——

Publication Number
SA22-7200-0

| N IBM Enterprise
. i o0 2 ' Systems Architecture/370

Principles of Operation

IBM Enterprise
Systems Architecture/370

Principles of Operation

Publication Number File Number
SA22-7200-0 §370-01

First Edition (August 1988)

Changes are made occasionally to the information herein; before using this publication in connection with
the operation of 1BM equipment, refer to the latest IBM System/370, 30xx, 4300, and 9370 Processors Bibli-
ography, GC20-0001, for the editions that are applicable and current.

IBM may have patents or pending patent applications covering subject matter described herein. Furnishing
this publication does not constitute or imply a grant of any license under any patents, patent applications,
trademarks, copyrights, or other rights of iBM or of any third party, or any right to refer to IBM in any
advertising or other promotional or marketing activities. 1BM assumes no responsibility for any infringement
of patents or other rights that may result from the use of this publication or from the manufacture, use,
lease, or sale of apparatus described herein.

Licenses under IBM’s utility patents are available on reasonable and nondiscriminatory terms and conditions.
Inquiries relative to licensing should be directed, in writing, to: 1BM Corporation, Director of Contracts and
Licensing, Armonk, NY, USA 10504.

References in this publication to 1BM products, programs, or services do not imply that 1BM intends to make
these available in all countries in which 1BM operates.

Publications are not stocked at the address given below. Requests for IBM publications should be made to
your 1BM representative or to the 1BM branch office serving your locality.

A form for reader’s comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to: 1BM Corporation, Central Systems Architecture, Department E57, PO Box
950, Poughkeepsie, NY, USA 12602. IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

-© Copyright International Business Machines Corporation 1988. All rights reserved.

Preface

This publication provides, for reference purposes, a
detailed Enterprise Systems Architecture/370™
(ESA/370™) description.

The publication applies only to systems operating
as defined by EsA/370. For systems operating in
accordance with the System/370 or System/370
extended-architecture (370-XA) definitions, the /BM
System/|370 Principles of Operation, GA22-7000, or
the IBM 370-XA Principles of Operation,
SA22-7085, should be consulted.

The publication describes each function at the level
of detail needed to prepare an assembler-language
program that relies on that function. It does not,
however, describe the notation and conventions
that must be employed in preparing such a

program, for which the user must instead refer to

the appropriate assembler-language publication.

The information in this publication is provided
principally for use by assembler-language program-
mers, although anyone concerned with the func-
tional details of EsA/370 will find it useful.

This publication is written as a reference and
should not be considered an introduction or a text-
book. It assumes the user has a basic knowledge of
data-processing systems. 1BM publications relating
to BSA/370 are listed and described in the IBM
System|370, 30xx, 4300, and 9370 Processors Bibli-
ography, GC20-0001.

All facilities discussed in this publication are not
necessarily available on every model. Furthermore,
in some instances the definitions have been. struc-
tured to allow for some degree of extendibility, and
therefore certain capabilities may be described or
implied that are not offered on any model. Exam-
ples of such capabilities are the use of a 16-bit field
in the subsystem-identification word to identify the
channel subsystem, the size of the cPU address, and
the number of CPUs sharing main storage. The
allowance for this type of extendibility should not
be construed as implying any intention by IBM to
provide such capabilities. For information about
the characteristics and availability of facilities on a

specific model, see the functional characteristics
publication for that model.

Largely because this publication is arranged for ref-
erence, certain words and phrases appear, of neces-
sity, earlier in the publication than the principal
discussions explaining them. The reader who
encounters a problem because of this arrangement
should ' refer to the index, which indicates the
location of the key description.

The information presented in this publication is
grouped in 17 chapters and several appendixes:

Chapter 1, Introduction, highlights some of the
major facilities of ESA/370.

Chapter 2, Organization, describes the major
groupings within the system -- the central proc-
essing unit (CPU), storage, and input/output -- with
some attention given to the composition and char-
acteristics of those groupings.

Chapter 3, Storage, explains the information
formats, the addressing of storage, and the facilities
for storage protection. It also deals with dynamic
address translation (DAT), which, coupled with
special programming support, makes the use of a
virtual storage possible.

Chapter 4, Control, describes the facilities for the
switching of system status, for special externally ini-
tiated operations, for debugging, and for timing. It
deals specifically with cPU states, control modes,
the program-status word (Psw), control registers,
tracing, program-event recording, timing facilities,
resets, store status, and initial program loading.

Chapter 5, Program Execution, explains the role of
instructions in program execution, looks in detail at
instruction formats, and describes briefly the use of
the program-status word (psw), of branching, and
of interruptions. It contains the principal
description of the advanced address-space facilities
that are introduced in EsA/370. It also details the
aspects of program execution on one CPU as
observed by other cPUs and by channel programs.

Enterprise Systems Architecture/370 and ESA/370 are trademarks of the International Business Machines Cor-

poration.

Preface il

Chapter 6, Interruptions, details the mechanism that
permits the CPU to change its state as a result of
conditions external to the system, within the
system, or within the cpu itself. Six classes of
interruptions are identified and described: machine-
check interruptions, program interruptions,
supervisor-call interruptions, external interruptions,
input/output interruptions, and restart inter-
ruptions. ’

Chapter 7, General Instructions, contains detailed
descriptions of logical and binary-integer data
formats and of all unprivileged instructions except
the decimal and floating-point instructions.

Chapter 8, Decimal Instructions, describes in detail
decimal data formats and the decimal instructions.

Chapter 9, Floating-Point Instructions, contains
detailed descriptions of floating-point data formats
and the floating-point instructions.

Chapter 10, Control Instructions, contains detailed
descriptions of all of the semiprivileged and privi-
leged instructions except for the 1/0 instructions.

Chapter 11, Machine-Check Handling, describes the
mechanism for detecting, correcting, and reporting
machine malfunctions.

Chapter 12, Operator Facilities, describes the basic
manual functions and controls available for oper-
ating and controlling the system.

Chapters 13-17 of this publication provide a
detailed definition of the functions performed by
the channel subsystem and the logical interface
between the cPU and the channel subsystem.

Chapter 13, I/O Overview, provides a brief
description of the basic components and operation
of the channel subsystem.

Chapter 14, 1/O Instructions,
description of the 1/0 instructions.

Chapter 15, Basic 1/O Functions, describes the basic
1/0 functions performed by the channel subsystem,
including the initiation, control, and conclusion of
1/0 operations. :

Chapter 16, IO Interruptions, covers 1/0 inter-
ruptions and interruption conditions.

iv ESA/370 Principles of Operation

contains the

Chapter 17, 1/O Support Functions, describes such
functions as channel-subsystem usage monitoring,
resets, initial-program loading, reconfiguration, and
channel-subsystem recovery.

The Appendixes include:

* Information about number representation

« Instruction-use examples

e Lists of the instructions arranged in several
sequences

e A summary of the condition-code settings

e A summary of the differences between 370-XA
and ESA/370

e A summary of the
System/370 and 370-XA

* A table of the powers of 2

e Tabular information helpful in dealing with
hexadecimal numbers

* An EBCDIC chart

differences between

Size Notation

In this publication, the letters K, M, G, and T
denote the multipliers 2!°, 220, 230 and 249,
respectively. Although the letters are borrowed
from the decimal system and stand for kilo (10%),
mega (10°), giga (10%), and tera (10'2), they do not
have the decimal meaning but instead represent the
power of 2 closest to the corresponding power of
10. Their meaning in this publication is as follows:

Symbol Value

K (kilo) 1,024 = 210
M (mega) 1,048,576 = 220
G (giga) 1,073,741,824 = 230
T (tera) | 1,099,511,627,776 = 240

The following are some examples of the use of K,
M, G,and T:

2,048 is expressed as 2K.

4,096 is expressed as 4K.

65,536 is expressed as 64K (not 65K).
2%% is expressed as 16M.

231 is expressed as 2G.

242 is expressed as 4T.

When the words “thousand” and “million” are
used, no special power-of-2 meaning is assigned to
them.

Bytes, Characters, and Codes

Although the System/360 architecture was ori-
ginally designed to support the Extended Binary-
Coded-Decimal Interchange Code (EBCDIC), the
instructions and data formats of the architecture are
for the most part independent of the external code
which is to be processed by the machine. For most
instructions, all 256 possible combinations of bit
patterns for a particular byte can be processed,
independent of the character which the bit pattern
is intended to represent. For instructions which
use the zoned format, and for those few
instructions which are dependent on a particular
external code, the instruction TRANSLATE may be
used to convert data from one code to another
code. Thus, a machine operating in accordance
with ESA/370 can process EBCDIC, ASCII, or any
other code which can be represented in eight or
fewer bits per character.

In this publication, unless otherwise specified, the
value given for a byte is the value obtained by con-
sidering the bits of the byte to represent a binary
code. Thus, when a byte is said to contain a zero,
the value 00000000 binary, or 00 hex, is meant, and
not the value for an EBcDIC character “0,” which
would be F0 hex.

Other Publications

The channel-to-channel adapter is described in the
publication IBM Channel-to-Channel-Adapter,
SA22-7091.

The 1/0 interface is described in the publication
IBM System|360 and System|370 I1/O Interface
Channel to Control Unit Original Equipment Man-
ufacturers’ Information, GA22-6974.

- The mathematical assists are described in the publi-

cation IBM System/370 Mathematical Assists,
SA22-7094, which describes the instructions
ARCTANGENT, COMMON LOGARITHM, COSINE,
EXPONENTIAL, MULTIPLY AND ADD, NATURAL
LOGARITHM, RAISE TO POWER, SINE, and SQUARE
ROOT.

Vector operations are described in the publication
Enterprise Systems Architecture/370 and
System|370 Vector Operations, SA22-7125.

The interpretive-execution facility is described in

the publication IBM 370-XA Interpretive Execution,
SA22-7095.

Preface V

This page is intentionally left blank.

vi ESA/370 Principles of Operation

Contents

Chapter 1. Introduction
Highlights of ESA/370
Advanced Address-Space Facilities
The 370-XA Base
System Program
Compatibility
Compatibility among ESA/370 Systems .
Compatibility among ESA/370, 370-XA,
and System/370
Control-Program Compatibility
Problem-State Compatibility
Availability

Chapter 2. Organization
Main Storage
CPU
PSW
General Registers
Floating-Point Registers
Control Registers
Access Registers
Vector Facility
1/0
Channel Subsystem
I/O Devices and Control Units
Operator Facilities

Chapter 3. Storage
Storage Addressing
Information Formats
Integral Boundaries
Address Types and Formats
Address Types
Absolute Address
Real Address
Virtual Address
Primary Virtual Address
Secondary Virtual Address
AR-Specified Virtual Address
Home Virtual Address
Logical Address
Instruction Address
Effective Address
Address Size and Wraparound
Address Wraparound
Storage Key
Protection
Key-Controlled Protection
Fetch-Protection-Override Control . . .
Page Protection =
Low-Address Protection
Reference Recording

...............

..............

2-3

2-3

Change Recording 3-11
Prefixing 3-11
AddressSpaces 3-13
Changing to Different Address Spaces 3-13
Address-Space Number 3-13
ASN Translation 3-14
ASN-Translation Controls 3-15
Control Register 14 3-15
Control Register 0 3-15
ASN-Translation Tables 3-15
ASN-First-Table Entries 3-15
ASN-Second-Table Entries 3-16
ASN-Translation Process 3-17
ASN-First-Table Lookup 3-18
ASN-Second-Table Lookup 3-19
Recognition of Exceptions during ASN
Translation 3-19
ASN Authorization 3-19
ASN-Authorization Controls 3-19
Control Register4 3-20
ASN-Second-Table Entry 3-20
Authority-Table Entries 3-20
ASN-Authorization Process 3-20
Authority-Table Lookup 322
Recognition of Exceptions during ASN
Authorization 3-22
Dynamic Address Translation 3-22
Translation Control 3-24
Translation Modes 3-24
Control Register 0 3-24
Control Register 1 3-24
Control Register 7 3-25
Control Register 13 3-25
Translation Tables 3-26
Segment-Table Entries 3-26
Page-Table Entries 3-27
Summary of Segment-Table and
Page-Table Sizes 3-27
Translation Process 327
Effective Segment-Table Designation 3-28
Inspection of Control Register 0 3-30
Segment-Table Lookup 3-30
Page-Table Lookup 3-30
Formation of the Real Address 3-31
Recognition of Exceptions during
Translation 3-31
Translation-Lookaside Buffer 3-31
TLB Structure 3-31
Formation of TLB Entries 3-32
Use of TLB Entries 3-32
Modification of Translation Tables 3-33
Address Summary 3-35

Contents Vil

Addresses Translated
Handling of Addresses

Assigned Storage Locations

Chapter 4. Control
Stopped, Operating, Load, and Check-Stop
States
Stopped State
Operating State
Load State
Check-Stop State
Program-Status Word
Program-Status-Word Format
Control Registers
Tracing,
Control-Register Allocation
Trace Entries
Operation
Program-Event Recording
Control-Register Allocation
Operation
Identification of Cause
Priority of Indication
Storage-Area Designation
PER Events
Successful Branching
Instruction Fetching
Storage Alteration
General-Register Alteration
Store Using Real Address
Indication of PER Events Concurrently
with Other Interruption Conditions
Timing
Time-of-Day Clock
Format
States
Changes in Clock State
Setting and Inspecting the Clock
TOD-Clock Synchronization
Clock Comparator
CPUTimer
Externally Initiated Functions
Resets
CPUReset
Initial CPU Reset
Subsystem Reset
ClearReset
Power-On Reset
Initial Program Loading
Store Status
Multiprocessing
Shared Main Storage
CPU-Address Identification
CPU Signaling and Response
Signal-Processor Orders
Conditions Determining Response

.................

viii ESA/370 Principles of Operation

3-35
3-36
3-39

4-1
4-2
4-2
4-2
4-2
4-3

4-6

4-9

4-9
4-10
4-12
4-12
4-13
4-14
4-14
4-15
4-16
4-16
4-16
4-17
4-17
4-17
4-18

. 4-18

4-21
4-21
4-21
4-22
4-23

. 4-23

4-24
4-25
4-26
4-27
4-27
4-30
4-31
4-31
4-31
4-32
4-32
4-33
4-33
4-34
4-34
4-34
4-34

. 4-36

Conditions Precluding Interpretation of

the OrderCode 4-36
Status Bits 4-37
Chapter 5. Program Execution 5-1
Instructions 5-2
Operands 5-2
Instruction Formats 5-3
Register Operands 5-4
Immediate Operands 5-5
Storage Operands 5-5
Address Generation 5-5
Bimodal Addressing 5-5

Sequential Instruction-Address Generation 5-5

Operand-Address Generation 5-6
Formation of the Intermediate Value . 35-6
Formation of the Address 5-6

Branch-Address Generation 5-7
Formation of the Branch Address ... 5-7

Instruction Execution and Sequencing 5-7

Decision Making 5-7

LoopControl 5-8

Subroutine Linkage without the Linkage

Stack 5-8

Interruptions 5-12

Types of Instruction Ending 5-12
Completion 5-12
Suppression 5-12
Nullification 5-12
Termination 5-12

Interruptible Instructions 5-12
Point of Interruption 5-12
Execution of Interruptible Instructions 5-13

Exceptions to Nullification and

Suppression 5-14
Storage Change and Restoration for
DAT-Associated Access Exceptions 5-15
Modification of DAT-Table Entries 5-15
Trial Execution for Editing Instructions
and Translate Instruction 5-15
Authorization Mechanisms 5-16
Mode Requirements 5-16
Extraction-Authority Control 5-16
PSW-KeyMask 5-16
Secondary-Space Control 5-17
Subsystem-Linkage Control 5-17
ASN-Translation Control 5-17
Authorization Index 5-17
Access-Register and Linkage-Stack
Mechanisms 5-18
PC-Number Translation 5-21

PC-Number Translation Control 5-21
Control Register 0 5-21
Control Register 5 5-21

PC-Number Translation Tables 5-22

Linkage-Table Entries
Entry-Table Entries
PC-Number-Translation Process

Obtaining the Linkage-Table
Designation
Linkage-Table Lookup
Entry-Table Lookup
Recognition of Exceptions during
PC-Number Translation
Home Address Space
Access-Registers Introduction
Summary
Access-Register Functions
Access-Register-Specified Address
Spaces
Access-Register Instructions
Access-Register Translation
Access-Register-Translation Control . . .
Address-Space-Function Control
Control Register 2
Control Register 5
Control Register 8
Access Registers
Access-Register-Translation Tables
Access-List Designations
Access-List Entries
Extended ASN-Second-Table Entries
Access-Register-Translation Process
Selecting the Access-List-Entry Token
Obtaining the Primary or Secondary
Segment-Table Designation
Checking the First Byte of the ALET
Obtaining the Effective Access-List
Designation
Access-List Lookup
Locating the ASN-Second-Table Entry
Authorizing the Use of the Access-List
Entry
Obtaining the Segment-Table
Designation from the
ASN-Second-Table Entry
Recognition of Exceptions During
Access-Register Translation
ART-Lookaside Buffer
ALB Structure
Formation of ALB Entries
Use of ALB Entries
Modification of ART Tables
Linkage-Stack Introduction
Summary
Linkage-Stack Functions
Transferring Program Control
Branching Using the Linkage Stack
Adding and Retrieving Information
Testing Authorization
Program-Problem Analysis

Extended Entry-Table Entries
Linkage-Stack Operations
Linkage-Stack-Operations Control
Control Register 0
Control Register 15
Linkage Stack
Entry Descriptors
Header Entries
Trailer Entries
State Entries
Stacking Process
Locating Space for a New Entry
Forming the New Entry
Updating the Current Entry
Updating Control Register 15
Recognition of Exceptions During the
Stacking Process
Unstacking Process
Locating the Current Entry and
Processing a Header Entry
Checking for a State Entry
Restoring Information
Updating the Preceding Entry
Updating Control Register 15
Recognition of Exceptions during the
Unstacking Process
Sequence of Storage References
Conceptual Sequence
Overlapped Operation of Instruction
Execution
Divisible Instruction Execution
Interlocks for Virtual-Storage References
Interlocks Between Instructions
Interlocks Within a Single Instruction
Instruction Fetching
ART-Table and DAT-Table Fetches
Storage-Key Accesses
Storage-Operand References
Storage-Operand Fetch References
Storage-Operand Store References
Storage-Operand Update References
Storage-Operand Consistency
Single-Access References
Multiple-Access References
Block-Concurrent References
Consistency Specification
Relation between Operand Accesses
Other Storage References
Serialization ‘
CPU Serialization
Channel-Program Serialization

Chapter 6. Interruptions
Interruption Action
Interruption Code

Contents

ix

Enabling and Disabling
Handling of Floating Interruption
Conditions
Instruction-Length Code
Zero ILC
ILC on Instruction-Fetching Exceptions
Exceptions Associated with the PSW
Early Exception Recognition
Late Exception Recognition
External Interruption
Clock Comparator
CPUTimer
Emergency Signal
External Call
Interrupt Key
Malfunction Alert
Service Signal
TOD-Clock Sync Check
I/O Interruption
Machine-Check Interruption
Program Interruption
Exception-Extension Code
Program-Interruption Conditions
Addressing Exception
AFX-Translation Exception
ALEN-Translation Exception
ALE-Sequence Exception
ALET-Specification Exception
ASN-Translation-Specification
Exception
ASTE-Sequence Exception
ASTE-Validity Exception
ASX-Translation Exception
Data Exception
Decimal-Divide Exception
Decimal-Overflow Exception
Execute Exception
Exponent-Overflow Exception
Exponent-Underflow Exception
EX-Translation Exception
Extended-Authority Exception
Fixed-Point-Divide Exception
Fixed-Point-Overflow Exception
Floating-Point-Divide Exception
LX-Translation Exception
Monitor Event
Operand Exception
Operation Exception
Page-Translation Exception
PC-Translation-Specification Exception
PEREvent
Primary-Authority Exception
Privileged-Operation Exception
Protection Exception
Secondary-Authority Exception
Segment-Translation Exception

................

X ESA/370 Principles of Operation

6-7
6-8

Significance Exception
Space-Switch Event

Special-Operation Exception
Specification Exception
Stack-Empty Exception
Stack-Full Exception
Stack-Operation Exception

Stack-Specification Exception
Stack-Type Exception
Trace-Table Exception
Translation-Specification Exception . .

Unnormalized-Operand Exception . . .

Vector-Operation Exception
Collective Program-Interruption Names
Recognition of Access Exceptions
Multiple Program-Interruption Conditions

Access Exceptions

ASN-Translation Exceptions

Trace Exceptions

Restart Interruption
Supervisor-Call Interruption
Priority of Interruptions

......

.............

............

Chapter 7. General Instructions
Data Format
Binary-Integer Representation
Binary Arithmetic
Signed Binary Arithmetic
Addition and Subtraction

Fixed-Point Overflow
Unsigned Binary Arithmetic
Signed and Logical Comparison
Instructions
Add ...
Add Halfword
Add Logical
AND

Branch and Link
Branchand Save
Branch and Save and Set Mode
Branch and Set Mode
Branch on Condition
Branchon Count
Branch on Index High
Branch on Index Low or Equal
Compare
Compare and Form Codeword
Compareand Swap
Compare Double and Swap
Compare Halfword
Compare Logical
Compare Logical Characters under Mask

Compare Logical Long
Convert to Binary

Convert to Decimal

........

6-28
6-28
6-28
6-28
6-29
6-29
6-32
6-34

Copy Access e 7-24

Divide 7-25
Exclusive OR 7-25
Execute 7-26
Extract Access 7-27
Insert Character 7-27
Insert Characters under Mask 7-27
Insert Program Mask 7-28
load 7-28
Load Access Multiple 7-28
Load Address 7-29
Load Address Extended 7-29
Joadand Test 7-30
Load Complement 7-30
Load Halfword 7-30
Load Multiple 7-31
Load Negative 7-31
Load Positive 7-31
Monitor Call 7-32
Move 7-32
MovelInverse 7-33
Move Long e e 7-33
Move Numerics 7-37
Movewith Offset 7-37
MoveZones 7-38
Multiply 7-39
Multiply Halfword 7-39
OR e 7-40
Pack 7-40
Set Access 7-41
Set Program Mask 7-41
Shift Left Double 7-42
Shift Left Double Logical 7-42
Shift Left Single 7-43
Shift Left Single Logical 7-43
Shift Right Double 7-43
Shift Right Double Logical 7-44
Shift Right Single 7-44
Shift Right Single Logical 7-45
Store 7-45
Store Access Multiple 7-45
~.. Store Character 7-46
Store Characters under Mask 7-46
StoreClock 7-46
Store Halfword 7-47
Store Multiple 7-47
Subtract 7-48
Subtract Halfword 7-48
Subtract Logical 7-48
SupervisorCall 7-49
TestandSet 7-49
TestunderMask 7-50
Translate 7-50
Translateand Test 7-51
Unpack 7-52

Update Tree 7-52
Chapter 8. Decimal Instructions 8-1
Decimal-Number Formats 8-1

Zoned Format 8-1

Packed Format 8-1

Decimal Codes 8-2
Decimal Operations 8-2

Decimal-Arithmetic Instructions 8-2

- Editing Instructions 8-3

Execution of Decimal Instructions 83
Other Instructions for Decimal Operands 8-3

Instructions 8-3
AddDecimal 8-5
Compare Decimal 85
Divide Decimal 8-6
Edit 8-6
Editand Mark 8-10
Multiply Decimal 8-10
Shift and Round Decimal 8-11
Subtract Decimal 8-12
Zeroand Add 8-12

Chapter 9. Floating-Point Instructions . .. 9-1
Floating-Point Number Representation ... 9-1

Normalization 9-2
Floating-Point-Data Format 9-2
Instructions 9-4
Add Normalized 9-7
Add Unnormalized 9-8
Compare 9-9
Divide 9-9
Halve 9-11
Ioad 9-12
Loadand Test 9-12
Load Complement 9-12
Load Negative 9-13
Load Positive 9-13
loadRounded 9-14
Multiply 9-14
Store 9-16
Subtract Normalized 9-16
Subtract Unnormalized 9-17
Chapter 10. Control Instructions 10-1
Branchand Stack 10-5
Diagnose 10-7
Extract Primary ASN 10-7
Extract Secondary ASN 10-8
Extract Stacked Registers 10-8
Extract Stacked State 10-10
Insert Address Space Control 10-12
Inset PSWKey 10-12
Insert Storage Key Extended 10-13
Insert Virtual Storage Key 10-13
Invalidate Page Table Entry 10-14

Contents Xi

Load Address Space Parameters 10-16

Load Control 10-24
Jload PSW 10-24
Load Real Address 10-25
Load Using Real Address 10-27
Modify Stacked State 10-27
Move to Primary 10-29
Move to Secondary 10-29
- Move with Destination Key 10-30
MovewithKey 10-31
Move with Source Key 10-32
Program Call 10-34
Program Return 10-44
Program Transfer 10-47
Purge ALB 10-53
Purge TLB 10-53
Reset Reference Bit Extended 10-53
Set Address Space Control 10-54
SetClock 10-55
Set Clock Comparator 10-56
Set CPU Timer 10-56
Set Prefix 10-56
Set PSW Key from Address 10-57
Set Secondary ASN 10-58
Set Storage Key Extended 10-61
Set System Mask 10-61
Signal Processor 10-61
Store Clock Comparator 10-63
Store Control 10-63
Store CPU Address 10-63
Store CPUID 10-64
Store CPU Timer 10-64
Store Prefix 10-65
Store Then AND System Mask 10-65
Store Then OR System Mask 10-65
Store Using Real Address 10-66
Test Access 10-66
TestBlock 10-69
Test Protection 10-71
Trace 10-73
Chapter 11. Machine-Check Handling . . . 11-1
Machine-Check Detection 11-2
Correction of Machine Malfunctions 11-2-
Error Checking and Correction 11-2
CPURetry 11-2
Effects of CPURetry 113
Checkpoint Synchronization 11-3
Handling of Machine Checks during
Checkpoint Synchronization 11-3

Checkpoint-Synchronization Operations 11-3
Checkpoint-Synchronization Action . . 11-4

Channel-Subsystem Recovery 11-4
Unit Deletion 11-4
Handling of Machine Checks 11-4

Xii ESA/370 Principles of Operation

Validation 11-5
Invalid CBCin Storage 11-6
Programmed Validation of Storage ... 11-6
Invalid CBC in Storage Keys 11-7
Invalid CBC in Registers 11-10
Check-Stop State 11-11
System Check Stop 11-11
Machine-Check Interruption 11-11
Exigent Conditions 11-11
Repressible Conditions 11-12
Interruption Action 11-12
Point of Interruption 11-14
Machine-Check-Interruption Code 11-14
Subclass 11-15
System Damage 11-15
Instruction-Processing Damage 11-16
System Recovery 11-16
Timing-Facility Damage 11-16
External Damage 11-16
Vector-Facility Failure 11-17
Degradation 11-17
Wamning 11-17
Channel Report Pending 11-17
Service-Processor Damage 11-17
Channel-Subsystem Damage 11-17
Subclass Modifiers 11-18
Vector-Facility Source 11-18
BackedUp 11-18
Delayed Access Exception 11-18
Synchronous
Machine-Check-Interruption Conditions 11-18
Processing Backup 11-18
Processing Damage 11-19
Storage Errors 11-19
Storage Error Uncorrected 11-19
Storage Error Corrected 11-19
Storage-Key Error Uncorrected 11-19
Storage Degradation 11-19
Indirect Storage Error 11-20
Machine-Check Interruption-Code
Validity Bits 11-20
PSW-MWP Validity 11-20
PSW Mask and Key Validity 11-20
PSW Program-Mask and
Condition-Code Validity 11-21
PSW-Instruction-Address Validity . . 11-21
Failing-Storage-Address Validity . .. 11-21
External-Damage-Code Validity ... 11-21
Floating-Point-Register Validity ... 11-21
General-Register Validity 11-21
Control-Register Validity 11-21
Storage Logical Validity 11-21
Access-Register Validity 11-21
CPU-Timer Validity 11-21
Clock-Comparator Validity 11-21

Machine-Check Extended Interruption
Information
Register-Save Areas
External-Damage Code
Failing-Storage Address
Handling of Machine-Check Conditions . .
Floating Interruption Conditions
Floating Machine-Check-Interruption
Conditions
Floating I/O Interruptions
Machine-Check Masking
Channel-Report-Pending Subclass
Mask
Recovery Subclass Mask
Degradation Subclass Mask
External-Damage Subclass Mask
Warning Subclass Mask
Machine-Check Logout
Summary of Machine-Check Masking

.................

Chapter 12. Operator Facilities
Manual Operation
Basic Operator Facilities
Address-Compare Controls
Alter-and-Display Controls
Architectural-Mode Indicator
Architectural-Mode-Selection Controls
Check-Stop Indicator
IML Controls
Interrupt Key
Load Indicator
Load-Clear Key
Load-Normal Key
Load-Unit-Address Controls
Manual Indicator
Power Controls
Rate Control
Restart Key
Start Key
Stop Key
Store-Status Key
System-Reset-Clear Key
System-Reset-Normal Key
Test Indicator
TOD-Clock Control
Wait Indicator
Multiprocessing Configurations

..................

Chapter 13. I/O Overview
Comparison among ESA/370, 370-XA, and
System/370
The Channel Subsystem
Subchannels
Attachment of Input/Output Devices
Channel Paths
Control Units

.................

................

IO Devices 13-4
I/O Addressing 13-5
Channel-Path Identifier 13-5
Subchannel Number 13-5
Device Number 13-5
Device Identifier 13-5
Execution of I/O Operations 13-6
Start-Function Initiation 13-6
Path Management 13-7
Channel-Program Execution 13-7
Conclusion of I/O Operations 13-8
I/O Interruptions 13-9
Chapter 14. 1/O Instructions 14-1
I/O-Instruction Formats 14-1
I/O-Instruction Execution 14-1
Serialization 14-1
Operand Access 14-1
ConditionCode 14-2
Program Exceptions 14-2
Instructions 14-2
Clear Subchannel 14-4
Halt Subchannel 14-4
Modify Subchannel 14-6
Reset Channel Path 14-7
Resume Subchannel 14-8
Set Address Limit 14-10
Set Channel Monitor 14-10
Start Subchannel 14-12
Store Channel Path Status 14-14
Store Channel Report Word 14-14
Store Subchannel 14-15
Test Pending Interruption 14-16
Test Subchannel 14-17
Chapter 15. Basic I/O Functions 15-1
Control of Basic I/O Functions 15-1
Subchannel-Information Block 15-1
Path-Management-Control Word 15-2
Subchannel-Status Word 15-7
Model-Dependent Area 15-7
Summary of Modifiable Fields 15-7
Channel-Path Allegiance 15-10
Working Allegiance 15-11
Active Allegiance 15-11
Dedicated Allegiance 15-11
Channel-Path Availability 15-12
Control-Unit Type 15-12
Clear Function 15-13
Clear-Function Path Management 15-13
Clear-Function Subchannel Modification 15-13
Clear-Function Signaling and Completion 15-14
Halt Function 15-14
Halt-Function Path Management . . 15-15
Halt-Function Signaling and Completion 15-15

Contents Xiil

Start Function and Resume Function
Start-Function and Resume-Function
Path Management
Execution of 1/O Operations
Blockingof Data
Operation-Request Block
Channel-Command Word
CommandCode:.....
Designation of Storage Area
Chaining
Data Chaining
Command Chaining
Skipping
Program-Controlled Interruption
CCW Indirect Data Addressing
Suspension of Channel-Program
Execution
Commands
Write
Read
Read Backward
Control
Sense
SenseID
Transfer in Channel
Command Retry
Concluding I/O Operations During
Initiation
Immediate Conclusion of 1/O Operations
Concluding I/O Operations During Data
Transfer
Channel-Path-Reset Function
Channel-Path-Reset-Function Signaling
Channel-Path-Reset
Function-Completion Signaling

Chapter 16. 1/O Interruptions
Interruption Conditions
Intermediate Interruption Condition
Primary Interruption Condition
Secondary Interruption Condition
Alert Interruption Condition
Priority of Interruptions
Interruption Action
Interruption-Response Block
Subchannel-Status Word
Subchannel Key
Suspend Control (S)
Extended-Status-Word Format (L)
Deferred Condition Code (CC)
Format (F)
Prefetch (P)
Initial-Status-Interruption Control (I)
Address-Limit-Checking Control (A)
Suppress-Suspended Interruption (U)
Subchannel-Control Field

.....
........

............

.............

xiv ESA/370 Principles of Operation

15-17

15-18
15-19
15-21
15-21
15-23
15-24
15-25
15-26
15-28
15-29
15-30
15-30
15-31

15-32
15-34
15-35
15-35
15-36
15-36
15-37
15-39
15-40
15-41

15-41
15-42

15-42
15-43
15-43

15-44

Zero Condition Code (Z)
Extended Control (E)
Path Not Operational (N)
Function Control (FC)
Activity Control (AC)
Status Control (SC)
CCW-Address Field
Device-Status Field
Attention
~ Status Modifier
Control-Unit End
Busy
Channel End
Device End
UnitCheck
Unit Exception
Subchannel-Status Field
Program-Controlled Interruption . . .
Incorrect Length
Program Check
Protection Check
" Channel-Data Check
Channel-Control Check
Interface-Control Check
Chaining Check
CountField
Extended-Status Word
Extended-Status Format 0
Subchannel Logout
Extended-Report Word
Failing-Storage Address
Extended-Status Format 1
Extended-Status Format 2
Extended-Status Format 3
Extended-Control Word

...........
...................
..............

............
.............

........

........
........

Chapter 17. 1/O Support Functions
Channel-Subsystem Monitoring
Channel-Subsystem Timing

Channel-Subsystem Timer
Measurement-Block Update
Measurement Block
Time-Interval-Measurement Accuracy
Device-Connect-Time Measurement
Signals and Resets
Signals
Halt Signal
Clear Signal
Reset Signal
Resets
Channel-Path Reset
I/O-System Reset
Externally Initiated Functions
Initial Program Loading
Reconfiguration of the I/O System

........

Status Verification 17-12
Address-Limit Checking 17-12
Configuration Alert 17-13
Incorrect-Length-Indication Suppression . 17-13
Channel-Subsystem Recovery 17-13
Channel Report 17-14
Channel-Report Word 17-15
Appendix A. Number Representation and
Instruction-Use Examples A-1
Number Representation A-2
Binary Integers A-2
Signed Binary Integers A-2
Unsigned Binary Integers A-4
Decimal Integers A-5
Floating-Point Numbers A-5
Conversion Example A-7
Instruction-Use Examples A-7
Machine Format A-7
Assembler-Language Format A-7
Addressing Mode in Examples A-8
General Instructions. A-8
Add Halfword (AH) A-8
AND (N, NC,NLLNR) A-8
NIExample A-8
Linkage Instructions (BAL, BALR, BAS,
BASR, BASSM,BSM) A-8
Other BALR and BASR Examples . A-10
Branch and Stack (BAKR) A-10
BAKR Example 1 A-11
BAKR Example 2 e e A-11
BAKR Example 3 A-12
Branch on Condition (BC, BCR) A-12
Branch on Count (BCT, BCTR) A-12
Branch on Index High (BXH) A-13
BXHExamplel A-13
BXH Example2 A-13
Branch on Index Low or Equal (BXLE) A-14
BXLE Example 1 A-14
BXLE Example 2 A-14
Compare Halfword (CH) A-15
Compare Logical (CL, CLC, CLI, CLR) A-15
CLC Example A-15
CLIExample A-16
CLR Example A-16
Compare Logical Characters under Mask
(CLM) A-16

Compare Logical Long (CLCL) A-17

Convert to Binary (CVB) A-18
Convert to Decimal (CVD) A-18
Divide (D,DR) A-19
Exclusive OR (X, XC, XI, XR) A-19

XCExample A-19

XIExample A-20
Execute (EX) A-21

Insert Characters under Mask (ICM) .. A-21

Load (L,LR) A-22
Load Address (LA) A-22
Load Halfword (LH) A-23
Move MVC,MVI) A-23

MVC Example A-23

MVI Example A-24
Move Inverse (MVCIN) A-24
Move Long (MVCL) A-25
Move Numerics MVN) A-25
Move with Offset (MVO) A-26
Move Zones (MVZ) A-26
Multiply (M, MR) A-27
Multiply Halfword (MH) A-27
OR (0,0C,OLOR) A-28

Ol Example A-28
Pack (PACK) A-28
Shift Left Double (SLDA) A-28
Shift Left Single (SLA) A-29

Store Characters under Mask (STCM) . A-29

Store Multiple (STM) A-30
Test under Mask (TM) A-30
Translate (TR) A-30
Translate and Test (TRT) A-31
Unpack (UNPK) A-33
Decimal Instructions A-33
Add Decimal (AP) A-33
Compare Decimal (CP) A-33
Divide Decimal (DP) A-34
Edit(ED) A-34
Edit and Mark (EDMK) A-35
Multiply Decimal (MP) A-36

Shift and Round Decimal (SRP) A-36

~ Decimal Left Shift
Decimal Right Shift
Decimal Right Shift and Round ... A-37
Multiplying by a Variable Power of 10 A-37

Zero and Add (ZAP) A-38
Floating-Point Instructions A-38
Add Normalized (AD, ADR, AE, AER,

AXR) ... A-38
Add Unnormalized (AU, AUR, AW,

AWR) A-39
Compare (CD, CDR, CE, CER) A-39
Divide (DD, DDR, DE, DER) A-40
Halve (HDR, HER) A-40

Multiply (MD, MDR, ME, MER, MXD,

MXDR,MXR) A-40
Floating-Point-Number Conversion .. A-41
Fixed Point to Floating Point A-4l
Floating Point to Fixed Point A-41
Multiprogramming and Multiprocessing
Examples A-42
Example of a Program Failure Using OR
Immediate A-42

Contents XV

Conditional Swapping Instructions (CS,

CDS) A-43
Settinga Single Bit A-43
Updating Counters A-44

Bypassing Post and Wait A-44
Bypass Post Routine A-44
Bypass Wait Routine A-45

Lock/Unlock A-45
Lock/Unlock with LIFO Queuing for

Contentions A-45
Lock/Unlock with FIFO Queuing for
Contentions A-46
Free-Pool Manipulation A-47
Appendix B. Lists of Instructions B-1
Appendix C. Condition-Code Settings C-1
Appendix D. Comparison Between 370-XA
and ESA/370 D-1

New Facilities in ESA/370 D-1

Access Registers D-1
Home Address Space D-1
Linkage Stack D-1
Load and Store Using Real Address ... D-2
Move with Source or Destination Key .. D-2
Private Space D-2
Comparison of Facilities D-2
Summary of Changes D-2
New Instructions Provided D-2
Comparison of PSW Formats D-3
New Control-Register Assignments D-3
New Assigned Storage Locations D-3
New Exceptions D-3
Change to Secondary-Space Mode D-4
Changes to ASN-Second-Table Entry and
ASN Translation D-4
Changes to Entry-Table Entry and
PC-Number Translation D-4

Changes to PROGRAM CALL D-4
Changes to SET ADDRESS SPACE
CONTROL

Xvi ESA/370 Principles of C,:sration

Effects in New Translation Modes D-4
Effects on Interlocks for Virtual-Storage
References D-5
Effect on INSERT ADDRESS SPACE
CONTROL D-5
Effect on LOAD REAL ADDRESS ... D-5
Effect on TEST PENDING
INTERRUPTION D-5
Effect on TEST PROTECTION D-5

Appendix E. Comparison Between
System/370 and 370-XA
New Facilities' in 370-XA
Bimodal Addressing
31-Bit Logical Addressing
31-Bit Real and Absolute Addressing
Page Protection

...........

