDR,LE,LER) floating-point instructions

9-12
LOAD ACCESS MULTIPLE (LAM) instruction 7-28
LOAD ADDRESS (LA) instruction 7-29

examples A -22
LOAD ADDRESS EXTENDED (LA E) instruction

7-29
LOAD ADDRESS SPACE PARAMETERS (LASP)

instruction 10-16
load and store using real address D-2
LOAD AND TEST (L TDR,L TER) floating-point

instructions 9-12
LOAD AND TEST (LTR) binary instruction 7-30
load-clear key 12-3
LOAD COMPLEMENT (LCDR,LCER) floating-point

instructions 9-12
LOAD COMPLEMENT (LCR) binary instruction

7-30
LOAD CONTROL (LCTL) instruction 10-23
LOAD HALFWORD (LH) instruction 7-30

examples A -23
load indicator 12-3
LOAD MULTIPLE (LM) instruction 7-31
LOAD NEGATIVE (LNDR,LNER) floating-point

instructions 9-13
LOAD NEGATIVE (LNR) binary instruction 7-31
load-normal key 12-3
LOAD POSITIVE (LPDR,LPER) floating-point

instructions 9-13
LOAD POSITIVE (LPR) binary instruction 7-31
LOAD PSW (LPSW) instruction 10-24
LOAD REAL ADDRESS (LRA) instruction 10-25
LOAD ROUNDED (LRDR,LRER) instructions 9-14
load state 4-1,4-2

during IPL 4-32
load-unit-address controls 12-3
LOAD USING REAL ADDRESS (LURA) instruction

10-27
loading, initial (See IML, IPL)
location 3-2

(See also address)
not available in configuration 6-14

lock A-45
example with FIFO queuing A-47
example with LIFO queuing A-46

logical
arithmetic (unsigned binary) 7-3
comparison 7-4
connective

AND 7-9
EXCLUSIVE OR 7-25
OR 7-40

data 7-2
logical address 3-4

handling by DAT 3-24

X-16 ESA/370 Principles of Operation

logical-path mask (See LPM)
logout

fixed
assigned storage locations for 3-42
machine-check 11-24

sub channel (I/O) 16-36
long floating-point number 9-2
long I/O block 16-28
loop control 5-8
loop of interruptions (See string of interruptions)
low-address protection 3-10

control bit 3-10
exception for 6-23

LPDR (LOAD POSITIVE) floating-point instruction
9-13

LPER (LOAD POSITIVE) floating-point instruction
9-13

LPM (logical-path mask) 15-4,15-22
effect on system performance of 15-10
used for IPL 17-10

LPR (LOAD POSITIVE) binary instruction 7-31
LPSW (LOAD PSW) instruction 10-24
LPUM (last-path-used mask) 15-5

field-validity flag for (in sub channel logout) 16-38
in ESW 16-37

LR (LOAD) binary instruction 7-28
LRA (LOAD REAL ADDRESS) instruction 10-25
LRDR (LOAD ROUNDED) instruction 9-14
LRER (LOAD ROUNDED) instruction 9-14
L T (linkage table) 5-22
LTD (linkage-table designation) 5-21
LTDR (LOAD AND TEST) floating-point instruction

9-12
L TER (LOAD AND TEST) floating-point instruction

9-12
LTL (linkage-table length) 5-21

in primary AST entry 5-21
L TO (linkage-table origin) 5-21

in primary AST entry 5-21
L TR (LOAD AND TEST) binary instruction 7-30
LURA (LOAD USING REAL ADDRESS) instruction

10-27
LX (linkage index) 5-21

invalid bit 5-22
translation exception 6-20

M
M (mega) iv
M (MULTIPLY) binary instruction 7-38

example A-27
machine check 11-1

(See also malfunction)
comparison of 370-XA with System/370 E-7
handling of malfunction detected as part of I/O

11-5
interruption 6-13,11-11

action 11-12
code (MCIC) 3-42,11-14
floating conditions 11-23
mask in PSW 4-5
subclass masks in control register 11 '123

logout 11-24
mask, in PSW 4-5

main storage 3-1
(See also storage)
effect of power-on reset on 4-32
shared (in multiprocessing) 4-34

malfunction 11-1
at channel subsystem 16-31
at I/O device 16-32
correction of 11-2
effect on manual operation 12-1
from DIAGNOSE instruction 10-7
indication of 11-4
machine-check handling for when detected as part

of I/O 11-5
malfunction alert (external interruption) 6-11

when entering check -stop state 11-11
manual indicator 12-3

(See also stopped state)
manual operation 12-1

controls
address-compare 12-1
alter-and -display 12-2
IML 12-2
load-unit-address 12-3
power 12-3
rate 12-3
TOO-clock 12-5

effect on CPU signaling 4-37
keys

interrupt 12-3
load-clear 12-3
load-normal 12-3
restart 12-4
start 12-4
stop 12-4
store-status 12-4
system-reset-clear 12-4
system-reset-normal 12-5

masks 6-6
(See also I/O interruption, interruption)
in BRANCH ON CONDITION instruction 7-12
in COMPARE LOGICAL CHARACTERS

UNDER MASK instruction 7-21
in INSERT CHARACTERS UNDER MASK

instruction 7-27
in PSW 4-5
in STORE CHARACTERS UNDER MASK

instruction 7-46
monitor 6-20
path-management 15-2,15-22
PER-event 4-13
PER general-register 4-13
program-interruption 6-13
subclass

external-interruption 6-10
I/O-interruption (See I/O-interruption subclass

mask)
machine-check-interruption 11-23

mathematical assists, publication referenced v
maximum negative number 7-2
MC (MONITOR CALL) instruction 7-32
MCIC (machine-check-interruption code) 3-42,11-14

MD (MULTIPLY) floating-point instruction 9-14
MDR (MULTIPLY) floating-point instruction 9-14

example A -40
ME (MULTIPLY) floating-point instruction 9-14
measurement

device-connect-time 17-5
measurement-block update (I/O) 17-2

measurement block (I/O) 17-2
data check 16-37
index 15-6
key, used as access key 3-8
multiple use of 15-10
program check 16-37
protection check 16-37
update enable 15-3

measurement data (I/O)
accumulated 17-2
effect of CSCH on 14-4
effect of HSCH on 14-5

measurement-mode control (I/O) 15-3
MER (MULTIPLY) floating-point instruction 9-14
message byte (in EDIT) 8-7
MH (MULTIPLY HALFWORD) instruction 7-39

example A-27
microprogram (initial loading of) 12-2
mode

access-register 3-24
addressing (See addressing mode)
architectural (See architectural mode)
burst (channel-path operation) 13-3
byte-multiplex (channel-path operation) 13-3
home-space 3-24
incorrect-length -indication 15-22
incorrect-length-suppression 15-22
indicator, architectural 12-2
multipath (See multipath mode)
primary-space 3-24
real 3-24
requirements for semiprivileged instructions 5-16
secondary-space 3-24
single-path 15-3,15-20
translation 3-24

model number (in CPU ID) 10-64
modifiable area (in linkage-stack state entry) 5-60
MODIFY STACKED STATE (MSTA) instruction