...............

Tracing E-2
Incorrect-Length-Indication Suppression . E-2
Status Verification E-2
Comparison of Facilities E-2
Summary of Changes E-3
Changes in Instructions Provided E-3
Input/Output Comparison E-4
Comparison of PSW Formats E-5

Changes in Control-Register Assignments E-6
Changes in Assigned Storage Locations . E-6

SIGNAL PROCESSOR Changes E-7
Machine-Check Changes E-7
Changes to Addressing Wraparound ... E-8

Changes to LOAD REAL ADDRESS .. E-8
Changes to 31-Bit Real Operand Addresses E-8

Appendix F. Table of Powersof 2 F-1
Appendix G. Hexadecimal Tables G-1
Appendix H. EBCDIC Chart H-1
Index X-1

Chapter 1. Introduction

Highlights of ESA/370 i-1
Advanced Address-Space Facilities 1-1
The 370-XA Base 1-2

System Program 1-3

Compatibility 1-3
Compatibility among ESA/370 Systems . 1-3

Compatibility among ESA/370, 370-XA,

and System/370 1-4
Control-Program Compatibility 1-4
Problem-State Compatibility 1-4

Availability 1-4

This publication provides, for reference purposes, a
detailed Enterprise Systems Architecture/370
(ESA/370) description.

The architecture of a system defines its attributes as
seen by the programmer, that is, the conceptual
structure and functional behavior of the machine,
as distinct from the organization of the data flow,
the logical design, the physical design, and the per-
formance of any particular implementation.
Several dissimilar machine implementations may
conform to a single architecture. When the exe-
cution of a set of programs on different machine
implementations produces the results that are
defined by a single architecture, the implementa-
tions are considered to be compatible for those pro-
grams.

Highlights of ESA/370

ESA/370 is the next step in the evolution from the
System/360 to the System/370 to the System/370
extended architecture (370-XA). ESA/370 includes all
of the facilities of 370-xA and offers major new facil-
ities. These new facilities add to the virtual storage
and 31-bit addressing of 370-xA by further
increasing the amount of apparent main storage
that is readily available for use.

ESA/370 allows the program to operate on data con-
currently and efficiently in the instruction address
space and other address spaces. ESA/370 also pro-
vides increased functions for transferring control
between programs, and it includes means for
improving the efficiency of the control program.

The new facilities of ESA/370 are referred to collec-
tively as the advanced address-space facilities.

A detailed comparison of the differences among
ESA/370, 370-XA, and System/370 appears in Appen-
dixes D and E.

Advanced Address-Space Facilities

The most significant characteristic of the Esa/370
advanced address-space facilities is the improved
capability, compared to that of 370-xA, to have pro-
grams and data reside in different address spaces.
In addition, data can be accessed in multiple
address spaces concurrently, which increases the
amount of data that can be processed concurrently;
and unprivileged instructions can be used to select
the address spaces to be accessed, which increases
the amount of data that can be processed without
control-program intervention.

The following is a summary of the new facilities of
ESA/370.

¢ Sixteen access registers permit the program to
have immediate access to storage operands in
up to 16 2G-byte address spaces, including the
address space in which the program resides. In
a dynamic-address-translation mode called
access-register mode, the instruction B field, or
for certain instructions the R field, designates
both a general register and an access register,
and the contents of the access register, along
with the contents of protected tables, specify
the operand address space to be accessed. By
changing the contents of the access registers,
the program, under the control of an authori-
zation mechanism, can have fast access to hun-
dreds of different operand address spaces.

Instructions are provided for changing between
the access-register mode and other translation
modes and for loading and storing the contents
of the access registers.

For address spaces not containing programs,
the number of possible address spaces is not
limited to 65,536, as it is in 370-XA.

* A linkage stack is used in a functionally
expanded mechanism for passing control

Chapter 1. Introduction 1-1

between programs in either the same or dif-
ferent address spaces. This mechanism makes
use also of the previously existing PROGRAM
CALL instruction, an extended entry-table entry,
and a new PROGRAM RETURN instruction.
The mechanism saves various elements of
status, including access-register and general-
register contents, during a calling linkage, pro-
vides for changing the current status during the
calling linkage, and restores the original status
during the returning linkage. A significant
benefit is that each program in a sequence of
calling and called programs can have degrees of
privilege and authority that are arbitrarily dif-
ferent from those of programs before or after it
in the sequence, including the authority to
access address spaces by means of access regis-
ters. The linkage stack can also be used to save
and restore access-register and general-register
contents during a branch-type linkage per-
formed by the new instruction BRANCH AND
STACK.

Instructions are provided for examining the
contents of the linkage stack, for changing
those contents in a limited way, and for testing
the authorization of a calling program.

* A translation mode called home-space mode
provides an efficient means for the control
program to obtain control in the address space,
called the home address space, in which the
principal control blocks for a dispatchable unit
(a task or process) are kept. The space-switch
event is extended to allow indication of a
transfer of control to or from the home address
space.

* The semiprivileged MOVE WITH SOURCE KEY
and MOVE WITH DESTINATION KEY instructions
allow bidirectional movement of data between
storage areas having different storage keys,
without the need to change the pPsw key.

* The privileged LOAD USING REAL ADDRESS
and STORE USING REAL ADDRESS instructions
allow the control program to access data in real
storage more efficiently. A program-event-
recording store-using-real-address event pro-
vides serviceability.

» The private-space facility provides a bit, the
private-space-control bit, in the segment-table
designation. This bit, when one, causes the
address space defined by the segment-table des-
ignation not to contain any common segments
and causes low-address protection and fetch-

1-2 ESA/370 Principles of Operation

protection override not to apply to the address
space.

In order to use access registers to access different
address spaces, the program must be coded to
manage the contents of the access registers. Pro-
grams containing the existing PROGRAM CALL
instruction can make use of the linkage stack
without any change to the programs, although effi-
ciency will be improved if existing saving and
restoring functions of the programs are eliminated.

The 370-XA Base

BSA/370 includes the complete set of facilities of
370-XA as its base. This section briefly outlines
most of the facilities that were added to System/370
to form 370-XA.. The cpu-related facilities are as
follows.

» Bimodal addressing provides two modes of
operation: a 24-bit addressing mode for the
execution of old programs and a 31-bit
addressing mode.

» 31-bit logical addressing extends the virtual
address space from the 16M bytes addressable
with 24-bit addresses to 2G bytes
(2,147,483,648 bytes).

» 31-bit real and absolute addressz'ng provides
addressability for up to 2G bytes of main
storage.

e The 370-XA protection facilities include key-
controlled protection on only 4K-byte blocks,
page protection, and, as in System/370, low-
address protection for addresses below 512.
Fetch-protection override eliminates fetch pro-
tection for locations 0-2047.

¢ The tracing facility assists in the determination
of system problems by providing an ongoing
record in storage of significant events.

* The COMPARE AND FORM CODEWORD and
UPDATE TREE instructions facilitate sorting
applications.

The 1/0-related differences between 370-xA and
System/370 result from the 370-XA channel sub-
system, which includes:

* Path-independent addressing of 1/0 devices,
which permits the initiation of 1/0 operations
without regard to which CPU is executing the
1/0 instruction or how the 1j0 device is attached
to the channel subsystem. Any 1/0 interruption
can be handled by any cPU enabled for it.

o Path management, whereby the channel sub-
system determines which paths are available for
selection, chooses a path, and manages any
busy conditions encountered while attempting
to initiate 1/0 processing with the associated
devices.

* Dynamic reconnection, which permits any 10
device using this capability to reconnect to any
available channel path to which it has access in
order to continue execution of a chain of com-
mands.

» Programmable interruption subclasses, which
permit the programmed assignment of 1/0-inter-
ruption requests from individual 170 devices to
any one of eight maskable interruption queues.

* An additional CCW format for the direct use of
31-bit addresses in channel programs. The new
ccw format, called format 1, is provided in
addition to the System/370 ccw format, now
called format 0.

» Address-limit checking, which provides an addi-
tional storage-protection facility to prevent data
access to storage locations above or below a
specified absolute address.

» Monitoring facilities, which can be invoked by

the program to cause the channel subsystem to

measure and accumulate key 1/0-resource usage
parameters.

¢ Status-verification facility, which reports inap-
propriate combinations of device-status bits
presented by a device. :

e A set of 13 I/O instructions, with associated
control blocks, which are provided for the
control of the channel subsystem.

The facilities appearing in System/370 but not pro-
vided in 370-XA are described in Appendix E.

System Program

ESA/370 is designed to be used with a control
program that coordinates the wuse of system
resources and executes all 10 instructions, handles
exceptional conditions, and supervises scheduling
and execution of multiple programs.

Compatibility

Compatibility among ESA/370
Systems

Although systems operating as defined by ESA/370
may differ in implementation and physical capabili-
ties, logically they are upward and downward com-
patible. Compatibility provides for simplicity in
education, availability of system backup, and ease
in system growth. Specifically, any program
written for ESA/370 gives identical results on any
ESA/370 implementation, provided that the program:

1. Is not time-dependent.

2. Does not depend on system facilities (such as

storage capacity, [JO equipment, or optional

. facilities) being present when the facilities are
not inctuded in the configuration.

3. Does not depend on system facilities being
absent when the facilities are included in the
configuration. For example, the program must
not depend on interruptions caused by the use
of operation codes or command. codes that are
not installed in some models. Also, it must not
use or depend on fields associated with
uninstalled facilities. For example, data should
not be placed in an area used by another model
for fixed-logout information. Similarly, the
program must not use or depend on unassigned
fields in machine formats (control registers,
instruction formats, etc.) that are not explicitly
made available for program use.

4. Does not depend on results or functions that
are defined to be unpredictable or model-
dependent or are identified as undefined. This
includes the requirement that the program
should not depend on the assignment of device
numbers and CPU addresses.

5. Does not depend on results or functions that

" are defined in the functional-characteristics
publication for a particular model to be devi-
ations from the architecture.

6. Takes into account any changes made to the
architecture that are identified as affecting com-
patibility. '

Chapter 1. Introduction 1-3

Compatibility among ESA/370,
370-XA, and System/370

Control-Program Compatibility

Control programs written for 370-XA can be directly
transferred to systems operating as defined by
ESA/370. Almost all of the new functions of EsA/370
are enabled only when a control-register bit
assigned only in ESA/370 is set to one. When this
bit is zero, the machine operates essentially as spec-
ified for 370-XA; the most significant exceptions are
(1) instructions that load and store the contents of
the access registers can be executed successfully,
and (2) certain previously unassigned real and
absolute storage locations below address 512 are
stored in during the store-status operation, certain
program interruptions, and the machine-check
interruption. When the new control-register bit is
zero, no unprivileged or semiprivileged instruction
can place the CPU in the access-register mode, and
so the access registers cannot be used to specify
address spaces.

Control programs written for System/370 cannot be
directly transferred to systems operating as defined
by Esa/370. This is because in the 370-xA base of
ESA/370 the basic-control mode is not present and
the facilities for 1/0 and dynamic address translation
are changed. (See Appendixes D and E for a
detailed comparison among ESA/370, 370-XA, and
System/370.)

Problem-State Compatibility

A high degree of compatibility exists at the
problem-state level in going forward from 370-XA or
System/370 to ESA/370. Because the majority of a
user’s applications are written for the problem state,
this problem-state compatibility is useful in many
installations.

A problem-state program written for 370-XA or
System/370 operates with ESA/370, provided that the
program:

1. Complies with the limitations described in the
section “Compatibility = among ESA/370
Systems” in this chapter.

2. Is not dependent on control-program facilities
which are unavailable on the system.

3. Takes into account other changes made to the
System/370 architectural definition that affect
compatibility between System/370 and the
370-XA base of EsA;370. These changes are
described in Appendix E.

1-4 ESA/370 Principles of Operation

Programming Notes:

1. This publication assigns meanings to various
operation codes, to bit positions in instructions,
channel-command words, registers, and table
entries, and to fixed locations in the low 512
bytes of storage. Unless specifically noted, the
remaining operation codes, bit positions, and
low-storage locations are reserved for future
assignment to new facilities and other exten-
sions of the architecture.

To ensure that existing programs operate if and
when such new facilities are installed, programs
should not depend on an indication of an
exception as a result of invalid values that are
-currently defined as being checked. If a value
must be placed in unassigned positions that are
not checked, the program should enter zeros.
When the machine provides a code or field, the
program should take into account that new
codes and bits may be assigned in the future.
The program should not use unassigned low-
storage locations for keeping information since
these locations may be assigned in the future in
such a way that the machine causes the con-
tents of the locations to be changed.

2. If a control program is used that does not
support the use of access registers, a problem-
state program under this control program still
is able to load and store the contents of the
access registers, and it might do so simply to
use the access registers for data storage instead
of for addressing. However, the use of access
registers in such circumstances may be unsuc-
cessful because the unsupporting control
program does not save and restore the contents
of the access registers when switching between
dispatchable units. Furthermore, the use of
access registers in such circumstances may con-
stitute a loss of security because the contents of
access registers loaded by one dispatchable unit
will be visible to other dispatchable units. To
avoid the problems referred to here, a program
using access registers must be executed only in
a system with a control program that properly
supports the use of access registers.

- Availability

Availability is the capability of a system to accept
and successfully process an individual job. Systems
operating in accordance with ESA/370 permit sub-
stantial availability by (1) allowing a large number
and broad range of jobs to be processed concur-

rently, thus making the system readily accessible to
any particular job, and (2) limiting the effect of an
error and identifying more precisely its cause, with
the result that the number of jobs affected by errors
is minimized and the correction of the errors facili-
tated.

Several design aspects make this possible.

* A program is checked for the correctness of
instructions and data as the program is exe-
cuted, and program errors are indicated sepa-
rate from equipment errors. Such checking and
reporting assists in locating failures and iso-
lating effects.

* The protection facilities, in conjunction with
dynamic address translation and the separation
of programs and data in different address
spaces, permit the protection of the contents of
storage from destruction or misuse caused by
erroneous or unauthorized storing or fetching
by a program. This provides increased security
for the user, thus permitting applications with
different security requirements to be processed
concurrently with other applications.

* Dynamic address translation allows isolation of
one application from another, still permitting
them to share common resources. Also, it
permits the implementation of virtual
machines, which may be used in the design and
testing of new versions of operating systems
along with the concurrent processing of appli-
cation programs. Additionally, it provides for
the concurrent operation of incompatible oper-
ating systems.

e The use of access registers to have programs
and data and also different collections of data

reside in different address spaces further reduces
the likelihood that a store using an incorrect
address will produce either erroneous results or
a system-wide failure.

Multiprocessing and the channel subsystem
permit better use of storage and processing
capabilities, more direct communication
between CcPUs, and duplication of resources,
thus aiding in the continuation of system oper-
ation in the event of machine failures.

MONITOR CALL, program-event recording, and
the timing facilities permit the testing and
debugging of programs without manual inter-
vention and with little effect on the concurrent
processing of other programs.

On most models, error checking and correction
(Ecc) in main storage, CPU retry, and
command retry provide for circumventing inter-
mittent equipment malfunctions, thus reducing
the number of equipment failures.

An enhanced machine-check-handling mech-
anism provides model-independent fault iso-
lation, which reduces the number of programs
impacted by uncorrected errors. Additionally,
it provides model-independent recording of
machine-status information. This leads to
greater machine-check-handling compatibility
between models and improves the capability for
loading and operating a program on a different
model when a system failure occurs.

A small number of manual controls are
required for basic system operation, permitting
most operator-system interaction to take place
via a unit operating as an 1j0 device and thus
reducing the possibility of operator errors.

Chapter 1. Introduction 1-5

Ehapter 2. Organization

Main Storage 2-2
CPU 2-2
PSW ... C 22
General Registers 2-3
Floating-Point Registers - 2-3
Control Registers 2-3

Access Registers
Vector Facility
IO .. L 2-4

Channel Subsystem 2-6
I/O Devices and Control Units 2-6
Operator Facilities 2-6

Logically, a system consists of main storage, one or
more central processing units (CPUs), operator facil-
ities, a channel subsystem, and 1/0 devices. 1/0
devices are attached to the channel subsystem
through control units. The connection between the
channel subsystem and a control unit is called a
channel path. The physical identity of these func-
tions may vary among implementations, called
“models.” Figure 2-1 depicts the logical structure
of a two-CPU multiprocessing system.

Specific processors may differ in their internal char-
acteristics, the installed facilities, the number of
subchannels, channel paths, and control units
which can be attached to the channel subsystem,
the size of main storage, and the representation of
the operator facilities. The differences in internal
characteristics are apparent to the observer only as
differences in machine performance.

A system viewed without regard to its 1/0 devices is
referred to as a configuration. All of the physical
equipment, whether in the configuration or not, is
referred to as the installation. Model-dependent
reconfiguration controls may be provided to change
the amount of main storage and the number of
cPUs and channel paths in the configuration. In
some instances, the reconfiguration controls may be
used to partition a single configuration into mul-
tiple configurations. Each of the configurations so
reconfigured has the same structure, that is, main
storage, one or more CPUs, and one or more sub-
channels and channel paths in the channel sub-
system. Each configuration is isolated in that the
main storage in one configuration is not directly
addressable by the cpuUs and the channel subsystem
of another configuration. It is, however, possible
for one configuration to communicate with another
by means of shared 1j0 devices or a channel-to-
channel adapter. At any one time, the storage,
CPUs, subchannels, and channel paths connected

together in a system are referred to as being in the
configuration. Each cPu, subchannel, channel
path, and main-storage location can be in only one
configuration at a time.

— CPU

— CPU Main Storage

— Channel
Subsystem

ooo'

Channel Paths

/7 /
—_E—/

cuﬁ ‘—y—-rr/ EU] 000 /
000
Cu

1 /

/
000

Figure 2-1. Logical Structure of an ESA/370 System
with Two CPUs

P

Chapter 2. Organization 2

4

Main Storage

Main storage, which is directly addressable, pro-
vides for high-speed processing of data by the cpPUs
and the channel subsystem. Both data and pro-
grams must be loaded into main storage from input
devices before they can be processed. The amount
of main storage available on the system depends on
the model, and, depending on the model, the
amount in the configuration may be under control
of model-dependent configuration controls. The
storage is available in multiples of 4K-byte blocks.
At any instant in time, the channel subsystem and
all cpus in the configuration have access to the
same blocks of storage and refer to a particular
block of main-storage locations by using the same
absolute address.

Main storage may include a faster-access buffer
storage, sometimes called a cache. Each cPU may
have an associated cache. The effects, except on
performance, of the physical construction and the
use of distinct storage media are not observable by
the program.

CPU

The central processing unit (CPU) is the controlling
center of the system. It contains the sequencing
and processing facilities for instruction execution,
interruption action, . timing functions, initial
program loading, and other machine-related func-
tions.

The physical implementation of the cPU may differ
among models, but the logical function remains the
same. The result of executing an instruction is the
same for each model, providing that the program
complies with the compatibility rules.

The cpPu, in executing instructions, can process
binary integers and floating-point numbers of fixed
length, decimal integers of variable length, and
logical information of either fixed or variable
length. Processing may be in parallel or in series;
the width of the processing elements, the multi-
plicity of the shifting paths, and the degree of
simultaneity in performing the different types of
arithmetic differ from one CPU to another without
affecting the logical results.

Instructions which the cpU executes fall into five
classes: general, decimal, floating-point, control,
and 1/0 instructions. The general instructions are
used in performing binary-integer-arithmetic opera-

2-2 ESA/370 Principles of Operation

tions and logical, branching, and other nonarith-
metic operations. The decimal instructions operate
on data in the decimal format, and the floating-
point instructions on data in the floating-point
format. The privileged control instructions and the
1/0 instructions can be executed only when the cpu
is in the supervisor state; the semiprivileged control
instructions can be executed in the problem state,
subject to the appropriate authorization mech-
anisms.

To perform its functions, the CPU may use a
certain amount of internal storage. Although this
internal storage may use the same physical storage
medium as main storage, it is not considered part
of main storage and is not addressable by pro-
grams.

The cpu provides registers which are available to
programs but do not have addressable represent-
ations in main storage. They include the current
program-status word (Psw), the general registers,
the floating-point registers, the control registers, the
access registers, the prefix register, and the registers
for the clock comparator and the cpu timer. Each
CPU in an installation provides access to a
time-of-day (ToD) clock, which may be local to
that ¢cpU or shared with other cPUs in the installa-
tion. The instruction operation code determines
which type of register is to be used in an operation.
See Figure 2-2 on page 2-5 for the format of those
registers.

PSW

The program-status word (psw) includes the
instruction address, condition code, and other infor-
mation used to control instruction sequencing and
to determine the state of the cPu. The active or
controlling psw is called the current psw. It
governs the program currently being executed.

The cpu has an interruption capability, which
permits the cPu to switch rapidly to another
program in response to exceptional conditions and
external stimuli. When an interruption occurs, the
CPU places the current PSW in an assigned storage
location, called the old-Psw location, for the partic-
ular class of interruption. The CPU fetches a new
PSW from a second assigned storage location. This
new PSW determines the next program to be exe-
cuted. When it has finished processing the inter-
ruption, the interrupting program may reload the
old pPsw, making it again the current Psw, so that
the interrupted program can continue.

There are six classes of interruption: external, 1/0,
machine check, program, restart, and supervisor
call. Each class has a distinct pair of old-psw and
new-PsW locations permanently assigned in real
storage.

General Registers

Instructions may designate information in one or
more of 16 general registers. The general registers
may be used as base-address registers and index reg-
isters in address arithmetic and as accumulators in
general arithmetic and logical operations. Each reg-
ister contains 32 bits. The general registers are
identified by the numbers 0-15 and are designated
by a four-bit R field in an instruction. Some
instructions provide for addressing multiple general
registers by having several R fields. For some
instructions, the use of a specific general register is
implied rather than explicitly designated by an R
field of the instruction.

For some operations, two adjacent general registers
are coupled, providing a 64-bit format. In these
operations, the program must designate an even-
numbered register, which contains the leftmost
(high-order) 32 bits. The next higher-numbered
register contains the rightmost (low-order) 32 bits.

In addition to their use as accumulators in general
arithmetic and logical operations, 15 of the 16
general registers are also used as base-address and
index registers in address generation. In these
cases, the registers are designated by a four-bit B
field or x field in an instruction. A value of zero in
the B or x field specifies that no base or index is to
be applied, and, thus, general register 0 cannot be
designated as containing a base address or index.

Floating-Point Registers

Four floating-point registers are available for
floating-point operations. They are identified by
the numbers 0, 2, 4, and 6 and are designated by a
four-bit R field in floating-point instructions. Each
floating-point register is 64 bits long and can
contain either a short (32-bit) or a long (64-bit)
floating-point operand. A short operand occupies
the leftmost bit positions of a floating-point reg-
ister. The rightmost portion of the register is
ignored in operations that use short operands and
remains unchanged in operations that produce
short results. Two pairs of adjacent floating-point
registers can be used for extended operands: regis-
ters 0 and 2, and registers 4 and 6. Each of these

pairs, identified by the numbers 0 and 4, provides
for a 128-bit format.

Control Registers

The cpu has 16 control registers, each having 32
bit positions. The bit positions in the registers are
assigned to particular facilities in the system, such
as program-event recording, and are used either to
specify that an operation can take place or to
furnish special information required by the facility.

The control registers are identified by the numbers
0-15 and are designated by four-bit R fields in the
instructions LOAD CONTROL and STORE CONTROL.
Multiple control registers can be addressed by these
instructions.

Access Registers

ESA/370 introduces 16 access registers numbered
0-15. An access register consists of 32 bit positions
containing an indirect specification (not described
here in detail) of a segment-table designation. A
segment-table designation is a parameter used by
the dynamic-address-translation (DAT) mechanism
to translate references to a corresponding address
space. When the cPU is in a mode called the
access-register mode (controlled by bits in the psw),
an instruction B field, used to specify a logical
address for a storage-operand reference, designates
an access register, and the segment-table desig-
nation specified by the access register is used by
DAT for the reference being made. For some
instructions, an R field is used instead of a B field.
Instructions are provided for loading and storing
the contents of the access registers and for moving
the contents of one access register to another.

Each of access registers 1-15 can designate any
address space, including the current instruction
space (the primary address space). Access register 0
always designates the current instruction space.
When one of access registers 1-15 is used to desig-
nate an address space, the CPU determines which
address space is designated by translating the con-
tents of the access register. When access register 0
is used to designate an address space, the CPU treats
the access register as designating the current instruc-
tion space, and it does not examine the actual con-
tents of the access register. Therefore, the 16 access
registers can designate, at any one time, the current
instruction space and a maximum of 15 other
spaces.

Chapter 2. Organization 2~-3

Vector Facility

Depending on the model, a vector facility may be
provided as an extension of the cPu. When the
vector facility is provided on a cPU, it functions as
an integral part of that cPu. The functions of the
vector facility and its registers are described in the
publication Enterprise Systems Architecture/370 and
System/370 Vector Operations, SA22-7125.

2-4 ESA/370 Principles of Operation

/0

Input/output (1/0) operations involve the transfer
of information between main storage and an 10
device. 1/0 devices and their control units attach to
the channel subsystem, which controls this data
transfer.

R Field

and

Register

Number

0000 6

0001 1

0010 2

0011 3

0100 4

ole1 5

0110 6

o111 7

1000 8

1001 9

1010 10

1611 11

1100 12

1101 13

1110 14

1111 15

Figure

Control Access
Registers Registers
[+32 bits—>| |432 bits—>]

| 432 bits—»|

Floating-Point
Registers

| ¢——64 bits——»|

Note: The brackets
indicate that the two
registers may be coupled
as a double-register
pair, designated by
specifying the lower-
numbered register in
the R field. For ex-
ample, the general-
register pair 14 and
15 is designated by
1110 binary in the R
field.

2-2. Control, Access, General, and Floating-Point Registers

Chapter 2. Organization

Channel Subsystem

The channel subsystem directs the flow of informa-
tion between 10 devices and main storage. It
relieves cpPUs of the task of communicating directly
with 1/0 devices and permits data processing to
proceed concurrently with 10 processing. The
channel subsystem uses one or more channel paths
as the communication link in managing the flow of
information to or from 1/0 devices. As part of 1/0
processing, the channel subsystem also performs
the path-management function of testing for
channel-path availability, selecting an available
channel path, and initiating execution of the opera-
tion with the 1/0 device. Within the channel sub-
system are subchannels.

One subchannel is provided for and dedicated to
each 1/0 device accessible to the channel subsystem.
Each subchannel contains storage for information
concerning the associated 10 device and its attach-
ment to the channel subsystem. The subchannel
also provides storage for information concerning 1/0
operations and other functions involving the associ-
ated 1/0 device. Information contained in the sub-
channel can be accessed by CPUs using 1/0
instructions as well as by the channel subsystem
and serves as the means of communication between
any cpU and the channel subsystem concerning the
associated 1/0 device. The actual number of sub-

channels provided depends on the model and the
~ configuration; the maximum number of subchan-
nels is 65,536.

1/0 devices are attached through control units to the
channel subsystem via channel paths. Control
units may be attached to the channel subsystem via
more than one channel path, and an /0 device may
be attached to more than one control unit. In all,

2-6 ESA/370 Principles of Operation

an individual 1/0 device may be accessible to the
channel subsystem by as many as eight different
channel paths, depending on the model and the
configuration. The total number of channel paths
provided by a channel subsystem depends on the
model and the configuration; the maximum
number of channel paths is 256.

I/0 Devices and Control Units

1/0 devices include such equipment as card readers
and punches, magnetic-tape units, direct-access
storage, displays, keyboards, printers, teleprocessing
devices, communications controllers, and sensor-
based equipment. Many 1/0 devices function with
an external medium, such as punched cards or
magnetic tape. Some 1/0 devices handle only elec-
trical signals, such as those found in sensor-based
networks. In either case, 1/0-device operation is
regulated by a control unit. In all cases, the
control-unit function provides the logical and buf-
fering capabilities necessary to operate the associ-
ated 1/0 device. From the programming point of
view, most control-unit functions merge with
1/0-device functions. The control-unit function
may be housed with the 1/0 device or in the CPU,
or a separate control unit may be used.

Operator Facilities

The operator facilities provide the functions neces-
sary for operator control of the machine. Associ-
ated with the operator facilities may be an
operator-console device, which may also be used as
an 1/0 device for communicating with the program.

The main functions provided by the operator facili-
ties include resetting, clearing, initial program
loading, start, stop, alter, and display.

Chapter 3. Storage

Storage Addressing 3-2
Information Formats 3-2
Integral Boundaries 33

Address Types and Formats 3-3
Address Types 33

Absolute Address 34
Real Address 3-4
Virtual Address 34
Primary Virtual Address 34
Secondary Virtual Address 34
AR-Specified Virtual Address 34
Home Virtual Address 3-4
Logical Address 34
Instruction Address 3-5
Effective Address 3-5
Address Size and Wraparound 3-5
Address Wraparound 3-5

Storage Key 3-7

Protection 3-8
Key-Controlled Protection 3-8

Fetch-Protection-Override Control . .. 3-9
Page Protection 39
Low-Address Protection 3-10

Reference Recording 3-10

Change Recording 3-11

Prefixing 3-11

Address Spaces 3-13

Changing to Different Address Spaces 3-13

Address-Space Number 3-13

ASN Translation 3-14
ASN-Translation Controls 3-15
Control Register 14 3-15
Control Register 0 3-15
ASN-Translation Tables 3-15
ASN-First-Table Entries 3-15
ASN-Second-Table Entries 3-16

ASN-Translation Process 3-17
ASN-First-Table Lookup
ASN-Second-Table Lookup

Recognition of Exceptions during ASN

Translation 3-19

ASN Authorization 3-19
ASN-Authorization Controls 3-19
Control Register4 3-20

ASN-Second-Table Entry 3-20

Authority-Table Entries 3-20
ASN-Authorization Process 3-20
Authority-Table Lookup 3-22
Recognition of Exceptions during ASN
Authorization 3-22
Dynamic Address Translation 322
Translation Control 3-24
Translation Modes 3-24
Control Register 0 3-24
Control Register 1 3-24
Control Register 7 3-25
Control Register 13 3-25
Translation Tables 3-26
Segment-Table Entries 3-26
Page-Table Entries 3-27
Summary of Segment-Table and
Page-Table Sizes 3-27
Translation Process 3-27

Effective Segment-Table Designation 3-28
Inspection of Control Register 0 3-30

Segment-Table Lookup 3-30
Page-Table Lookup 3-30
Formation of the Real Address 3-31
Recognition of Exceptions during
Translation 3-31
Translation-Lookaside Buffer 3-31
TLB Structure 3-31
Formation of TLB Entries 3-32
Use of TEB Entries 3-32
Modification of Translation Tables . . 3-33
Address Summary 3-35
Addresses Translated 3-35
Handling of Addresses 3-36
Assigned Storage Locations 3-39

This chapter discusses the representation of infor-
mation in main storage, as well as addressing, pro-
tection, and reference and change recording. The
aspects of addressing which are covered include the
format of addresses, the concept of address spaces,
the various types of addresses, and the manner in
which one type of address is translated to another
type of address. A list of permanently assigned
storage locations appears at the end of the chapter.

Main storage provides the system with directly
addressable fast-access storage of data. Both data
and programs must be loaded into main storage
(from input devices) before they can be processed.

Main storage may include one or more smaller

faster-access buffer storages, sometimes called
caches. A cache is usually physically associated

Chapter 3. Storage 3-1

with a CPU or an 1/0 processor. The effects, except
on performance, of the physical construction and
use of distinct storage media are not observable by
the program.

Fetching and storing of data by a cPU are not
affected by any concurrent channel-subsystem
activity or by a concurrent reference to the same
storage location by another cPU. When concurrent
requests to a main-storage location occur, access
normally is granted in a sequence that assigns
highest priority to references by the channel sub-
system, the priority being rotated among cpus. If a
reference changes the contents of the location, any
subsequent storage fetches obtain the new contents.

Main storage may be volatile or nonvolatile. If it is
volatile, the contents of main storage are not pre-
served when power is turned off. If it is nonvola-
tile, turning power off and then back on does not
affect the contents of main storage, provided all
CPUs are in the stopped state and no references are
made to main storage when power is being turned
off. In both types of main storage, the contents of
the storage key are not necessarily preserved when
the power for main storage is turned off.

Note: Because most references in this publication
apply to virtual storage, the abbreviated term
“storage” is often used in place of “virtual storage.”
The term “storage” may also be used in place of
“main storage,” “absolute storage,” or ‘real
storage” when the meaning is clear. - The terms
“main storage” and “absolute storage” are used to
describe storage which is addressable by means of
an absolute address. The terms describe fast-access
storage, as opposed to auxiliary storage, such as
provided by direct-access storage devices. “Real
storage” is synonymous with “absolute storage”
except for the effects of prefixing.

Storage Addressing

Storage is viewed as a long horizontal string of bits.
For most operations, accesses to storage proceed in
a left-to-right sequence. The string of bits is subdi-
vided into units of eight bits. An eight-bit unit is
called a byte, which is the basic building block of
all information formats.

Each byte location in storage is identified by a
unique nonnegative integer, which is the address of
that byte location or, simply, the byte address.
Adjacent byte locations have consecutive addresses,
starting with 0 on the left and proceeding in a left-

3-2 ESA/370 Principles of Operation

to-right sequence. Addresses are either 24-bit or
31-bit unsigned binary integers and are described in
the section “Address Size and Wraparound” in this
chapter.

Information Formats

Information is transmitted between storage and a
CPU or the channel subsystem one byte, or a group
of bytes, at a time. Unless otherwise specified, a
group of bytes in storage is addressed by the left-
most byte of the group. The number of bytes in
the group is either implied or explicitly specified by
the operation to be performed. When used in a
CPU operation, a group of bytes is called a field.

Within each group of bytes, bits are numbered in a
left-to-right sequence. The leftmost bits are some-
times referred to as the “high-order” bits and the
rightmost bits as the “low-order” bits. Bit numbers
are not storage addresses, however. Only bytes can
be addressed. To operate on individual bits of a
byte in storage, it is necessary to access the entire

byte.

The bits in a byte are numbered 0 through 7, from
left to right.

The bits in an address are numbered 8 through 31
for 24-bit addresses and 1 through 31 for 31-bit
addresses. Within any other fixed-length format of
multiple bytes, the bits making up the format are
consecutively numbered starting from 0.

For purposes of error detection, and in some
models for correction, one or more check bits may
be transmitted with each byte or with a group of
bytes. Such check bits are generated automatically
by the machine and cannot be directly controlled
by the program. References in this publication to
the length of data fields and registers exclude
mention of the associated check bits. All storage
capacities are expressed in number of bytes.

When the length of a storage-operand field is
implied by the operation code of an instruction, the
field is said to have a fixed length, which can be
one, two, four, or eight bytes. Larger fields may be
implied for some instructions.

When the length of a storage-operand field is not
implied but is stated explicitly, the field is said to
have a variable length. Variable-length operands
can vary in length by increments of one byte.

When information is placed in storage, the contents
of only those byte locations are replaced that are
included in the designated field, even though the
width of the physical path to storage may be
greater than the length of the field being stored.

integral Boundaries

Certain units of information must be on an integral
boundary in storage. A boundary is called integral
for a unit of information when its storage address is
a multiple of the length of the unit in bytes.
Special names are given to fields of two, four, and
eight bytes on an integral boundary. A halfword is
a group of two consecutive bytes on a two-byte
boundary and is the basic building block of
instructions. A word is a group of four consecutive
bytes on a four-byte boundary. A doubleword is a
group of eight consecutive bytes on an eight-byte
boundary. (See Figure 3-1.)

When storage addresses designate halfwords, words,
and doublewords, the binary representation of the
address contains one, two, or three rightmost zero
bits, respectively.

Instructions must be on two-byte integral bounda-
ries, and ccws, IDAWs, and the storage operands of
certain instructions must be on other integral
boundaries. = The storage operands of most
instructions do not have boundary-alignment
requirements.