10-27
MODIFY SUBCHANNEL (MSCH) instruction 14-6
MONITOR CALL (MC) instruction 7-32
monitor-class number 6-20

assigned storage locations for 3-41
monitor code 6-20

assigned storage locations for 3-41
monitor event 6-20
monitor masks 6-20
monitoring

(See also measurement)
channel-subsystem 17-1
for PER events (See PER)
with MONITOR CALL 6-20,7-32

MOVE (MVC,MVI) in~tructions 7-32
examples A-21,A723

MOVE INVERSE (MV~IN) instruction 7-33
example A-24 -

Index X,-J7

move-inverse facility 7-33
MOVE LONG (MVCL) instruction 7-33

examples A -25
MOVE NUMERICS (MVN) instruction 7-37

example A -25
MOVE TO PRIMARY (MVCP) instruction 10-29
MOVE TO SECONDARY (MVCS) instruction 10-29
MOVE WITH DESTINATION KEY (MVCDK)

instruction 10-30
MOVE WITH KEY (MVCK) instruction 10-31
MOVE WITH OFFSET (MVO) instruction 7-37

example A-26
MOVE WITH SOURCE KEY (MVCSK) instruction

10-32
move-with -source-or-destination -key facility 0-2
MOVE ZONES (MVZ) instruction 7-38

example A -26
MP (MULTIPLY DECIMAL) instruction 8-10

example A-36
MR (MULTIPLY) binary instruction 7-38

example A-27
MSCH (MODIFY SUBCHANNEL) instruction 14-6
MSTA (MODIFY STACKED STATE) instruction

10-27
multipath mode 15-3

entering 15-20
multiple-access storage references 5-74
MULTIPLY (M,MR) binary instructions 7-38

examples A-27
MULTIPLY

(MD,MDR,ME,MER,MXD,MXDR,MXR) floating­
point instructions 9 -14

example A -40
MULTIPLY DECIMAL (MP) instruction 8-10

example A-36
MULTIPLY HALFWORD (MH) instruction 7-39

example A-27
multiprocessing 4-33

manual operations for 12-5
programming considerations for A-42,8-3
programming examples A-42
timing-facility interruptions for 4-24
TOO clock for 4-21

multiprogramming examples A-42
MVC (MOVE) instruction 7-32

examples A-21,A-23
MVCDK (MOVE WITH DESTINATION KEY)

instruction 10-30
MVCIN (MOVE INVERSE) instruction 7-33

example A-24
MVCK (MOVE WITH KEY) instruction 10-31
MVCL (MOVE LONG) instruction 7-33

examples A -25
MVCP (MOVE TO PRIMARY) instruction 10-29
MVCS (MOVE TO SECONDARY) instruction 10-29
MVCSK (MOVE WITH SOURCE KEY) instruction

10-32
MVI (MOVE) instruction 7-32

example A -24
MVN (MOVE NUMERICS) instruction 7-37

example A-25

X-1S ESA/370 P~inciples of Operation

MVO (MOVE WITH OFFSET) instruction 7-37
example A -26

MVZ (MOVE ZONES) instruction 7-38
example A -26

MXD (MULTIPLY) floating-point instruction 9-14
MXDR (MULTIPLY) floating-point instruction 9-14
MXR (MULTIPLY) floating-point instruction 9-14

N
N (AND) instruction 7-9
N condition (I/O) 16-12
NC (AND) instruction 7-9
near-valid CBC 11-2

in storage 11-5
negative zero

binary 7-2
decimal 8-3

example A-5
new PSW 4-3

assigned storage locations for 3-39
fetched during interruption 6-2

next-entry size (in linkage stack) 5-57
NI (AND) instruction 7-9

example A-8
no-operation

as an I/O command (control) 15-37
instruction (BRANCH ON CONDITION) 7-13

node (of tree structure) 7-52
noninterlocked-update storage reference 5-73
nonvolatile storage 3-2
normalization 9-2
not operational

as channel-path state 16-12
(See also path-not-operational bit in SCSW,

PNOM)
as CPU state 4-36
as TOO-clock state 4-22

not set (fOD-clock state) 4-22
NR (AND) instruction 7-9
nullification

exceptions to 5-14
for exigent machine-check conditions 11-11
ofinstruction execution 5-12
of unit of operation 5-13

numbering
of addresses (byte locations) 3-2
of bits 3-2

numbers
binary 7-2

examples A-2
CPU-model 10-64
decimal 8-1

examples A-5
device 13-5

. floating-point 9-1
examples A-5

hexadecimal G-l,5-4
Jlumeric bits 8-1

moving of 7-37

o
o (OR) instruction 7-40
OC (OR) instruction 7-40
OEM I (original equipment manufacturers' information)

for I/O interface, publication referenced v
01 (0 R) instruction 7 -40

example A -28
example of problem with A -42

old PSW 6-2
assigned storage locations for 3-39

one's complement binary notation 7-2
used for SUBTRACT LOGICAL instruction 7-49

op code (See operation code)
operand 5-2

access of 5-72
for I/O instructions 14-1

address generation for 5-6
exception 6-21
immediate 5-5
length of 5-2
overlap

for decimal instructions 8-3
for general instructions 7-2

register for 5-4
sequence of references for 5-72
storage 5-5
types of (fetch, store, update) 5-72
used for result 5-3

operating state 4-1,4-2
operation

I/O (See I/O operations)
unit of 5-12

operation code (op code) 5-2
invalid 6-21

operation exception 6-21
operation-request block (See ORB)
operator facilities 2-6,12-1

basic 12-1
operator intervening (signal-processor status) 4-38
OR (O,OC,OI,OR) instructions 7-40

example of problem with OR immediate A-42
examples A-28

ORB (operation-request block) 15-21
channel-program address in 15-22
interruption parameter in 15-21
invalid 16-30
logical-path mask (LPM) in 15-22

orders (I/O) 13-6,15-25
orders (signal-processor) 4-34

conditions precluding response to 4-36
CPU reset 4-35
emergency signal 4-34
external call 4-34
initial CPU reset 4-35
restart 4-35
sense 4-34
set prefix 4-35
start 4-35
stop 4-35
stop and store status 4-35
store status at address 4-36

overflow
binary 7-3

example A-2
decimal 6-18
exponent (See exponent overflow)
fixed-point 6-19,7-3
in CRW 17-15

overlap
destructive 7-35
operand

for decimal instructions 8-3
for general instructions 7-2

operation 5-66
overrun (bit in I/O sense data) 15-38

P
PACK (PACK) instruction 7-40

example A-28
packed decimal numbers 8-1

conversion of to zoned format 7-52
conversion to from zoned format 7-40
examples A-5

padding byte
for COMPARE LOGICAL LONG instruction

7-22
for MOVE LONG instruction 7-33

page 3-23
page-frame real address (PFRA) 3-27
page index (PX) 3-23
page-invalid bit (in page-table entry) 3-27
page protection E-l,3-9

bit for 3-27
exception for 6-23

page swapping 3-23
page table 3-27

designation 3-26
length (PTL) 3-26
lookup 3-30
origin (PTO) 3-26

page-translation exception 6-21
as an access exception 6-29,6-34

PALB (PURGE ALB) instruction 10-52
PAM (path -available mask) 15-7

effect of reconfiguration on 15-10
effect of resetting on 15-10
effect on allegiance of 15-10

parameter
external -interruption 6-9

assigned storage locations for 3-39
I/O-interruption (See I/O-interruption parameter)
register for SIGNAL PROCESSOR 4-35,10-62
translation 3-24

parity bit 11-2
partial completion of instruction execution 5-13
PASN (primary address-space number) 3-13

in trace entry 4-11
PASTE (primary AST entry) 5-21
PASTEO (primary-AST-entryorigin) 5-21,5-36
path (See channel path)
path available for selection 15-12
path management 13-7

for clear function 15-13
for halt function 15-14

Index X-19

for start function and resume function 15-17
path-management-control word (See PMCW)
path-management masks

last-path-used mask (See LPUM)
logical-path mask (See LPM)
path-available mask (See PAM)
path -installed mask (See PIM)
path-not-operational mask (See PNOM)
path-operational mask (See POM)

path-not-operational bit (N) in SCSW 16-12
path-not-operational condition 15-4
pattern (in EDIT) 8-6
PC (PROGRAM CALL) instruction 10-34
PC-cp (PROGRAM CALL instruction, to current

primary) 10-36
PC number 10-34

in linkage-stack state entry 5-60
in trace entry 4-11
translation 5-21

PC-ss (PROG RAM CALL instruction, with space
switching) 10-36

PC-translation -specification exception 6-22
PC-type bit 5-53
PCI (program-controlled interruption) 15-30

as flag in CCW 15-24
intermediate interruption condition for 16-17
sub channel status for 16-28

pending channel reports (effect of I/O-system reset on)
17-8

pending interruption (See interruption pending)
PER (program-event recording) 4-12

access identification 3-41,4-14
address 4-14

assigned storage locations for 3-41
code 4-14

assigned storage locations for 3-41
events 4-12
general-register-alteration event 4-17

mask bits 4-13
instruction-fetching event 4-17
masks

bit in PSW 4-5
general-register 4-13
PER-event 4-13

priority of indication 4-15
program-interruption condition 6-22
storage-alteration event 4-17
storage-area designation 4-16

ending address 4-13
starting address 4-13
wraparound 4-16

store-using-real-address event 4-18
successful-branching event 4-16

PFRA (page-frame real address) 3-27
piecemeal steps of instruction execution 5-66
PIM (path-installed mask) 15-6
PKM (PSW -key mask) 5-16
PMCW (path-management-control word) 15-2

channel-path identifiers (CHPID) in 15-7
PNOM (path-not-operational mask) 15-4

effect on POM of 15-10
indicated in SCSW 16-12

point of damage 11-14

X-20 ESA/370 Principles of Operation

point of interruption 5-12
for machine check 11-14

POM (path-operational mask) 15-6
effect on PNOM of 15-10

POST (SVC), example of routine to bypass A-44
postnormalization 9-2
power controls 12-3
power-on reset 4-32
powers of 2, table of F-l
PR (PROGRAM RETURN) instruction 10-44
PR-cp (PROGRAM RETURN instruction, to current

primary) 10-44
PR-ss (PROGRAM RETURN instruction, with space

switching) 10-44
precision (floating-point) 9-1
preferred sign codes 8-2
prefetching

(See also CCW prefetch control)
access exceptions not recognized for 6-31
channel-control check during 16-31
channel-data check during 16-31
handling of invalid CBC in storage keys during

11-8
of ART-table and OAT-table entries 5-71
of data for I/O 15-26
of instructions 5-70

prefix 3-11
set by signal-processor order 4-35
store-status save area for 3-42

prenormalization 9-2
primary address space 3-13
primary ASN (PASN) 3-13

in linkage-stack state entry 5-60
primary AST entry (PASTE), origin (PASTEO)

5-21,5-36
primary authority 3-20

exception 6-22
primary interruption condition (I/O) 16-4
primary-list bit 5-36
primary segment table

designation (PSTD) 3-24
length (PSTL) 3-25
origin (PSTO) 3-25

primary-space access-list designation (PSALD) 5-38
primary-space mode 3-24
primary space-switch event, control bit, in control reg­

ister 1 3-24
primary-status bit (I/O) 16-17
primary virtual address 3-4

effective segment-table designation for 3-28
priority

of access exceptions 6-34
of ASN-translation exceptions 6-38
of external-interruption conditions 6-10
of I/O interruptions 16-5
of interruptions (CPU) 6-39
of PER events 4-15
of program-interruption conditions 6-32
of trace exceptions 6-38

private bit 5-39
private-space-control bit 3-25

effect on
fetch-protection override 3-9

low-address protection 3-10
use of common segments 3-26

home 3-25
primary 3-25
secondary 3-25

private-space facility D-2
privileged instructions 4-5

control 10-1
I/O 14-1

privileged-operation exception 6-22
problem state 4-5

bit in entry-table entry 5-23
bit in PSW 4-5
compatibility 1-4

processing backup (synchronous machine-check condi­
tion) 11-18

processing damage (synchronous machine-check condi­
tion) 11-19

processor (See CPU)
program 5-30

channel (See channel program)
exceptions 6-13
execution of 5-2
fields of SCHIB modifiable by 15-7
initial loading of 4-32,17-10
interruption 6-13

priority of 6-32
mask (in PSW) 4-6

PROGRAM CALL (PC) instruction 10-34
trace entry for 4-11
type of 5-53

program-call state entry 5-59,10-36
program check

as subchanne! status 16-29
measurement-block 16-37

program-controlled interruption (I/O) (See PCI)
program-event recording (See PER)
program events (See PER events)
program mask, validity bit for 11-21
PROGRAM RETURN (PR) instruction 10-44
program -status word (See PSW)
PROGRAM TRANSFER (PT) instruction 10-47

trace entry for 4-11
protection (storage) 3-8

during tracing 4-12
fetch (See fetch protection)
key-controlled (See key-controlled protection)
low-address (See low-address protection)
page (See page protection)

protection check
as subchannel status 16-30
measurement-block 16-37

protection exception 6-23
as an access exception 6-29,6-34

PSALD (primary-space access-list designation) 5-38
pseudo AST entry 3-14
PSTD (primary segment-table designation) 3-24
PSTL (primary segment-table length) 3-25
PSTO (primary segment-table origin) 3-25
PSW (program-status word) 2-2,4-3

assigned storage locations for 3-39
comparison of ESA/370 with 370-XA D-3
comparison of 370-XA with System/370 E-5

current 4-3,5-7
stored during interruption 6-2

exceptions associated with 6-8
format error 6-8
in linkage-stack state entry 5-60
in program execution 5-7
store-status save area for 3-42
validity bits for 11-20