— Storage Addresses

Bytes 9l1]2|3|4l5|6]|7]|s

T T T T T
Halfwords 0 2 4 6 8

L | 1 | 1

T T T T T T T
Words 0 4 8

| | |] 1 1 |

T T T T T 1 T
Doublewords | O 8

I | 1 1]] 1 1

Figure 3-1. Integral Boundaries with Storage

Addresses

Programming Note: For fixed-field-length opera-
tions with field lengths that are a power of 2, signif-
icant performance degradation is possible when
storage operands are not positioned at addresses
that are integral multiples of the operand length.
To improve performance, frequently used storage
operands should be aligned on integral boundaries.

‘Address Types and Formats

Address Types

For purposes of addressing main storage, three
basic types of addresses are recognized: absolute,
real, and virtual. The addresses are distinguished
on the basis of the transformations that are applied
to the address during a storage access. Address
translation converts virtual to real, and prefixing
converts real to absolute. In addition to the three
basic address types, additional types are defined
which are treated as one or another of the three
basic types, depending on the instruction and the
current mode.

Chapter 3. Storage 3-3

Absolute Address

An absolute address is the address assigned to a
main-storage location. An absolute address is used
for a storage access without any transformations
performed on it.

The channel subsystem and all cpus in the config-
* uration refer to a shared main-storage location by
using the same absolute address. Available main
storage is usually assigned contiguous absolute
addresses starting at 0, and the addresses are always
assigned in complete 4K-byte blocks on integral
boundaries. An exception is recognized when an
attempt is made to use an absolute address in a
block which has not been assigned to physical
locations. On some models, storage-
reconfiguration controls may be provided which
permit the operator to change the correspondence
between absolute addresses and physical locations.
However, at any one time, a physical location is
not associated with more than one absolute
address.

Storage consisting of byte locations sequenced
according to their absolute addresses is referred to
as absolute storage.

Real Address
A real address identifies a location in real storage.
When a real address is used for an access to main
storage, it is converted, by means of prefixing, to an
absolute address.

At any instant there is one real-address to absolute-
address mapping for each CPU in the configuration.
When a real address is used by a CPU to access
main storage, it is converted to an absolute address
by prefixing. The particular transformation is
defined by the value in the prefix register for the
CPU.

Storage consisting of byte locations sequenced
according to their real addresses is referred to as
real storage.

Virtual Address

A virtual address identifies a location in virtual
storage. When a virtual address is used for an
access to main storage, it is translated by means of
dynamic address translation to a real address, which
is then further converted by prefixing to an abso-
lute address.

3-4 ESA/370 Principles of Operation

Primary Virtual Address

A primary virtual address is a virtual address which
is to be translated by means of the primary
segment-table designation. Logical addresses are
treated as primary virtual addresses when in the
primary-space mode. Instruction addresses are
treated as primary virtual addresses when in the
primary-space mode, secondary-space mode, or
access-register mode. The first-operand address of
MOVE TO PRIMARY and the second-operand address
of MOVE TO SECONDARY are always treated as
primary virtual addresses.

Secondary Virtual Address

A secondary virtual address is a virtual address
which is to be translated by means of the secondary
segment-table designation. Logical addresses are
treated as secondary virtual addresses when in the
secondary-space mode. The second-operand
address of MOVE TO PRIMARY and the first-operand
address of MOVE TO SECONDARY are always treated
as secondary virtual addresses.

AR-Specified Virtual Address

An AR-specified virtual address is a virtual address
which is to be translated by means of an access-
register-specified segment-table designation.
Logical addresses are treated as AR-specified
addresses when in the access-register mode.

Home Virtual Address

A home virtual address is a virtual address which is
to be translated by means of the home segment-
table designation. Logical addresses and instruction
addresses are treated as home virtual addresses
when in the home-space mode.

Logical Address

Except where otherwise specified, the storage-
operand addresses for most instructions are logical
addresses. Logical addresses are treated as real
addresses in the real mode, as primary virtual
addresses in the primary-space mode, as secondary
virtual addresses in the secondary-space mode, as
AR-specified virtual addresses in the access-register
mode, and as home virtual addresses in the home-
space mode. Some instructions have storage-
operand addresses or storage accesses associated
with the instruction which do not follow the rules
for logical addresses. In all such cases, the instruc-
tion definition contains a definition of the type of
address.

Instruction Address

Addresses used to fetch instructions from storage
are called instruction addresses. Instruction
addresses are treated as real addresses in the real
mode, as primary virtual addresses in the primary-
space mode, secondary-space mode, or access-
register mode, and as home virtual addresses in the
home-space mode. - The instruction address in the
current PSw and the target address of EXECUTE are
instruction addresses.

Effective Address

In some situations, it is convenient to use the term
“effective address.” An effective address is the
address which results from address arithmetic,
before address translation, if any, is performed.
Address arithmetic is the addition of the base and
displacement or of the base, index, and displace-
ment.

Address Size and Wraparound

Two sizes of addresses are provided: 24-bit and
31-bit. A 24-bit address can accommodate a
maximum of 16,777,216 (16M) bytes; with a 31-bit
address, 2,147,483,648 (2G) bytes of storage can be
addressed.

The bits of the address are numbered 8-31 and
1-31, respectively, corresponding to the numbering
of base-address and index bits in a general register:

24-bit Address

31-Bit Address

0 1 31

A 24-bit virtual address is expanded to 31 bits by
appending seven zeros on the left before it is trans-
lated by means of the DAT process, and a 24-bit
real address is similarly expanded to 31 bits before
it is transformed by prefixing. A 24-bit absolute
address is expanded to 31 bits before main storage
is accessed. Thus, the 24-bit address always desig-
nates the first 16M-byte block of the 2G-byte
storage addressable by a 31-bit address.

Unless specifically stated to the contrary, the fol-
lowing definition applies in this publication: when-
ever the machine generates and provides to the
program an address, a 31-bit value imbedded in a
32-bit field is made available (placed in storage or

loaded into a register). For 24-bit addresses, bits
0-7 are set to zeros, and the address appears in bit
positions 8-31; for 31-bit addresses, bit 0 is set to
zero, and the address appears in bit positions 1-31.

The size of effective addresses is controlled by bit
32 of the psw, the addressing-mode bit. When the
bit is zero, the CcPU is in the 24-bit addressing
mode, and 24-bit operand and instruction effective
addresses are specified. When the bit is one, the
CPU is in the 31-bit addressing mode, and 31-bit
operand and instruction effective addresses are spec-
ified (see the section “Address Generation” in
Chapter 5, “Program Execution™).

The size of the real addresses yielded by the
ASN-translation, pc-number-translation,
ASN-authorization, and tracing processes, and the
real (or absolute) addresses yielded by the DAT
process, is always 31 bits.

The size of the data address in a ccw is under
control of the format-control bit in the operation-
request block designated by a START SUBCHANNEL
instruction, The ccws with 24-bit and 31-bit
addresses are called format-0 and format-1 ccws,
respectively. Format-0 and format-1 ccws are
described in Chapter 15, “Basic 1/0 Functions.”

Address Wraparound

The cpu performs address generation when it
forms an operand or instruction address or when it
generates the address of a table entry from the
appropriate table origin and index. It also performs
address generation when it increments an address to
access successive bytes of a field. Similarly, the
channel subsystem performs address generation
when it increments an address (1) to fetch a ccw,
(2) to fetch an iDAW, (3) to transfer data, or (4) to
compute the address of an I/O measurement block.

When, during the generation of the address, an
address is obtained that exceeds the value allowed
for the address size (22* - 1 or 23! - 1), one of the
following two actions is taken:

1. The carry out of the high-order bit position of
the address is ignored. This handling of an
address of excessive size is called wraparound.

2. An interruption condition is recognized.

The effect of wraparound is to make an address
space appear circular; that is, address 0 appears to
follow the maximum allowable address. Address
arithmetic and wraparound occur before transfor-
mation, if any, of the address by DAT or prefixing.

Chapter 3. Storage 3-5

Addresses generated by the cpuU always wrap,
except for addresses generated for DAT-table entries.
For DAT-table entries, it is unpredictable whether
the address wraps or whether an addressing excep-
tion is recognized. Wraparound also occurs when
the linkage-stack-entry address in control register 15
is decremented below 0 by PROGRAM RETURN.

For channel-program execution, when the gener-
ated address exceeds the value for the address size
(or, for the read-backward command is decre-
mented below 0), an 1/0 program-check condition
is recognized.

Figure 3-2 identifies what limit values apply to the
generation of different addresses and how addresses

are handled when they exceed the allowed value.

Address Generation for

Instructions and operands when AM is zero

Successive bytes of instructions and operands
when AM is zero

Instructions and operands when AM is one

Successive bytes of instructions and operands
when AM is one

DAT-table entries when used for implicit
translation

DAT-table entries when used for LRA

ASN-first-table, ASN-second-table, authoriza-
tion-table, linkage-table, entry-table, and
access-list entries, and dispatchable-unit
and primary-space access-list designations

Linkage-stack entry

1/0 measurement block

For a channel program with format-0 CCWs:
Successive CCWs
-Successive IDAUWs

Successive bytes of I/0 data (without IDAWs)

Successive bytes of I/0 data (with IDAWs)

Hand1ing When

Address| Address Would
Type Wrap
L,I,R,V W24
I,L,Vv? W24
L,I,R,V W31
I,L,Vv? W31
A or R2 _X31
A or R2 X31
R W31
v W31
A P31
A P24
A P24
A P24
A P31

Figure 3-2 (Part 1 of 2). Address Wraparound

3-6 ESA/370 Principles of Operation

Handling When
Address| Address Would
Address Generation for Type Wrap

For a channel program with format-1 CCWs:
Successive CCWs
Successive IDAWs
Successive bytes of I/0 data (without IDAWs)

Successive bytes of I/0 data (with IDAWs)

A P31
A P31
A P31
A P31

Explanation:

A Absolute address.

AM Addressing-mode bit in the PSW.
I Instruction address.

L Logical address.

R Real address.
v Virtual address.

1 Real addresses do not apply in this case since the instructions
which designate operands by means of real addresses cannot des-
ignate operands that cross boundaries 224 and 231,

2 It is unpredictable whether the address is absolute or real.

P24 An I/0 program-check condition is recognized when the address
exceeds 224 - 1 or is decremented below zero.

P31 An I/0 program-check condition is recognized when the address
exceeds 23! - 1 or is decremented below zero.

W24 MWrap to Tocation O after location 224 - 1 and vice versa.

W31 Wrap to location 6 after location 23! - 1 and vice versa.

X31 When the address exceeds 231 - 1, it is unpredictable whether
the address wraps to location 0 after location 23! - 1 or
whether an addressing exception is recognized.

Figure 3-2 (Part 2 of 2). Address Wraparound

Storage Key

A storage key is associated with each 4K-byte
block of storage that is available in the configura-
tion. The storage key has the following format:

ACC |F|R|C

0 4 6

The bit positions in the storage key are allocated as
follows:

Access-Control Bits (ACC): If a reference is
subject to key-controlled protection, the four
access-control bits, bits 0-3, are matched with the
four-bit access key when information is stored, or

when information is fetched from a location that is
protected against fetching.

Fetch-Protection Bit (F): If a reference is subject
to key-controlled protection, the fetch-protection
bit, bit 4, controls whether key-controlled pro-
tection applies to fetch-type references: a zero indi-
cates that only store-type references are monitored
and that fetching with any access key is permitted;
a one indicates that key-controlled protection
applies to both fetching and storing. No distinction
is made between the fetching of instructions and of
operands.

Reference Bit (R): The reference bit, bit 5,
normally is set to one each time a location in the
corresponding storage block is referred to either for
storing or for fetching of information.

Chapter 3. Storage 3-7

Change Bit (C): The change bit, bit 6, is set to
one each time information is stored at a location in
the corresponding storage block.

Storage keys are not part of addressable storage.
The entire storage key is set by SET STORAGE KEY
EXTENDED and inspected by INSERT STORAGE KEY
EXTENDED. Additionally, the instruction RESET
REFERENCE BIT EXTENDED provides a means of
inspecting the reference and change bits and of
setting the reference bit to zero. Bits 0-4 of the
storage key are inspected by the INSERT VIRTUAL
STORAGE KEY instruction. The contents of the
storage key are unpredictable during and after the
execution of the usability test of the TEST BLOCK
instruction.

Protection

Three protection facilities are provided to protect
the contents of main storage from destruction or
misuse by programs that contain errors or are
unauthorized: key-controlled protection, page pro-
tection, and low-address protection. The pro-
tection facilities are applied independently; access to
main storage is only permitted when none of the
facilities prohibit the access.

Key-controlled protection affords protection against
improper storing or against both improper storing
and fetching, but not against improper fetching
alone.

Key-Controlled Protection

When key-controlled protection applies to a storage
access, a store is permitted only when the storage

key matches the access key associated with the

request for storage access; a fetch is permitted when
the keys match or when the fetch-protection bit of
the storage key is zero.

The keys are said to match when the four access-
control bits of the storage key are equal to the

access key, or when the access key is zero.

The protection action is summarized in Figure 3-3.

3-8 ESA/370 Principles of Operation

Conditions Is Access to

Storage Permitted?

Fetch-Protection
Bit of

Storage Key Key Relation| Fetch Store

0 Match Yes Yes
0 Mismatch Yes No
1 Match Yes Yes
1 Mismatch No No

Explanation:

Match The four access-control bits of the
storage key are equal to the access
key, or the access key is zero.

Yes Access is permitted.

No Access is not permitted. On fetching,
the information is not made available
to the program; on storing, the con-
tents of the storage location are not
changed.

Figure 3-3. Summary of Protection Action

When the access to storage is initiated by the cpu
and key-controlled protection applies, the Psw key
is the access key, except that, for the second
operand of MOVE WITH KEY and MOVE TO
PRIMARY and the first operand of MOVE TO SEC-
ONDARY, the access key is specified in a general
register. The psw key occupies bit positions 8-11
of the current PSw. ~

When the access to storage is for the purpose of
channel-program execution, the subchannel key
associated with that channel program is the access
key. The subchannel key for a channel program is
specified in the operation-request block (ORB).
When, for purposes of channel-subsystem moni-
toring, an access to the measurement block is
made, the measurement-block key is the access key.
The measurement-block key is specified by the SET
CHANNEL MONITOR instruction.

When a CPU access is prohibited because of key-
controlled protection, the unit of operation is sup-
pressed or the instruction is terminated, and a
program interruption for a protection exception
takes place. When a channel-program access is
prohibited, the start function is ended, and the
protection-check condition is indicated in the asso-
ciated interruption-response block (IRB). When a
measurement-block access is prohibited, the 10

measurement-block protection-check condition is
indicated.

When a store access is prohibited because of key-
controlled protection, the contents of the protected
location remain unchanged. When a fetch access is
prohibited, the protected information is not loaded
into a register, moved to another storage location,
or provided to an 1/0 device. For a prohibited
instruction fetch, the instruction is suppressed, and
an arbitrary instruction-length code is indicated.

Key-controlled protection is independent of
whether the CPu is in the problem or the super-
visor state and, except as described below, does not
depend on the type of CPU instruction or channel-
command word being executed.

Except where otherwise specified, all accesses to
storage locations that are explicitly designated by
the program and that are used by the cpU to store
or fetch information are subject to key-controlled
protection.

Accesses to the second operand of TEST BLOCK are
not subject to key-controlled protection.

All storage accesses by the channel subsystem to
access the 1/0 measurement block, or by a channel
program to fetch a CCW or IDAW or to access a
data area designated during the execution of a ccw,
are subject to key-controlled protection. However,
if a ccw, an IDAW, or output data is prefetched, a
protection check is not indicated until the ccw or
IDAW is due to take control or until the data is due
to be written.

Key-controlled protection is not applied to accesses
that are implicitly made for any of such sequences
as:

* An interruption

* CPU logout

* Fetching of table entries for dynamic-address
translation, Pc-number translation, ASN trans-
lation, or ASN authorization

* Tracing

* A store-status function

+ Storing in real locations 184-191 when TEST
PENDING INTERRUPTION has an operand
address of zero

¢ Initial program loading

Similarly, protection does not apply to accesses ini-
tiated via the operator facilities for altering or dis-
playing information. However, when the program
explicitly designates these locations, they are subject
to protection.

Fetch-Protection-Override Control

Bit 6 of control register 0 is the fetch-protection-
override control. When the bit is one, fetch pro-
tection is ignored for locations at effective addresses
0-2047. However, fetch protection is not ignored if
the effective address is subject to dynamic address
translation and the private-space control, bit 23, is
one in the segment-table designation used in the
translation. The function of the private-space
control is available if the private-space facility is
installed.

Fetch-protection override applies to instruction
fetch and to the fetch accesses of instructions whose
operand addresses are logical, virtual, or real. It
does not apply to fetch accesses made for the
purpose of channel-program execution or for the
purpose of channel-subsystem monitoring. When
this bit is set to zero, fetch protection of locations
at effective addresses 0-2047 is determined by the
state of the fetch-protection bit of the storage key
associated with those locations.

Fetch-protection override has no effect on accesses
which are not subject to key-controlled protection.

Page Protection

The page-protection facility controls access to
virtual storage by using the page-protection bit in
each page-table entry. It provides protection
against improper storing.

The page-protection bit, bit 22 of the page-table
entry, controls whether storing is allowed into the
corresponding 4K-byte page. When the bit is zero,
both fetching and storing are permitted; when the
bit is one, only fetching is permitted. When an
attempt is made to store into a protected page, a
program interruption for protection takes place.
The contents of the protected location remain
unchanged.

Page protection applies to all store-type references
that use a virtual address.

Chapter 3. Storage 3-9

Low-Address Protection

The low-address-protection facility provides pro-
tection against the destruction of main-storage
information used by the cPU during interruption
processing. This is accomplished by prohibiting
instructions from storing with effective addresses in
the range O through S511. The range criterion is
applied before address transformation, if any, of the
address by dynamic address translation or prefixing.
However, the range criterion is not applied, with
the result that low-address protection does not
apply, if the effective address is subject to dynamic
address translation and the private-space control,
bit 23, is one in the segment-table designation used
in the translation. The function of the private-
space control is available if the private-space facility
is installed.

Low-address protection is under control of bit 3 of
control register 0, the low-address-protection-
control bit. When the bit is zero, low-address pro-
tection is off; when the bit is one, low-address pro-
tection is on.

If an access is prohibited because of low-address
protection, the contents of the protected location
remain unchanged, a program interruption for a
protection exception takes place, and the unit of
operation is suppressed or the instruction termi-
nated.

Any attempt by the program to store by using
effective addresses in the range 0 through 511 is
subject to low-address protection. Low-address
protection is applied to the store accesses of
instructions whose operand addresses are logical,
virtual, or real. Low-address protection is also
applied to the trace table.

Low-address protection is not applied to accesses
made by the cPU or the channel subsystem for
such sequences as interruptions, CPU logout, the
storing of the [/0-interruption code in real locations
184-191 by TEST PENDING INTERRUPTION, and the
initial-program-loading and store-status functions,
nor is it applied to data stores during 1/0 data
transfer. However, explicit stores by a program at
any of these locations are subject to low-address
protection.

3-10 ESA/370 Principles of Operation

Programming Notes:

1. Low-address protection and key-controlled pro-
tection apply to the same store accesses, except
that:

* Low-address protection does not apply to
storing performed by the channel sub-
system, whereas key-controlled protection
does.

* Key-controlled protection does not apply
to tracing, the second operand of TEST
BLOCK, or instructions that operate specif-
ically on the linkage stack, whereas low-
address protection does.

2. Because fetch-protection override and low-
address protection do not apply to an address
space for which the private-space control is one
in the segment-table designation, locations
0-2047 in the address space are usable the same
as the other locations in the space.

Reference Recording

Reference recording provides information for use in
selecting pages for replacement. Reference
recording uses the reference bit, bit S of the storage
key. The reference bit is set to one each time a
location in the corresponding storage block is
referred to either for fetching or storing informa-
tion, regardless of whether DAT is on or off.

Reference recording is always active and takes place
for all storage accesses, including those made by
any CPU, any operator facility, or the channel sub-
system. It takes place for implicit accesses made by
the machine, such as those which are part of inter-
ruptions and 1/0-instruction execution.

Reference recording does not occur for operand
accesses of the following instructions since they
directly refer to a storage key without accessing a
storage location:

* INSERT STORAGE KEY EXTENDED

* RESET REFERENCE BIT EXTENDED (reference
bit is set to zero)

e SET STORAGE KEY EXTENDED (reference bit is
set to a specified value)

The record provided by the reference bit is substan-
tially accurate. The reference bit may be set to one
by fetching data or instructions that are neither des-
ignated nor used by the program, and, under
certain conditions, a reference may be made
without the reference bit being set to one. Under

certain unusual circumstances, a reference bit may
be set to zero by other than explicit program
action.

Change Recording

Change recording provides information as to which
pages have to be saved in auxiliary storage when
they are replaced in main storage. Change
recording uses the change bit, bit 6 of the storage
key.

The change bit is set to one each time a store
access causes the contents in the corresponding
storage block to be changed. A store access that
does not change the contents of storage may or
may not set the change bit to one.

The change bit is not set to one for an attempt to
store if the access is prohibited. In particular:

1. For the cPu, a store access is prohibited when-
ever an access exception exists for that access,
or whenever an exception exists which is of
higher priority than the priority of an access
exception for that access.

2. For the channel subsystem, a store access is
prohibited whenever a key-controlled-
protection violation exists for that access.

Change recording is always active and takes place
for all store accesses to storage, including those
made by any CPU, any operator facility, or the
channel subsystem. It takes place for implicit refer-
ences made by the machine, such as those which
are part of interruptions.

Change recording does not take place for the oper-
ands of the following instructions since they directly
modify a storage key without modifying a storage
location:

¢ RESET REFERENCE BIT EXTENDED
* SET STORAGE KEY EXTENDED (change bit is set
to a specified value)

Change bits which have been changed from zeros
to ones are not necessarily restored to zeros on CPU
retry (see the section “cpu Retry” in Chapter 11,
“Machine-Check Handling”). See the section
“Exceptions to Nullification and Suppression” in
Chapter 5, “Program Execution,” for a description
of the handling of the change bit in certain unusual
situations.

Prefixing

Prefixing provides the ability to assign the range of
real addresses 0-4095 (the prefix area) to a different
block in absolute storage for each cpu, thus per-
mitting more than one CPU sharing main storage to
operate concurrently with a minimum of interfer-
ence, especially in the processing of interruptions.

Prefixing causes real addresses in the range 0-4095
to correspond to the block of 4K-byte absolute
addresses identified by the value in the prefix reg-
ister for the cpu, and the block of real addresses
identified by the value in the prefix register to cor-
respond to absolute addresses 0-4095. The
remaining real addresses are the same as the corre-
sponding absolute addresses. This transformation
allows each CPU to access all of main storage,
including the first 4K bytes and the locations desig-
nated by the prefix registers of other cpus.

The relationship between real and absolute
addresses is graphically depicted in Figure 3-4 on
page 3-12.

The prefix is a 19-bit quantity contained in bit
positions 1-19 of the prefix register. The register
has the following format:

/ Prefix 117111117

0 1 20 31

The contents of the register can be set and
inspected by the privileged instructions SET PREFIX
and STORE PREFIX, respectively. On setting, bits
corresponding to bit positions 0 and 20-31 of the
prefix register are ignored. On storing, zeros are
provided for these bit positions. When the con-
tents of the prefix register are changed, the change
is effective for the next sequential instruction.

When prefixing is applied, the real address is trans-
formed into an absolute address by using one of the
following rules, depending on bits 1-19 of the real
address:

1. Bits 1-19 of the address, if all zeros, are
replaced with bits 1-19 of the prefix.

2. Bits 1-19 of the address, if equal to bits 1-19 of
the prefix, are replaced with zeros.

3. Bits 1-19 of the address, if not all zeros and not
equal to bits 1-19 of the prefix, remain
unchanged.

Chapter 3. Storage 3-11

The distinction between real and absolute addresses
is made even when the prefix register contains all
zeros, in which case a real address and its corre-
sponding absolute address are identical.

In all cases, bits 20-31 of the address remain
unchanged.

Only the address presented to storage is translated
by prefixing. The contents of the source of the
address remain unchanged.

R L B L
| | | |
T No Change T -> 1L | I 1
I I T] No Chan l T
e g
l v 'l ’ |
I | | B
—F I ' I ":
| ’ | l
] s , I -
I | 3
L l l % | L
T ! 3 | T
| | |
+ I ! No Change !
| | |
! $ I '
U
| L F |
/:\od:sress | Address | hl I Address
1 I - { 4096 | / l - oo
J; ‘___Add(;ess L __________ | J. e— Addof ess L ________ | o—Address

Real Addresses
for CPU A

Absolute

0
Real Addresses

Addresses for CPU B
(1) Real addresses in which bits 1-19 are equal to the prefix for this: CPU (A or
(2) Absolute addresses of the block that contains for this CPU (A or B) the real

locations 0-4095.

Figure

3-12 ESA/370 Principles of Operation

3-4. Relationship between Real and Absolute Addresses

Address Spaces

An address space is a consecutive sequence ‘of
integer numbers (virtual addresses), together with
the specific transformation parameters which allow
each number to be associated with a byte location
in storage. The sequence starts at zero and pro-
ceeds left to right.

When a virtual address is used by a cPU to access
main storage, it is first converted, by means of
dynamic address translation (DAT), to a real
address, and then, by means of prefixing, to an
absolute address. DAT uses two levels of tables
(segment tables and page tables) as transformation
parameters. The designation (origin and length) of
a segment table is found for use by DAT in a
control register or as specified by an access register.

DAT uses, at different times, the segment-table des-
ignations in different control registers or specified
by the access registers. The choice is determined
by the translation mode specified in the current
PSW. Four translation modes are available:
primary-space mode, secondary-space mode,
access-register mode, and home-space mode. Dif-
ferent address spaces are addressable depending on
the translation mode.

At any instant when the CPuU is in the primary-
space mode or secondary-space mode, the CPU can
translate virtual addresses belonging to two address
spaces -- the primary address space and the sec-
ondary address space. At any instant when the
CPU is in the access-register mode, it can translate
virtual addresses of up to 16 address spaces -- the
primary address space and up to 15 AR-specified
address spaces. At any instant when the CPU is in
the home-space mode, it can translate virtual
addresses of the home address space.

The primary address space is identified as such
because it consists of primary virtual addresses,
which are translated by means of the primary
segment-table designation. Similarly, the secondary
address space consists of secondary virtual addresses
translated by means of the secondary segment-table
designation, the AR-specified address spaces consist
of AR-specified virtual addresses translated by
means of AR-specified segment-table designations,
and the home address space consists of home
virtual addresses translated by means of the home
segment-table designation. The primary and sec-

ondary segment-table designations are in control
registers 1| and 7, respectively. The AR-specified
segment-table designations are in control registers 1
and 7 and in table entries called ASN-second-table
entries. The home segment-table designation is in
control register 13.

Changing to Different Address Spaces

A program can cause different address spaces to be
addressable by wusing the semiprivileged SET
ADDRESS SPACE CONTROL instruction to change
the translation mode to the primary-space mode,
secondary-space mode, access-register mode, or
home-space mode. However, SET ADDRESS SPACE
CONTROL can set the home-space mode only in the
supervisor state. The program can cause still other
address spaces to be addressable by using other
semiprivileged instructions to change the segment-
table designations in control registers 1 and 7 and
by using unprivileged instructions to change the
contents of the access registers. Only the privileged
LOAD CONTROL instruction is available for
changing the home segment-table designation in
control register 13.

Address-Space Number

An address space may be assigned an address-space
number (ASN) by the control program. The ASN
designates, within a two-level table structure in
main storage, an ASN-second-table entry containing
information about the address space. If the
ASN-second-table entry is marked as valid, it con-
tains the segment-table designation that defines the
address space.

Under certain circumstances, the semiprivileged
instructions which place a new segment-table desig-
nation in control register 1 or 7 fetch this segment-
table designation from an ASN-second-table entry.
Some of these instructions use an ASN-translation
mechanism which, given an ASN, can locate the
designated AsN-second-table entry.

The 16-bit unsigned binary format of the AsN
permits 64K unique ASNs.

The AsNs for the primary and secondary address
spaces are assigned positions in control registers.
The AsN for the primary address space, called the
primary AsN, is assigned bits 16-31 of control reg-
ister 4, and that for the secondary address space,
called the secondary AsN, is assigned bits 16-31 of
control register 3. The registers have the following
formats:

Chapter 3. Storage 3-13

Control Register 4

PASN

16 31

Control Register 3

SASN

16 31

An instruction that uses AsSN translation and loads
the primary or secondary segment-table designation
into the appropriate control register also loads the
corresponding ASN into the appropriate control reg-
ister.

The AsN for the home address space is not assigned
a position in a control register.

An access register containing the value 0 or 1 speci-
fies the primary or secondary address space, respec-
tively; and the segment-table designation specified
by the access register is in control register 1 or 7,
respectively. An access register containing any
other value designates an entry in a table called an
access list. The designated access-list entry contains
the real address of an AsN-second-table entry for
the address space specified by the access register.
The segment-table designation specified by the
access register is in the AsN-second-table entry.
Translating the contents of an access register to
obtain a segment-table designation for use by DAT
does not involve the use of an AsN.

Note: Virtual storage consisting of byte locations
ordered according to their virtual addresses in an
address space is usually referred to as “storage.”

Programming Note: Because an AsN-second-table
entry is located from an access-list entry by means
of its address instead of by means of its ASN, the
ASN-second-table entries designated by access-list
entries can be “pseudo” AsN-second-table entries,
that is, entries which are not in the two-level struc-
ture able to be indexed by means of the ASN-trans-
lation process. The number of unique pseudo
ASN-second-table entries can be greater than the
number of unique ASNs and is limited only by the
amount of storage available to be occupied by the
AsN-second-table entries. Thus, in a sense, there is
no limit on the number of possible address spaces.

3-14 ESA/370 Principles of Operation

ASN Translation

ASN translation is the process of translating the
16-bit ASN to locate the address-space-control
parameters. ASN translation may be performed as
part of PROGRAM CALL with space switching
(pc-ss), it is performed as part of PROGRAM
TRANSFER with space switching (PT-ss) and SET
SECONDARY ASN with space switching (SSAR-ss),
and it may be performed as part of LOAD ADDRESS
SPACE PARAMETERS. For pC-ss and PT-ss, the ASN
which is translated replaces the primary ASN in
control register 4. For ssAR-ss, the ASN which is
translated replaces the secondary AsSN in control
register 3. These two translation processes are
called primary ASN translation and secondary ASN
translation, respectively, and both can occur for
LOAD ADDRESS SPACE PARAMETERS. The
ASN-translation process is the same for both
primary and secondary ASN translation; only the
uses of the results of the process are different.

ASN translation may also be performed as part of
PROGRAM RETURN. Primary ASN translation is
performed as part of PROGRAM RETURN with space
switching (PR-ss). Secondary ASN translation is
performed if the secondary AsN restored by
PROGRAM RETURN (PR-s8 Of PROGRAM RETURN
to current primary) does not equal the primary ASN
restored by PROGRAM RETURN.

The AsN-translation process uses two tables, the
ASN first table and the ASN second table. They are
used to locate the address-space-control parameters
and a third table, the authority table, which is used
when ASN authorization is performed.

For the purposes of this translation, the 16-bit ASN
is considered to consist of two parts: the ASN-first-
table index (AFX) is the leftmost 10 bits of the AsN,
and the AsN-second-table index (Asx) is the six
rightmost bits. The AsN has the following format:

ASN

AFX ASX

0 10 15

The AFX is used to select an entry from the ASN
first table. The origin of the AsN first table is desig-
nated by the AsN-first-table origin in control reg-
ister 14. The AsN-first-table entry contains the
origin of the ASN second table. The AsX is used to
select an entry from the ASN second table. This

entry contains the address-space-control parame-
ters.

ASN-Translation Controls

ASN translation is controlled by the
ASN-translation-control bit and the AsN-first-table
origin, both of which reside in control register 14.
It is also controlled by the address-space-function-
control bit in control register 0.

Control Register 14

T AFTO

12 31

ASN-Translation Control (T): Bit 12 of control
register 14 is the AsN-translation-control bit. This
bit provides a mechanism whereby the control
program can indicate whether ASN translation can
occur while a particular program is being executed.
Bit 12 must be one to allow completion of these
instructions:

* LOAD ADDRESS SPACE PARAMETERS

* PROGRAM CALL with space switching

* PROGRAM RETURN with space switching or
when the restored sasN does not equal the
restored PASN

* PROGRAM TRANSFER with space switching

* SET SECONDARY ASN

Otherwise, a special-operation exception is recog-
nized. The AsN-translation-control bit is examined
in both the problem and the supervisor states.

When the address-space-function-contro! bit in
control register 0 is one, PROGRAM CALL with
space switching (Pc-ss) may omit performing ASN
translation and instead obtain the address of an
ASN-second-table entry directly from an entry-table
entry. The AsN-translation control must be one
whether or not pc-ss performs ASN translation; oth-
erwise, a special-operation exception is recognized.

ASN-First-Table Origin (AFTO): Bits 13-31 of
control register 14, with 12 zeros appended on the
right, form a 31-bit real address that designates the
beginning of the AsN first table.

Control Register 0

Bit 15 of control register 0 is the address-space-
function (ASF) control. When the ASF control is
zero, the AsN-second table begins on a 16-byte
boundary, an AsN-second-table entry has a length
of 16 bytes, and PROGRAM CALL with space
switching (Pc-ss) always performs ASN translation.
When the ASF control is one, the ASN-second table
begins on a 64-byte boundary, an ASN-second-table
entry has a length of 64 bytes, and pc-ss may
obtain an AsN-second-table-entry address from an
entry-table entry instead of by performing AsN
translation.

The AsF control has other effects also. A complete
description of the effects of the ASF control is in the
section ‘“Address-Space-Function Control” in
Chapter 5, “Program Execution.”

ASN-Translation Tables

The AsN-translation process consists in a two-level
lookup using two tables: an AsN first table and an
ASN second table. These tables reside in real
storage.

ASN-First-Table Entries

When the ASF control, bit 15 of control register 0,
is zero, an entry in the AsN first table has the fol-
lowing format:

I ASTO 0000

01 28 31

When the ASF control is one, an entry has the fol-
lowing format:

I ASTO 000000

01 26 31
The fields in the entry are allocated as follows:

AFX-Invalid Bit (1): Bit 0 controls whether the
ASN second table associated with the AsN-first-table
entry is available. When bit 0 is zero, ASN trans-
lation proceeds by using the designated ASN second
table. When the bit is one, the ASN translation
cannot continue.

ASN-Second-Table Origin (ASTO): Bits 1-27,
with four zeros appended on the right, or bits 1-25,
with six zeros appended on the right, are used to

Chapter 3. Storage 3-15

form a 31-bit real address that designates the begin-
ning of the ASN second table.

Bits 28-31 of the AFT entry, or bits 26-31, must be
zeros; otherwise, an AsN-translation-specification
exception is recognized as part of the execution of
the instruction using that entry for ASN translation.

ASN-Second-Table Entries

When the ASF control in control register 0 is zero,
the AsN-second-table entry has a length of 16 bytes.
When the ASF control is one, the entry has a length
of 64 bytes. The format of the 16-byte
AsN-second-table entry is identical to that of the
first 16 bytes of the 64-byte entry. Only the first 16
bytes of the AsN-second-table entry (16-byte entry
or 64-byte entry) are used in or as a result of ASN
translation. The 16-byte AsN-second-table entry is
described below. The 64-byte entry is described in
the section “Extended AsN-Second-Table Entries”
in Chapter 5, “Program Execution.”

The 16-byte AsN-second-table entry has the fol-
lowing format:

I ATO 00
01 31
AX ATL 0000
32 48 60 63
I STD 1
X STO P STL
64 84 87 89 95
| LTD 1
v LTO LTL
96 ' 121 127

The fields in the entry are allocated as follows:

ASX-Invalid Bit (I): Bit 0 controls whether the
address space associated with the ASN-second-table
entry is available. When bit 0 is zero, ASN trans-

3-16 ESA/370 Principles of Operation

lation proceeds. When the bit is one, the AsN
translation cannot continue.

Authority-Table Origin (ATO): Bits 1-29, with two
zeros appended on the right, are used to form a
31-bit real address that designates the beginning of
the authority table.

Authorization Index (AX): Bits 32-47 are used as a
result of primary ASN translation by PROGRAM
CALL, PROGRAM RETURN, and PROGRAM
TRANSFER and may be used by LOAD ADDRESS
SPACE PARAMETERS. The ax field is ignored for
secondary AsN translation.

Authority-Table Length (ATL): Bits 48-59 specify
the length of the authority table in units of four
bytes, thus making the authority table variable in
multiples of 16 entries. The length of the authority
table, in units of four bytes, is one more than the
ATL value. The contents of the ATL field are used
to establish whether the entry designated by a par-
ticular Ax falls within the authority table.

Segment-Table Designation (STD): Bits 64-95 are
used as a result of ASN translation to replace the
primary-segment-table designation (PSTD) or the
secondary-segment-table designation (ssTD). For
SET SECONDARY ASN, the sTD field replaces the
ssTD, bits 0-31 of control register 7. For
PROGRAM CALL, the sTD field replaces the PSTD,
bits 0-31 of control register 1. Each of these
actions may occur independently for LOAD
ADDRESS SPACE PARAMETERS. = For PROGRAM
TRANSFER, the sTD field replaces both the pSTD
and the ssTD, bits 0-31 of control registers 1 and 7,
respectively. For PROGRAM RETURN, as a result of
primary ASN translation, the sTD field replaces the
PSTD, and, as a result of secondary AsN translation,
the sTD field replaces the ssTD. The contents of
the entire STD field are placed in the appropriate
control registers without being inspected for
validity. The private-space control (P) (bit 87, or
bit 23 of the sTD field) is an extension provided by
the private-space facility.