PSW key 4-5
control bit 5-53
in entry-table entry 5-54
in trace entry 4-11
used as access key 3-8
validity bit for 11-20

PSW -key mask (PKM) 5-16
control bit 5-53
in linkage-stack state entry 5-59

PT (PROGRAM TRANSFER) instruction 10-47
PT-cp (PROGRAM TRANSFER instruction, to

current primary) 10-48
PT-ss (PROGRAM TRANSFER instruction, with

space switching) 10-48
PTL (page-table length) 3-26
PTLB (PURGE TLB) instruction 10-53
PTO (page-table origin) 3-26
publications, other related documents v
PURGE ALB (PALB) instruction 10-52
PURGE TLB (PTLB) instruction 10-53
PX (page index) 3-23

Q
queuing

FIFO, example for lock and unlock A-46
LIFO, example for lock and unlock A-45

R
R field of instruction 5-4
range (of floating-point numbers) 9-1
rate control 12-3 I

RCHP (See RESET CHANNEL PATH instruction)
read (I/O command) 15-35
read backward (I/O command) 15-36
real address 3-4
real mode 3-24
real storage 3-4
receiver check (signal-processor status) 4-39
reconfiguration of I/O system 17-12
recovery

as class of machine-check condition 11-12
channel-subsystem 17-13
system 11-16

subclass-mask bit for 11-24
redundancy 11-2
reference

bit in storage key 3-7
multiple-access 5-74
recording 3-10
sequence for storage 5-65

(See also sequence)

Index X-21

single-access 5-74
register

access 2-3
base-address 2-3
control 2-3
designation of 5-4
floating-point 2-3
general 2-3
index 2-3
prefix 3-11
save areas 3-42,11-22
validation of 11-10
validity bits for 11-21
vector-facility 2-4

remaining free space (in linkage stack) 5-57
remote operating stations 12-1
reporting-source code (RSC) 17-15
reporting-source ID (RSID) 17-16
repressible machine-check conditions 11-12
reset 4-27,17-6

channel-path 17-6
clear 4-31
CPU 4-30
effect on CPU state 4-2
effect on TOD clock 4-22
I/O-system 17-6

as part of subsystem reset 4-31
initial CPU 4-31
power on 4-32
subsystem 4-31
summary of functions 4-29
summary of functions performed by manual initi­

ation of 4-28
system-reset-clear key 12-4
system-reset-normal key 12-5

RESET CHANNEL PATH (RCHP) instruction 14-7
(See also channel-path-reset function)
function initiated by 15-43

RESET REFERENCE BIT EXTENDED (RRBE)
instruction 10-53

reset signal (I/O) 17-6
in channel-path reset 17-6
in I/O-system reset 17-7,17-8
issued as part of RCHP 15-43

resolution .
of clock comparator 4-25
of CPU timer 4-26
ofTOD clock 4-21

restart
interruption 6-38
key 12-4
signal-processor order 4-35

result operand 5-3
resume function 13-8,15-17

(See also start function)
initiated by RESUME SUBCHANNEL 14-8
path management for 15-18
pending 16-13

RESUME SUBCHANNEL (RSCH) instruction 14-8
(See also resume function)
channel-program requirements for 14-9
count of in measurement block 17-3
function initiated by 15-17

X-22 ESA/370 Principles of Operation

retry
CPU 11-2
I/O command (See command retry)

rounding (decimal) 8-11
example A-37

RR instruction format 5-4
RRBE (RESET REFERENCE BIT EXTENDED)

instruction 10-53
RRE instruction format 5-4
RS instruction format 5-4
RSC (reporting-source code) 17-15
RSCH (See RESUME SUBCHANNEL instruction)
RSID (reporting-source ID) 17-16
running (state ofTOD clock) 4-22
RX instruction format 5-4

S
S (SUBTRACT) binary instruction 7-48
S instruction format 5-4
SAC (SET ADDRESS SPACE CONTROL) instruction

10-54
SAL (SET ADDRESS LIMIT) instruction 14-10
sample count (in ESW) 17-3
SAR (SET ACCESS) instruction 7-41
SASN (secondary address-space number) 3-13

in trace entry 4-11
save areas for registers 3-42,11-22
SCHIB (subchannel-information block) 15-1

as operand of
MODIFY SUBCHANNEL 14-6
STORE SUBCHANNEL 14-15

model-dependent area in 15-7
path-management-control word (PMCW) in 15-2
subchannel-status word (SCSW) in 15-7
summary of modifiable fields in 15-7

SCHM (See SET CHANNEL MONITOR instruction)
SCK (SET CLOCK) instruction 10-55
SCKC (SET CLOCK COMPARATOR) instruction

10-56
SCSW (subchannel-status word) 16-6

activity-control field in 16-13
CCW address in 16-18
count in 16-33
device-status field in 16-23
function -control field in 16-12
in IRB 16-6
in SCHIB 15-7
status-control field in 16-16
sub channel-control field in 16-11
sub channel-status field in 16-28

SD (SUBTRACT NORMALIZED) instruction 9-16
SDR (SUBTRACT NORMALIZED) instruction 9-16
SE (SUBTRACT NORMALIZED) instruction 9-16
secondary address space 3-13
secondary ASN (SASN) 3-13

control bit 5-54
in linkage-stack state entry 5-59

secondary authority 3-20
exception 6-24

secondary error (in subchannellogout) 16-38
secondary interruption condition (I/O) 16-4

secondary segment table
designation (SSTD) 3-25
length (SSTL) 3-25
origin (SSTO) 3-25

secondary-space-control bit 3-24,5-17
secondary-space mode 3-24
secondary-status bit (I/O) 16-18
secondary virtual address 3-4

effective segment-table designation for 3-28
segment 3-23
segment index (SX) 3-23
segment-invalid bit (in segment-table entry) 3-26
segment table 3-26

lookup 3-30
segment-table designation (STD) 3-24

effective 3-28
home 3-25
obtaining of in access-register translation 5-29
primary 3-24
secondary 3-25
use after ART 5-40

segment-translation exception 6-24
as an access exception 6-29,6-34

self-describing block of I/O data 15-29
semiprivileged

instructions 4-5
descriptions of 10-1

program authorization 5-15
summary of 5-19

programs 4-5,5-15
sense

as I/O command 15-37
as signal-processor order 4-34

sense data 15-37
bus-out check 15-38
command reject 15-38
data check 15-38
equipment check 15-38
indication of 16-26
intervention required 15-38
overrun 15-38

sense ID (I/O command) 15-39
sequence

conceptual 5-65
instruction -execution 5-2
of CCWs which is invalid 16-30
of storage references 5-65