Space-Switch-Event Control (X): Bit 0 of the
segment-table designation is the space-switch-event-
control bit. When, in PC-ss, PR-ss, or PT-ss, this bit
is one in control register 1 either before or after the
execution of the instruction, a program interruption
for a space-switch event occurs after the execution
of the instruction is completed. A space-switch-
event program interruption also occurs after the
completion of a SEI' ADDRESS SPACE CONTROL

instruction that changes the translation mode either
to or from the home-space mode when this bit is
one in either control register 1 or control register
13. When, in LOAD ADDRESS SPACE PARAMETERS,
this bit is one during primary ASN translation, this
fact is indicated by the condition code.

Linkage-Table Designation (LTD): Bits 96-127
may be used as a result of primary AsN translation
and they are used in PC-number translation. The
linkage-table-designation field contains the
subsystem-linkage-control bit (v) (bit 96), the
linkage-table origin (LTO) (bits 97-120), and the
linkage-table length (LTL) (bits 121-127). When the
ASF control is zero, the contents of the LTD field
are placed in control register 5 as a result of
primary ASN translation, and the PC-number-
translation process obtains the LTD from control
register 5. When the ASF control is one, control
register 5 contains the origin of an AsSN-second-
table entry called the primary AsT entry. The
primary-AST-entry origin is replaced in control reg-
ister 5 as a result of primary ASN translation, and
PC-number translation obtains the LTD from the
LTD field in the primary AST entry. PC-number
translation is described in Chapter 5, “Program
Execution.”

Bits 30, 31, and 60-63 of the AST entry must be
zeros; otherwise, an ASN-translation-specification
exception is recognized as part of the execution of
the instruction using that entry for AsN translation.

Certain fields of the AsT entry may be used in the .

access-register-translation process. Due to ones in
bit positions 30, 31, and 60-63 of the entry, an
ASN-translation-specification exception may be
recognized during access-register translation.

Programming Note: The unused portion of the
sTD field, bits 84-86 and 88 of the AST entry, which
corresponds to bits 20-22 and 24 of the sTD, should
be set to zeros. These bits are reserved for future
expansion, and programs which place nonzero

values in these bit positions may not operate
compatibly on future machines.

ASN-Translation Process

This section describes the AsN-translation process
as it is performed during the execution of the space-
switching forms of PROGRAM CALL, PROGRAM
RETURN, PROGRAM TRANSFER, and SET SEC-
ONDARY ASN, and also in PROGRAM RETURN
when the restored secondary AsN does not equal
the restored primary ASN. ASN translation for
LOAD ADDRESS SPACE PARAMETERS is the same,
except that AFX-translation and AsX-translation
exceptions do not occur; such situations are instead
indicated by the condition code. Translation of an
ASN is performed by means of two tables, an ASN
first table and an ASN second table, both of which
reside in main storage.

The AsN first index is used to select an entry from
the AsN first table. This entry designates the ASN
second table to be used.

The AsN second index is used to select an entry
from the AsSN second table. This entry contains the
address-space-control parameters. When the ASF
control is one, the ASN second table begins on a
64-byte boundary, and its entries are each 64 bytes
in length; otherwise, the table begins on a 16-byte
boundary, and- the entries are 16 bytes in length.

If the 1 bit is one in either the AsN-first-table entry
or ASN-second-table entry, the entry is invalid, and
the ASN-translation process cannot be completed.
An AFX-translation exception or AsX-translation
exception is recognized.

Whenever access to main storage is made during
the AsN-translation process for the purpose of
fetching an entry from an AsSN first table or ASN
second table, key-controlled protection does not

apply.

The AsN translation process is shown in Figure 3-5
on page 3-18.

Chapter 3. Storage 3-17

ASN

CR14 T AFTO AFX |ASX

(x4096) (x4) (xN)

ASN First Table

R |I ASTO 0

(xN)

I ASN Second Table
+

R |I ATO 0 AX ATL |0

STD LTD *

N: 16 if ASF control, bit 15 of control register 0, is zeroj; 64 if ASF

control is one
R: Address is real

*: ASTE is 64 bytes if ASF control is one; last 48 bytes are not shown

Figure 3-5. ASN Translation

ASN-First-Table Lookup

The AFX portion of the AsN, in conjunction with
the AsN-first-table origin, is used to select an entry
from the ASN second table.

The 31-bit real address of the AsN-first-table entry
is obtained by appending 12 zeros on the right to
the AFT origin contained in bit positions 13-31 of
control register 14 and adding the AFX portion with
two rightmost and 19 leftmost zeros appended.
This addition cannot cause a carry into bit position

3-18 ESA/370 Principles of Operation

0. All 31 bits of the address are used, regardless of
whether the current psw specifies the 24-bit or
31-bit addressing mode.

All four bytes of the AsN-first-table entry appear to
be fetched concurrently as observed by other cpus.
The fetch access is not subject to protection.
When the storage address which is generated for
fetching the AsN-first-table entry designates a
location which is not available in the configuration,
an addressing exception is recognized, and the oper-
ation is suppressed.

Bit 0 of the four-byte AFT entry specifies whether
the corresponding AST is available. If this bit is
one, an AFX-translation exception is recognized.
When the AsT-entry size is 16 bytes and bit posi-
tions 28-31 of the AFT entry do not contain zeros,
or when the AsT-entry size is 64 bytes and bit posi-
tions 26-31 of the AFT entry do not contain zeros,
an AsN-translation-specification exception is recog-
nized. When no exceptions are recognized, the
entry fetched from the AFT is used to access the
AST.

ASN-Second-Table Lookup

The Asx portion of the ASN, in conjunction with
the AsN-second-table origin contained in the
AsN-first-table entry, is used to select an entry from
the ASN second table.

When the address-space-function (ASF) control, bit
15 of control register 0, is zero, the ASN second
table begins on a 16-byte boundary, and its entries
are each 16 bytes in length. When the ASF control
is one, the ASN second table begins on a 64-byte
boundary, and its entries are 64 bytes in length.

The 31-bit real address of the AsN-second-table
entry is obtained as follows. When the AsT-entry
size is 16 bytes, the address is obtained by
appending four zeros on the right to bits 1-27 of
the AsN-first-table entry and adding the AsX with
four rightmost and 21 lefimost zeros appended.
When the AsT-entry size is 64 bytes, the address is
obtained by appending six zeros on the right to bits
1-25 of the AsN-first-table entry and adding the Asx
with six rightmost and 19 leftmost zeros appended.
In both of these cases, a carry, if any, into bit posi-
tion 0 is ignored. All 31 bits of the address are
used, regardless of whether the current psw speci-
fies the 24-bit or 31-bit addressing mode.

The fetch of the 16 or 64 bytes of the AsN-second-
table entry appears to be word-concurrent as
observed by other cpus, with the leftmost word
fetched first. The order in which the remaining 3
or 15 words are fetched is unpredictable. The fetch
access is not subject to protection. When the
storage address which is generated for fetching the
ASN-second-table entry designates a location which
is not available in the configuration, an addressing
exception is recognized, and the operation is sup-
pressed.

Bit 0 of the 16-byte or 64-byte AsN-second-table
entry specifies whether the address space is acces-
sible. If this bit is one, an AsX-translation excep-

tion is recognized. If bit positions 30, 31, and
60-63 of the AsN-second-table entry do not contain
zeros, an ASN-translation-specification exception is
recognized.

Recognition of Exceptions during ASN
Translation

The exceptions which can be encountered during
the AsN-translation process are collectively referred
to as ASN-translation exceptions. A list of these
exceptions and their priorities is given in Chapter 6,
“Interruptions.”

ASN Authorization

ASN authorization is the process of testing whether
the program associated with the current authori-
zation index is permitted to establish a particular
address space. The ASN authorization is performed
as part of PROGRAM TRANSFER with space
switching (PT-ss) and SET SECONDARY ASN with
space switching (SSAR-ss) and may be performed as
part of LOAD ADDRESS SPACE PARAMETERS. ASN
authorization is performed after the AsN-translation
process for these instructions.

ASN authorization is also performed as part of
PROGRAM RETURN when the restored secondary
ASN does not equal the restored primary ASN. ASN
authorization of the restored secondary ASN is per-
formed after ASN translation of the restored sec-

ondary ASN.

When performed as part of PT-ss, the ASN authori-
zation tests whether the ASN can be established as
the primary ASN and is called primary-AsN authori-
zation. When performed as part of LOAD ADDRESS
SPACE PARAMETERS, PROGRAM RETURN, Or
SSAR-ss, the ASN authorization tests whether the
ASN can be established as the secondary ASN and is
called secondary-AsN authorization.

The ASN authorization is performed by means of
an authority table in real storage which is desig-
nated by the authority-table-origin and authority-
table-length fields in the AsN-second-table entry.

ASN-Authorization Controls

ASN authorization uses the authority-table origin
and the authority-table length from the
ASN-second-table entry, together with an authori-
zation index.

Chapter 3. Storage 3-19

Control Register 4

For pr-ss and SSAR-ss, the current contents of
control register 4 include the authorization index.
For LOAD ADDRESS SPACE PARAMETERS and
PROGRAM RETURN, the value which will become
the new contents of control register 4 is used. The
register has the following format:

AX

0 15

Authorization Index (AX): Bits 0-15 of control
register 4 are used as an index to locate the
authority bits in the authority table.

ASN-Second-Table Entry

The AsN-second-table entry which is fetched as part
of the ASN translation process contains information
which is used to designate the authority table. An
entry in the ASN second table has the following
format:

ATO 00

0 1 31
ATL 0000

32 48 60 64

Authority-Table Origin (ATO): Bits 1-29, with two
zeros appended on the right, are used to form a
31-bit real address that designates the beginning of
the authority table.

Authority-Table Length (ATL): Bits 48-59 specify
the length of the authority table in units of four
bytes, thus making the authority table variable in
multiples of 16 entries. The length of the authority
table, in units of four bytes, is equal to one more
than the ATL value. The contents of the length
field are used to establish whether the entry desig-
nated by the authorization index falls within the
authority table.

Authority-Table Entries

The authority table consists of entries of two bits
each; accordingly, each byte of the authority table
contains four entries in the following format:

PS|PS|PS|PS

3-20 ESA/370 Principles of Operation

The fields are allocated as follows:

Primary Authority (P): The left bit of an
authority-table entry controls whether the program
with the authorization index corresponding to the
entry is permitted to establish the address space as
a primary address space. If the P bit is one, the
establishment is permitted. If the P bit is zero, the
establishment is not permitted.

Secondary Authority (S): The right bit of an
authority-table entry controls whether the program
with the corresponding authorization index is per-
mitted to establish the address space as a secondary
address space. If the s bit is one, the establishment
is permitted. If the s bit is zero, the establishment
is not permitted.

The authority table is also used in the extended-
authorization process, as part of access-register
translation. Extended authorization is described in
the section “Authorizing the Use of the Access-List
Entry” in Chapter 5, “Program Execution.”

ASN-Authorization Process

This section describes the AsN-authorization
process as it is performed during the execution of
PROGRAM TRANSFER with space switching and SET
SECONDARY ASN with space switching. For these
two instructions, the AsN-authorization process is
performed by using the authorization index cur-
rently in control register 4. Secondary authori-
zation for PROGRAM RETURN, when the restored
secondary ASN does not equal the restored primary
ASN, and for LOAD ADDRESS SPACE PARAMETERS
is the same, except that the value which will
become the new contents of control register 4 is
used for the authorization index. Also, for LOAD
ADDRESS SPACE PARAMETERS, a secondary-
authority exception does not occur. Instead, such a
situation is indicated by the condition code.

The AsN-authorization process is performed by
using the authorization index, in conjunction with
the authority-table origin and length from the AST
entry, to select an authority-table entry. The entry
is fetched, and either the primary- or secondary-
authority bit is examined, depending on whether
the primary- or secondary-AsN-authorization
process is being performed. The AsN-authorization
process is shown in Figure 3-6 on page 3-21.

CR4 AX

(x1/4)

ASN Second Table

ASN-Second-Table Entry

I ATO 0 AX ATL |0 STD

LTD

(x4)

Authority Table
_.H

For primary ASN authorization (PT-ss only):
Primary-authority exception if P bit
zero or table length exceeded.

R |{PIS For secondary ASN authorization (SSAR-ss only):
Secondary-authority exception if S bit
zero or table length exceeded.

For secondary ASN authorization (LASP only):
Set condition code 2 if S bit zero or
table length exceeded.

R: Address is real
*: ASTE is 64 bytes if ASF control is one; last 48 bytes ar

Figure 3-6. ASN Authorization

e not shown

Chapter 3. Storage

3-21

Authority-Table Lookup

The authorization index, in conjunction with the
authority-table origin contained in the AsN-second-
table entry, is used to select an entry from the
authority table.

The authorization index is contained in bit posi-
tions 0-15 of control register 4.

Bit positions 1-31 of the AST entry contain the
31-bit real address of the authority table (ATO), and
bit positions 48-59 contain the length of the
authority table (ATL).

The 31-bit real address of a byte in the authority
table is obtained by appending two zeros on the
right to the authority-table origin and adding the 14
leftmost bits of the authorization index with 17
zeros appended on the left. A carry, if any, into bit
position 0 is ignored. All 31 bits of the address are
used, regardless of whether the current Psw specifies
the 24-bit or 31-bit addressing mode.

As part of the authority-table-entry-lookup process,
bits 0-11 of the authorization index are compared
against the authority-table length. If the compared
portion is greater than the authority-table length, a
primary-authority exception or secondary-authority
exception is recognized for PT-ss or SSAR-s8, respec-
tively. For LOAD ADDRESS SPACE PARAMETERS,
when the authority-table length is exceeded, condi-
tion code 2 is set.

The fetch access to the byte in the authority table is
not subject to protection. When the storage
address which is generated for fetching the byte des-
ignates a location which is not available in the con-
figuration, an addressing exception is recognized,
and the operation is suppressed.

The byte contains four authority-table entries of
two bits each. The rightmost two bits of the
authorization index, bits 14 and 15 of control reg-
ister 4, are used to select one of the four entries.
The left or right bit of the entry is then tested,
depending on whether the authorization test is for a
primary ASN or a secondary ASN. The following
table shows the bit which is selected from the byte
as a function of bits 14 and 15 of the authorization
index and the instruction PT-ss, SSAR-ss, PROGRAM
RETURN, or LOAD ADDRESS SPACE PARAMETERS.

3-22 ESA/370 Principles of Operation

Bit Selected from
Authority-Table Byte
for Test
Authorization-

Index Bits S Bit

P Bit (SSAR-ss,
14 15 (PT-ss) PR, or LASP)
0 0 0 1
0 1 2 3
1 0 4 5
1 1 6 7

If the selected bit is one, the ASN is authorized, and
the appropriate address-space-control parameters
from the AST entry are loaded into the appropriate
control registers. If the selected bit is zero, the ASN
is not authorized, and a primary-authority excep-
tion is recognized for PT-ss or a secondary-
authority exception is recognized for SSAR-ss or
PROGRAM RETURN. For LOAD ADDRESS SPACE
PARAMETERS, when the ASN is not authorized,
condition code 2 is set.

Recognition of Exceptions during ASN
Authorization

The exceptions which can be encountered during
the primary- and secondary-AsN-authorization
processes and their priorities are described in the
definitions of the instructions in which AsN authori-
zation is performed.

Programming Note: The primary- and secondary-
authority exceptions cause nullification in order to
permit dynamic modification of the authority table.
Thus, when an address space is created or
“swapped in,” the authority table can first be set to
all zeros and the appropriate authority bits set to
one only when required.

Dynamic Address Translation

Dynamic address translation (DAT) provides the
ability to interrupt the execution of a program at an
arbitrary moment, record it and its data in auxiliary
storage, such as a direct-access storage device, and
at a later time return the program and the data to
different main-storage locations for resumption of
execution. The transfer of the program and its data
between main and auxiliary storage may be per-
formed piecemeal, and the return of the informa-
tion to main storage may take place in response to

an attempt by the CPU to access it at the time it is
needed for execution. These functions may be per-
formed without change or inspection of the
program and its data, do not require any explicit
programming convention for the relocated
program, and do not disturb the execution of the
program except for the time delay involved.

With appropriate support by an operating system,
the dynamic-address-translation facility may be
used to provide to a user a system wherein storage
appears to be larger than the main storage which is
available in the configuration. This apparent main
storage is referred to as virtual storage, and the
addresses used to designate locations in the virtual
storage are referred to as virtual addresses. The
virtual storage of a user may far exceed the size of
the main storage which is available in the config-
uration and normally is maintained in auxiliary
storage. The virtual storage is considered to be
composed of blocks of addresses, called pages.
Only the most recently referred-to pages of the
virtual storage are assigned to occupy blocks of
physical main storage. As the user refers to pages
of virtual storage that do not appear in main
storage, they are brought in to replace pages in
main storage that are less likely to be needed. The
swapping of pages of storage may be performed by
the operating system without the user’s knowledge.

The sequence of virtual addresses associated with a
virtual storage is called an address space. With
appropriate support by an operating system, the
dynamic-address-translation facility may be used to
provide a number of address spaces. These address
spaces may be used to provide degrees of isolation
between users. Such support can consist of a com-
pletely different address space for each user, thus
providing complete isolation, or a shared area may
be provided by mapping a portion of each address
space to a single common storage area. Also,
instructions are provided which permit a semiprivi-
leged program to access more than one such
address space. Dynamic address translation pro-
vides for the translation of virtual addresses from
multiple different address spaces without requiring
that the translation parameters in the control regis-
ters be changed. These address spaces are called
the primary address space, secondary address space,
and AR-specified address spaces. A privileged
program can access also the home address space.

In the process of replacing blocks of main storage
by new information from an external medium, it
must be determined which block to replace and
whether the block being replaced should be

recorded and preserved in auxiliary storage. To aid
in this decision process, a reference bit and a
change bit are associated with the storage key.

Dynamic address translation may be specified for
instruction and data addresses generated by the cpPuU
but is not available for the addressing of data and
of ccws and IDAWs in 10 operations. The
ccw-indirect-data-addressing facility is provided to
aid 1/0 operations in a virtual-storage environment.

Address computation can be carried out in either
the 24-bit or 31-bit addressing mode. When
address computation is performed in the 24-bit
addressing mode, seven zeros are appended on the
left to form a 31-bit address. Therefore, the
resultant logical address is always 31 bits in length.
All real and absolute addresses are 31 bits in length.

Dynamic address translation is the process of trans-
lating a virtual address during a storage reference
into the corresponding real address. The virtual
address may be a primary virtual address, secondary
virtual address, AR-specified virtual address, or
home virtual address. These addresses are trans-
lated by means of the primary, the secondary, an
AR-specified, or the home segment-table desig-
nation, respectively. After selection of the appro-
priate segment-table designation, the translation
process is the same for all of the four types of
virtual address.

In the process of translation, two types of units of
information are recognized -- segments and pages.
A segment is a block of sequential virtual addresses
spanning 1M bytes and beginning at a 1M-byte
boundary. A page is a block of sequential virtual
addresses spanning 4K bytes and beginning at a
4K -byte boundary.

The virtual address, accordingly, is divided into
three fields. Bits 1-11 are called the segment index
(sx), bits 12-19 are called the page index (PX), and
bits 20-31 are called the byte index (Bx). The
virtual address has the following format:

/Il sx PX BX

0 1 12 20 31

Virtual addresses are translated into real addresses
by means of two translation tables: a segment
table and a page table. These reflect the current
assignment of real storage. The assignment of real
storage occurs in units of pages, the real locations

Chapter 3. Storage 3-23

being assigned contiguously within a page. The
pages need not be adjacent in real storage even
though assigned to a set of sequential virtual
addresses.

Translation Control

Address translation is controlled by three bits in the
psw and by a set of bits referred to as the trans-
lation parameters. The translation parameters are
in control registers 0, 1, 7, and 13. Additional con-
trols are located in the translation tables.

Additional controls are provided as described in
Chapter 5, “Program Execution.” These controls
determine whether the contents of each access reg-
ister can be used to obtain a segment-table desig-
nation for use by DAT.

Translatlon Modes -

The three bits in the psw that control dynamic
address translation are bit 5, the DAT-mode bit, and
bits 16 and 17, the address-space-control bits.
When the DAT-mode bit is Zer0,, then DAT is off,
and the cPU is in the real mode. When the
pAT-mode bit is one, then DAT is on, and the cPu
is in the translation mode designated by the
address-space-control bits: 00 designates the
primary-space mode, 01 designates the access-
register mode, 10 designates the secondary-space
mode, and 11 designates the home-space mode.
The various modes are shown in Figure 3-7, along
with the handling of addresses in each mode.

Handling of Addresses
PSW Bit
Instruction| Logical
5(16|17DAT Mode Addresses [Addresses
0] 0] 0[0ff|{Real mode Real Real
0| 8] 1{0ff|{Real mode Real Real
0| 1{ 0{0ff{Real mode Real Real
0} 1 1|/0ff|Real mode Real Real
1} 8f 0[{0n |Primary-space mode Primary Primary
virtual virtual
1| 8] 1{On jAccess-register mode | Primary AR-speci-
virtual fied
virtual
1] 1| 0/0On |Secondary-space mode | Primary Secondary
virtual virtual
1| 1{ 1|0n |Home-space mode Home Home
virtual virtual

Figure 3-7. Translation Modes

3-24 ESA/370 Principles of Operation

Control Register 0
Six bits are provided in control register 0 for use in
controlling dynamic address translation. The bits

“are assigned as follows:

D TF

5 8 13

Secondary-Space Control (D): Bit 5 of control
register 0 is the secondary-space-control bit. When
this bit is zero and execution of MOVE TO
PRIMARY, MOVE TO SECONDARY, Or SET ADDRESS
SPACE CONTROL is attempted, a special-operation
exception is recognized. When this bit is one, it
indicates that the secondary segment table is
attached when the cPU is in the primary-space
mode.

Translation Format (TF): Bits 8-12 of control reg-
ister 0 specify the translation format, with only one
combination of the five control bits valid; all other
combinations are invalid.

The control bits are encoded as follows:

Bits of Control Register ©

8 9 10 11 12 | Valid

1 0 1 1 0 Yes

A1l others . No

When an invalid bit combination is detected in bit
positions 8-12, a translation-specification exception
is recogmzed as part of the execution of an 1nstruc-
tion using address translation.

Control Register 1

Control register 1 contains the primary segment-
table designation (PSTD). The register has the fol-
lowing format:

Primary Segment-
X Table Origin p PSTL

0 1 20 23 25 31
Primary Space-Switch-Event-Control Bit (X):
When bit 0 of control register 1 is one:

e A space-switch-event program interruption
occurs when execution of the space-switching

form of PROGRAM cCALL (PC-ss), PROGRAM
RETURN (PR-88), Or PROGRAM TRANSFER
(PT-s8) is completed. The interruption occurs if
bit 0 is one either before or after the operation.

* A space-switch-event program interruption
occurs upon completion of a SET ADDRESS
SPACE CONTROL instruction that changes the
address space from which instructions are
fetched either to or from the home address
space; that is, when instructions are fetched
from the home address space either before or
after the operation but not both before and
after the operation.

e Condition code 3 is set by LOAD ADDRESS
SPACE PARAMETERS.

Primary Segment-Table Origin (PSTO): Bits 1-19
of control register 1, with 12 zeros appended on the
right, form an address that designates the beginning
of the primary segment table. It is unpredictable
whether the address is real or absolute. This table
is called the primary segment table since it is used
to translate virtual addresses in the primary address
space.

Primary Private-Space-Control Bit (P): If the
private-space facility is installed and bit 23 of
control register 1 is one, then (1) a one value of the
common-segment bit in a translation-lookaside-
buffer (TLB) segment-table entry prevents the entry
and the TLB page-table copy it designates from
being used when translating references to the
primary address space, even with a match of
segment-table origins; (2) low-address protection
and fetch-protection override do not apply to the
primary address space; and (3) a translation-
specification exception is recognized if a reference
to the primary address space is translated by means
of a segment-table entry in storage and the
common-segment bit is one in the entry.

Primary Segment-Table Length (PSTL): Bits
25-31 of control register 1 specify the length of the
primary segment table in units of 64 bytes, thus
making the length of the segment table variable in
multiples of 16 entries. The length of the primary
segment table, in units of 64 bytes, is one more
than the PSTL value. The contents of the length
field are used to establish whether the entry desig-
nated by the segment-index portion of a primary
virtual address falls within the primary segment
table.

Bits 20-22 and 24 of control register 1 are not
assigned and are ignored. Bit 23 is ignored if the
private-space facility is not installed.

Control Register 7

Control register 7 contains the secondary segment-
table designation (sSTD). The register has the fol-
lowing format:

Secondary Segment-
Table Origin P SSTL

0 1 20 23 25 31

The secondary segment-table origin, secondary
private-space-control bit (P), and secondary
segment-table length (SSTL) in control register 7 are
defined the same as the fields in the same bit posi-
tions in control register 1, except that control reg-
ister 7 applies to the secondary address space.

Bits 0, 20-22, and 24 of control register 7 are not
assigned and are ignored. Bit 23 is ignored if the
private-space facility is not installed.

Control Register 13

Control register 13 contains the home segment-
table designation (HSTD). The register has the fol-
lowing format:

Home Segment-
X Table Origin P HSTL

0 1 20 23 25 31

Home Space-Switch-Event-Control Bit (X): When
bit 0 of control register 13 is one, a space-switch-
event program interruption occurs upon com-
pletion of a SET ADDRESS SPACE CONTROL instruc-
tion that changes the address space from which
instructions are fetched either to or from the home
address space; that is, when instructions are fetched
from the home address space either before or after
the operation but not both before and after the
operation. |

The home segment-table origin, home private-
spacicontrol bit (P), and home segment-table
length (HSTL) in control register 13 are defined the
same as the fields in the same bit positions in
control register 1, except that control register 13
applies to the home address space.

Chapter 3. Storage 3-25

Bits 20-22 and 24 of control register 13 are not
assigned and are ignored. Bit 23 is ignored if the
private-space facility is not installed.

Programming Notes:

1. The validity of the information loaded into a
“control register, including that pertaining to
dynamic address translation, is not checked at
the time the register is loaded. This informa-
tion is checked and the program exception, if
any, is indicated at the time the information is
used.

2. The information pertaining to dynamic address
translation is considered to be used when an
instruction is executed with DAT on or when
INVALIDATE PAGE TABLE ENTRY or LOAD
REAL ADDRESS is executed. The information is
not considered to be used when the pSw speci-
fies translation but an 1,0, external, restart, or
machine-check interruption occurs before an
instruction is executed, or when the PSw speci-
fies the wait state.

Translation Tables

The translation process consists in a two-level
lookup using two tables: a segment table and a
page table. These tables reside in real or absolute
storage.

Segment-Table Entries
The entry fetched from the segment table has the
following format:

0 Page-Table Origin I{C|PTL

0 1 26 28 31

The fields in the segment-table entry are allocated
as follows:

Page-Table Origin (PTO): Bits 1-25, with six zeros
appended on the right, form the address that desig-
nates the beginning of a page table. It is unpredict-
able whether the address is real or absolute.

3-26 ESA/370 Principles of Operation

Segment-invalid Bit (I): Bit 26 controls whether
the segment associated with the segment-table entry
is available. When the bit is zero, address trans-
lation proceeds by using the segment-table entry.
When the bit is one, the segment-table entry
cannot be used for translation.

Common-Segment Bit (C): Bit 27 controls the use
of the translation-lookaside-buffer (TLB) copies of
the segment-table entry and of the page table which
it designates. A zero identifies a private segment; in
this case, the segment-table entry and the page
table it designates may be used only in association
with the segment-table origin that designates the
segment table in which the segment-table entry
resides. A one identifies a common segment; in
this case, the segment-table entry and the page
table it designates may continue to be used for
translating addresses corresponding to the segment
index, even though a different segment table is
specified. However, TLB copies of the segment-
table entry and page table for a common segment
are not usable if the private-space control, bit 23, is
one in the segment-table designation used in the
translation. The common-segment bit must be
zero if the segment-table entry is fetched from
storage during a translation when the private-space
control is one in the segment-table designation
being used; otherwise, a translation-specification
exception is recognized. The function of the
private-space control is available if the private-space
facility is installed.

Page-Table Length (PTL): Bits 28-31 specify the
length of the page table in units of 64 bytes (16
entries). The length of the page table, in units of
64 bytes, is one more than the PTL value. The
contents of the length field are used to establish
whether the entry designated by the page-index
portion of the virtual address falls within the page
table.

Bit 0 of the segment-table entry must be zero; if it
is not zero, a translation-specification exception is
recognized as part of the execution of an instruc-
tion using that entry for address translation.

Page-Table Entries
The entry fetched from the page table entry has the
following format:

0 PFRA olI{pP

o

11111717
0 1 20 24 31

The fields in the page-table entry are allocated as
follows:

Page-Frame Real Address (PFRA): Bits 1-19
provide the leftmost bits of a real storage address.
When these bits are concatenated with the 12-bit
byte-index field of the virtual address on the right, a
31-bit real address is obtained.

Page-Invalid Bit (I): Bit 21 controls whether the
page associated with the page-table entry is avail-
able. When the bit is zero, address translation pro-
ceeds by using the page-table entry. When the bit
is one, the page-table entry cannot be used for
translation.

Page-Protection Bit (P): Bit 22 controls whether
store accesses can be made in the page. This pro-
tection mechanism is in addition to the key-
controlled-protection and low-address-protection
mechanisms. The bit has no effect on fetch
accesses. If the bit is zero, stores are permitted to
the page, subject to the other protection mech-
anisms. If the bit is one, stores are disallowed. An
attempt to store when the page-protection bit is
one causes a protection exception to be recognized.

Bit positions 0, 20, and 23 of the entry must
contain zeros; otherwise, a translation-specification
exception is recognized as part of the execution of
an instruction using that entry for address trans-
lation. Bit positions 24-31 are unassigned and are
not checked for zeros.

Summary of Segment-Table and
Page-Table Sizes

The sizes of segment tables and page tables are
summarized in Figure 3-8.

Segment-Table Parameters
Corresponding
Virtual Segment Table Segment-
Address| Number of Table
Size Addressable| Maximum Usable |Increment
(Bits) Segments |Size (Bytes)|Length Codej (Bytes)
241 16 64 0 -
31 2,048 8,192 127 64
Page-Table Parameters?
Corresponding
Page Table Page-
Number of Tabhle
Pages Maximum Usable Increment
in Segment |Size (Bytes)|Length Code| (Bytes)
256 1,024 15 64

Explanation:

1 A virtual address specified by the program in the 24-bit

addressing mode consists of a 24-bit value embedded in a
31-bit address.

The page-table size is independent of the virtual address
size.

Figure 3-8. Sizes of Segment Tables and Page Tables

Translation Process

This section describes the translation process as it is
performed implicitly before a virtual address is used
to access main storage. Explicit translation, which
is the process of translating the operand address of
LOAD REAL ADDRESS and TEST PROTECTION, is the
same, except that segment-translation and page-
translation exceptions do not occur; such situations
are instead indicated by the condition code. Trans-
lation of the operand address of LOAD REAL
ADDRESS also differs in that the CPU may be in the
real mode and the translation-lookaside buffer is
not used.

Translation of a virtual address is performed by
means of a segment table and a page table, both of
which reside in real or absolute storage. It is con-
trolled by the DAT-mode bit and the address-space-
control bits, all in the PSw. The translation tables
are designated by fields in control registers 1, 7, and
13 and as specified by the access registers.

Chapter 3. Storage 3-27

Effective Segment-Table Designation

The segment-table designation used for a particular
address translation is called the effective segment-
table designation. Accordingly, when a primary
virtual address is translated, the contents of control
register 1 are used as the effective segment-table
designation. Similarly, for a secondary virtual
address, the contents of control register 7 are used,;
for an AR-specified virtual address, the segment-
table designation specified by the access register is
used; and for a home virtual address, the contents
of control register 13 are used.

The segment-index portion of the virtual address is
used to select an entry from the segment table, the
starting address and length of which are specified by
the effective segment-table designation. This entry
designates the page table to be used.

The page-index portion of the virtual address is
used to select an entry from the page table. This
entry contains the leftmost bits of the real address
that represents the translation of the virtual address
and provides the page-protection bit.

The byte-index field of the virtual address is used
unchanged as the rightmost bit positions of the real
address.

If the 1 bit is one in either the segment-table entry
or the page-table entry, the entry is invalid, and the
translation process cannot be completed for this
virtual address. A segment-translation or a page-
translation exception is recognized.

In order to eliminate the delay associated with ref-
erences to translation tables in real or absolute
storage, the information fetched from the tables
normally is also placed in a special buffer, the
translation-lookaside buffer (TLB), and subsequent
translations involving the same table entries may be
performed by using the information recorded in the
TLB. The operation of the TLB is described in the
section “Translation-Lookaside Buffer” in this
chapter.

Whenever access to real or absolute storage is made
during the address-translation process for the
purpose of fetching an entry from a segment table
or page table, key-controlled protection does not

apply.

The translation process, including the effect of the
TLB, is shown graphically in Figure 3-9.

Control register 1 provides the primary segment-table designation for
translation of a primary virtual address, control register 7 provides
the secondary segment-table designation for translation of a secondary
virtual address, and control register 13 provides the home segment-table
designation for translation of a home virtual address. An ASN-second-
table entry provides an AR-specified (access-register-specified) segment-
table designation for translation of an AR-specified virtual address.

— forming the real address.

2| Information, which may include portions of the virtual address and the
— effective segment-table origin, is used to search the TLB.

3] If a match exists, the page-frame real address from the TLB is used in

4| If no match exists, table entries in real or absolute storage are fetchedi“_
— The resulting fetched entries, in conjunction with the search information,

are used to translate the address and may be used to form an entry in the

TLB.

Figure 3-9 (Part 1 of 2). Translation Process

3-28 ESA/370 Principles of Operation

Control Register

1, 7, or

13

ASN-Second Table
Entry

PSTD, SSTD, or HSTD

AR-Specified STD

_—__>4____

!

Virtual Address

Effective STD

STO

STL

(x40696)

Segment Table
__¢
0
R/A

PTO

PTL

(x64)_

Page Table
__,

SX PX BX
(x4) (x4)
Translation
Lookaside

Buffer (TLB)

PFRA

PFRA

R/A: Address is either real or absolue

Figure 3-9 (Part 2 of 2). Translation Process

Real Address

Chapter 3. Storage

3-29

Inspection of Control Register 0

The interpretation of the virtual address for trans-
lation purposes requires that there be a valid trans-
lation format specified by bits 8-12 of control reg-
ister 0. If bits 8-12 contain an invalid code, a
translation-specification exception is recognized.

Segment-Table Lookup

The segment-index portion of the virtual address, in
conjunction with the segment-table origin con-
tained in the effective segment-table designation, is
used to select an entry from the segment table.

The 31-bit address of the segment-table entry in
real or absolute storage is obtained by appending
12 zeros to the right of bits 1-19 of the effective
segment-table designation and adding the segment
index with two rightmost and 18 leftmost zeros
appended. When a carry into bit position 0 occurs
during the addition, an addressing exception may
be recognized, or the carry may be ignored, causing
the table to wrap from 23! - 1 to zero. All 31 bits
of the address are used, regardless of whether the
current Psw specifies the 24-bit or 31-bit addressing
mode.

As part of the segment-table-lookup process, bits
1-7 of the virtual address are compared against the
segment-table length, bit positions 25-31 of the
effective segment-table designation, to establish
whether the addressed entry is within the segment
table. If the value in the segment-table-length field
is less than the value in the corresponding bit posi-
tions of the virtual address, a segment-translation
exception 1s recognized.

All four bytes of the segment-table entry appear to
be fetched concurrently as observed by other cpus.
The fetch access is not subject to protection.
When the storage address generated for fetching the
segment-table entry designates a location which is
not available in the configuration, an addressing
exception is recognized, and the unit of operation is
suppressed.

Bit 26 of the entry fetched from the segment table
specifies whether the corresponding segment is
available. This bit is inspected, and, if it is one, a
segment-translation exception is recognized. If bit
0 of the entry is one, a translation-specification
exception is recognized. A translation-specification
exception is also recognized if (1) the private-space
facility is installed, (2) the private-space control, bit
23, in the effective segment-table designation is one,

3-30 ESA/370 Principles of Operation

and (3) the common-segment bit, bit 27, in the
entry fetched from the segment table is one.

When no exceptions are recognized in the process
of segment-table lookup, the entry fetched from the
segment table designates the beginning and specifies
the length of the corresponding page table.

The common-segment bit in the entry fetched from
the segment table is further used only for the
purpose of forming a TLB entry (see the section
“Use of the Translation-Lookaside Buffer” later in
this chapter).

Page-Table Lookup

The page-index portion of the virtual address, in
conjunction with the page-table origin contained in
the segment-table entry, is used to select an entry
from the page table.

The 31-bit address of the page-table entry in real or
absolute storage is obtained by appending six zeros
to the right of the page-table origin and adding the
page index, with two rightmost and 21 leftmost
zeros appended. A carry into bit position 0 may
cause an addressing exception to be recognized, or
the carry may be ignored, causing the page table to
wrap from 23! - 1 to zero. All 31 bits of the
address are used, regardless of whether the current
psw specifies the 24-bit or 31-bit addressing mode.

As part of the page-table-lookup process, the four
leftmost bits of the page index are compared
against the page-table length, bits 28-31 of the
segment-table entry, to establish whether the
addressed entry is within the table. If the value in
the page-table-length field is less than the value in
the four leftmost bit positions of the page-index
field, a page-translation exception is recognized.

All four bytes of the page-table entry appear to be
fetched concurrently as observed by other cPus.
The fetch access is not subject to protection.
When the storage address generated for fetching the
page-table entry designates a location which is not
available in the configuration, an addressing excep-
tion is recognized, and the unit of operation is sup-
pressed.

. The entry fetched from the page table indicates the

availability of the page and contains the leftmost
bits of the page-frame real address. The page-
invalid bit is inspected to establish whether the cor-
responding page is available. If this bit is one, a
page-translation exception is recognized. If bit

position 0, 20, or 23 contains a one, a translation-
specification exception is recognized.

Formation of the Real Address

When no exceptions in the translation process are
encountered, the page-frame real address obtained
from the page-table entry and the byte-index
portion of the virtual address are concatenated,
with the page-frame real address forming the left-
most part. The result is the real storage address
which corresponds to the virtual address. All 31
bits of the address are used, regardless of whether
the current psw specifies the 24-bit or 31-bit
addressing mode.

Recognition of Exceptions during
Translation

Invalid addresses and invalid formats can cause
exceptions to be recognized during the translation
process. Exceptions are recognized when informa-
tion contained in control registers or table entries is
used for translation and is found to be incorrect.

The information pertaining to DAT is considered to
be used when an instruction is executed with DAT
on or when INVALIDATE PAGE TABLE ENTRY oOr
LOAD REAL ADDRESS is executed. The information
is not considered to be used when the Psw specifies
DAT on but an 1/0, external, restart, or machine-
check interruption occurs before an instruction is
executed, or when the psw specifies the wait state.
Only that information required in order to translate
a virtual address is considered to be in use during
the translation of that address, and, in particular,
addressing exceptions that would be caused by the
use of a segment-table designation are not recog-
nized when that segment-table designation is not
the one actually used in the translation.

A list of translation exceptions, with the action
taken for each exception and the priority in which
the exceptions are recognized when more than one
is applicable, is provided in the section “Recogni-
tion of Access Exceptions” in Chapter 6,
“Interruptions.”

Translation-Lookaside Buffer

To enhance performance, the dynamic-address-
translation mechanism normally is implemented
such that some of the information specified in the
segment and page tables is maintained in a special
buffer, referred to as the translation-lookaside buffer
(tLB). The CPU necessarily refers to a DAT-table
entry in real or absolute storage only for the initial

access to that entry. This information may be
placed in the TLB, and subsequent translations may
be performed by using the information in the TLB.
The presence of the TLB affects the translation
process to the extent that a modification of the
contents of a table entry in real or absolute storage
does not necessarily have an immediate effect, if
any, on the translation. In a multiple-cPU config-
uration, each CPU has its own TLB.

Entries within the TLB are not explicitly addressable
by the program.

Information is not necessarily retained in the TLB
under all conditions for which such retention is per-
missible. Furthermore, information in the TLB may
be cleared under conditions additional to those for
which clearing is mandatory.

TLB Structure

The description of the logical structure of the TLB
covers the implementation by all systems operating
as defined by Bsa/370. The TLB entries are consid-
ered as being of two types: TLB segment-table
entries and TLB page-table entries. A TLB entry is
considered as containing within it both the infor-
mation obtained from the table entry in real or
absolute storage and the attributes used to fetch the
entry from storage, as follows:

TLB STE:

STO | SX [PTO {PTL | C

STO The segment-table origin in effect when the
entry was formed

sX The segment index used to select the entry

Pro The page-table origin fetched from the
segment-table entry in real or absolute
storage

PTL The page-table length fetched from the
segment-table entry in real or absolute
storage

C The common-segment bit fetched from the
segment-table entry in real or absolute
storage

TLB PTE:

PTO | PX |PFRA| P

Chapter 3. Storage 3-31

PTO The page-table origin in effect when the
entry was formed

PX The page index used to select the entry

PFRA The page-frame real address fetched from the
page-table entry in real or absolute storage.

2 The page-protection bit fetched from the
page-table entry in real or absolute storage

Note: The following sections describe the condi-
tions under which information may be placed in
the TLB, the conditions under which information
from the TLB may be used for address translation,
and how changes to the translation tables affect the
translation process.

. Formation of TLB Entries
The formation of TLB entries and the effect of any
manipulation of the contents of a table entry in real
or absolute storage by the program depend on
whether the entry is is attached to a particular cpu
and on whether the entry is valid.

The attached state of a table entry denotes that the
CPU to which it is attached can attempt to use the
table entry for implicit address translation. The
table entry may be attached to more than one cpu
at a time.

The valid state of a table entry denotes that the
segment or page associated with the table entry is
available. An entry is valid when the segment-
invalid bit or page-invalid bit in the entry is zero.

A segment-table entry or a page-table entry may be
placed in the TLB whenever the entry is attached
and valid and would not cause a translation-
specification exception if used for translation.

A segment-table entry is attached when all of the
following conditions are met:

1. The current PSW specifies DAT on.

2. The current PswW contains no errors which
would cause an early exception to be recog-
nized.

3. The current translation format, bits 8-12 in
control register 0, is valid.

4. The entry meets the requirements in a, b, c, or
d below.

a. The entry is within the segment table desig-
nated by the primary segment-table desig-
nation in control register 1, and the cPU is
not in the home-space mode.

.3-32 ESA/370 Principles of Operation

b. The entry is within the segment table desig-
nated by the secondary segment-table des-
ignation in control register 7 and either of
the following requirements is met:

* The cpu is in the secondary-space
mode.

e The cPU is in the primary-space mode,
and the secondary-space control, bit 5
of comntrol register 0, is one.

c. The entry is within a segment table for
which the designation is in either an ALB
ASN-second-table entry or an AsSN-second-
table entry which can be placed in the ALB,
and the CPU is in the access-register mode.
See the section “ART-Lookaside Buffer” in
Chapter 5, “Program Execution,” for the
meaning of the terminology used here.

d. The entry is within the segment table speci-
fied by the home segment-table designation
in control register 13, and the CPU is not in
the secondary-space mode.

A page-table entry is attached when it is within the
page table designated by either a usable TLB
segment-table entry or by an attached and valid
segment-table entry which would not cause a
translation-specification exception if used for trans-
lation. A wusable TLB segment-table entry is
explained in the next section.

Use of TLB Entries

The usable state of a TLB entry denotes that the
CPU can attempt to use the TLB entry for implicit
address translation. Also, the usable state of a TLB
segment-table entry is a factor in determining
whether a page-table entry is attached.

A TLB segment-table entry is in the usable state
when all of the following conditions are met:
1. The current PsW specifies DAT on.

2. The current Psw contains no errors which
would cause an early exception to be recog-
nized.

3. The current translation format, bits 8-12 in
control register 0, is valid.

4. The TLB segment-table entry meets at least one
of the following requirements:

a. The common-segment bit is one in the TLB
entry.

b. The segment-table-origin field in the TLB

entry is the same as the current PsTO, and

the CPU is not in the home-space mode.

c. The segment-table-origin field in the TLB
entry is the same as the current ssTo, and
either of the following requirements is met:

« The cpu is in the secondary-space
mode.

» The cPU is in the primary-space mode,
and the secondary-space control, bit 5
- of control register 0, is one.

d. The segment-table-origin field in the TLB
entry is the same as one that can be
obtained by applying the access-register-
translation process to the contents of an
access register, and the CPU is in the access-
register mode.

e. The segment-table-origin field in the TLB
entry is the same as the current HSTO, and
the cpu is not in the secondary-space
mode.

A TLB segment-table entry may be used for implicit
address translation only when the entry is in the
usable state, the segment index of the entry
matches the segment index of the virtual address to
be translated, and either the common-segment bit is
one in the TLB entry or the segment-table-origin
field in the TLB entry matches the segment-table
origin used to select it. However, a TLB segment-
table entry is not used if the common-segment bit
is one in the entry and the private-space-control bit
is one in the segment-table designation used to
select the entry, even if the segment-table-origin
fields in the entry and the designation match.

A TLB page-table entry is in the usable state when
all of the following conditions are met:

1. The TLB page-table entry is selected by a usable
TLB segment-table entry or by an attached and
valid segment-table entry which would not
cause a translation-specification exception if
used for translation.

2. The page-table-origin field in the TLB page-
table entry matches the page-table-origin field
in the segment-table entry which selects it.

3. The page-index field in the TLB page-table
entry is within the range permitted by the page-
table-length field in the segment-table entry
which selects it.

A TLB page-table entry may be used for implicit
address translation only when the TLB entry is in
the usable state as selected by the segment-table
entry being used and only when the page index of
the TLB page-table entry matches the page index of
the virtual address being translated.

The operand address of LOAD REAL ADDRESS is
translated without the use of the TLB contents.
Translation in this case is performed by the use of
the designated tables in real or absolute storage.

Programming Notes:

1. Although a table entry may be copied into the
TLB only when the table entry is both valid and
attached, the copy may remain in the TLB even
when the table entry itself is no longer valid or
attached.

2. No entries can be copied into the TLB when
DAT is off because the table entries at this time
are not attached. In particular, translation of
the operand address of LOAD REAL ADDRESS,
with DAT off, does not cause entries to be
placed in the TLB.

Conversely, when DAT is on, information may
be copied into the TLB from all translation-
table entries that could be used for address
translation, given the current translation param-
eters, the setting of the address-space-control
bits, the setting of the secondary-space-control
bit, and the contents of the access registers.
The loading of the TLB does not depend on
whether the entry is used for translation as part
of the execution of the current instruction, and
such loading can occur when the wait state is
specified.

3. More than one copy of a table entry may exist
in the TL.B. For example, some implementa-
tions may cause a copy of a valid table entry to
be placed in the TLB for each segment-table
origin by which the entry becomes attached.

Modification of Translation Tables

When an attached and invalid table entry is made
valid and no usable entry for the associated virtual
address is in the TLB, the change takes effect no
later than the end of the current unit of operation.
Similarly, when an unattached and valid table entry
is made attached and no usable entry for the associ-
ated virtual address is in the TLB, the change takes
effect no later than the end of the current unit of
operation.

Chapter 3. Storage 3-33

When a valid and attached table entry is changed,
and when, before the TLB is cleared of entries which
qualify for substitution for that entry, an attempt is
made to refer to storage by using a virtual address
requiring that entry for translation, unpredictable
results may occur, to the following extent. The use
of the new value may begin between instructions or
during the execution of an instruction, including
the instruction that caused the change. Moreover,
until the TLB is cleared of entries which qualify for
substitution for that entry, the TLB may contain
both the old and the new values, and it is unpre-
dictable whether the old or new value is selected for
a particular access. If both old and new values of a
segment-table entry are present in the TLB, a page-
table entry may be fetched by using one value and
placed in the TLB associated with the other value.
If the new value of the entry is a value which
would cause an exception, the exception may or
may not cause an interruption to occur. If an
interruption does occur, the result fields of the
instruction may be changed even though the excep-

tion would normally cause suppression or

nullification.

Entries are cleared from the TLB in accordance with
* the following rules:

1. All entries are cleared from the TLB by the exe-
cution of PURGE TLB and SET PREFIX and by
CPU reset.

2. Selected entries are cleared from all TLBs in the
configuration by the execution of INVALIDATE
PAGE TABLE ENTRY by any of the CPUs in the
configuration.

3. Some or all TLB entries may be cleared at times
other than those required by PURGE TLB, SET
PREFIX, CPU reset, and INVALIDATE PAGE
TABLE ENTRY.

Programming Notes:

1. Entries in the TLB may continue to be used for
translation after the table entries from which
they have been formed have become unat-
tached or invalid. These TLB entries are not
necessarily removed unless explicitly cleared
from the TLB.

A change made to an attached and valid entry
or a change made to a table entry that causes
the entry to become attached and valid is
reflected in the translation process for the next
instruction, or earlier than the next instruction,
unless a TLB entry qualifies for substitution for
that table entry. However, a change made to a

3-34 ESA/370 Principles of Operation

table entry that causes the entry to become
unattached or invalid is not necessarily reflected
in the translation process until the TLB is
cleared of entries which qualify for substitution
for that table entry.

. Exceptions associated with dynamic address

translation may be established by a pretest for
operand accessibility that is performed as part
of the initiation of instruction execution. Con-
sequently, a segment-translation or page-
translation exception may be indicated when a
table entry is invalid at the start of execution
even if the instruction would have validated the
table entry it uses and the table entry would
have appeared valid if the instruction was con-
sidered to process the operands one byte at a
time.

. A change made to an attached table entry,

except to set the I bit to zero or to alter the
rightmost byte of a page-table entry, may
produce unpredictable results if that entry is
used for translation before the TLB is cleared of
all copies of that entry. The use of the new
value may begin between instructions or during
the execution of an instruction, including the
instruction that caused the change. When an
instruction, such as MOVE (Mvc), makes a
change to an attached table entry, including a
change that makes the entry invalid, and subse-
quently uses the entry for translation, a
changed entry is being used without a prior
clearing of the entry from the TLB, and the
associated unpredictability of result values and
of exception recognition applies.

Manipulation of attached table entries may
cause spurious table-entry values to be recorded
in a TLB. For example, if changes are made
piecemeal, modification of a wvalid attached
entry may cause a partially updated entry to be
recorded, or, if an intermediate value is intro-
duced in the process of the change, a suppos-
edly invalid entry may temporarily appear valid
and may be recorded in the TLB. Such an
intermediate value may be introduced if the
change is made by an 1/0 operation that is
retried, or if an intermediate value is introduced
during the execution of a single instruction.

As another example, if a segment-table entry is
changed to designate a different page table and
used without clearing the TLB, then the new
page-table entries may be fetched and associ-
ated with the old page-table origin. In such a
case, execution of INVALIDATE PAGE TABLE

ENTRY designating the new page-table origin
will not necessarily clear the page-table entries
fetched from the new page table.

. To facilitate the manipulation of translation
tables, INVALIDATE PAGE TABLE ENTRY is pro-
vided, which sets the 1 bit in a page-table entry
to one and clears all TLBs in the configuration
of entries formed from that table entry.

INVALIDATE PAGE TABLE ENTRY is useful for
setting the 1 bit to one in a page-table entry and
causing TLB copies of the entry to be cleared
from the TLB of each CPU in the configuration.
The following aspects of the TLB operation
should be considered when using INVALIDATE
PAGE TABLE ENTRY. (See also the program-
ming notes following INVALIDATE PAGE TABLE
ENTRY.)

a. INVALIDATE PAGE TABLE ENTRY should be
executed before making any change to a
page-table entry other than changing the
rightmost byte; otherwise, the selective
clearing portion of INVALIDATE PAGE
TABLE ENTRY may not clear the TLB copies
of the entry.

b. Invalidation of all the page-table entries
within a page table by means of INVALI-
DATE PAGE TABLE ENTRY does not neces-
sarily clear the TLB of the copies, if any, of
the segment-table entry designating the
page table. When it is desired to invalidate
and clear the TLB of a segment-table entry,
the rules in note 5 below must be followed.

c. When a large number of page-table entries
are to be invalidated at a single time, the
overhead involved in using PURGE TLB and
in following the rules in note 5 below may
be less than in issuing INVALIDATE PAGE
TABLE ENTRY for each page-table entry.

5. Manipulation of table entries should be in
accordance with the following rules. If these
rules are complied with, translation is per-
formed as if the table entries from real storage
were always used in the translation process.

a. A valid table entry must not be changed
while it is attached to any CPU except
either to invalidate the entry, by using
INVALIDATE PAGE TABLE ENTRY or to
alter bits 24-31 of a page-table entry.

b. When any change is made to a table entry
other than a change to bits 24-31 of a
page-table entry, each CPU which may have

a TLB entry formed from that entry must
execute PURGE TLB or SET PREFIX or
perform CPU reset, after the change occurs
and prior to the use of that entry for
implicit translation by that cpu, except
that the purge is unnecessary if the change
was made by using INVALIDATE PAGE
TABLE ENTRY.

¢. When any change is made to an invalid
table entry in such a way as to allow inter-
mediate valid values to appear in the entry,
each CPU to which the entry is attached
must execute PURGE TLB or SET PREFIX or
perform CPU reset, after the change occurs
and prior to the use of the entry for
implicit address translation by that cpu.

d. When any change is made to a segment-
table or page-table length, each CPU to
which that table has been attached must
execute PTLB after the length has been
changed but before that table becomes
attached again to the cpu.

Note that when an invalid page-table entry is
made valid without introducing intermediate
valid values, the TLB need not be cleared in a
cpuU which does not have any usable TLB
copies for that entry. Similarly, when an
invalid segment-table entry is made valid
without introducing intermediate valid values,
the TLB need not be cleared in a cpPuU which
does not have any usable TLB copies for that
segment-table entry and which does not have
any usable TLB copies for the page-table entries
attached by it.

The execution of PURGE TLB and SET PREFIX
may have an.adverse effect on the performance
of some models. Use of these instructions
should, therefore, be minimized in conformity
with the above rules.

Address Summary

Addresses Translated

Most addresses that are explicitly specified by the
program and are used by the cPu to refer to
storage for an instruction or an operand are logical
addresses and are subject to implicit translation
when DAT is on. Analogously, the corresponding
addresses indicated to the program on an inter-
ruption or as the result of executing an instruction
are logical. The operand address of LOAD REAL

Chapter 3. Storage 3-35

ADDRESS 1is explicitly translated, regardless of
whether the psW specifies DAT on or off.

Translation is not applied to quantities that are

formed from the values specified in the B and D
fields of an instruction but that are not used to
address storage. This includes operand addresses in
LOAD ADDRESS, MONITOR CALL, and the shifting
instructions. This also includes the addresses in
control registers 10 and 11 designating the starting
and ending locations for PER.

With the exception of INSERT VIRTUAL STORAGE
KEY and TEST PROTECTION, the addresses explicitly
designating storage keys (operand addresses in SET
STORAGE KEY EXTENDED, INSERT STORAGE KEY
EXTENDED, and RESET REFERENCE BIT EXT ENDED)
are real addresses. Similarly, the addresses implic-
itly used by the cpu for such sequences as inter-
ruptions are real addresses.

3-36 ESA/370 Principles of Operation

The addresses used by channel programs to transfer
data and to refer to CCWs or IDAWs are absolute
addresses.

The handling of storage addresses associated with
DIAGNOSE is model-dependent.

The processing of addresses, including dynamic
address translation and prefixing, is discussed in the
section “Address Types” in this chapter. Prefixing,
when provided, is applied after the address has been
translated by means of the dynamic-address-
translation facility. For a description of prefixing,
see the section “Prefixing” in this chapter.

Handling of Addresses

The bhandling of addresses is summarized in
Figure 3-10 on page 3-37. This figure lists all
addresses that are encountered by the program and
specifies the address type.

Virtual Addresses

Address of storage operand for INSERT VIRTUAL STORAGE KEY

Operand address in LOAD REAL ADDRESS

Addresses of storage operands for MOVE TO PRIMARY and MOVE TO
SECONDARY

Address stored in the word at real location 144 on a program inter-
ruption for page-translation or segment-translation exception
Linkage-stack-entry address in control register 15

Backward stack-entry address in linkage-stack header entry
Forward-section-header address in linkage-stack trailer entry

Instruction Addresses

.

Instruction address in PSW

Branch address

Target of EXECUTE

Address stored in the word at real location 152 on a program inter-
ruption for PER

Address placed in general register by BRANCH AND LINK, BRANCH AND
SAVE, BRANCH AND SAVE AND SET MODE, and PROGRAM CALL

Logical Addresses

.

* o o o

Addresses of storage operands for instructions not otherwise
specified

Address placed in general register 1 by EDIT AND MARK and TRANSLATE
AND TEST

Addresses in general registers updated by MOVE LONG and COMPARE
LOGICAL LONG

Addresses in general registers updated by COMPARE AND FORM CODEWORD
and UPDATE TREE

Address for TEST PENDING INTERRUPTION when the second-operand ad-
dress is nonzero

Real Addresses

Address of storage key for INSERT STORAGE KEY EXTENDED, RESET
REFERENCE BIT EXTENDED, and SET STORAGE KEY EXTENDED

Address of storage operand for TEST BLOCK

The translated address generated by LOAD REAL ADDRESS

Page-table origin in INVALIDATE PAGE TABLE ENTRY

Page-frame real address in page-table entry

Trace-entry address in control register 12

ASN-first-table origin in control register 14

ASN-second-table origin in ASN-first-table entry

Authority-table origin in ASN-second-table entry

Linkage-table origin in control register 5 or primary ASN-second-
table entry?

Entry-table origin in linkage-table entry
Dispatchable-unit-control-table origin in control register 2
Primary-ASN-second-table-entry origin in control register 51
Dispatchable-unit-access-1ist origin in dispatchable-unit control
table

Figure 3_10 (Part 1 of 2). Handling of Addresses

Chapter 3. Storage

3-37

Real Addresses (Continued)

* Primary-space-access-1ist origin in primary ASN-second-table entry

* ASN-second-table-entry address in entry-table entry and access-list
entry

Permanently Assigned Real Addresses

* Address of the doubleword into which TEST PENDING INTERRUPTION
stores when the second-operand address is zero

* Addresses of PSWs, interruption codes, and the associated informa-
tion used during interruption

* Addresses used for machine-check logout and save areas

Addresses Which Are Unpredictab]y Real or Absolute

* Segment-table origin in control registers 1 and 7

* Page-table origin in segment-table entry

"+ Address of segment-table entry or page-table entry provided by LOAD
REAL ADDRESS

Absolute Addresses

« Prefix value

* Channel-program address in ORB

~+» Data address in CCW .

* IDAW address in a CCW specifying indirect data addressing

* CCW address in a CCW specifying transfer in channel

* Data address in IDAW

* Measurement-block origin specified in SET CHANNEL MONITOR

» Address 1imit specified in SET ADDRESS LIMIT '

+ Addresses used by the store-status-at-address SIGNAL PROCESSOR order
+ Failing-storage address stored in the word at real location 248
* CCW address in SCSW-

Permanently Assigned Absolute Addresses

* Addresses used for the store-status function
* Addresses of PSW and first two CCWs used for initial program Toading

Addresses Not Used to Reference Storage

* PER starting address in control register 10

* PER ending address in control register 11

* Address stored in the word at real location 156 for a monitor event

* Address in shift instructions and other instructions specified not
to use the address to reference storage

Explanation:

! When the address-space-function (ASF) control, bit 15 of control
register 0, is zero, control register 5 contains the linkage-table
origin. When the ASF control is one, control register 5 contains
the primary-ASN-second-table-entry origin, and the linkage-table
origin is in the primary ASN-second-table entry.

Figure 3-10 (Part 2 of 2). Handling of Addresses

3-38 ESA/370 Principles of Operation

Assigned Storage Locations

Figure 3-11 on page 3-44 shows the format and
extent of the assigned locations in storage. The
locations are used as follows.

0-7 (Absolute Address)

Initial-Program-Loading PSW: The first
eight bytes read during the initial-
program-loading (1PL) initial-read opera-
tion are stored at locations 0-7. The con-
tents of these locations are used as the
new PSW at the completion of the IpPL
operation. These locations may also be
used for temporary storage at the initi-
ation of the 1PL operation.

0-7 (Real Address)

Restart New PSW: The new PSW is
fetched from locations 0-7 during a restart
interruption.

8-15 (Absolute Address)

Initial-Program-Loading CCWI: Bytes
8-15 read during the initial-program-
loading (1PL) initial-read operation are
stored at locations 8-15. The contents of
these locations are ordinarily used as the
next CCW in an IPL CCW chain after com-
pletion of the 1PL initial-read operation.

8-15 (Real Address)

Restart Old PSW: The current PSW 1is
stored as the old psw at locations 8-15
during a restart interruption.

16-23 (Absolute Address)

Initial-Program-Loading CCW2: Bytes
16-23 read during the initial-program
loading (IPL) initial-read operation are
stored at locations 16-23. The contents
of these locations may be used as another
ccw in the 1PL ccw chain to follow 1PL
CCW1.

24-31 (Real Address)

External Old PSW: The current PSW is
stored as the old psw at locations 24-31
during an external interruption.

32-39 (Real Address)

Supervisor-Call Old PSW: The current
Psw is stored as the old psw at locations
32-39 during a supervisor-call inter-
ruption.

40-47

48-55

56-63

88-95

96-103

104-111

112-119

120-127

128-131

132-133

(Real Address)

Program Old PSW: The current PSW is
stored as the old psw at locations 40-47
during a program interruption.

(Real Address)

Machine-Check Old PSW: The current
psw is stored as the old psw at locations
48-55 during a machine-check inter-
ruption.

(Real Address)

Input/OQutput Old PSW: The current Psw
is stored as the old Psw at locations 56-63
during an 1/0 interruption.

(Real Address)

External New PSW: The new Psw is
fetched from locations 88-95 during an
external interruption.

(Real Address)

Supervisor-Call New PSW: The new PSW
is fetched from locations 96-103 during a
supervisor-call interruption.

(Real Address)

Program New PSW: The new PsSW is
fetched from locations 104-111 during a
program interruption.

(Real Address)

Machine-Check New PSW: The new Psw
is fetched from locations 112-119 during a
machine-check interruption.

{Real Address)

Input/Output New PSW: The new PSW is
fetched from locations 120-127 during an
1/0 interruption.

(Real Address)

External-Interruption Parameter: During
an external interruption due to service
signal, the parameter associated with the
interruption is stored at locations
128-131.

(Real Address)

CPU Address: During an external inter-
ruption due to malfunction alert, emer-
gency signal, or external call, the cpu
address associated with the source of the
interruption is stored at locations
132-133. For all other external-

Chapter 3. Storage 3-39

134-135

136-139

140-143

144-147

interruption conditions, zeros are stored
at locations 132-133.

(Real Address)

External-Interruption Code: During an
external interruption, the interruption
code is stored at locations 134-135.

(Real Address)

Supervisor-Call-Interruption Identification:
During a supervisor-call interruption, the
instruction-length code is stored in bit
positions 5 and 6 of location 137, and the
interruption code is stored at locations
138-139. Zeros are stored at location 136
and in the remaining bit positions of
location 137.

(Real Address)

Program-Interruption Identification:
During a program interruption, the
instruction-length code is stored in bit
positions 5 and 6 of location ‘141, and the
interruption code is stored at locations
142-143. Zeros are stored at location 140
and in the remaining bit positions of
location 141.

(Real Address)

Translation-Exception [dentification:
During a program interruption due to a
segment-translation exception or a page-
translation exception, the segment-index
and page-index portion of the virtual
address causing the exception is stored at
locations 144-147. This address is some-
times referred to as the translation-
exception address. Bits 20-29 of the

~address are unpredictable. Bits 30-31 of

the address are set to identify the
segment-table designation (STD) used in
the translation, as follows:

3-40 ESA/370 Principles of Operation

Bit

31 Meaning

0 Primary sTD was used.

1 cPU was in the access-register
mode, and either the access
was an instruction fetch or it
was a storage-operand refer-
ence that used an AR-specified
STD (the access was not an
implicit reference to the
linkage stack). The exception
access id, real location 160,
can be examined to determine
the sTD used. However, if the
primary, secondary, or home
STD was used, bits 30 and 31
may be set to 00, 10, or 11,
respectively, instead of to 01.

1 0 Secondary STD was used.

1 1 Home sTD was used (includes

the case of an implicit refer-

ence to the linkage stack).

ooggi

The cPU may avoid setting bits 30 and 31
to 01 by recognizing that the access was
an instruction fetch, that access-list-entry
token 00000000 or 00000001 hex was
used, or that the access-list-entry token
designated, through an access-list entry,
an’ ASN-second-table entry containing an
STD equal to the primary sTD, secondary
STD, or home STD.

Bit 0 of location 144 is set to one if the
CPU was in either the primary-space
mode or the secondary-space mode and
the secondary STD was used; otherwise,
bit 0 is set to zero.

During a program interruption due to an
AFX-translation, Asx-translation, primary-
authority, or secondary-authority excep-
tion, the ASN being translated is stored at
locations 146-147. Zeros are stored at
locations 144-145.

During a program interruption for a
space-switch event, an identification of
the old instruction space is stored at
locations 146-147, and the old
instruction-space space-switch-event-
control bit is placed in bit position 0 and
zeros are placed in bit positions 1-15 of
locations 144-145. The identification and

bit stored are as follows:

148-149

150-151

152-155

156-159

160

* If the cPU was in the primary-space,
secondary-space, or access-register
mode before the operation, the old
PASN, bits 16-31 of control register 4
before the operation, is stored at
locations 146-147, and the old
primary space-switch-event-control
bit, bit 0 of control register 1 before
the operation, is placed in bit position
0 of locations 144-145.

* If the cPU was in the home-space
mode before the operation, zeros are
stored at locations 146-147, and the
home space-switch-event-control bit,
bit 0 of control register 13, is placed
in bit position 0 of locations 144-145.

During a program interruption due to an
LX-translation or EX-translation excep-
tion, the PC number is stored in bit posi-
tions 12-31 of the word at locations
144-147. Bits 0-11 are set to zeros.

(Real Address)

Monitor-Class Number: During a
program interruption due to a monitor
event, the monitor-class number is stored
at location 149, and zeros are stored at
location 148.

(Real Address)

PER Code: During a program inter-
ruption due to a PER event, the PER code
is stored in bit positions 0-3 of location
150. Zeros are stored in bit positions 4-7
of location 150 and bit positions 0-7 of
location 151.

(Real Address)

PER Address: During a program inter-
ruption due to a program event, the PER
address is stored at locations 152-155. Bit
0 of location 152 is set to zero.

(Real Address)

Monitor Code: During a program inter-
ruption due to a monitor event, the
monitor code is stored at locations
156-159.

~ (Real Address)

Exception Access Identification: During a
program interruption due to a segment-
translation exception or a page-translation

161

exception, an indication of the address
space to which the exception applies may
be stored at location 160. If the cPU was
in the access-register mode and the access
was an instruction fetch, including a fetch
of the target of an EXECUTE instruction,
zeros are stored at location 160. If the
CPU was in the access-register mode and
the access was a storage-operand reference
that used an AR-specified segment-table
designation, the number of the access reg-
ister used is stored in bit positions 4-7 of
location 160, and zeros are stored in bit
positions 0-3. (In either of the two cases
described so far, storing at location 160
occurs regardless of the value stored in bit
positions 30 and 31 of real locations
144-147.) If the cPU was in the access-
register mode but the access was an
implicit reference to the linkage stack, or
if the cPU was not in the access-register
mode, the contents of location 160 are
unpredictable.

During a program interruption due to an
ALEN-translation, ALE-sequence,
ASTE-validity, ASTE-sequence, or
extended-authority exception, the number
of the access register used is stored in bit
positions 4-7 of location 160, and zeros
are stored in bit positions 0-3.

(Real Address)

PER Access Identification: During a
program interruption due to a PER
storage-alteration event, an indication of
the address space to which the event
applies may be stored at location 161. If
the access used an AR-specified segment-
table designation, the number of the
access register used is stored in bit posi-
tions 4-7 of location 161, and zeros are
stored in bit positions 0-3. However, the
contents of location 161 are unpredictable
if the instruction that caused the event
turned DAT off. The contents of location
161 are also unpredictable if (1) the cpu
was in the access-register mode but the
access was an implicit reference to the
linkage stack, (2) the cPuU was not in the
access-register mode, or (3) bit 2 of the
PER code is one but indicates a store-
using-real-address event instead of a
storage-alteration event.

Chapter 3. Storage 3-41

184-187

188-191

216-223

216-223

224-231

224-231

232-239

244-247

248-251

(Real Address)

Subsystem-1dentification Word: During
an 10 interruption, the subsystem-
identification word is stored at locations
184-187.

(Real Address)

1{O-Interruption Parameter: During an
1/0 interruption, the interruption param-
eter from -the associated subchannel is
stored at locations 188-191.

(Absolute Address)

Store-Status CPU-Timer Save Area:
During the execution of the store-status
operation, the contents of the CPU timer
are stored at locations 216-223.

(Real Address)

Machine-Check CPU-Timer Save Area:

During a machine-check interruption, the
contents of the cpU timer are stored at
locations 216-223.

(Absolute Address)

Store-Status Clock-Comparator Save
Area: During the execution of the store-
status operation, the contents of the clock

comparator are stored at locations
224-231.
(Real Address)

Machine-Check Clock-Comparator Save
Area: During a machine-check inter-
ruption, the contents of the clock
comparator are stored at locations
224-231.

(Real Address)

Machine-Check-Interruption Code:
During a machine-check interruption, the
machine-check-interruption code is stored
at locations 232-239.

(Real Address)

External-Damage Code: During a
machine-check interruption due to certain
external-damage conditions, depending on
the model, an external-damage code may
be stored at locations 244-247.

(Real Address)

Failing-Storage Address: During a
machine-check interruption, a failing-

3-42 ESA/370 Principles of Operation

256-263

256-271

264-267

288-351

288-351

352-383

352-383

384-447

storage address may be stored at locations

248-251. Bit 0 of location 248 is set to
Zero.
(Absolute Address)

Store-Status PSW Save Area: During the
execution of the store-status operation,
the contents of the current Psw are stored
at locations 256-263.

(Real Address)

Fixed-Logout Area: Depending on the
model, logout information may be stored
at locations 256-271 during a machine-
check interruption.

(Absolute Address)

Store-Status Prefix Save Area: During
the execution of the store-status opera-
tion, the contents of the prefix register are
stored at locations 264-267.

(Absolute Address)

Store-Status Access-Register Save Area:
During the execution of the store-status
operation, the contents of the access reg-
isters are stored at locations 288-351.

(Real Address)

Machine-Check Access-Register Save
Area: During a machine-check inter-
ruption, the contents of the access regis-
ters are stored at locations 288-351.

(Absolute Address)

Store-Status Floating-Point-Register Save
Area: During the execution of the store-
status operation, the contents of the
floating-point registers are stored at
locations 352-383.

(Real Address)
Machine-Check Floating-Point-Register
Save Area: During a machine-check

interruption, the contents of the floating-
point registers are stored at locations
352-383.

(Absolute Address)

Store-Status General-Register Save Area:
During the execution of the store-status
operation, the contents of the general reg-
isters are stored at locations 384-447.

384-447 (Real Address)

448-511

448-511

Machine-Check G’eneral-Register Save

Area: During a machine-check inter-
ruption, the contents of the general regis-
ters are stored at locations 384-447.

(Absolute Address)

Store-Status Control-Register Save Area:

During the execution of the store-status
operation, the contents of the control reg-
isters are stored at locations 448-511.

(Real Address)

Machine-Check ~ Control-Register ~ Save
Area: During a machine-check inter-

ruption, the contents of the control regis- -

ters are stored at locations 448-511.

Programming Notes:

*1. When the ePU is in the access-register mode,

some instructions, such as MvcL, which
address operands in more than one address
space, may cause a storage-alteration PER event
in one address space concurrently with a
segment-translation exception or a page-
translation exception in another address space.
The access registers used to cause these condi-
tions in such a case are different. In order to
identify both access registers, two access_iden-
tifications, namely the exception access identifi-
cation and the PER access identification, are
provided.

. STORE THEN AND SYSTEM MASK can Cause a

PER storage-alteration event and turn DAT off,
in which case the PER access. identification at
real location 161 is unpredictable.

Chapter 3. Storage 3-43

Hex Dec

0 0 | Initial-Program-Loading PSW; or Restart New PSW
4 4

8 8 | Initial-Program-Loading CCW1; or Restart 0l1d PSW
c 12

16 16 | Initial-Program Loading CCW2
14 20

18 24 | External 01d PSW

1c 28

20 32 | Supervisor-Call O1d PSW
24 36

28 40 | Program 01d PSW

2C 44

30 48 | Machine-Check 01d PSW
34 52

38 56 | Input/Output 01d PSW

3C 60

40 64

44 68

8 72

4 76

50 80

54 84

58 88 | External New PSW

5¢ 92

60 96 | Supervisor-Call New PSW
64 100

68 104 | Program New PSW

6C 108

76 112 | Machine-Check New PSW
74 116

78 120 | Input/Output New PSW

7C 124

Figure 3-11 (Part 1 of 4). Assigned Storage Locations

3-44 ESA/370 Principles of Operation

Hex Dec

80 128 | External-Interruption Parameter

84 132 | CPU Address External-Interruption Code
88 136 |00 0B D0OBGODO OO OILC|O| SVC-Interruption Code

8C 140 000000000 0O0DBO|ILC|O| Program-Interruption Code
90 144 | Translation-Exception ldentification

94 148 | Monitor-Class Number PER Cde|0 0D OO OOO0DO0D
98 152 | PER Address

9C 156 | Monitor Code

A0 160 [Exc. Access ID | PER Access ID

A 164

A8 168

AC 172

B@ 176

B4 180

B8 184 | Subsystem-Identification Word

BC 188 | I/0-Interruption Parameter

e 192

C4 196

C8 200

CC 204

Do 208

D4 212

D8 216 Store-Stétus CPU-Timer Save Area; or Machine-Check CPU-Timer

Save Area
DC 220
E@. 224 | Store-Status Clock-Comparator Save Area; or Machine-Check
. Clock-Comparator Save Area

E4 228

E8 232 | Machine-Check Interruption Code

EC 236

FO 240

F4 244 | External-Damage Code

FB. 248 Failing-Storagé Address

FC 252

Figure. 3-11 (Part 2 of 4). Assigned Storage Locations

Chapter 3. Storage

3-45

Hex Dec

100 256 | Store-Status PSW Save Area; or Fixed-Logout Area (Part 1)

104 260

108 264 | Store-Status Prefix Save Area; or Fixed-Logout Area (Part 2)

10C 268, | Fixed-Logout Area (Part 3)

110 272

11C 284

120 288 | Store-Status Access-Register Save Area; or Machine- Check
Access-Register Save Area *

124 292
128 296

12C 300

154 340
158 344

15¢ 348

160 352 | Store-Status Floating-Point-Register Save Area; or Machine-
Check Floating-Point-Register Save Area

164 356 .