ART-table and DAT-table entries 5-71
instructions 5-69
operands 5-72
storage keys 5-71

sequence code (in sub channel logout) 16-39
field-validity flag for 16-38

SER (SUBTRACT NORMALIZED) instruction 9-16
serialization 5-76

caused by I/O instructions 14-1
channel-program 5-77
CPU 5-76
in completion of store operations 5-72

service-processor damage 11-17
service processor inoperative (signal-processor status)

4-38
service-signal external interruption 6-12

subclass-mask bit for 6-12
SET ACCESS (SAR) instruction 7-41
SET ADDRESS LIMIT (SAL) instruction 14-10
SET ADDRESS SPACE CONTROL (SAC) instruction

10-54
SET CHANNEL MONITOR (SCHM) instruction

14-10
effect on measurement modes of 17-1

SET CLOCK (SCK) instruction 10-55
SET CLOCK COMPARATOR (SCKC) instruction

10-56
SET CPU TIMER (SPT) instruction 10-56
set prefix (signal-processor order) 4-35
SET PREFIX (SPX) instruction 10-56
SET PROGRAM MASK (SPM) instruction 7-41
SET PSW KEY FROM ADDRESS (SPKA) instruction

10-57
SET SECONDARY ASN (SSAR) instruction 10-58

use with access registers 5-33
set state (ofTOD clock) 4-22
SET STORAGE KEY EXTENDED (SSKE) instruc-

tion 10-61
SET SYSTEM MASK (SSM) instruction 10-61
SH (SUBTRACT HALFWORD) instruction 7-48
shared storage (See storage sharing)
shared TOD clock 4-21
SHIFT AND ROUND DECIMAL (SRP) instruction

8-11
examples A-36

SHIFT LEFT DOUBLE (SLDA) instruction 7-42
example A-28

SHIFT LEFT DOUBLE LOGICAL (SLDL) instruc­
tion 7-42

SHIFT LEFT SINGLE (SLA) instruction 7-43
example A-29

SHIFT LEFT SINGLE LOGICAL (SLL) instruction
7-43

SHIFT RIGHT DOUBLE (SRDA) instruction 7-43
SHIFT RIGHT DOUBLE LOGICAL (SRDL) instruc­

tion 7-44
SHIFT RIGHT SINGLE (SRA) instruction 7-44
SHIFT RIGHT SINGLE LOGICAL (SRL) instruction

7-45
shifting, floating-point (See normalization)
short floating-point number 9-2
short I/O block 16-28
SI instruction format 5-4
SID (subsystem -identification word) 14-1

assigned storage locations for 3-41
sign bit

binary 7-2
floating-point 9-1

sign codes (decimal) 8-2
signal (I/O) 17-5

clear (See clear signal)
halt (See halt signal)
reset (See reset signal)

SIGNAL PROCESSOR (SIGP) instruction 10-61
comparison of 370-XA with System/370 E-7
orders 4-34
status 4-37

signed binary
arithmetic 7-3

Index X-23

comparison 7-4
integer 7-2

examples A -2
significance

exception 6-24
loss 9-2

in floating-point addition 9-8
mask (in PSW) 4-6
starter (m EDIT) 8-7

SIGP (See SIGNAL PROCESSOR instruction)
single-access reference 5-74
singie-path mode 15-3J5-20
size notation iv
size of address 3-5

controlled by addressing mode 5-5
in CCW 15-24

skip flag in CCW 15-24
effect on data transfer of 15-30

SL (SUBTRACf LOGICAL) instruction 7-48
SLA (SHIFT LEFT SINGLE) instruction 7-43

example A -29
SLDA (SHIFT LEFT DOUBLE) instruction 7-42

example A -28
SLDL (SHIFT LEFT DOUBLE LOGICAL) instruc-

tion 7-42 .
SLI (suppress-length-indication) flag in CCW 15-34

for immediate operations 15-37
SLL (SHIFT LEFT SINGLE LOGICAL) instruction

7-43
SLR (SUBTRACf LOGICAL) instruction 7-48
solicited interruption condition (I/O) 16-3
solid errors 11-5
sorting instructions (See COMPARE AND FORM

CODEWORD instruction, UPDATE TREE instruc­
tion)

source, vector-facility (machine-check condition) 11-18
source of interruption, identified by interruption code

6-5
SP (SUBTRACf DECIMAL) instruction 8-12
space-switch event 6-24

control bit
home, in control register 13 3-25
in ASTE 3-16
primary, in control register 1 3-24

special-operation exception 6-25
specification exception 6-26
SPKA (SET PSW KEY FROM ADDRESS) instruction

10-57
SPM (SET PROGRAM MASK) instruction 7-41
SPT (SET CPU TIMER) instruction 10-56
SPX (SET PREFIX) instruction 10-56
SR (SUBTRACf) binary instruction 7-48
SRA (SHIFT RIGHT SINGLE) instruction 7-44
SRDA (SHIFT RIGHT DOUBLE) instruction 7-43
SRDL (SHIFT RIGHT DOUBLE LOGICAL) instruc-

tion 7-44
SRL (SHIFT RIGHT SINGLE LOGICAL) instruction

7-45
SRP (SHIFT AND ROUND DECIMAL) instruction

8-11
examples A-36

SS instruction format 5-4
SSAR (SET SECONDARY ASN) instruction 10-58

X-24 ESA/370 Principles of Operation

use with access registers 5-33
SSAR-cp (SET SECONDARY ASN instruction, to

current primary) 10-58
SSAR-ss (SET SECONDARY ASN instruction, with

space switching) 10-58
SSCH (See START SUBCHANNEL instruction)
SSE instruction format 5-4
SSKE (SET STORAGE KEY EXTENDED) instruc-

tion 10-61
SSM (SET SYSTEM MASK) instruction 10-61
SSM-suppression-control bit 6-25,10-61
SSTD (secondary segment-table designation) 3-25
SSTL (secondary segment-table length) 3-25
SSTO (secondary segment-table origin) 3-25
ST (STO RE) binary instruction 7 -45
stack-empty exception 6-27
stack-full exception 6-27
stack-operation exception 6-27
stack-specification exception 6-27
stack-type exception 6-27
stacking process 5-60
stacking PROGRAM CALL 5-50
STAM (STORE ACCESS MULTIPLE) instruction

7-45
standalone dump 12-4
standard epoch (for TOD clock) 4-23
STAP (STORE CPU ADDRESS) instruction 10-63
start (CPU)

function 4-2
key 12-4
signal-processor order 4-35

start function (I/O) 13-6,15-17
bit in SCSW for 16-12
initiated by START SUBCHANNEL 14-12
path management for 15-18
pending 16-14