168 360
16C 364
176 368
174 372
178 376

17C 380

180 384 | Store-Status General-Register Save Area; or-Machine-Check
General-Register Save Area

184 388 P

188 392

18C 396

184 436

188 440

1BC 444

Figure 3-11 (Part 3 of 4). Assigned Storage Locations *

3-46 ESA/370 Principles of Operation

Hex Dec

1C0 448 | Store-Status Control-Register Save Area; or Machine-Check
Control-Register Save Area

1C4 452
1C8 456»

1CC 460

1F4 500
1F8 504

1FC 508 l

Figure 3-11 (Part 4 of 4). Assigned Storage Locations

Chapter 3. Storage 3-47

Chapter 4. Control

Stopped, Operating, Load, and Check-Stop

States, 4-1
Stopped State 4-2
Operating State 4-2
LoadState 4-2
Check-Stop State 4-2

Program-Status Word 4-3
Program-Status-Word Format 4-5
Control Registers 4-6
Tracing, 4-9
Control-Register Allocation 4-9
Trace Entries 4-10
Operation 4-12
Program-Event Recording 4-12
Control-Register Allocation 4-13
Operation 4-14
Identification of Cause 4-14
Priority of Indication 4-15
Storage-Area Designation 4-16
PER Events 4-16
Successful Branching 4-16
Instruction Fetching 4-17
Storage Alteration 4-17

General-Register Alteration 4-17

Store Using Real Address 4-18
Indication of PER Events Concurrently
with Other Interruption Conditions . . . 4-18

Timing 4-21
Time-of-Day Clock 4-21
Format 4-21
States 4-22
Changes in Clock State 4-23
Setting and Inspecting the Clock 4-23
TOD-Clock Synchronization 4-24
Clock Comparator 4-25
CPUTimer 4-26
Externally Initiated Functions 4-27
Resets 4-27
CPUReset 4-30
Initial CPUReset 4-31
Subsystem Reset 4-31
Clear Reset 4-31
Power-On Reset 4-32
Initial Program Loading 4-32
Store Status 4-33

Multiprocessing 4-33

Shared Main Storage 4-34
CPU-Address Identification 4-34
CPU Signaling and Response 4-34
Signal-Processor Orders 4-34
Conditions Determining Response 4-36
Conditions Precluding Interpretation of
theOrder Code 4-36
Status Bits 4-37

This chapter describes in detail the facilities for
controlling, measuring, and recording the operation
of one or more CPUs.

Stopped, Operating, Load, and
Check-Stop States

The stopped, operating, load, and check-stop states
are four mutually exclusive states of the cpu.
When the CPU is in the stopped state, instructions
and interruptions, other than the restart inter-
ruption, are not executed. In the operating state,
the CPU executes instructions and takes inter-
ruptions, subject to the control of the program-
status word (Psw) and control registers, and in the
manner specified by the setting of the operator-
facility rate control. The cPU is in the load state

during the initial-program-loading operation. The
CPU enters the check-stop state only as the result of
machine malfunctions.

A change between these four CPuU states can be
effected by use of the operator facilities or by
acceptance of certain SIGNAL PROCESSOR orders
addressed to that cpu. The states are not con-
trolled or identified by bits in the psw. The
stopped, load, and check-stop states are indicated
to the operator by means of the manual indicator,
load indicator, and check-stop indicator, respec-
tively. These three indicators are off when the cpu
is in the operating state.

The cpu timer is updated when the CPU is in the

operating state or the load state. The TOD clock is
not affected by the state of any cpu.

Chapter 4. Control 4~1

Stopped State

The cPuU changes from the operating state to the
stopped state by means of the stop function. The
stop function is performed when:

« The stop key is activated while the cPU is in
the operating state.

e The cPU accepts a stop or stop-and-store-
status order specified by a SIGNAL PROCESSOR
instruction addressed to this CPU while it is in
the operating state.

* The cPU has finished the execution of a unit of
operation initiated by performing the start
function with the rate control set to the
instruction-step position.

When the stop function is performed, the transition
from the operating to the stopped state occurs at
the end of the current unit of operation. When the
wait-state bit of the PSW is one, the transition takes
place immediately, provided no interruptions are
pending for which the CPU is enabled. In the case
of interruptible instructions, the amount of data
processed in a unit of operation depends on the
particular instruction and may depend on the
model.

Before entering the stopped state by means of the
stop function, all pending allowed interruptions
occur while the cpu is still in the operating state.
They cause the old psw to be stored and the new
psw to be fetched before the stopped state is
entered. While the cpu is in the stopped state,
interruption conditions remain pending.

The cPuU is also placed in the stopped state when:

* The cPU reset is completed. However, when
the reset operation is performed as part of
initial program loading for this CPU, then the
CPU is placed in the load state and does not
necessarily enter the stopped state.

* An address comparison indicates equality and
stopping on the match is specified.

The execution of resets is described in the section
“Resets” in this chapter, and address comparison is
described in the section “Address-Compare
Controls” in Chapter 12, “Operator Facilities.”

If the cPuU is in the stopped state when an INVALI-

DATE PAGE TABLE ENTRY instruction is executed
on another CPU in the configuration, the invali-

4-2 ESA/370 Principles of Operation

dation may be performed immediately or may be
delayed until the cPuU leaves the stopped state.

Operating State
The cPU changes from the stopped state to the
operating state by means of the start function or

when a restart interruption (see Chapter 6) occurs.

The start function is performed if the CPU is in the

stopped state and (1) the start key associated with

that cpuU is activated or (2) that cpU accepts the
start order specified by a SIGNAL PROCESSOR
instruction addressed to that cpu. The effect of
performing the start function is unpredictable when
the stopped state has been entered by means of a
reset.

When the rate control is set to the process position
and the start function is performed, the cpuU starts
operating at normal speed. When the rate control
is set to the instruction-step position and the wait-
state bit is zero, one instruction or, for interruptible
instructions, one unit of operation is executed, and
all pending allowed interruptions occur before the
CPU returns to the stopped state. When the rate
control is set to the instruction-step position and
the wait-state bit is one, the start function does not
cause an instruction to be executed, but all pending
allowed interruptions occur before the CPU returns
to the stopped state.

Load State

The cPuU enters the load state when the load-
normal or load-clear key is activated. (See the
section “Initial Program Loading” in this chapter.
See also the section “Initial Program Loading” in
Chapter 17, “1/0 Support Functions.”) If the initial-
program-loading operation is completed success-
fully, the cPU changes from the load state to the
operating state, provided the rate control is set to
the process position; if the rate control is set to the
instruction-step position, the CPU changes from the
load state to the stopped state.

Check-Stop State

The check-stop state, which the CcPU enters on
certain types of machine malfunction, is described
in Chapter 11, “Machine-Check Handling.” The
CPU leaves the check-stop state when CPU reset is
performed.

Programming Notes:

1. Except for the relationship between execution
time and real time, the execution of a program
is not affected by stopping the cpu.

2. When, because of a machine malfunction, the
CPU is unable to end the execution of an
instruction, the stop function is ineffective, and
a reset function has to be invoked instead. A
similar situation occurs when an unending
string of interruptions results from a psw with

a psw-format error of the type that is recog-

nized early, or from a persistent interruption
condition, such as one due to the CPU timer.

3. Pending 1/0 operations may be initiated, and
active 1/0 operations continue to suspension or
completion, after the cPU enters the stopped
state. The interruption conditions due to sus-
pension or completion of 1/0 operations remain
pending when the CPU is in the stopped state.

Program-Status Word

The current program-status word (PSW) in the cpu
contains information required for the execution of
the currently active program. The psw is 64 bits in
length and includes the instruction address, condi-
tion code, and other control fields. In general, the
PSW is used to control instruction sequencing and
to hold and indicate much of the status of the cpu

in relation to the program currently being executed.
Additional control and status information is con-
tained in control registers and permanently assigned
storage locations.

The status of the CPU can be changed by loading a
new PSW or part of a PSW.

Control is switched during an interruption of the
CPU by storing the current PSW, so as to preserve
the status of the CPU, and then loading a new psw.

Execution of LOAD Psw, or the successful conclu-
sion of the initial-program-loading sequence, intro-
duces a new psw. The instruction address is
updated by sequential instruction execution and
replaced by successful branches. Other instructions
are provided which operate on a portion of the
psw. Figure 4-1 on page 4-4 summarizes these
instructions.

A new or modified PSW becomes active (that is, the
information introduced into the current PSW
assumes control over the CPU) when the inter-
ruption or the execution of an instruction that
changes the psw is completed. The interruption for
PER associated with an instruction that changes the
PSW occurs under control of the PER mask that is
effective at the beginning of the operation.

Bits 0-7 of the psw are collectively referred to as
the system mask.

Chapter 4. Control 4-3

AM

ANDs

ORs

PKC

the general register.

2 PROGRAM RETURN does not change the PER mask.

3 The condition code set by PROGRAM RETURN is unpredictable.

The action depends on the addressing mode, bit 32 of the current PSW.
addressing mode, the condition code and program mask are saved in the leftmost byte of
In the 31-bit addressing mode, the addressing mode, along with

~bits 1-7 of the 31-bit address, replace the leftmost byte of the register.

4 PROGRAM TRANSFER does not change the problem-state bit from one to zero.

Condition
Address- | Code and
Problem Space Program {Addressing
System Mask{ PSW Key State Control Mask Mode
(PSW Bits | (PSW Bits (PSW (PSW Bits | (PSW Bits (PSW
0-7) 8-11) Bit 15) 16-17) 18-23) Bit 32)
Instruction Saved| Set [Saved| Set [Saved| Set [Saved| Set |Saved| Set [Saved| Set
BRANCH AND LINK No No No No No No No No AM No AM No
BRANCH AND SAVE No No No No No No No No No No Yes | No
BRANCH AND SAVE AND SET No No No No No No No No No No Yes | Yest
MODE
BRANCH AND SET MODE No No No No No No No No No No Yesl| Yest
BRANCH AND STACK Yes | No Yes | No Yes | No Yes | No Yes | No Yesi| No
INSERT PROGRAM MASK No No No No No No No No Yes | No No No
INSERT PSW KEY No No Yes [No No No No No No No No No
INSERT ADDRESS SPACE No No No No No No Yes | No No No No No
CONTROL
Basic PROGRAM CALL No No No No Yes | Yes | No No No No Yes | Yes
Stacking PROGRAM CALL Yes | No Yes | PKC | Yes | Yes | Yes | Yes | Yes | No Yes | Yes
PROGRAM RETURN No Yes2| No Yes | No Yes | No Yes | No Yes3| No Yes
PROGRAM TRANSFER No No No No No Yes4| No No No | No No Yes
SET ADDRESS SPACE CONTROL | No No No No No No No Yes | No No No No
SET PROGRAM MASK No No No No No No No No No Yes | No No
SET PSW KEY FROM ADDRESS No No No Yes | No No No No No No No No
SET SYSTEM MASK No | Yes [No | No [No | No | No | No | No | No | No | No
STORE THEN AND SYSTEM MASK| Yes | ANDs| No No No No No No No No No No
STORE THEN OR SYSTEM MASK | Yes | ORs | No No No No No No No No No No
Explanation:
1 The action takes place only if the associated R field in the instruction is nonzero.

In the 24-bit

The logical AND of the immediate field in the instruction and the current system mask
replaces the current system mask.

The Togical OR of the immediate field in the instruction and the current system mask
replaces the current system mask.

When the PSW-key-control bit, bit 131 of the 32-byte entry-table entry, is zero, the PSW
key remains unchanged. When the PSW-key-control bit is one, the PSW key is set with the
entry key, bits 136-139 of the entry-table entry. ’

. Figure

4-1. Operations on PSW Fields

4-4 ESA/370 Principles of Operation

Programming Note: A summary of the operations
which save or set the problem state, addressing
mode, and instruction address is contained in the
section “Subroutine Linkage without the Linkage
Stack” in Chapter 5, “Program Execution.”

Program-Status-Word Format

IiE Prog
0|R|0 O B|T|0|X| Key [1|M|W|P|A S|CC| Mask (6D 0O 00BO0OO
[:] 5 8 12 16 18 20 24 31
A Instruction Address
32 63

Figure 4-2. PSW Format

The following is a summary of the functions of the
psw fields. (See Figure 4-2.)

PER Mask (R): Bit 1 controls whether the cpu is
enabled for interruptions associated with program-
event recording (PER). When the bit is zero, no
PER event can cause an interruption. When the bit
is one, interruptions are permitted, subject to the
PER-event-mask bits in control register 9.

DAT Mode (T): Bit 5 controls whether implicit
dynamic address translation of logical and instruc-
tion addresses used to access storage takes place.
When the bit is zero, DAT is off, and logical and
instruction addresses are treated as real addresses.
When the bit is one, DAT is on, and the dynamic-
address-translation mechanism is invoked.

1/0 Mask (10): Bit 6 controls whether the CPU is
enabled for 1/0 interruptions. When the bit is zero,
an 1/0 interruption cannot occur. When the bit is
one, /O interruptions are subject to the 1/0-inter-
ruption subclass-mask bits in control register 6.
When an 1/0-interruption subclass-mask bit is zero,
an 1/0 interruption for that 1;0-interruption subclass
cannot occur; when the 1/0-interruption subclass-
mask bit is one, an 10 interruption for that
1j/o-interruption subclass can occur.

External Mask (EX): Bit 7 controls whether the
CPU is enabled for interruption by conditions
included in the external class. When the bit is zero,
an external interruption cannot occur. When the
bit is one, an external interruption is subject to the
corresponding external subclass-mask bits in
control register 0; when the subclass-mask bit is
zero, conditions associated with the subclass cannot

cause an interruption; when the subclass-mask bit
is one, an interruption in that subclass can occur.

PSW Key: Bits 8-11 form the access key for
storage references by the cpu. If the reference is
subject to key-controlled protection, the Psw key is
matched with a storage key when information is
stored or when information is fetched from a
location that is protected against fetching.
However, for accesses to the second operand of
MOVE TO PRIMARY and MOVE WITH KEY, the third
operand is used instead of the psw key. The third
operand is also used instead of the psw key for
accesses to the first operand of MOVE TO SEC-
ONDARY.

Machine-Check Mask (M): Bit 13 controls
whether the CPU is enabled for interruption by
machine-check conditions. When the bit is zero, a
machine-check interruption cannot occur. When
the bit is one, machine-check interruptions due to
system damage and instruction-processing damage
are permitted, but interruptions due to other
machine-check-subclass conditions are subject to
the subclass-mask bits in control register 14.

Wait State (W): When bit 14 is one, the CPU is
waiting; that is, no instructions are processed by the
CPU, but interruptions may take place. When bit
14 is zero, instruction fetching and execution occur
in the normal manner. The wait indicator is on
when the bit is one.

Problem State (P): When bit 15 is one, the cpu is
in the problem state. When bit 15 is zero, the cpU
is in the supervisor state. In the supervisor state,
all instructions are valid. In the problem state,
only those instructions are valid that provide mean-
ingful information to the problem program and
that cannot affect system integrity; such instructions
are called unprivileged instructions. The
instructions that are never valid in the problem
state are called privileged instructions. When a cPU
in the problem state attempts to execute a privi-
leged instruction, a privileged-operation exception is
recognized. Another group of instructions, called
semiprivileged instructions, are executed by a cPU
in the problem state only if specific authority tests
are met; otherwise, a privileged-operation exception
or a special-operation exception is recognized.

Address-Space Control (AS): Bits 16 and 17, in
conjunction with psw bit 5, control the translation
mode. See the section “Translation Modes” under
“Translation Control” in Chapter 3, “Storage.”

Chapter 4. Control 4-5

Condition Code (CC): Bits 18 and 19 are the two
bits of the condition code. The condition code is
set to 0, 1, 2, or 3, depending on the result
obtained in executing certain instructions. Most
arithmetic and logical operations, as well as some
other operations, set the condition code. The

instruction BRANCH ON CONDITION can specify

any selection of the condition-code values as a cri-
terion for branching. A table in Appendix C sum-
marizes the condition-code values that may be set
for all instructions which set the condition code of
the psw.

Program Mask: Bits 20-23 are the four program-
mask bits. Each bit is associated with a program
exception, as follows:

Program-

Mask Bit Program Exception
20 Fixed-point overflow
21 Decimal overflow
22 Exponent underflow
23 Significance

When the mask bit is one, the exception results in
an interruption. When the mask bit is zero, no
interruption occurs. The setting of the exponent-
underflow-mask bit or the significance-mask bit
also determines the manner in which the operation
is completed when the corresponding exception
occurs.

Addressing Mode (A): Bit 32 controls the size of
effective addresses and effective-address generation.
When the bit is zero, 24-bit addressing is specified.
When the bit is one, 31-bit addressing is specified.
The addressing mode does not control the size of
PER addresses or of addresses used to access DAT,
AsN, dispatchable-unit-control, linkage, entry, and
trace tables or access lists or the linkage stack. See
the section “Address Generation” in Chapter 5,
“Program Execution,” and the section “Address
Size and Wraparound” in Chapter 3, “Storage.”

Instruction Address: Bits 33-63 form the instruc-
tion address. This address designates the location
of the leftmost byte of the next instruction to be
executed, unless the CPU is in the wait state (bit 14
of the psw is one).

4-6 ESA/370 Principles of Operation

Bit positions 0, 2-4, 17, and 24-31 are unassigned
and must contain zeros. A specification exception -
is recognized when these bit positions do not
contain zeros. When bit 32 of the psw specifies the
24-bit addressing mode, bits 33-39 of the instruc-
tion address must be zeros; otherwise, a specifica-
tion exception is recognized. A specification excep-
tion is also recognized when bit position 12 does
not contain a one.

Control Registers

The control registers provide for maintaining and
manipulating control information outside the psw.
There are sixteen 32-bit control registers.

All control-register bit positions in all 16 control
registers are installed, regardless of whether the bit
position is assigned to a facility. One or more spe-
cific bit positions in control registers are assigned to
each facility requiring such register space.

The LOAD CONTROL instruction causes all control-
register positions within those registers designated
by the instruction to be loaded from storage. The
instructions LOAD ADDRESS SPACE PARAMETERS,
SET SECONDARY ASN, BRANCH AND STACK,
PROGRAM CALL, PROGRAM RETURN, and
PROGRAM TRANSFER provide specialized functions
to place information into certain control-register
positions. ‘

Information loaded into the control registers
becomes active (that is, assumes control over the
system) at the completion of the instruction causing
the information to be loaded.

At the time the registers are loaded, the information
is not checked for exceptions, such as .invalid
translation-format code or an address designating
an unavailable or a protected location. The validity
of the information is checked and the exceptions, if
any, are indicated at the time the information is
used.

The STORE CONTROL instruction causes all control-
register positions, within those registers designated
by the instruction, to be placed in storage. The
instructions EXTRACT PRIMARY ASN, EXTRACT SEC-
ONDARY ASN, and PROGRAM CALL provide special-
ized functions to obtain information from certain
control-register positions.

Only the general structure of the control registers is
described here; the definition of a particular
control-register position appears in the description
of the facility with which the register position is
associated. Figure 4-3 shows the control-register
positions which are assigned and the initial value of
the field upon execution of initial CPU reset. All
control-register positions not listed in the figure are

initialized to zero.

Programming Notes:

1. The detailed definition of a particular control-
register bit position can be located by referring
to the entry “control-register assignment” in

the Index.

2. To ensure that existing programs operate cor-
rectly if and when new facilities using addi-
tional control-register positions are installed,
the program should load zeros in unassigned
control-register positions.

ctri : Initial
Reg |Bits Name of Field Associated with Value
0 1 |SSM-suppression control SET SYSTEM MASK 0
0 2 |TOD-clock-sync control TOD clock 0
0 3 |Low-address-protection control Low-address protection 0
0 4 |Extraction-authority control Instruction authorization 0
0 5 |Secondary-space control Instruction authorization 0
0 6 |Fetch-protection override Key-controlled protection]
0 | 8-12{Translation format Dynamic address translation 0
® | 14 |Vector control? Vector operations 0
0 { 15 |Address-space-function control Instruction authorization 0
0 | 16 |Malfunction-alert subclass mask External interruptions 0
0 | 17 |Emergency-signal subclass mask External interruptions 0
0 | 18 |External-call subclass mask External interruptions 0
0 | 19 |TOD-clock sync-check subclass mask |External interruptions 0
0 | 20 |Clock-comparator subclass mask External interruptions 0
0 [21 |CPU-timer subclass mask External interruptions 0
0 | 22 |Service-signal subclass mask External interruptions 0
0 | 24 |Unused? 1
0 [25 [Interrupt-key subclass mask External interruptions 1
0} 26 |Unused? ' 1
1 0 |Primary space-switch-event control [Program interruptions 0
1 | 1-19|Primary segment-table origin Dynamic address translation 0
11} 23 |Primary private-space control Dynamic address translation 0
1 |25-31|Primary segment-table length Dynamic address translation 0
2 | 1-25|Dispatchable-unit-control-table Access-register translation 0
origin
3 | 0-15]PSW-key mask Instruction authorization 0
3 |16-31|Secondary ASN Address spaces 0
4 | 0-15]Authorization index Instruction authorization 0
4 116-31|Primary ASN Address spaces 0

Figure 4-3 (Part 1 of 3). Assignment of Control-Register Fields

Chapter 4. Control

4-7

Ctrl Initial
Reg [Bits Name of Field Associated with Value
5 0 |Subsystem-linkage control3 Instruction authorization 0
5 | 1-24|Linkage-table origin? PC-number translation 0
5 |25-31{Linkage-table length3 PC-number translation - 0
5 | 1-25|Primary-ASN-second-table-entry Access-register translation 0

, origin4
6 | -7 |I/0-interruption subclass mask I/0 interruptions 0
7 | 1-19|Secondary segment-table origin Dynamic address translation 0
7 | 23 {Secondary private-space control Dynamic address transliation 0
7 |25-31{Secondary segment-table length Dynamic address translation 0
8 | 0-15|Extended authorization index Access-register translation 0
8 {16-31{Monitor masks MONITOR CALL 0
9 0 [Successful-branching-event mask Program-event recording 0
9 1 |Instruction-fetching-event mask Program-event recording 0
9 2 |Storage-alteration-event mask Program-event recording 0
9 3 |[GR-alteration-event mask Program-event recording 0
9 4 |Store-using-real-address-event mask|Program-event recording 0
9 |16-31|PER general-register masks Program-event recording 0
- 10 | 1-31|PER starting address Program-event recording 0
11 | 1-31|PER ending address Program-event recording 0
12 0 |Branch-trace control Tracing 0
12 | 1-29|Trace-entry address Tracing 0
12 | 30 |ASN-trace control Tracing 0
12 | 31 |Explicit-trace control Tracing 0
13 0 |[Home space-switch-event control Program interruptions 0
13 | 1-19{Home segment-table origin Dynamic address transiation 0
13 | 23 |Home private-space control Dynamic address translation 0
13 [25-31}Home segment-table length Dynamic address translation 0
14 | 0 |unused? 1
14 1 |Unused? 1
14 3 |Channel-report-pending subclass 1/0 machine-check handling 0

mask <

14 4 |Recovery subclass mask Machine-check handling 0
14 5 |Degradation subclass mask Machine-check handling 0
14 6 |External-damage subclass mask Machine-check handling 1
14 7 IWarning subclass mask Machine-check handling 0
14 | 12 }ASN-translation control Instruction authorization 0
14 {13-31{ASN-first-table origin ASN transiation 0
15 | 1-28]Linkage-stack-entry address Linkage-stack operations 0

Figure 4-3 (Part 2 of 3). Assignment of Control-Register Fields

4-8 ESA/370 Principles of Operation

Explanation:

The fields not listed are unassigned.
control-register positions is zero.

Operations, SA22-7125.

System/370 definition.

The initial value for all unlisted

1 Bit 14 of control register 0, the vector-control bit, is described in the
publication Enterprise Systems Architecture/370 and System/370 Vector

2 This bit is not used but is initialized to one for consistency with the

3 When the address-space-function control in control register 0 is zero,
LOAD ADDRESS SPACE PARAMETERS, PROGRAM CALL, and PROGRAM TRANSFER treat
control register 5 as containing the linkage-table designation (LTD)
(subsystem-linkage control, linkage-table origin, and linkage-table length).

4 When the address-space-function control is one, control register 5 is
treated as containing the primary-ASN-second-table-entry (PASTE) origin,
and PROGRAM CALL obtains the LTD from the PASTE.

Figure 4-3 (Part 3 of 3). Assignment of Control-Register Fields

Tracing

Tracing assists in the determination of system prob-
lems by providing an ongoing record in storage of
significant events. Tracing consists of three sepa-
rately controllable functions which cause entries to
be made in a trace table: branch tracing, AsSN
tracing, and explicit tracing. Branch tracing and
ASN tracing together are referred to as implicit
tracing.

When branch tracing is on, an entry is made in the
trace table for each execution of certain branch
instructions when they cause branching. The
branch address is placed in the trace entry. The
trace entry also indicates the addressing mode in
effect after branching. The branch instructions that
are traced are:

* BRANCH AND LINK (BALR only) when the R2
field is not zero

* BRANCH AND SAVE (BASR only) when the R:
field is not zero

* BRANCH AND SAVE AND SET MODE when the
Rz field is not zero

* BRANCH AND STACK when the R2 field is not
Zero

When' ASN tracing is on, an entry is made in the
trace table for each execution of the following
instructions:

* PROGRAM CALL
* PROGRAM RETURN

* PROGRAM TRANSFER
* SET SECONDARY ASN

However, the entry for PROGRAM RETURN is made
only when PROGRAM RETURN unstacks a linkage-
stack state entry that was formed by PROGRAM
CALL, not when PROGRAM RETURN unstacks an
entry formed by BRANCH AND STACK.

When explicit tracing is on, execution of TRACE
causes an entry to be made in the trace table. This
entry includes bits 16-63 from the TOD clock, the
second operand of the TRACE instruction, and the
contents of a range of general registers.

Control-Register Allocation

The information to control tracing is contained in
control register 12 and has the following format:

B Trace-Entry Address AlE

6 1 30 31

Branch-Trace-Control Bit (B): Bit 0 of control
register 12 controls whether branch tracing is
turned on or off. If the bit is zero, branch tracing
is off; if the bit is one, branch tracing is on.

Trace-Entry Address: Bits 1-29 of control register

12, with two zero bits appended on the right, form
the real address of the next trace entry to be made.

‘ Chapter 4. Control 4-9

ASN-Trace-Control Bit (A): Bit 30 of control reg-
ister 12 controls whether AsSN tracing is turned on
or off. If the bit is zero, ASN tracing is off; if the
bit is one, ASN tracing is on.

Explicit-Trace-Control Bit (E): Bit 31 of control
register 12 controls whether explicit tracing is
turned on or off. If the bit is zero, explicit tracing
is off, which causes the TRACE instruction to be
executed as a no-operation; if the bit is one, the

31-Bit Branch

1 Branch Address

01 31

24-Bit Branch

00060000 Branch Address

0 8 31

SET SECONDARY ASN

00010000 | 00000000 New SASN

0 8 16 31

PROGRAM CALL

execution of the TRACE instruction creates an entry
in the trace table, except that no entry is made
when bit 0 of the second operand of the TRACE
instruction is one.

Trace Entries

Trace entries are of seven types, as shown in
Figure 4-4.

PSW

00100001 |Key PC Number A

Return Address P

0 8 12 32

PROGRAM RETURN

63

PSW

00110010 |Key |00060 New PASN A

Return Address P

] 8 12 16 32

Updated Instruction Address

>

64 95
Figure 4-4 (Part 1 of 2). Trace-Entry Formats

4-10 ESA/370 Principles of Operation

63

PROGRAM TRANSFER

PSW
00110001 (Key (0060 New PASN Rz Before
0 8 12 16 32 63
TRACE
0111} N |0000000O TOD-Clock Bits 16-63
] 4 8 16 63

/.

TRACE Operand

/
(R1) - (Rs)

64 96
Figure 4-4 (Part 2 of 2). Trace-Entry Formats

Branch Address: The branch address is the
address of the next instruction to be executed when
the branch is taken. When the 31-bit addressing
mode is in effect after branching, bit positions 1-31
of the trace entry for a branch instruction contain
the branch address. When the 24-bit addressing
mode is in effect after branching, bit positions 8-31
contain the branch address.

New SASN: Bit positions 16-31 of the trace entry
for SET SECONDARY ASN contain the ASN value
loaded into control register 3 by the instruction.

PSW Key: Bit positions 8-11 of the trace entries
made on execution of PROGRAM CALL, PROGRAM
RETURN, and PROGRAM TRANSFER contain the
psw key from the current Psw.

PC Number: Bit positions 12-31 of the trace entry
made on execution of PROGRAM CALL contain the
value of the rightmost 20 bits of the second-
operand address.

Addressing-Mode Bit (A): Bit position 32 of the
trace entry made on execution of PROGRAM CALL
contains the addressing-mode bit from the current
PSW. Bit position 32 of the trace entry made on
execution of PROGRAM RETURN contains the
addressing-mode bit that replaces bit 32 of the psw,
and bit position 64 of the trace entry contains bit
32 from the psw before bit 32 is replaced.

Return Address: Bit positions 33-62 of the trace
entry made on execution of PROGRAM CALL
contain bits 1-30 of the updated instruction address
in the psw before that address is replaced from the
entry-table entry. Bit positions 33-62 of the trace

/

95 + 32(N+1)

entry made on execution of PROGRAM RETURN
contain bits 1-30 of the instruction address that
replaces bits 33-63 of the psw.

Problem-State Bit (P): Bit position 63 of the trace
entry made on execution of PROGRAM CALL con-
tains the problem-state bit from the current psw.
Bit position 63 of the trace entry made on exe-
cution of PROGRAM RETURN contains the problem-
state bit that replaces bit 15 of the psw.

Updated Instruction Address: Bit positions 65-95
of the trace entry made on execution of PROGRAM
RETURN contain bits 1-31 of the updated instruc-
tion address in the psw before that address is
replaced from the linkage-stack state entry.

New PASN: Bit positions 16-31 of the trace entry
made on execution of PROGRAM RETURN contain
the new PASN that is restored from the linkage-
stack state entry. Bit positions 16-31 of the trace
entry made on execution of PROGRAM TRANSFER
contain the new PASN (which may be zero) speci-
fied in bit positions 16-31 of general register R1.

R2 Before: Bit positions 32-63 of the trace entry
made on execution of PROGRAM TRANSFER
contain the contents of the general register desig-
nated by the Rz field of the instruction. Bits 0-30
of the general register designated by the Rz field
replace bits 32-62 of the psw. Bit 31 of the same
general register replaces the problem-state bit of the
PSW.

Number of Registers (N): Bits 4-7 of the trace
entry for TRACE contain a value which is one less
than the number of general registers which have

Chapter 4. Control 4-11

been provided in the trace entry. The value of N
ranges from zero, meaning the contents of one
general register are provided in the trace entry, to
15, meaning the contents of all 16 general registers
are provided.

TOD-Clock Bits 16-63: Bits 16-63 of the trace
entry for TRACE are obtained from bit positions
16-63 of the TOD clock, as would be provided by a
STORE CLOCK instruction executed at the time the
TRACE instruction was executed.

TRACE Operand: Bits 64-95 of the trace entry for
TRACE contain a copy of the 32 bits of the second
operand of the TRACE instruction for which the
entry is made.

(R1)-(R3): The four-byte fields starting with bit 96
of the trace entry for TRACE contain the contents of
the general registers whose range is specified by the
R1 and R: fields of the TRACE instruction. The
general registers are stored in ascending order of
register numbers, starting with general register R:
and continuing up to and including general register
R3, with general register 0 following general register
15.

Programming Note: The size of the trace entry for
TRACE in units of words is 3 + (N + 1). The
maximum size of an entry is 19 words, or 76 bytes.

Operation

When an instruction which is subject to tracing is
executed, and the corresponding tracing function is
turned on, a trace entry of the appropriate format is
made. The real address of the trace entry is formed
by appending two zero bits on the right- to the
value in bit positions 1-29 of control register 12.
The address in control register 12 is subsequently
increased by the size of the entry created.

No trace entry is stored if the incrementing of the
address in control register 12 would cause a carry to
be propagated into bit position 19 (that is, the
trace-entry address would be in the next 4K-byte
block). If this would be the case for the entry to be
made, a trace-table exception is recognized. For
the purpose of recognizing the trace-table exception
in the case of a TRACE instruction, the maximum
length of 76 bytes is used instead of the actual
length.

The storing of a trace entry is not subject to key- -

controlled protection (nor, since the trace-entry

4-12 ESA/370 Principles of Operation

address 1s real, is it subject to page protection), but
it is subject to low-address protection; that is, if the
address of the trace entry due to be created is in the
range 0-511 and bit 3 of control register 0 is one, a
protection exception is recognized, and instruction
execution is suppressed. If the address of a trace
entry is invalid, an addressing exception is recog-
nized, and instruction execution is suppressed.

The three exceptions associated with storing a trace
entry (addressing, protection, and trace table) are
collectively referred to as trace exceptions.

If a program interruption takes place for a condi-
tion which is not a trace-exception condition and
for which execution of an instruction is not com-
pleted, it is unpredictable whether part or all of any
trace entry due to be made for such an interrupted
instruction is stored in the trace table. Thus, for a
condition which would ordinarily cause
nullification or suppression of instruction exe-
cution, storage locations may have been altered
beginning at the location designated by control reg-
ister 12 and extending up to the length of the entry
that would have been created.

When PROGRAM RETURN unstacks a linkage-stack
state entry that was formed by BRANCH AND
STACK and ASN tracing is on, trace exceptions may
be recognized, even though a trace entry is not
made and no part of a trace entry is stored.

The order in which information is placed in a trace
entry is unpredictable. Furthermore, as observed
by other cpus and by channel programs, the con-
tents of a byte of a trace entry may appear to
change more than once before completion of the
instruction for which the entry is made.

The trace-entry address in control register 12 is
updated only on completion of execution of an
instruction for which a trace entry is made.

A serialization and checkpoint-synchronization
function is performed before the operation begins
and again after the operation is completed.

Program-Event Recording

The program-event-recording (PER) facility is pro-
vided to assist in debugging programs. It permits
the program to be alerted to the following types of
events: ‘

* Execution of a successful branch instruction.

e Fetching of an instruction from the designated
storage area.

* Alteration of the contents of the designated
storage area.

* Alteration of the contents of designated general
registers.

* Execution of the STORE USING REAL ADDRESS
instruction.

The program can selectively specify that one or
more of the above types of events be recognized,
except that the event for STORE USING REAL
ADDRESS can be specified only along with the
storage-alteration event. The information con-
cerning a PER event is provided to the program by
means of a program interruption, with the cause of
the interruption being identified in the interruption
code.

Control-Register Allocation
The information for controlling PER resides in
control registers 9, 10, and 11 and has the following

format:

Control Register 9

EM Gen.-Reg. Masks

0 5 16 31

Control Register 10

Starting Address

Control Register 11

Ending Address

01 31

PER-Event Masks (EM): Bits 0-4 of control reg-
ister 9 specify which types of events are recognized.
The bits are assigned as follows:

Bit 0: Successful-branching event
Bit 1: Instruction-fetching event

Bit 2: Storage-alteration event

Bit 3: General-register-alteration event

Bit 4: Store-using-real-address event (bit 2 must
be one also)

Bits 0-4, when ones, specify that the corresponding
types of events be recognized. However, bit 4 is
effective for this purpose only when bit 2 is also
one. When bit 2 is one, the storage-alteration
event is recognized. When bits 2 and 4 are ones,
both the storage-alteration event and the store-
using-real-address event are recognized. When a bit
is zero, the corresponding type of event is not
recognized. When bit 2 is zero, both the storage-
alteration event and the store-using-real-address
event are not recognized.

PER General-Register Masks: Bits 16-31 of
control register 9 specify which general registers are
designated for recognition of the alteration of their
contents. The 16 bits, in the sequence of ascending
bit numbers, correspond one for one with the 16
registers, in the sequence of ascending register
numbers. When a bit is one, the alteration of the
associated register is recognized; when it is zero, the
alteration of the register is not recognized.

PER Starting Address: Bits 1-31 of control reg-
ister 10 are the address of the beginning of the des-
ignated storage area.

PER Ending Address: Bits 1-31 of control register
11 are the address of the end of the designated
storage area.

Programming Notes:

1. Models may operate at reduced performance
while the cpU is enabled for PER events. In
order to ensure that cPU performance is not
degraded because of the operation of the PER
facility, programs that do not use it should
disable the cpuU for PER events by setting either
the PER mask in the psw to zero or the
PER-event masks in control register 9 to zero,
or both. No degradation due to PER occurs
when either of these fields is zero.

2. Some degradation may be experienced on some
models every time control registers 9, 10, and
11 are loaded, even when the cPU is disabled
for PER events (see the programming note
under “Storage-Area Designation”).

Chapter 4. Control 4-13

Operation

PER is under control of bit 1 of the psw, the PER
mask. When the PER mask, a particular PER-event
mask bit, and, for general-register-alteration events,
a particular general-register mask bit are all ones,
the cpU is enabled for the corresponding type of
event; otherwise, it is disabled. However, the cpu
is enabled for the store-using-real-address event
only when the storage-alteration mask bit and the
store-using-real-address mask bit are both ones.

An interruption due to a PER event normally
occurs after the execution of the instruction respon-
sible for the event. The occurrence of the event
does not affect the execution of the instruction,
which may be either completed, partially com-
pleted, terminated, suppressed, or nullified.

When the cPuU is disabled for a particular PER event
* at the time it occurs, either by the PER mask in the

PSW or by the masks in control register 9, the event
is not recognized.

A change to the PER mask in the PSW or to the PER
control fields in control registers 9, 10, and 11
affects PER starting with the execution of the imme-
diately following instruction. If a PER event occurs
during the execution of an instruction which
changes the cPU from being enabled to being disa-
bled for that type of event, that PER event is recog-
nized. '

PER events may be recognized in a trial execution
of an instruction, and subsequently the instruction,
‘DAT-table entries, and operands may be refetched
for the actual execution. If any refetched field was
modified by another CPU or by a channel program
between the trial execution and the actual exe-
cution, it is unpredictable whether the PER events
indicated are for the trial or the actual execution.

For special-purpose instructions that are not
described in this publication, the operation of PER
may not be exactly as described in this section.

Identification of Cause ,

A program interruption for PER sets bit 8 of the
interruption code to one and places identifying
information in real storage locations 150-155, and
in location 161 if the PER event is a storage-
alteration event. The information stored has the
following format:

4-14 ESA/370 Principles of Operation

Locations 150-151:

PERC | 000606006600

0 4 15

Locations 152-155:

0 PER Address

Location 161:

0000 |PAID

0 4 7

PER Code (PERC): The occurrence of PER events
is indicated by ones in bit positions 0-3 of real
location 150, the PER code. The bit position in the
PER code for a particular type of event is the same
as the bit position for that event in the PER-event-
mask field in control register 9, except that when
bits 2 and 4 in control register 9 are both ones, a
one in bit position 2 of location 150 indicates the
occurrence of either a storage-alteration event or a
store-using-real-address event. When a program
interruption occurs, more than one type of PER
event can be concurrently indicated. Additionally,
if another program-interruption condition exists,
the interruption code for the program interruption
may indicate both the PER events and the other
condition. Zeros are stored in bit positions 4-7 of
location 150 and in bit positions 0-7 of location
151.

PER Address: The pPER address at locations
152-155 contains the instruction address used to
fetch the instruction in execution when one or
more PER events were recognized. When the
instruction is the target of EXECUTE, the instruction
address used to fetch the EXECUTE instruction is
placed in the PER-address field. A zero is stored in
bit position 0 of real location 152.

PER Access ldentification (PAID): If a storage-
alteration event is indicated in the PER code, an
indication of the address space to which the event
applies may be stored at location 161. If the access
used an AR-specified segment-table designation, the
number of the access register used is stored in bit
positions 4-7 of location 161, and zeros are stored

in bit positions 0-3. However, the contents of
location 161 are unpredictable if the instruction
that caused the event turned DAT off. The contents
of location 161 are also unpredictable if (1) the
CPU was in the access-register mode but the access
was an implicit reference to the. linkage stack,
(2) the cPU was not in the access-register mode, or
(3) bit 2 of the PER code is one but indicates a
store-using-real-address event instead of a storage-
alteration event. If bit 2 of the PER code is zero,
location 161 remains unchanged.

Instruction Address: The instruction address in
the program old psw is the address of the instruc-
tion which would have been executed next, unless
another program condition is also indicated, in
which case the instruction address is that deter-
mined by the instruction ending due to that condi-
tion.

ILC: The 1LcC indicates the length of the instruc-
tion designated by the PER address, except when a
concurrent specification exception for the psw
introduced by LOAD PSW or a supervisor-call inter-
ruption sets an 1LC of 0.

Priority of Indication

When a program interruption occurs and more
than one PER event has been recognized, all recog-
nized PER events are concurrently indicated in the
PER code. Additionally, if another program-
interruption condition concurrently exists, the inter-
ruption code for the program interruption indicates
both the PER condition and the other condition.

In the case of an instruction-fétching event for
SUPERVISOR CALL, the program interruption occurs
immediately after the supervisor-call interruption.

If a PER event is recognized during the execution of
an instruction which also introduces a new PSW
with the type of psw-format error which is recog-
nized early (see the section “Exceptions Associated
with the psw” in Chapter 6, “Interruptions”), both
the specification exception and PER are indicated
concurrently in the interruption code of the
program interruption. However, for a psw-format
error of the type which is recognized late, only PER
is indicated in the interruption code. In both cases,
the invalid psw is stored as the program old psw.

Recognition of a PER event does not normally
affect the ending of instruction execution.
However, in the following cases, execution of an
interruptible instruction is not completed normally:

1. When the instruction is due to be interrupted
for an asynchronous condition (1/0, external,
restart, or repressible machine-check condition),
a program interruption for the PER event
occurs first, and the other interruptions occur
subsequently (subject to the mask bits in the
new PSW) in the normal priority order.

2. When the stop function is performed, a
program - interruption indicating the PER event
occurs before the CPU enters the stopped state.

3. When any program exception is recognized,
PER events recognized for that instruction exe-
cution are indicated concurrently.

4. Depending on the model, in certain situations,
recognition of a PER event may appear to cause
the instruction to be interrupted prematurely
without concurrent indication of a program
exception, without an’ interruption for any
asynchronous condition, or without the cpu
entering the stopped state. '

Programming Notes:

1. In the following cases, an instruction can both
cause a program interruption for a PER event
and change the value of masks controlling an
interruption for PER events. The original mask
values determine whether a program inter-
ruption takes place for the PER event.

a. The instructions LOAD PSW, SET SYSTEM
MASK, STORE THEN AND SYSTEM MASK,
and SUPERVISOR CALL can cause an
instruction-fetching event and disable the
cru for PER interruptions. Additionally,
STORE THEN AND SYSTEM MASK can cause
a storage-alteration event to be indicated.
In all these cases, the program old psw
associated with the program interruption
for the PER event may indicate that the
cpPuU was disabled for PER events.

b. An instruction-fetching event may be
recognized during execution of a LOAD
CONTROL instruction that changes the
value of the PER-event masks in control
register 9 or the addresses in control regis-
ters 10 and 11 controlling indication of
instruction-fetching events.

2. No instruction can both change the values of
general-register-alteration masks and cause a
general-register-alteration event to be recog-
nized.

Chapter 4. Control 4-15

3. When a PER interruption occurs during the
execution of an interruptible instruction, the
1LC indicates the length of that instruction or
EXECUTE, as appropriate. When a PER inter-
ruption occurs as a result of LOAD PSW or
SUPERVISOR CALL, the ILC indicates the length
of these instructions or EXECUTE, as appro-
priate, unless a concurrent specification excep-
tion on LOAD PsW calls for an 1LC of 0.

4. When a PER interruption is caused by
branching, the PER address identifies the branch
instruction (or EXECUTE, as appropriate),
whereas the old psw points to the next instruc-
tion to be executed. When the interruption
occurs during the execution of an interruptible
instruction, the PER address and the instruction
address in the old Psw are the same.

Storage-Area Designation

Two types of PER events -- instruction fetching and
storage alteration -- involve the designation of an
area in storage. The storage area starts at the
location designated by the starting address in
control register 10 and extends up to and including
the location designated by the ending address in
control register 11. The area extends to the right of
the starting address.

An instruction-fetching event occurs whenever the
first byte of an instruction or the first byte of the
target of an EXECUTE instruction is fetched from
the designated area. A storage-alteration event
occurs when a store access is made to the desig-
nated area by using an operand address that is
defined to be a logical or a virtual address. A
storage-alteration event does not occur for a store
access made with an operand address defined to be
a real address.

The set of addresses designated for instruction-
fetching and storage-alteration events wraps around
at address 2,147,483,647; that is, address 0 is con-
sidered to follow address 2,147,483,647. When the
starting address is less than the ending address, the
area is contiguous. When the starting address is
greater than the ending address, the set of locations
designated includes the area from the starting
address to address 2,147,483,647 and the area from
address 0 to, and including, the ending address.
When the starting address is equal to the ending
address, only that one location is designated.

4-16 ESA/370 Principles of Operation

Address comparison for instruction-fetching and
storage-alteration events is always performed using
31-bit addresses. This is accomplished in the 24-bit
addressing mode by extending the virtual, logical,
or instruction address on the left with seven zero
bits before comparing it with the starting and
ending addresses.

Programming Note: In some models, performance
of address-range checking is assisted by means of an
extension to each page-table entry in the TLB. In
such an implementation, changing the contents of
control registers 10 and 11 when the instruction-
fetching or storage-alteration-event mask is one, or
setting either of these PER-event masks to one, may
cause the TLB to be cleared of entries. This degra-
dation may be experienced even when the cpU is
disabled for PER events. Thus, when possible, the
program should avoid loading control registers 9,
10, or 11.

PER Events

Successful Branching
A successful-branching event occurs whenever one
of the following instructions causes branching:

¢ BRANCH AND LINK (BAL, BALR)

* BRANCH AND SAVE (BAS, BASR)

* BRANCH AND SAVE AND SET MODE (BASSM)
e BRANCH AND SET MODE (BSM)

* BRANCH AND STACK (BAKR)

* BRANCH ON CONDITION (BC, BCR)

* BRANCH ON COUNT (BCT, BCTR)

¢ BRANCH ON INDEX HIGH (BXH)

* BRANCH ON INDEX LOW OR EQUAL (BXLE)

A successful-branching event also occurs whenever
one of the following instructions is completed:

¢ PROGRAM CALL (PC)
e PROGRAM RETURN (PR)
* PROGRAM TRANSFER (PT)

For PROGRAM CALL, PROGRAM RETURN, and
PROGRAM TRANSFER, the branch target address is
considered to be the new instruction address that is
placed in the psw by the instruction.

A successful-branching event causes a PER
successful-branching event to be recognized if bit 0
of the PER-event masks is one and the PER mask in
the PSW is one.

A PBER successful-branching event is indicated by
setting bit 0 of the PER code to one. :

Instruction Fetching

An instruction-fetching event occurs if the first byte
of the instruction is fetched from the storage area
designated by control registers 10 and 11. An
instruction-fetching event also occurs if the first
byte of the target of EXECUTE is within the desig-
nated storage area.

An instruction-fetching event causes a PER
instruction-fetching event to be recognized if bit 1
of the PER-event masks is one and the PER mask in
the Psw is one.

The PER instruction-fetching event is indicated by
setting bit 1 of the PER code to one.

Storage Alteration

A storage-alteration event occurs whenever a CPU,
by using a logical or virtual address, makes a store
access without an access exception to the storage
area designated by control registers 10 and 11.

The contents of storage are considered to have been
altered whenever the CPU executes an instruction
that causes all or part of an operand to be stored
within the designated storage area. Alteration is
considered to take place whenever storing is consid-
ered to-take place for purposes of indicating pro-
tection exceptions, except that recognition does not
occur for the storing of data by a channel program.
(See the section “Recognition of Access
Exceptions” in Chapter 6, “Interruptions.”) Storing
constitutes alteration for PER purposes even if the
value stored is the same as the original value.

Implied locations that are referred to by the CPU in
the process of performing an interruption are not
monitored. Such locations include pPsw and
interruption-code locations. These locations,
however, are monitored when information is stored
there explicitly by an instruction. Similarly, moni-
toring does not apply to the storing of data by a
channel program. Implied locations in the linkage
stack, which are stored in by instructions that
operate on the linkage stack, are monitored.

The 1/0 instructions are considered to alter the
second-operand location only when storing actually
occurs.

When an interruptible vector instruction which per-
forms storing is interrupted, and PER storage alter-
ation applies to storage locations corresponding to
elements due to be changed beyond the point of
interruption, PER storage alteration is indicated if

any such store actually occurred and may be indi-
cated even if such a store did not occur. PER
storage alteration is reported for such locations only
if no access exception exists at the time that the
instruction is executed.

Storage alteration does not apply to instructions
whose operands are specified to be real addresses.
Thus, storage alteration does not apply to INVALI-
DATE PAGE TABLE ENTRY, RESET REFERENCE BIT
EXTENDED, SET STORAGE KEY EXTENDED, STORE
USING REAL ADDRESS, TEST BLOCK, and TEST
PENDING INTERRUPTION (when the effective
address is zero).

A storage-alteration event causes a PER storage-
alteration event to be recognized if bit 2 of the
PER-event masks is one and the PER mask in the
psw is one. Bit 4 of the PER-event masks is
ignored when determining whether a PER storage-
alteration event is to be recognized.

A PER storage-alteration event is indicated by
setting bit 2 of the PER code to one. However,
when bit 2 of the PER code and bit 4 of the
PER-event masks are both ones, a store-using-real-
address event, instead of a storage-alteration event,
may have occurred.

General-Register Alteration
A general-register-alteration event occurs whenever
the contents of a general register are replaced.

The contents of a general register are considered to
have been altered whenever a new value is placed in
the register. Recognition of the event is not contin-
gent on the new value being different from the pre-
vious one. The execution of an RR-format arith-
metic, logical, or movement instruction is
considered to fetch the contents of the register,
perform the indicated operation, if any, and then
replace the value in the register. A register can be
designated by an RR, RRE, RS, or RX instruction or
implicitly, such as in TRANSLATE AND TEST and
EDIT AND MARK.

The instructions MOVE LONG and COMPARE
LOGICAL LONG are always considered to alter the
contents of the four registers specifying the two
operands, including the cases where the padding
byte is used, when both operands have zero length.
However, when condition code 3 is set for MOVE
LONG, the general registers containing the operand
lengths may or may not be considered as having
been altered.

Chapter 4. Control 4-17

The instruction INSERT CHARACTERS UNDER MASK
is not considered to alter the general register when
the mask is zero.

The instructions COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP are considered to
alter the general register, or general-register pair,
designated by R1, only when the contents are actu-
ally replaced, that is, when the first and second
operands are not equal.

It is unpredictable whether general-register-
alteration events are indicated for instructions of
the vector facility.

A general-register-alteration event causes a PER
general-register-alteration event to be recognized if
bit 3 of the PER-event masks is one, the PER mask
in the pPsw is one, and the corresponding bit in the
PER general-register mask is one.

The PER general-regi‘ster-alteration event is indi-
cated by setting bit 3 of the PER code to one.

Programming Note: The following are some
examples of general-register alteration:

1. Register-to-register load instructions are consid-
ered to alter the register contents even when
both operand addresses designate the same reg-
ister.

2. Addition or subtraction of zero and multipli-
cation or division by one are considered to
constitute alteration.

3. Logical and fixed-point shift operations are
considered to alter the register contents even for
shift amounts of zero.

4. The branching instructions BRANCH ON INDEX
HIGH and BRANCH ON INDEX LOW OR EQUAL
are considered to alter the first operand even
when zero is added to its value.

Store Using Real Address

A store-using-real-address event occurs whenever
the STORE USING REAL ADDRESS instruction is exe-
cuted.

There is no relationship between the store-using-
real-address event and the designated storage area.

A store-using-real-address event causes a PER store-
using-real-address event to be recognized if bits 2
and 4 of the PER-event mask are ones and the PER
mask in the Psw is one.

4-18 ESA/370 Principles of Operation

A PER store-using-real-address event is indicated by
setting bit 2 of the PER code to one. However,
when bit 2 of the PER code is one, a storage-
alteration event, instead of a store-using-real-
address event, may have occurred.

Indication of PER Events
Concurrently with Other Interruption
Conditions

The following rules govern the indication of PER
events caused by an instruction that also causes a
program exception, a monitor event, a space-switch
event, or a supervisor-call interruption.

1. The indication of an instruction-fetching event
does not depend on whether the execution of
the instruction was completed, terminated, sup-
pressed, or nullified. The event, however, is
not indicated when an access exception pro-
hibits access to the first halfword of the instruc-
tion. When the first halfword of the instruction
is accessible but an access exception applies to
the second or third halfword of the instruction,
it is unpredictable whether the instruction-
fetching event is indicated. Similarly, when an
access exception prohibits access to all or a
portion of the target of EXECUTE, it is unpre-
dictable whether the instruction-fetching events
for EXECUTE and the target are indicated.

2. When the operation is completed or partially
completed, the event is indicated, regardless of
whether any program exception, space-switch
event, or monitor event is also recognized.

3. Successful branching, storage alteration,
general-register alteration, and store using real
address are not indicated for an operation or, in
case the instruction is interruptible, for a unit
of operation that is suppressed or nullified.

4. When the execution of the instruction is termi-
nated, general-register or storage alteration is
indicated whenever the event has occurred, and
a model may indicate the event if the event
would have occurred had the execution of the
instruction been completed, even if altering the
contents of the result field is contingent on
operand values. For purposes of this defi-
nition, the occurrence of those exceptions
which permit termination (addressing, pro-
tection, and data) is considered to cause termi-
nation, even if no result area is changed.

5. When LOAD PSW, PROGRAM RETURN, SET
SYSTEM MASK, STORE THEN OR SYSTEM MASK,

or SUPERVISOR CALL causes a PER condition
and at the same time introduces a new PSwW
with the type of psw-format error that is recog-
nized immediately after the Psw becomes
active, the interruption code identifies both the
PER condition and the specification exception.
When LOAD PSW, PROGRAM RETURN, oOr
SUPERVISOR CALL introduces a pPsw-format

error of the type that is recognized as part of
the execution of the following instruction, the
PSW is stored as the old psw without the spec-
ification exception being recognized.

The indication of PER events concurrently with
other program-interruption conditions is summa-
rized in Figure 4-5 on page 4-20.

Chapter 4. Control 4-19

PER Event
Type
of Instr [Storage(GR
Concurrent Condition Ending|{Branch|Fetch [Alter. {Alter. |STURA
Specification
0dd instruction address S No No No No No
in the PSW
Instruction access
First halfword Nor S| No No No No No
Second, third halfwords N or S| No U No No No
Specification
EXECUTE target address odd| S No u No No -
EXECUTE target access N or S No] No No -
Other nullifying N No -{ Yes Nol No? -
Other suppressing S No Yes No? Nol No
All terminating T No Yes Yes2 Yes2 -
A1l completing C Yes Yes Yes Yes -

1

Yes

No

Explanation:

The condition does not apply.

Although PER events of this type are not indicated for the cur-
rent unit of operation of an interruptible instruction, PER
events of this type that were recognized on completed units of
operation of the interruptible instruction are indicated.

This event may be indicated, depending on the model, if the
event has not occurred but would have been indicated if execu-
tion had been completed.

The operation or, in the case of the interruptible instructions,
the unit of operation is completed.

The operation or, in the case of the interruptible instructions,
the unit of operation is nullified.

The operation or, in the case of the interruptible instructions,
the unit of operation is suppressed.

The execution of the instruction is terminated.

The PER event is indicated with the other program-interruption
condition if the event has occurred; that is, the contents of
the designated storage location or general register were al-
tered, or an attempt was made to execution an instruction whose
first byte is located in the designated storage area.

The PER event is not indicated.

It is unpredictable whether the PER event is indicated.

Figure 4-5. Indication of PER Events with Other Concurrent Conditions

4-20 ESA/370 Principles of Operation

Programming Notes:

1. The execution of the interruptible instructions
MOVE LONG, TEST BLOCK, and COMPARE
LOGICAL LONG can cause events for general-
register alteration and instruction fetching.
Additionally, MOVE LONG can cause the
storage-alteration event.

Interruption of such an instruction may cause a
PER event to be indicated more than once. It
may be necessary, therefore, for a program to
remove the redundant event indications from
the PER data. The following rules govern the
indication of the applicable events during exe-
cution of these instructions:

a. The instruction-fetching event is indicated
whenever the instruction is fetched for exe-
cution, regardless of whether it is the initial
execution or a resumption.

b. The general-register-alteration event is indi-
cated on the initial execution and on each
resumption and does not depend on
whether or not the register actually is
changed.

c. The storage-alteration event is indicated
only when data has been stored in the des-
ignated storage area by the portion of the
operation starting with the last initiation
and ending with the last byte transferred
before the interruption. No special indi-
cation is provided on premature inter-
ruptions as to whether the event will occur
again upon the resumption of the opera-
tion. When the designated storage area is a
single byte location, a storage-alteration
event can be recognized only once in the
execution of MOVE LONG.

2. The following is an outline of the general
action a program must take to delete multiple
entries in the PER data for an interruptible
instruction so that only one entry for each
complete execution of the instruction is
obtained:

a. Check to see if the PER address is equal to
the instruction address in the old psw and
if the last instruction executed was inter-
ruptible.

b. If both conditions are met, delete
instruction-fetching and register-alteration
events.

c. If both conditions are met and the event is
storage alteration, delete the event if some

part of the remaining destination operand
is within the designated storage area.

Timing
The timing facilities include three facilities for

measuring time: the ToD clock, the clock
comparator, and the CPU timer.

In a multiprocessing configuration, a single TOD
clock may be shared by more than one cPu, or
each CcPu may have a separate TOD clock.
However, each cpPU has a separate clock
comparator and CPU timer.

Time-of-Day Clock

The time-of-day (TOD) clock provides a high-
resolution measure of real time suitable for the
indication of date and time of day. The cycle of
the clock is approximately 143 years.

In an installation with more than one cpPu, each
CPU may have a separate ToD clock, or more than
one CPU may share a clock, depending on the
model. In all cases, each CPU has access to a single
clock.

Format

The TOD clock is a binary counter with the format
shown in the following illustration. The bit posi-
tions of the clock are numbered 0 to 63, corre-
sponding to the bit positions of a 64-bit unsigned

binary integer.
1mi crosecond—lv

0 51 63

In the basic form, the TOD clock is incremented by
adding a one in bit position 51 every microsecond.
In models having a higher or lower resolution, a
different bit position is incremented at such a fre-
quency that the rate of advancing the clock is the
same as if a one were added in bit position 51 every
microsecond. The resolution of the ToD clock is
such that the incrementing rate is comparable to
the instruction-execution rate of the model.

A TOD clock is said to be in a particular multiproc-
essing configuration if at least one of the cpus
which shares that clock is in the configuration.
Thus, it is possible for a single TOoD clock to be in

Chapter 4. Control 4-21

more than one configuration. Conversely, if all
CPUs having access to a particular TOD clock have
been removed from a particular configuration, then
the TOD clock is no longer considered to be in that
configuration.

When more than one TOD clock exists in the con-
figuration, the stepping rates are synchronized such
that all ToD clocks in the configuration are incre-
mented at exactly the same rate.

When incrementing of the clock causes a carry to
be propagated out of bit position 0, the carry is
ignored, and counting continues from zero.. The
program is not alerted, and no interruption condi-
tion is generated as a result of the overflow.

The operation of the clock is not affected by any
normal activity or event in the system. Incre-
menting of the clock does not depend on whether
the wait-state bit of the Psw is one or whether the
CPU is in the operating, load, stopped, or check-
stop state. Its operation is not affected by cpu,
initial-cPU, or clear resets or by initial program
loading. Operation of the clock is also not affected
by the setting of the rate control or by an initial-
microprogram-loading operation. Depending on
the model and the configuration, a ToD clock may
or may not be powered independent of a CPU that
accesses it.

States

The following states are distinguished for the Top
clock: set, not set, stopped, error, and not opera-
tional. The state determines the condition code set
by execution of STORE cLoCK. The clock is incre-
mented, and is said to be running, when it is in
either the set state or the not-set state.

Not-Set State: When the power for the clock is
turned on, the clock is set to zero, and the clock
enters the not-set state. The clock is incremented
when in the not-set state.

When the clock is in the not-set state, execution of
STORE CLOCK causes condition code 1 to be set and
“the current value of the running clock to be stored.

Stopped State: The clock enters the stopped state
when SET CLOCK is executed on a CPU accessing
that clock and the clock is set. This occurs when
SET CLOCK is executed without encountering any
exceptions and any manual ToD-clock control in

4-22 ESA/370 Principles of Operation

the configuration is set to the enable-set position. -
The clock can be placed in the stopped state from
the set, not-set, and error states. The clock is not
incremented while in the stopped state.

When the clock is in the stopped state, execution of
STORE CLOCK 0n a CPU accessing that clock causes
condition code 3 to be set and the value of the
stopped clock to be stored.

Set State: The clock enters the set state only from
the stopped state. The change of state is under
control of the ToD-clock-sync-control bit, bit 2 of
control register 0, in the CPU which most recently
caused that clock to enter the stopped state. If the
bit is zero, the clock enters the set state at the com-
pletion of execution of SET cLock. If the bit is
one, the clock remains in the stopped state until the
bit is set to zero on that CPU, until another cpu
executes a SET CLOCK instruction affecting the
clock, or until any other clock in the configuration
is incremented to a value of all zeros in bit posi-
tions 32-63. If any clock is set to a value of all
zeros in bit positions 32-63 and enters the set state
as the result of a signal from another clock, the
updating of bits 32-63 of the two clocks is in syn-
chronism.

Incrementing of the clock begins with the first step-
ping pulse after the clock enters the set state.

When the clock is in the set state, execution of
STORE CLOCK causes condition code 0 to be set and
the current value of the running clock to be stored.

Error State: The clock enters the error state when
a malfunction is detected that is likely to have
affected the validity of the clock value. A timing-
facility-damage machine-check-interruption condi-
tion is generated on each CPU which has access to
that clock whenever it enters the error state.

When STORE cLocK is executed and: the clock
accessed is in the error state, condition code 2 is
set, and the value stored is zero.

Not-Operational State: The clock is in the not-
operational state when its power is off or when it is
disabled for maintenance. It depends on the model
if the clock can be placed in this state. Whenever
the clock enters the not-operational state, a timing-
facility-damage machine-check-interruption condi-
tion is generated on each CPU that has access to
that clock.

When the clock is in the not-operational state, exe-
cution of STORE CLOCK causes condition code 3 to
be set, and zero is stored.

Changes in Clock State

When the ToD clock accessed by a CPU changes
value because of the execution of SET CLOCK or
changes state, interruption conditions pending for
the clock comparator, cPU timer, and ToD-clock-
sync check may or may not be recognized for up to
1.048576 seconds (22° microseconds) after the
change.

The results of channel-subsystem-monitoring-
facility operations may be unpredictable as a result
of changes to the ToD clock.

Setting and Inspecting the Clock

The clock can be set to a specific value by exe-
cution of SET cLOCK if the manual ToD-clock
control of any CPU in the configuration is in the
enable-set position. Setting the clock replaces the
values in all bit positions from bit position 0
through the rightmost position that is incremented
when the clock is running. However, on some
models, the rightmost bits starting at or to the right
of bit 52 of the specified value are ignored, and
zeros are placed in the corresponding positions of
the clock. The TOD clock can be inspected by exe-
cuting STORE CLOCK, which causes a 64-bit value
to be stored. Two executions of STORE CLOCK,
possibly on different cPus in the same configura-
tion, always store different values if the clock is
running or, if separate clocks are accessed, both
clocks are running and are synchronized.

The values stored for a running clock always cor-
rectly imply the sequence of execution of STORE
CLOCK on one or more CPUs for all cases where the
sequence can be established by means of the
program. Zeros are stored in positions to the right
of the bit position that is incremented. In a config-
uration with more than one cpuU, however, when
the value of a running clock is stored, nonzero
values may be stored in positions to the right of the
rightmost position that is incremented. = This
-ensures that a unique value is stored.

In a configuration where more than one CPU
accesses the same clock, SET cLOCK is interlocked
such that the entire contents appear to be updated
concurrently; that is, if SET CLOCK instructions are

executed simultaneously by two cpus, the final
result is either one or the other value. If SEr
CLOCK is executed on one CPU and STORE CLOCK
on the other, the result obtained by STORE CLOCK
is either the entire old value or the entire new
value. When SET CLOCK is executed by one cPU, a
STORE CLOCK executed on another cPU may find
the clock in the stopped state even when the
TOD-clock-sync-control bit is zero in each cpu.
The TOD-clock-sync-control bit is bit 2 of control
register 0. Since the clock enters the set state
before incrementing, the first STORE CLOCK exe-
cuted after the clock enters the set state may still
find the original value introduced by SET CLOCK.

Programming Notes:

1. Bit position 31 of the clock is incremented
every 1.048576 seconds; for some applications,
reference to the leftmost 32 bits of the clock
may provide sufficient resolution.

2. Communication between systems is facilitated
by establishing a standard time orgin, or
standard epoch, which is the calendar date and
time to which a clock value of zero corre-
sponds. January 1, 1900, 0 a.m. Greenwich
Mean Time (GMT) is recommended as the
standard epoch for the clock.

3. A program using the clock value as a
time-of-day and calendar indication must be
consistent with the programming support under
which the program is to be executed. If the
programming support uses the standard epoch,
bit 0 of the clock remains one through the
years 1972-2041. (Bit 0 turned on at
11:56:53.685248 (GMT) May 11, 1971.) Ordi-
narily, testing bit 0 for a one is sufficient to
determine if the clock value is in the standard
epoch.

4. Because of the limited accuracy of manually
setting the clock value, the rightmost bit posi-
tions of the clock, expressing fractions of a
second, are normally not valid as indications of
the time of day. However, they permit elapsed-
time measurements of high resolution.

5. The following chart shows the time interval
between instants at which various bit positions
of the TOD clock are stepped. This time value
may also be considered as the weighted time
value that the bit, when one, represents.

Chapter 4. Control 4-23

TOD- ‘Stepping Interval
Clock
Bit [Days|Hours{Min.| Seconds
51 0.600 001
47 0.000 016
43 0.600 256
39 0.004 096
35 0.065 536
31 1.048 576
27 16.777 216
23 4 28.435 456
19 1 11 34.967 296
15 19 5 19.476 736
11 12 17 25 11.627 776
7 203 14 43 6.044 416
3 (3257 19 29 36.710 656|

6. The following chart shows the clock setting at

the start of various years. The clock settings,
expressed in hexadecimal notation, correspond
to 0 a.m. Greenwich Mean Time on January 1
of each year.

Year | Clock Setting (Hex)

1900 | 0000 0000 0000 0000
1976 | 8853 BAFO B400 0000
1980 | 8F80 9FD3 2200 0000
1984 | 96AD 84B5 9000 0000
1988 | 9DDA 6997 FEGO 0000
1992 | A507 4E7A 6C00 0000
1996 | AC34 335C DAGO 0000
2000) B361 183F 4800 0000

7. The stepping value of ToD-clock bit position
63, if implemented, is 2-'2 microseconds, or
approximately 244 picoseconds. This value is
called a clock unit.

The following chart shows various time inter-
vals in clock units expressed in hexadecimal
notation.

4-24 ESA/370 Principles of Operation

Interval |Clock Units (Hex)
1 microsecond 1000
1 millisecond| 3E 8000
1 second F424 00060
1 minute 39 3870 0000
1 hour D69 3A40 06000

1 day 1 41DD 7600 0000

365 days 1CA E8C1 3E00 0000
366 days '1CC 2A9E B400 0000
1,461 days*. |[72C E4E2 6E00 0000

* Number of days in four years,
including a leap year. Note
that the year 1900 was not a
leap year. Thus, the four-
year span starting in 1900
has only 1,460 days.

8. In a multiprocessing configuration, after the
TOD clock .is set and begins running, the
program should delay activity for 22° microsec-
onds (1.048576 seconds) to ensure that the
cPU-timer, clock-comparator, and ToD-clock-
sync-check interruption conditions are recog- -
nized by the cpu.

TOD-Clock Synchronization

In an installation with more than one cPu, each
CPU may have a separate TOD clock, or more than
one CPU may share a TOD clock, depending on the
model. In all cases, each CPU has access to a single
clock. :

The TOD-clock-synchronization facility, in conjunc-
tion with a clock-synchronization program, makes
it possible to provide the effect of all crPus in a
multiprocessing configuration sharing a single TOD
clock. The result is such that, to all programs

" storing the TOD-clock value, it appears that all cpUs

in the configuration read the same ToD clock. The
ToD-clock-synchronization facility provides these
functions in such a way that even though the
number of cpus sharing a TOD clock is model-
dependent, a single model-independent clock-
synchronization routine can be written. The fol-
lowing functions are provided:

* Synchronizing the stepping rates for all ToD
clocks in the configuration. Thus, if all clocks
are set to the same value, they stay in synchro-
nism.

* Comparing the rightmost 32 bits. of each clock
in the configuration. An unequal condition is

signaled by an external interruption with the
interruption code 1003 hex, indicating the
ToD-clock-sync-check condition.

» Setting a TOD clock to the stopped state.

e Causing a stopped clock, with the ToD-clock-
sync-control bit set to one, to start incre-
menting when bits 32-63 of any running clock
in the configuration are incremented to zero.
This permits the program to synchronize all
clocks to any particular clock without requiring
special operator action to select a ‘“master
clock” as the source of the clock-
synchronization pulses. '

Programming Notes:

1. ToD-clock synchronization provides for
checking and synchronizing only the rightmost
bits of the ToD clock. The program must
check for synchronization of the leftmost bits
and must communicate the leftmost-bit values
from one CPU to another in order to correctly
set the ToD-clock contents.

2. The ToD-clock-sync-check external interruption
- can be used to determine the number of TOD
clocks in the configuration.

Clock Comparator

The clock comparator provides a means of causing
an interruption when the ToD-clock value exceeds a
value specified by the program.

In a configuration with more than one cpu, each
CPU has a separate clock comparator.

The clock comparator has the same format as the
ToD clock. In the basic form, the clock
comparator consists of bits 0-47, which are com-
pared with the corresponding bits of the ToD clock.

In some models, higher resolution is obtained by

providing more than 48 bits. The bits in positions
provided in the clock comparator are compared
with the corresponding bits of the clock. When the
resolution of the clock is less than that of the clock
comparator, the contents of the clock comparator
are compared with the clock value as this value
would be stored by executing STORE CLOCK.

The clock comparator causes an external inter-
ruption with the interruption code 1004 hex. A

request for a clock-comparator interruption exists
whenever either of the following conditions exists:

1. The ToD clock is running and the value of the
clock comparator is less than the value in the
compared portion of the clock, both values
being considered unsigned binary integers.
Comparison follows the rules of unsigned
binary arithmetic.

2. The ToD clock is in the error state or the not-
operational state.

A request for a clock-comparator interruption does
not remain pending when the value of the clock
comparator is made equal to or greater than that of
the ToD clock or when the value of the ToD clock
is made less than the clock-comparator value. The
latter may occur as a result of the ToD clock either
being set or wrapping to zero.

The clock comparator can be inspected by exe-
cuting the instruction STORE CLOCK COMPARATOR
and can be set to a specific value by executing the
SET CLOCK COMPARATOR instruction.

The contents of the clock comparator are initialized
to zero by initial CPU reset.

Programming Notes:

1. An interruption request for the clock
comparator persists as long as the clock-
comparator value is less than that of the ToD
clock or as long as the ToD clock is in the error
state or the not-operational state. Therefore,
-one of the following actions must be taken
after an external interruption for the clock
comparator has occurred and before the cPU is
again enabled for external interruptions: the
value of the clock comparator has to be
replaced, the ToD clock has to be set, the TOD
clock has to wrap to zero, or the clock-
comparator-subclass mask has to be set to
zero. Otherwise, loops of external interruptions
are formed.

2. The instruction STORE CLOCK may store a -
value which is greater than that in the clock
comparator, even though the CPU is enabled
for the clock-comparator interruption. This is
because the ToD clock may be incremented one
or more times between when instruction exe-
cution is begun and when the clock value is
accessed. In this situation, the interruption
occurs when the execution of STORE CLOCK is
completed.

Chapter 4. Control 4-25

CPU Timer

The cpu timer provides a means for measuring
elapsed cpu time and for causing an interruption
when a specified amount of time has elapsed.

In a configuration with more than one cpu, each
cpPU has a separate CPU timer.

The cpu timer is a binary counter with a format
which is the same as that of the ToD clock, except
that bit 0 is considered a sign. In the basic form,
the cpu timer is decremented by subtracting a one
in bit position 51 every microsecond. In models
having a higher or lower resolution, a different bit
position is decremented at such a frequency that
the rate of decrementing the CPU timer is the same
as if a one were subtracted in bit position 51 every
microsecond. The resolution of the cpU timer is
such that the stepping rate is comparable to the
instruction-execution rate of the model.

The cpu timer requests an external interruption
with the interruption code 1005 hex whenever the
CPU-timer value is negative (bit 0 of the cpU timer
is one). The request does not remain pending
when the cpuU-timer value is changed to a nonnega-
tive value.

When both the cpu timer and the ToD clock are
running, the stepping rates are synchronized such
that both are stepped at the same rate. Normally,
decrementing the cPU timer is not affected by con-
current 1j0 activity. However, in some models the
CPU timer may stop during extreme 1/0 activity and
other similar interference situations. In these cases,
the time recorded by the cPU timer provides a
more accurate measure of the cPU time used by the
program than would have been recorded had the
CPU timer continued to step.

The cpPU timer is decremented when the CPU is in
the operating state or the load state. When the
manual rate control is set to instruction step, the
CPU timer is decremented only during the time in
which the cpu is actually performing a unit of
operation. However, depending on the model, the
CPU timer may or may not be decremented when
the ToD clock is in the error, stopped, or not-
operational state.

Depending on the model, the CPuU timer may or

may not be decremented when the CPU is in the
check-stop state.

4-26 ESA/370 Principles of Operation

The cPU timer can be inspected by executing the
instruction STORE CPU TIMER and can be set to a
specific value by executing the SET CPU TIMER
instruction.

The cPuU timer is set to zero by initial CPU reset.

Programming Notes:

1. The cpu timer in association with a program
may be used both to measure CPU-execution
time and to signal the end of a time interval on
the cpu.

2. The time measured for the execution of a
sequence of instructions may depend on the
effects of such things as 1/0 interference, the
availability of pages, and instruction retry.
Hence, repeated measurements of the same
sequence on the same installation may differ.

3. The fact that a cPU-timer interruption does not
remain pending when the cpU timer is set to a
positive value eliminates the problem of an
undesired interruption. This would occur if,
between the time when the old value is stored
and a new value is set, the cpu is disabled for
CPU-timer interruptions and the cpu timer

~ value goes from positive to negative.

4. The fact that cpu-timer interruptions are
requested whenever the cPU timer is negative
(rather than just when the CPU timer goes from
positive to negative) eliminates the requirement
for testing a value to ensure that it is positive
before setting the cPU timer to that value.

As an example, assume that a program being
timed by the cPu timer is interrupted for a
cause other than the CPU timer, external inter-
ruptions are disallowed by the new psw, and
the cpu-timer value is then saved by STORE
cPU TIMER. This value could be negative if the
CPU timer went from positive to negative since
the interruption. - Subsequently, when the
program being timed is to continue, the CPU
timer may be set to the saved value by SET CPU
TIMER. A CPU-timer interruption occurs
immediately after external interruptions are
again enabled if the saved value was negative.