START SUBCHANNEL (SSCH) instruction 14-12
(See also start function for I/O)
count of in measurement block 17-3
deferred condition code for (in SCSW) 16-8
function initiated by 15-1 7
operation-request block (ORB) used by 15-21

state
CPU (See CPU state)
TO D-clock 4-22

state entry 5-59
status

alert 16-16
device 16-23

effect of clear function on 15-14
field-validity flag for (in subchannellogout)

16-38
with inappropriate bit combination 16-38

device-status check 16-38
for SIGNAL PROCESSOR 4-34,10-62
initial, interruption (See initial-status-interruption

control)
intermediate 16-17
primary 16-1 7
program (See PSW)
resulting from signal-processor orders 4-37
secondary 16-18
storing of 4-33

manual key for 12-4
sub channel 16-28

status-control field (in SCSW) 16-16
status modifier (device status) 16-23

effect of in command chaining 15-29
status-pending 16-18
status-verification facility E-2,17 -12
status while disabled 14-7
STC (STORE CHARACTER) instruction 7-45
STCK (STORE CLOCK) instruction 7-46
STCKC (STORE CLOCK COMPARATOR) instruc­

tion 10-63
STCM (STORE CHARACTERS UNDER MASK)

instruction 7 -46
examples A -29

STCPS (STORE CHANNEL PATH STATUS) instruc­
tion 14-14

STCRW (See STORE CHANNEL REPORT WORD
instruction)

STCTL (STORE CONTROL) instruction 10-63
STD (See segment-table designation)
STD (STORE) floating-point instruction 9-16
STE (STORE) floating-point instruction 9-16
STH (STORE HALFWORD) instruction 7-47
STIDP (STORE CPU ID) instruction 10-64
STL (segment-table length) 3-24
STM (STORE MULTIPLE) instruction 7-47

example A-30
STNSM (STORE THEN AND SYSTEM MASK)

instruction 10-65
STO (segment-table origin) 3-24
stop

function 4-2
key 12-4
signal-processor order 4-35

stop and store status (signal-processor order) 4-35
stopped (signal-processor status) 4-38
stopped state

of CPU 4-1
effect on completion of store operations 5-72

ofTOD clock 4-22
storage 3-1

absolute 3-4
address wraparound (See wraparound)
addressing 3 -2

(See also address)
alteration manual controls 12-2
alteration PER event 4-17

mask for 4-13
assigned locations in 3-39

comparison of ESA/370 with 370-XA D-3
comparison of 370-XA with System/370 E-6

auxiliary 3-1,3-22
block 3-4

testing for usability of 10-69
buffer (cache) 3-1
clearing of (See clearing operation)
concurrency of access for references to 5-74
configuration of 3-4
direct-access 3-1
display 12-2
error 11-19

indirect 11-20

failing address in (See failing-storage address)
interlocked update 5-73
interlocks for virtual references 5-66
internal 2-2
main 3-1
noninterlocked update 5-73
nonvolatile 3-2
operand 5-5

reference to (fetch, store, update) 5-72
update reference 5-72

operand consistency 5-74
examples A -46,A -48

prefixing for 3-11
real 3-4
sequence of references to 5-65
size, notation for iv
validation of 11-6
virtual 3-23
volatile 3-2

effect of power-on reset on 4-32
storage-access code (in· sub channel logout) 16-38
storage-area designation

for I/O operations 15-25
for PER events 4-16

storage' degradation (machine-check condition) 11-19
storage key 3-7

error in 11-19
sequence of references to 5-71
testing for usability of 10-69
validation of 11-7

storage-logical-validity bit 11-21
storage protection 3-8

during tracing 4-12
storage sharing

by address spaces 3-23
by CPUs and the channel subsystem 3-4
examples A -42
in multiprocessing 4-34

STO RE (ST) binary instruction 7 -45
STORE (STD,STE) floating-point instructions 9-16
STORE ACCESS MULTIPLE (STAM) instruction

7-45
STORE CI-JANNEL PATH STATUS (STCPS) instruc­

tion 14-14
STORE CHANNEL REPORT WORD (STCRW)

instruction 14-14
channel~report word (CRW) stored by 17-15

STORE CHARACTER (STC) instruction 7-45
STORE CHARACTERS UNDER MASK (STCM)

instruction 7 -46
examples A-29·

STORE CLOCK (STCK) instruction 7-46
STORE CLOCK COMPARATOR (STCKC) in'struc-

tion 10-63
STORE CONTROL (STCTL) instruction 10-63
STORE CPU ADDRESS (STAP) instruction 10-63
STORE CPU ID (STIDP) instruction 10-64
STORE CPU TIMER (STPT) instruction 10-64
STORE HALFWORD (STH) instruction 7-47
STORE MULTIPLE (STM) instruction 7-47

example A-30
STORE PREFIX (STPX) instruction 10-65
store reference 5-72

Index X-25

access exceptions for 6-32
store status 4-33

key 12-4
signal-processor order for 4-35

store status at address (signal-processor order) 4-36
STORE SUBCHANNEL (STSCH) instruction 14-15
STORE THEN AND SYSTEM MASK (STNSM)

instruction 10-65
STORE THEN OR SYSTEM MASK (STOSM)

instruction 10-65
STORE USING REAL ADDRESS (STURA) instruc­

tion 10-66
store-using-real-address PER event 4-18

mask for 4-13
STOSM (STORE THEN OR SYSTEM MASK)

instruction 10-65
STPT (STORE CPU TIMER) instruction 10-64
STPX (STORE PREFIX) instruction 10-65
string of interruptions 4-3,6-39

caused by clock comparator 4-25
caused by CPU timer 4-26

STSCH (STORE SUBCHANNEL) instruction 14-15
STURA (STORE USING REAL ADDRESS) instruc­

tion 10-66
SU (SUBTRACT UNNORMALIZED) instruction

9-17
sub channel 13-2

active allegiance for 15-11
dedicated allegiance for 15-11
effect of I/O-system reset on 17-8
idle 16-13
working allegiance for 15-11

subchannel-active bit 16-15
subchannel addressing 13-5
sub channel control information in SCSW 16-11
sub channel enabled bit in PMCW 15-2
subchannel-information block (See SCHIB)
subchannel key 15-21,16-8

used as access key 3-8
used for IPL 17-10

sub channel key check (in subchannel logout) 16-36
subchannel logout 16-36
subchannel number 13-5
sub channel status 16-28

generated while subchannel is disabled 14-7
subchannel-status word (See SCSW)
subclass-mask bits 6-6

external-interruption 6-10
I/O-interruption (See I/O-interruption subclass

mask)
machine-check 11-23

subroutine linkage 5-8
subsystem-identification word (See SID)
subsystem -linkage-control bit 5-17,5-21

in primary AST entry 5-21
subsystem reset 4-31
SUBTRACT (S,SR) binary instructions 7-48
SUBTRACT DECIMAL (SP) instruction 8-12
SUBTRACT HALFWORD (SH) instruction 7-48
SUBTRACT LOGICAL (SL,SLR) instructions 7-48

X-26 ESA/370 Principles of Operation

SUBTRACT NORMALIZED (SD,SDR,SE,SER,SXR)
instructions 9-16

SUBTRACT UNNORMALIZED (SU,SUR,SW,SWR)
instructions 9-17

successful-branching PER event 4-16
mask for 4-13

SUPERVISOR CALL (SVC) instruction 7-49
supervisor-call interruption 6-38
supervisor state 4-5
support functions (I/O) 17-1
suppress-length-indication flag in CCW (See SLI)
suppress-suspended-interruption control (I/O)

15-22,16-11
used for IPL 17-10

suppression
exceptions to 5-14
of instruction execution 5-12
of unit of operation 5-13

SUR (SUBTRACr UNNORMALIZED) instruction
9-17

suspend-control bit 15-21,16-8
used for IPL 17-10

suspend flag in CCW 15-24
invalid 16-30

suspend function 13-8
suspended bit (in SCSW) 16-16
suspension of channel-program execution 15-32

effect on DCTI of 15-34
intermediate interruption condition for 16-17

SVC (SUPERVISOR CALL) instruction 7-49
SW (SUBTRACT UNNORMALIZED) instruction

9-17
swapping

by COMPARE (DOUBLE) AND SWAP
instructions 7-19

by EXCLUSIVE OR instruction 7-26
SWR (SUBTRACT UNNORMALIZED) instruction

9-17
SX (segment index) 3-23
SXR (SUBTRACT NORMALIZED) instruction 9-16
synchronization

checkpoint 11-3
of CPU timer with TOO clock 4-26
of TOO clocks 4-22,4-24

synchronous machine-check -interruption conditions
11-18

system
manual control of 12-1
organization of 2-1

system check stop 11-11
system damage .11-15
system mask (in PSW) 4-3

validity bit for 11-20
system recovery 11-16
system reset (See reset)

I/O (See I/O-system reset)
system-reset-clear key 12-4
system-reset-normal key 12-5
System/370

comparison with 370-XA E-l
compatibility with ESA/370 1-4

T
T (tera) iv
table of powers of 2 F -1
tables

ASN (See ASN first table, ASN second table)
authority (See authority table)
DAT (See page table, segment table)
entry (See entry table)
hexadecimal G-l
linkage (See linkage table)
page (See page table)
segment (See segment table)
trace 4-9
translation 3-26

TAR (fEST ACCESS) instruction 10-66
target instruction 7-26
TB (fEST BLOCK) instruction 10-69
termination

of I/O operations (See conclusion of I/O opera­
tions)

of instruction execution 5-12
for exigent machine-check conditions 11-11

of unit of operation 5-14
for exigent machine-check conditions 11-11

termination code (in subchannellogout) 16-38
field-validity flag for 16-38

TEST ACCESS (fAR) instruction 10-66
TEST AND SET (TS) instruction 7-49
TEST BLOCK (TB) instruction 10-69
test indicator 12-5
TEST PENDING INTERRUPTION (fPI) instruction

14-16
interruption code stored by 16-6

TEST PROTECTION (TPROT) instruction 10-71
TEST SUBCHANNEL (fSCH) instruction 14-17

interruption-response block (IRB)used by 16-6
TEST UNDER MASK (fM) instruction 7-50

examples A-30
testing for storage-block and storage-key usability 10-69
TI C (transfer in channel) 15-40

invalid sequence of 16-30
time-of-day clock (See TOO clock)
timer (See CPU timer)
timing, channel-subsystem 17-1
timing facilities 4-21
timing-facility bit (in PMCW) 15-4
timing-facility damage 11-16

for TOO clock 4-22
TLB (translation-Iookaside buffer) 3 .. 31

entries 3-32
attachment of 3-32
clearing of 3-34
effect of translation changes on 3-33
usable state 3-32

summary 3-32
TM (TEST UNDER MASK) instruction 7-50

examples A-30
TOO clock 4-21

effect of power-on reset on 4-32
effect on clock-comparator interruption 6-10
effect on CPU-timer decrementing 4-26
effect on CPU-timer interruption 6-10
manual control of 4-22,12-5

unique values of 4-23
validation of 11-10
value in trace entry 4-12

TOO-clock sync check (external interruption) 6-12
TO D-clock -sync-control bit 4-22,4-25
TOD-clock-synchronization facility 4-24
TPI (See TEST PENDING INTERRUPTION instruc­

tion)
TPROT (TEST PROTECTION) instruction 10-71
TR (fRANSLATE) instruction 7-50

example A-30
trace E-2,4-9

entries 4-10
entry address 4-9
exceptions 6-38
table exception 6-28

TRACE (fRACE) instruction 10-73
trace entry for 4-11

trailer entry 5-58
transfer in channel (See TI C)
transferring program control 5-49
TRANSLATE (TR) instruction 7-50

example A -30
TRANSLATE AND TEST (TRT) instruction 7-51

example A-31
translation

access-register (See access-register translation)
address 3-22

(See also dynamic address translation)
ASN (See ASN translation)
exception identification 3-40
format 3-24
lookaside buffer (See TLB)
modes 3-24
parameters 3-24
PC-number 5-21
specification exception 6-28
tables for 3-26

tree structure for sorting 7-52
trial execution

for editing instructions and TRANSLATE instruc­
tion 5-15

for PER 4-14
TRT (T'RANSLATE AND TEST) instruction 7-51

example A -31
true zero (floating-point number) 9-1
TS (fEST AND SET) instruction 7-49
TSCH (See TEST SUBCHANNEL instruction)
two's complement binary notation 7-2

examples A -2
type of PROGRAM CALL 5-53

U
underflow (See exponent underflow)
unit check (device status) 16-26

in establishing dedicated allegiance 15-11
unit exception (device status) 16-27
unit of operation 5-12
unlock A-45

example with FIFO queuing A-47
example with LIFO queuing A-46

Index X-27

unnormalized floating-point number 9-2
unnormalized-operand exception 6-28
UNPACK (UNPK) instruction 7-52

example A-33
UNPK (UNPACK) instruction 7-52

example A-33
unprivileged instructions 4-5,7-2
unsigned binary

arithmetic 7-3
integer 7-2

examples A-4
in address generation 5-6

unsolicited interruption condition (I/O) 16-3
unstack-suppression bit 5-56
unstacking process 5-63
update reference 5-72
UPDATE TREE (UPT) instruction 7-52
UPT (UPDATE TREE) instruction 7-52
usable ALB entry 5-48
usable TLB entry 3-32

V
valid ART-table entry 5-47
valid CBC 11-2
valid segment-table or page-table entry 3-32
validation 11-5

of registers 11-10
of storage 11-6
of storage key 11-7
ofTOD clock 11-10

validity bit for backward stack-entry address 5-58
validity bit for forward-section-header address 5-58
validity bits

in machine-check -interruption code 11-20
in subchannellogout 16-38

variable-length field 3-2
vector facility 2-4

effect of power-on reset on 4-32
vector-facility failure (machine-check condition) 11-17
vector-facility source ,(machine-check condition) 11-18
vector-operation exception 6-28
vector operations, publication referenced v
version code 10-64
virtual address 3-4
virtual storage 3-23
volatile storage 3-2

effect of power-on reset on 4-32

W
WAIT (SVC), example of routine to bypass A-45
wait indicator 12-5
wait-state bit, in PSW 4-5
warning (machine-check condition) 11-17

subclass-mask bit for 11-24
word 3-3

X-28 ESA/370 Principles of Operation

word-concurrent storage references 5-74
working allegiance (I/O) 15-11
wraparound

of instruction addresses 5-5
of PER addresses 4-16
of register numbers

for LOAD MULTIPLE instruction 7-31
for STORE MULTIPLE instruction 7-47

of storage addresses 3-5
comparison of 370-XA with System/370 for

E-8
controlled by addressing mode 3-5
for MOVE INVERSE instruction 7-33
for MOVE LONG instruction 7-35

ofTOD clock 4-22
write (I/O command) 15-35

x
X (EXCLUSIVE OR) instruction 7-25
X field of instruction 5-6
XA (extended architecture) (See 370-XA mode)
XC (EXCLUSIVE OR) instruction 7-25

examples A -19
XI (EXCLUSIVE OR) instruction 7-25

example A -20
XR (EXCLUSIVE OR) instruction 7-25

Z
Z bit (zero condition-code bit) 16-11

as cause of intermediate interruption condition
16-17

ZAP (ZERO AND ADD) instruction 8-12
example A-38

zero
instruction-length code 6-7
negative (See negative zero)
normal meaning for byte value v
true (floating-point number) 9-1

ZERO AND ADD (ZAP) instruction 8-12
example A-38

zero condition code (Z bit in SCSW) 16-11
zone bits 8-1

moving of 7-38
zoned decimal numbers 8-1

examples A-5

3
370-XA

comparison of facilities with System/370 E-l
comparison with ESA/370 D-l

370-XA architecture 1-2
comparison of facilities with System/370, I/O 13-1

s
luse
,ms

ated :

l •
nent. :
!

Ire­
ive
~r

IBM Enterprise Systems Architecture/370
Principles of Operation

Order No. SA22-7200-0

READER'S
COMMENT
FORM

This publication is part of a library that serves as a reference source for system analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any,
are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

~d Comments:
lis

IBM machine type(s) ______ and model(s) ______ to which this comment applies.

What control program(s) do you use? --
What is your occupation? --
Number of latest Newsletter associated with this publication: -------------------------------
Thank you for your cooperation. No postage stamp necessary if mailed in the USA.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you may
mail directly to the address in the edition notice on the back of the front cover or title page.)

SA22-7200-0

Reader's Comment Mailer

: Cut
• fold
:alon
: line

Fold and tape Please Do Not Staple · · I •••

Fold and tape

BUSINESS REPLY MAIL
First Class Permit No. 40 Armonk, NY

Postage will be paid by addressee:

International Business Machines Corporation
Department E57
P.O. Box 950
Poughkeepsie, New York 12602

Fold and tape Please Do Not Staple

If you would like a reply, please print:

I I I NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

Your Name ________________________________ ----------------
Company Name ________________-_Department ______ _

Street Address ____________________ _
City __________ ..--____________ -
State ___________ Zip Code ______ _ -------- IBM branch office serving you ______________ __ - --'.------ - ---- - - ... ---------_.-

®

: Cut
: fold
• alon
: line

ad :

lOt. :

IBM Enterprise Systems Architecture/370
Principles of Operation

Order No. SA22-7200-0

READER'S
COMMENT
FORM

This publication is part of a library that serves as a reference source for system analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any,
are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

Comments:

IBM machine type(s) ______ ,and model(s) ______ to which this comment applies.

What control program(s) do you use? --
What is your occupation? --
Number of latest Newsletter associated with this publication: ------------------------------
Thank you for your cooperation. No postage stamp necessary if mailed in the USA.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you may
mail directly to the address in the edition notice on the back of the front cover or title page.)

SA22-7200-0

Reader's Comment Mailer

: Cut·
• fold
: alon
: line

Fold and tape Please Do Not Staple Fold and tape •
I •••

BUSINESS REPLY MAIL
First Class Permit No. 40 Armonk, NY

Postage will be paid by addressee:

International Business Machines Corporation
Department E57
P.O. Box 950
Poughkeepsie, New York 1 2602

Fold and tape Please Do Not Staple

If you would like a reply, please print:

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

Your Name ________________________ ------__ ---------------
Company Name _________ ---Department ______ _

Street Address ___________ __._--------
City __________________________ _

-------- State ___________ Zip Code _______ _ - --'.--- --- IBM branch office serving you ______________ _ - - ---- _. - -.-----'-----y-
®

.
: Cut
: fold
• alor
: line

Ise
,s

ted:

ent. :

d

IBM Enterprise Systems Architecture/370
Principles of Operation

Order No. SA22-7200-0

READER'S
COMMENT
FORM

This publication is part of a library that serves as a reference source for system analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any,
are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

Comments:

IBM machine type(s) ______ and model(s) ______ to which this comment applies.

What control program(s) do you use?

What is your occupation?
--

Number of latest Newsletter associated with this publication:
--

Thank you for your cooperation. No postage stamp necessary if mailed in the USA.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you may
mail directly to the address in the edition notice on the back of the front cover or title page.)

SA22-7200-0

Reader's Comment Mailer

Fold and tape Please Do Not Staple Fold and tape

·Cu
: foil
: alo
: linl .

.. .

BUSINESS REPLY MAIL
First Class Permit No. 40 Armonk, NY

Postage will be paid by addressee:

International Business Machines Corporation
Department E57
P.O. Box 950
Poughkeepsie, New York 12602

Fold and tape Please Do Not Staple

If you would like a reply, please print:

II III NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

Your Name ________________________________ ------~--------
Company Name __________ ---;,...--Departm~nt ______ _

Street Address ______ +-____ ...,.._-------
City __________-___________ _

-------- State __________ ~ Zip Code _______ _ - - -------- IBM branch office serving you __ """"'"'-___________ _ - - ---- - - --,----------,-
®

: CU1
: fole
-alol
: line

-------- - ------ ---- - ----------- , - ~