The persistence of the CPU-timer-interruption
request means, however, that after an external
interruption for the CPU timer has occurred,
the value of the cpu timer has to be replaced,
the value in the cpu timer has to wrap to a
positive value, or the CPU-timer-subclass mask
has to be set to zero before the CPU is again

enabled for external interruptions. Otherwise,
loops of external interruptions are formed.

5. The instruction STORE CPU TIMER may store a
negative value even though the CPU is enabled
for the interruption. This is because the
CPU-timer value may be decremented one or
more times between when instruction execution
is begun and when the cpu timer is accessed.
In this situation, the interruption occurs when

the execution of STORE CPU TIMER is com-

pleted.

Externally Initiated Functions

Resets

Five reset functions are provided:

* CPU reset
 Initial cpu reset
¢ Subsystem reset
o Clear reset

¢ Power-on reset

CPU reset provides a means of clearing equipment-
check indications and any resultant unpredictability
in the CcPU state with the least amount of informa-
tion destroyed. In particular, it is used to clear
check conditions when the CPU state is to be pre-
served for analysis or resumption of the operation.

Initial CPU reset provides the functions of cpPU reset
together with initialization of the current Psw, CPU

timer, clock comparator, prefix, and control regis-
ters.

Subsystem reset provides a means for clearing
floating interruption conditions as well as for
invoking 1/0-system reset.

Clear reset causes initial CPU reset and subsystem
reset to be performed and, additionally, clears or
initializes all storage locations and registers in all
CPUs in the configuration, with the exception of the
ToD clock. Such clearing is useful in debugging
programs and in ensuring user privacy. Clearing
does not affect external storage, such as direct-
access storage devices used by the control program
to hold the contents of unaddressable pages.

The power-on-reset sequences for the ToD clock,
main storage, and the channel subsystem may be
included as part of the CPU power-on sequence, or
the power-on sequence for these units may be initi-
ated separately.

CPU reset, initial CPU reset, subsystém reset, and
clear reset may be initiated manually by using the
operator facilities (see Chapter 12, “Operator
Facilities”). Initial CPU reset is part of the initial-
program-loading function. Figure 4-6 on
page 4-28 summarizes how these four resets are
manually initiated. Power-on reset is performed as
part of turning power on. The reset actions are
tabulated in Figure 4-7 on page 4-29. For infor-
mation concerning what resets can be performed by
the SIGNAL PROCESSOR instruction, see the section
“Signal-Processor Orders” in this chapter.

Chapter 4. Control 4-27

Function Performed on?

key

System-reset-clear
key

Load-normal key

Load-clear key

Clear reset?
Initial CPU reset,
followed by IPL

Clear reset?,
followed by IPL

Clear reset?

CPU reset

Clear reset?

CPU on Which Key | Other CPUs | Remainder of
Key Activated Was Activated in Config Configuration
System-reset-normal |CPU reset CPU reset Subsystem reset

Clear reset?

Subsystem reset

Clear resets

Explanation:

other CPUs.

2 Only the CPU elements of this reset apply.

3 Only the non-CPU elements of this reset apply.

1 Activation of a system-reset or load key may change the config-
uration, including the connection with I/0, storage units, and

Figure 4-6. Manual Initiation of Resets

4-28 ESA/370 Principles of Operation

Reset Function
Sub-~ Initial| . Power
system| CPU CPU |Clear | -On
Area Affected Reset [Reset| Reset |Reset |[Reset
CPU U) S1 St S
PSW] usv C*1 c*1 c*
Prefix U usv c c c
CPU timer U usv c c c
Clock comparator U usv C c C
Control registers U usv I 1 I
Access registers u (74 usv c C
General registers u un usv c c
Floating-point registers] usv usv C C
Vector-facility registers u usv usv C C
Storage keys U U U C c?
Volatile main storage U u U C C2
Nonvolatile main storage U U u C U
Expanded storage ys us us us C2
TOD clock us us us us T2
Floating interruption C U U C c2
conditions

I/0 system R u u R RS

*

Explanation:

Clearing the contents of the PSW to zero causes the PSW
to be invalid.

When the IPL sequence follows the reset function on that
CPU, the CPU does not necessarily enter the stopped
state, and the PSW is not necessarily cleared to zeros.

When these units are separately powered, the action is
performed only when the power for the unit is turned on.

Access to change expanded storage at the time a reset
function is performed may cause the contents of the 4K-
byte block in expanded storage to be unpredictable.
Access to examine expanded storage does not affect the
contents of the expanded storage.

Access to the TOD clock by means of STORE CLOCK at the
time a reset function is performed does not cause the
value of the TOD clock to be affected.

When the channel subsystem is separately powered or con-
sists of multiple elements which are separately powered,
the reset action is applied only to those subchannels,
channel paths, and I/0 control units and devices on those
paths associated with the element which is being powered
on.

Figure 4-7 (Part 1 of 2). Summary of Reset Actions

Chapter 4. Control

4-29

Explanation (Continued):

C The condition or contents are cleared. If the area
affected is a field, the contents are set to zero with
valid checking-block code.

I The state or contents are initialized. If the area af-
fected is a field, the contents are set to the initial
value with valid checking-block code.

R I/0-system reset is performed in the channel subsystem.
As part of this reset, system reset is signaled to all
I/0 control units and devices attached to the channel
subsystem.

S The CPU is reset; current operations, if any, are term-
inated; the ALB and TLB are cleared of entries; inter-
ruption conditions in the CPU are cleared; and the CPU
is placed in the stopped state. The effect of perform-
ing the start function is unpredictable when the stopped
state has been entered by means of a reset.

T The TOD clock is initialized to zero and validated; it
enters the not-set state.

] The state, condition, or contents of the field remain
unchanged. However, the result is unpredictable if an
operation is in progress that changes the state, con-
dition, or contents of the field at the time of reset.

U/V The contents remain unchanged, provided the field is not
being changed at the time the reset function is per-
formed. However, on some models the checking-block code
of the contents may be made valid. The result is un-
predictable if an operation is in progress that changes
the contents of the field at the time of reset.

Figure 4-7 (Part 2 of 2). Summary of Reset Actions

CPU Reset

CPU reset causes the following actions:

are not cleared. Any machine-check condition
which is reported to all cpus in the configura-
tion and which has been made pending to a

1. The execution of the current instruction or CPU is said to be local to the CPU.

other processing sequence, such as an inter-

ruption, is terminated, and all program- 4. All copies of prefetched instructions or oper-
interruption and supervisor-call-interruption ands are cleared. Additionally, any results to
conditions are cleared. be stored because of the execution of

instructions in the current checkpoint interval

2. Any pending external-interruption conditions
which are local to the cPu are cleared.
Floating external-interruption conditions are 5. The ART-lookaside buffer and translation-
not cleared. lookaside buffer are cleared of entries.

are cleared.

3. Any pending machine-check-interruption con- 6. The cpu is placed in the stopped state after

ditions and error indications which are local to
the cPU and any check-stop states are cleared.
Floating machine-check-interruption conditions

4-30 ESA/370 Principles of Operation

actions 1-5 have been completed. When the
1L sequence follows the reset function on that
CPU, the cPU enters the load state at the com-
pletion of the reset function and does not nec-

essarily enter the stopped state during the exe-
cution of the reset operation.

Registers, storage contents, and the state of condi-
tions external to the CPU remain unchanged by cpu
reset. However, the subsequent contents of the
register, location, or state are unpredictable if an
operation is in progress that changes the contents at
the time of the reset.

When the reset function in the CPU is initiated at
the time the CPU is executing an 1/0 instruction or
is performing an 1/0 interruption, the current opera-
tion between the CPU and the channel subsystem
may or may not be completed, and the resultant
state of the associated channel-subsystem facility
may be unpredictable.

Programming Note: Most operations which would
change a state, a condition, or the contents of a
field cannot occur when the CPU is in the stopped
state. However, some signal-processor functions
and some operator functions may change these
fields. To eliminate the possibility of losing a field
when CPU reset is issued, the CPuU should be
stopped, and no operator functions should be in
progress.

Initial CPU Reset

Initial cPU reset combines the CPU reset functions
with the following clearing and initializing func-
tions:

1. The contents of the current psw, prefix, cpu
timer, and clock comparator are set to zero.
When the 1PL sequence follows the reset func-
tion on that CPU, the contents of the Psw are
not necessarily set to zero.

2. The contents of control registers are set to their
initial value. '

These clearing and initializing functions include val-
idation.

Setting the current PSW to zero causes the PSW to
be invalid, since PSW bit 12 must be one. Thus, if
the CPU is placed in the operating state after a reset
without first introducing a new psw, a specification
exception is recognized.

Subsystem Reset
Subsystem reset operates only on those elements in
the configuration which are not cpus. It performs
the following actions:

1. 1/0-system reset is performed by the channel
subsystem (see the section “1/0-System Reset”
in Chapter 17, “1/0 Support Functions”).

2. All floating interruption conditions in the con-
figuration are cleared.

As part of 1/0-system reset, pending 1/0-interruption
conditions are cleared, and system reset is signaled
to all control units and devices attached to the
channel subsystem (see the section “1j0-System
Reset” in Chapter 17, “1/0 Support Functions”).
The effect of system reset on 1/0 control units and
devices and the resultant control-unit and device
state are described in the appropriate System
Library publication for the control unit or device.
A system reset, in general, resets only those func-
tions in a shared control unit or device that are
associated with the particular channel path sig-
naling the reset.

Clear Reset
Clear reset combines the initial-cpU-reset function
with an initializing function which causes the fol-
lowing actions:

1. The access, general, and floating-point registers
of ‘those cpUs which are in the configuration
are set to zero.

2. The registers (vector-status register, vector-
mask register, vector-activity count, and all
vector registers) of those vector facilities, if any,
which are in the configuration are cleared to
zero with valid checking-block code.

3. The contents of the main storage in the config-
uration and the associated storage keys are set
to zero with valid checking-block code.

4. A subsystem reset is performed.

Validation is included in setting registers and in
clearing storage and storage keys.

Programming Notes:

1. For the cpu-reset operation not to affect the
contents of fields that are to be left unchanged,
the cPU must not be executing instructions and
must be disabled for all interruptions at the
time of the reset. Except for the operation of
the cpu timer and for the possibility of a
machine-check interruption occurring, all cpu
activity can be stopped by placing the cpuU in

Chapter 4. Control 4-31

the wait state and by disabling it for 1/0 and
external interruptions. To avoid the possibility
of causing a reset at the time that the cpu
timer is being updated or a machine-check
interruption occurs, the cPU must be in the
stopped state. :

2. CPU reset, initial CPU reset, subsystem reset,
and clear reset do not affect the value and state
of the TOD clock.

3. The conditions under which the cpU enters the
check-stop state are model-dependent and
include malfunctions that preclude the com-
pletion of the current operation. Hence, if cPU
reset or initial CPU reset is executed while the
CPU is in the check-stop state, the contents of
the Psw, registers, and storage locations,
including the storage keys and the storage
location accessed at the time of the error, may
have unpredictable values, and, in some cases,
the contents may still be in error after the
check-stop state is cleared by these resets. In
this situation, a clear reset is required to clear
the error.

Power-On Reset

The power-on-reset function for a component of
the machine is performed as part of the power-on
sequence for that component.

The power-on sequences for the ToD clock, vector
facility, main storage, expanded storage, and
channel subsystem may be included as part of the
CPU power-on sequence, or the power-on sequence
for these units may be initiated separately. The fol-
lowing sections describe the power-on resets for the
cPU, TOD clock, vector facility, main storage,
expanded storage, and channel subsystem. See also
Chapter 17, “1/0 Support Functions,” -and the
appropriate System Library publication for the
channel subsystem, control units, and 1/0 devices.

CPU Power-On Reset: The power-on reset causes
initial CPU reset to be performed and may or may
not cause 1/0-system reset to be performed in the
channel subsystem. The contents of general regis-

ters and floating-point registers are cleared to zeros
with valid checking-block code.

TOD-Clock Power-On Reset: The power-on reset
causes the value of the ToD clock to be set to zero
and causes the clock to enter the not-set state.

Vector-Facility Power-On Reset: The power-on

reset causes the registers of the vector facility
(vector-status register, vector-mask register, vector-

4-32 ESA/370 Principles of Operation

activity count, and all vector registers) to be cleare
to zeros with valid checking-block code. ‘

Main-Storage Power-On Reset: For volatile main
storage (one that does not preserve its contents
when power is off) and for storage keys, power-on
reset causes zeros with valid checking-block code to
be placed in these fields. The contents of nonvola-
tile main storage, including the checking-block
code, remain unchanged.

Expanded-Storage Power-On Reset: The con-

tents of the expanded storage are cleared to zeros
with valid checking-block code.

éhannel-Subsystem Power-On Reset: The
channel-subsystem power-on reset causes
1/0-system reset to be performed in the channel
subsystem. (See the section “1/0-System Reset” in
Chapter 17, “1/0 Support Functions.”)

Initial Program Loading

Initial program loading (IPL) provides a manual
means for causing a program to be read from a des-
ignated device and for initiating execution of that
program.

Some models may provide additional controls and
indications relating to 1PL; this additional informa-
tion is specified in the System Library publication
for the model.

IPL is initiated manually by setting the load-unit-
address controls to a four-digit number to designate
an input device and by subsequently activating the
load-clear or load-normal key for a particular cpu.
In the description which follows, the term “this
cPU” refers to the CPU in the configuration for
which the load-clear or load-normal key was acti-
vated.

Activating the load-clear key causes a clear reset to
be performed on the configuration.

Activating the load-normal key causes an initial
CPU reset to be performed on this CPU, CPU reset
to be propagated to all other CPUSs in the configura-
tion, and a subsystem reset to be performed on the
remainder of the configuration.

" In the loading part of the operation, after the resets

have been performed, this CPU then enters the load
state. This cPU does not necessarily enter the
stopped state during the execution of the reset

operations. The load indicator is on while the cpu
is in the load state.

Subsequently, a channel program read operation is
initiated from the 170 device designated by the load-
unit-address controls. The effect of executing the
channel program is as if a format-0 ccw in absolute
storage location 0 specified a read command with
the modifier bits zeros, a data address of zero, a
byte count of 24, the chain-command and sL1 flags
ones, and all other flags zeros.

The details of the channel-subsystem portion of the
IPL operation are defined in the section “Initial
Program Loading” in Chapter 17, “1/0 Support
Functions.”

When the IPL 1/0 operation is completed success-
fully, the subsystem-identification word of the IpPL
device is stored in absolute storage locations
184-187, zeros are stored in absolute storage

locations 188-191, and a new Psw is loaded from

absolute storage locations 0-7. If the psw loading
is successful and if no machine malfunctions are
detected, this cPU leaves the load state, and the
load indicator is turned off. If the rate control is
set to the process position, the CPU enters the oper-
ating state, and the CPU operation proceeds under
contro! of the new psw. If the rate control is set to
the instruction-step position, the CPU enters the
stopped state, with the manual indicator on, after
the new psw is loaded.

If the 1PL 1/0 operation or the Psw loading is not
completed successfully, the CPU remains in the load
state, and the load indicator remains on. The con-
tents of absolute storage locations 0-7 are unpre-
dictable.

Store Status

The store-status operation places the contents of
the CPU registers, except for the ToD clock, in
assigned storage locations.

Figure 4-8 lists the fields that are stored, their
length, and their location in main storage.

Length | Absolute

Field in Bytes] Address
CPU timer 8 216
Clock comparator 8 224
Current PSW 8 256
Prefix 4 264
Access registers 08-15 64 288
Fi-pt registers 0-6 32 352
General registers 0-15 64 384
Control registers 0-15 64 448

Figure 4-8. Assigned Storage Locations for Store
Status

The contents of the registers are not changed. If an
error is encountered during the operation, the CPU
enters the check-stop state.

The store-status operation can be initiated manu-

- ally by use of the store-status key (see Chapter 12,

“Operator Facilities”). The store-status operation
can also be initiated at the addressed cPU by exe-
cuting SIGNAL PROCESSOR, specifying the stop-and-
store-status order. Execution of SIGNAL
PROCESSOR specifying the store-status-at-address
order permits the same status information to be
stored at a designated address (see ‘“Signal
Processor Orders” in this chapter).

Multiprocessing

The multiprocessing facility provides for the inter-
connection of CPUs, via a common main storage, in
order to enhance system availability and to share
data and resources. The multiprocessing facility
includes the following facilities:

» Shared main storage
* CPU-t0-CPU interconnection
* ToD-clock synchronization

Associated with these facilities are two external-
interruption conditions (ToD-clock-sync check and
malfunction alert), which are described in Chapter
6, “Interruptions”’; and control-register positions for
the ToD-clock-sync-control bit and for the masks
for the external-interruption conditions, which are
listed in the section “Control Registers” in this
chapter.

The channel subsystem, including all subchannels,
in a multiprocessing configuration can be accessed
by all cpus in the configuration. 1o-interruption

Chapter 4. Control 4-33

conditions are floating and can be accepted by any
CPU in the configuration.

Shared Main Storage

The shared-main-storage facility permits more than
one CPU to have access to common main-storage
locations. All cpus having access to a common
main-storage location have access to the entire
4K-byte block containing that location and to the
associated storage key. The channel subsystem and
all cpus in the configuration refer to a shared
main-storage location using the same absolute
address.

CPU-Address Identification

Each cpu has a number assigned, called its cpPU
address. A cpu address uniquely identifies one cPU
within a configuration. The cpPu is designated by
specifying this address in the cpu-address field of
SIGNAL PROCESSOR. The CPU signaling a malfunc-
tion alert, emergency signal, or external call is iden-
tified by storing this address in the cPu-address
field with the interruption. The cPuU address is
assigned during system installation and is not
changed as a result of reconfiguration changes. The
program can determine the address of the cpPu by
using STORE CPU ADDRESS.

CPU Signaling and Response

The cpu-signaling-and-response facility consists of
SIGNAL PROCESSOR and a mechanism to interpret
and act on several order codes. The facility pro-
vides for communications among CPUs, including
transmitting, receiving, and decoding a set of
assigned order codes; initiating the specified opera-
tion; and responding to the signaling cCPU. A CPU
can address SIGNAL PROCESSOR to itself. SIGNAL
PROCESSOR is described in Chapter 10, “Control
Instructions.”

Signal-Processor Orders

The signal-processor orders are specified in bit posi-
tions 24-31 of the second-operand address of
SIGNAL PROCESSOR and are encoded as shown in
Figure 4-9.

4-34 ESA/370 Principles of Operation

Code Order
00 Unassigned

01 Sense

02 External call

03 Emergency signal
04 Start

05 Stop

06 Restart

07 Unassigned

08 Unassigned

09 Stop and store status

0A Unassigned
- 0B Initial CPU reset

ec CPU reset

oD Set prefix

0E Store status at address
OF-FF | Unassigned

Figure 4-9. Encoding of Orders

The orders are defined as follows:

‘Sense: The addressed CPU presents its status to

the issuing CPU (see the section “Status Bits” in
this chapter for a definition of the bits). No other
action is caused at the addressed cPu. The status,
if not all zeros, is stored in the general register des-
ignated by the R1 field of the SIGNAL PROCESSOR
instruction, and condition code 1 is set; if all status
bits are zeros, condition code 0 is set.

External Call: An external-call external-
interruption condition is generated at the addressed
cpu. The interruption condition becomes pending
during the execution of SIGNAL PROCESSOR. The
associated interruption occurs when the cPU is
enabled for that condition and does not necessarily
occur during the execution of SIGNAL PROCESSOR.
The address of the cpu sending the signal is pro-
vided with the interruption code when the inter-
ruption occurs. Only one external-call condition
can be kept pending in a CPU at a time. The order
is effective only when the addressed cpPu is in the
stopped or the operating state.

Emergency Signal: An emergency-signal external-
interruption condition is generated at the addressed
cpu. The interruption condition becomes pending
during the execution of SIGNAL PROCESSOR. The
associated interruption occurs when the CPU is
enabled for that condition and does not necessarily
occur during the execution of SIGNAL PROCESSOR.
The address of the cPu sending the signal is pro-
vided with the interruption code when the inter-

ruption occurs. At any one time the receiving cPu
can keep pending one emergency-signal condition
for each cpu in the configuration, including the
receiving CPU itself. The order is effective only
when the addressed cpU is in the stopped or the
operating state.

Start: The addressed cPU performs the start func-
tion (see the section “Stopped, Operating, Load,
and Check-Stop States” in this chapter). The cpu
does not necessarily enter the operating state during
the execution of SIGNAL PROCESSOR. The order is
effective only when the addressed cpu is in the
stopped state. The effect of performing the start
function is unpredictable when the stopped state
has been entered by reset.

Stop: The addressed cpuU performs the stop func-
tion (see the section “Stopped, Operating, Load,
and Check-Stop States” in this chapter). The cpu
does not necessarily enter the stopped state during
the execution of SIGNAL PROCESSOR. The order is
effective only when the cPU is in the operating
state.

Restart: The addressed cPu performs the restart
operation (see the section “Restart Interruption” in
Chapter 6, “Interruptions”). The cPU does not
necessarily perform the operation during the exe-
cution of SIGNAL PROCESSOR. The order is effec-
tive only when the addressed cPU is in the stopped
or the operating state.

Stop and Store Status: The addressed cpu per-
forms the stop function, followed by the store-
status function (see the section “Store Status” in
this chapter). The cPU does not necessarily com-
- plete the operation, or even enter the stopped state,
during the execution of SIGNAL PROCESSOR. The
order is effective only when the addressed cPU is in
the stopped or the operating state.

Initial CPU Reset: The addressed cPU performs
initial CPU reset (see the section “Resets” in this
chapter). The execution of the reset does not affect
other cpus and does not cause 1/0 to be reset. The
reset operation is not necessarily completed during
the execution of SIGNAL PROCESSOR.

CPU Reset: The addressed cpu performs cpu
reset (see the section “Resets” in this chapter). The
execution of the reset does not affect other cpus
and does not cause 1,0 to be reset. The reset oper-
ation is not necessarily completed during the exe-
cution of SIGNAL PROCESSOR.

Set Prefix: The contents of bit positions 1-19 of
the parameter register of the SIGNAL PROCESSOR
instruction are treated as a prefix value, which
replaces the contents of the prefix register of the
addressed cpu. Bit 0 and bits 20-31 of the param-
eter register are ignored. The order is accepted only
if the addressed cPuU is in the stopped state, the
value to be placed in the prefix register designates a
location which is available in the configuration, and
no other condition precludes accepting the order.
Verification of the stopped state of the addressed
cPU and of the availability of the designated storage
is performed during -execution of SIGNAL
PROCESSOR. If accepted, the order is not neces-
sarily completed during the execution of SIGNAL
PROCESSOR.

The parameter register has the following format:

/ Prefix Value

1T
01 20 31

The set-prefix order is completed as follows:

 If the addressed CPU is not in the stopped state,
the order is not accepted. Instead, bit 22
(incorrect state) of the general register desig-
nated by the R1 field of the SIGNAL PROCESSOR
instruction is set to one, and condition code 1
is set.

+ The value to be placed in the prefix register of
the addressed CPU is tested for availability. The
absolute address of a 4K-byte area of storage is
formed by appending 12 zeros to the right of
bits 1-19 of the parameter value. This address
is treated as a 31-bit absolute address regardless
of whether the sending and receiving CPUs are
in the 24-bit or 31-bit addressing mode. The
4K-byte block of storage at this address is
accessed. The access is not subject to pro-
tection, and the associated reference bit may or
may not be set to one. If the block is not
available in the configuration, the order is not
accepted by the addressed cpu, bit 23 (invalid
parameter) of the general register designated by
the R1 field of the SIGNAL PROCESSOR instruc-
tion is set to one, and condition code 1 is set.

* The value is placed in the prefix register of the
addressed cpu. :

* The ALB and TLB of the addressed cpu are
cleared of their contents.

Chapter 4. Control 4-35

* A serializing and checkpoint-synchronizing
function is performed on the addressed cpu
following insertion of the new prefix value.

Store Status at Address: The contents of bit
positions 1-22 of the parameter register of the
SIGNAL PROCESSOR instruction are used as the
origin of a 512-byte area into which the status of
the addressed cpu is stored. Bit 0 and bits 23-31 of
the parameter register are ignored.

The order is accepted only if the addressed cPu is
in the stopped state, the status-area origin desig-
nates a location which is available in the configura-
tion, and no other condition precludes accepting
the order. Verification of the stopped state of the
addressed cPU and of the availability of the desig-
nated storage is performed during execution of
SIGNAL PROCESSOR. If accepted, the order is not
necessarily completed during the execution of
SIGNAL PROCESSOR.

The parameter register has the following format:

/| Status-Area Origin

/11T
0 1 23 31

The store-status-at-address order is completed as
follows:

* If the addressed CPU is not in the stopped state,
the order is not accepted. Instead, bit 22
(incorrect state) of the general register desig-
nated by the R1 field of the SIGNAL PROCESSOR
instruction is set to one, and condition code 1
is set.

* The address of the area into which status is to
be stored is tested for availability. The abso-
lute address of a 512-byte area of storage is
formed by appending nine zeros to the right of
bits 1-22 of the parameter value. This address
is treated as a 31-bit absolute address regardless
of whether the sending and receiving CPUs are
in the 24-bit or 31-bit addressing mode. The
512-byte block of storage at this address is
accessed. The access is not subject to pro-
tection, and the associated reference bit may or
may not be set to one. If the block is not
available in the configuration, the order is not
accepted by the addressed cpu; bit 23 (invalid
parameter) of the general register designated by
the R1 field of the SIGNAL PROCESSOR instruc-
tion is set to one, and condition code 1 is set.

.4-36 ESA/370 Principles of Operation

» The status of the addressed cPU is placed in the
designated area. The information stored, and
the format of the area receiving the informa-
tion, are the same as for the stop-and-store-
status order, except that each field, rather than

- being stored at an offset from the beginning of
absolute storage, is stored in the designated
area at an offset that is the same as that for the
absolute area. Bytes 0-215, 232-255, and
-268-287 of the ‘designated area remain
unchanged. (See the section “Store Status” in
this chapter).

» A serialization and checkpoint-synchronization
function is performed on the addressed cpu
following storing of the status.

Programming Note: For a discussion on the rela-
tive performance of the SIGNAL PROCESSOR orders,
see the programming note following the instruction
SIGNAL PROCESSOR in Chapter 10, “Control
Instructions.”

Conditions Determining Response

Conditions Precluding Interpretation of
the Order Code

The following situations preclude the initiation of
the order. The sequence in which the situations are
listed is the order of priority for indicating concur-
rently existing situations:

1. The access path to the addressed cPU is busy
because a concurrently executed SIGNAL
PROCESSOR is using the CPU-signaling-and-
response facility. The cpu which is concur-
rently executing the instruction can be any CPU
in the configuration other than this cpu, and
the cpu address can be any address, including
that of this cPU or an invalid address. The
order is rejected. Condition code 2 is set.

2. The addressed CPU is not operational; that is, it
is not provided in the installation, it is not in
the configuration, it is in any of certain
customer-engineer test modes, or its power is
off. The order is rejected. Condition code 3 is
set. This condition cannot arise as a result of a
SIGNAL PROCESSOR by a cPU addressing itself.

3. One of the following conditions exists at the
addressed cpu:

a. A previously issued start, stop, restart,
stop-and-store-status, set-prefix, or store-
status-at-address order has been accepted
by the addressed CPU, and execution of the

function requested by the order has not yet
been completed.

b. A manual start, stop, restart, or store-status
function has been initiated at the addressed
cpru, and the function has not yet been
completed. This condition cannot arise as
a result of a SIGNAL PROCESSOR by a cPU
addressing itself.

If the currently specified order is sense, external
call, emergency signal, start, stop, restart, stop
and store status, set prefix, or store status at
address, then the order is rejected, and condi-
tion code 2 is set. If the currently specified
order is one of the reset orders, or an unas-
signed or not-implemented order, the order
code is interpreted as described in the section
“Status Bits” in this chapter.

4. One of the following conditions exists at the
addressed cpu:

a. A previously issued initial-cPU-reset or
cpU-reset order has been accepted by the
addressed cpu, and execution of the func-
tion requested by the order has not yet
been completed.

b. A manual-reset function has been initiated
at the addressed cpu, and the function has
not yet been completed. This condition
cannot arise as a result of a SIGNAL
PROCESSOR by a CPU addressing itself.

If the currently specified order is sense, external
call, emergency signal, start, stop, restart, stop
and store status, set prefix, or store status at
address, then the order is rejected, and condi-
tion code 2 is set. If the currently specified
order is one of the reset orders, or an unas-
signed or not-implemented order, either the
order is rejected and condition code 2 is set or
the order code is interpreted as described in the
section “Status Bits” in this chapter.

When any of the conditions described in items 3
and 4 exists, the addressed cpu is referred to as
“busy.” Busy is not indicated if the addressed cpu
is in the check-stop state or when the operator-
intervening condition exists. A cPU-busy condition
is normally of short duration; however, the condi-
tions described in item 3 may last indefinitely
because of a string of interruptions. In this situ-
ation, however, the cPU does not appear busy to
any of the reset orders.

When the conditions described in items 1 and 2
above do not apply and operator-intervening and

receiver-check status conditions do not exist at the
addressed CpPU, reset orders may be accepted
regardless of whether the addressed cPu has com-
pleted a previously accepted order. This may cause
the previous order to be lost when it is only par-
tially completed, making unpredictable whether the
results defined for the lost order are obtained.

Status Bits

Various status conditions are defined whereby the
issuing and addressed CPUs can indicate their
responses to the specified order. The status condi-
tions and their bit positions in the general register
designated by the Ri field of the SIGNAL
PROCESSOR instruction are shown in Figure 4-10.

Bit
Position Status Condition
0 Equipment check
1-21 Unassigned; zeros stored
22 Incorrect state
23 Invalid parameter
24 External-call pending
25 Stopped
26 Operator intervening
27 Check stop
28 Unassigned; zero stored
29 Inoperative
30 Invalid order
31 Receiver check

Figure 4-10. Status Conditions

The status condition assigned to bit position 0 is
generated by the CPU executing SIGNAL
PROCESSOR. The remaining status conditions are
generated by the addressed cpu.

When the equipment-check condition exists, bit 0
of the general register designated by the Ri field of
the SIGNAL PROCESSOR instruction is set to one,
unassigned bits of the status register are set to
zeros, and the contents of other status bits are
unpredictable. In this case, condition code 1 is set
independent of whether the access path to the
addressed cpuU is busy and independent of whether
the addressed CPU is not operational, is busy, or
has presented zero status.

When the access path to the addressed cpu is not
busy and the addressed CPU is operational and does
not indicate busy to the currently specified order,
the addressed cpU presents its status to the issuing
cpu. These status bits are of two types:

Chapter 4. Control 4-37

1. Status bits 22-27 and 29 indicate the presence
of the corresponding conditions in the
addressed CPU at the time the order code is
received. Except in response to the sense
order, each condition is indicated only when
the condition precludes the successful execution
of the specified order, although invalid param-
eter is not necessarily indicated when any other
precluding condition exists. In the case of
sense, all existing status conditions are indi-
cated; the operator-intervening condition is
indicated if it precludes the execution of any
installed order.

2. Status bits 30 and 31 indicate that the corre-
sponding conditions were detected by the
addressed cPU during reception of the order.

If the presented status is all zeros, the addressed
CPU has accepted the order, and condition code 0 is
set at the issuing CcPU; if the presented status is not
all zeros, the order has been rejected, the status is
stored at the issuing CPU in the general register des-
ignated by the R: field of the SIGNAL PROCESSOR
instruction, zeros are stored in the unassigned bit
positions of the register, and condition code 1 is
set.

The status conditions are defined as follows:

Equipment Check: This condition exists when the
CPU executing the instruction detects equipment
malfunctioning that has affected only the execution
of this instruction and the associated order. The
order code may or may not have been transmitted
and may or may not have been accepted, and the
status bits provided by the addressed cPU may be
in error. :

Incorrect State: A set-prefix or store-status-at-
address order has been rejected because the
addressed cpU is not stopped. When applicable,
this status is generated during execution of SIGNAL
PROCESSOR and is indicated concurrently with
other indications of conditions which preclude exe-
cution of the order.

Invalid Parameter: The parameter value supplied
with a set-prefix or store-status-at-address order
designates a storage location which is not available
in the configuration. When applicable, this status
is generated during execution of SIGNAL
PROCESSOR, except that it is not necessarily gener-
ated when another condition precluding execution
of the order also exists.

4-38 ESA/370 Prinéiples of Operation

External Call Pending: This condition exists when
an external-call interruption condition is pending in
the addressed cPU because of a previously issued
SIGNAL PROCESSOR order. The condition exists
from the time an external-call order is accepted
until the resultant external interruption has been
completed or a CPU reset occurs. The condition
may be due to the issuing CPU or another CPU.
The condition, when present, is indicated only in
response to sense and to external call.

Stopped: This condition exists when the addressed
CPU is in the stopped state. The condition, when

- present, is indicated only in response to sense. This

condition cannot be reported as a result of a
SIGNAL PROCESSOR by a CPU addressing itself.

Operator Intervening: This condition exists when
the addressed CcPU is executing certain operations
initiated from local or remote operator facilities.
The particular manually initiated operations that
cause this condition to be present depend on the
model and on the order specified. The operator-
intervening condition may exist when the addressed
CPU uses reloadable control storage to perform an
order and the required microprogram is not loaded.
The operator-intervening condition, when present,
can be indicated in response to all orders. Operator
intervening is indicated in response to sense if the
condition is present and precludes the acceptance of
any of the installed orders. The condition may also
be indicated in response to unassigned or
uninstalled orders. This condition cannot arise as a
result of a SIGNAL PROCESSOR by a CPU addressing
itself.

Check Stop: This condition exists when the
addressed cpPu is in the check-stop state. The con-
dition, when present, is indicated only in response
to sense, external call, emergency signal, start, stop,
restart, set prefix, store status at address, and stop
and store status. The condition may also be indi-
cated in response to unassigned or uninstalled
orders.. This condition cannot be reported as a
result of a SIGNAL PROCESSOR by a cPU addressing
itself.

Inoperative: This condition indicates that the exe-
cution of the operation specified by the order code
requires the use of a service processor which is
inoperative. The failure of the service processor
may have been previously reported by a service-
processor-damage machine-check condition. The
inoperative condition cannot occur for the sense,
external-call, or emergency-signal order code.

Invalid Order: This condition exists during the
communications associated with the execution of
SIGNAL PROCESSOR when an unassigned or
uninstalled order code is decoded.

Receiver Check: This condition exists when the
addressed cpPU detects malfunctioning of equipment
during the communications associated with the exe-
cution of SIGNAL PROCESSOR. When this condi-
tion is indicated, the order has not been initiated,
and, since the malfunction may have affected the
generation of the remaining receiver status bits,
these bits are not necessarily valid. A machine-
check condition may or may not have been gener-
ated at the addressed cpu.

The following chart summarizes which status con-
ditions are presented to the issuing CPU in response
to each order code.

Status Condition

31 Receiver check#
30 Invalid order
29 Inoperative
27 Check stop
26 Operator intervening#
25 Stopped
24 External call pending —
23 Invalid parameter

22 Incorrect state

Order

<
<«
<&
<
<
«
-t
*
<@
«

Sense

External call
Emergency signal
Start

Stop

Restart

Stop and store status
Initial CPU reset
CPU reset

Set prefix

Store status at addr.
Unassigned order

OX X OODODODDODODODO
OX X OO ODODODDODODO
[cNoNBoNoNoNoRoRoRORON b 8 o
loNoNoNoNoNoNoRoRoNCNOoR 4
DK DK DK K DK X XX XX X X X X
MX X OO XXXXXXX<%
el oNoRoNoRoNoNoNo N o R«
DX K DK X X X X X X X X X

Explanation:

The current state of the operator-intervening
condition may depend on the order code that
is being interpreted.

If a one is presented in the receiver-check bit
position, the values presented in the other bit
positions are not necessarily valid.

Pt

0 A zero is presented in this bit position regard-
less of the current state of this condition.

A one is presented in this bit position.

X A zero or a one is presented in this bit posi-
tion, reflecting the current state of the corre-
sponding condition.

E - Either a zero or the current state of the corre-
sponding condition is indicated.

If the presented status bits are all zeros, the order
has been accepted, and the issuing CPU sets condi-
tion code 0. If one or more ones are presented, the
order has been rejected, and the issuing CPU stores
the status in the general register designated by the
R1 field of the SIGNAL PROCESSOR instruction and
sets condition code 1.

Programming Notes:

1. All SIGNAL PROCESSOR orders can be addressed
to this same cpu. The following are examples
of functions obtained by a cpu addressing
SIGNAL PROCESSOR to itself;

a. Sense indicates whether an external-call
condition is pending.

b. External call and emergency signal cause
the corresponding “interruption conditions
to be generated. FExternal call can be
rejected because of a previously generated
external-call condition.

c. Start sets condition code 0 and has no
other effect.

d. Stop causes the cPU to set condition code
0, take pending interruptions for which it is
enabled, and enter the stopped state.

€. Restart provides a means to store the
current PSW.

f. Stop and store status causes the machine to
stop and store all current status.

2. Two cPUs can simultaneously execute SIGNAL
PROCESSOR, with .each CPU addressing the
other. When this occurs, one cpuU, but not
both, can find the access path busy because of
the transmission of the order code or status bits
associated with SIGNAL PROCESSOR that is
being executed by the other cpu. Alterna-
tively, both cPUs can find the access path avail-
able and transmit the order codes to each
other. In particular, two CPUs can simultane-
ously stop, restart, or reset each other.

Chapter 4. Control 4-39

3. To obtain status from another cPU which 1s in - the status, and, depending on the nature of the

the check-stop state by means of the store- malfunction, provides the best chance of estab-
status-at-address order, a CPU reset operation lishing conditions in the addressed cPu which
should first be used to bring the cpu to the allow status to be obtained.

stopped state. This reset order does not alter

4-40 ESA/370 Principles of Operation

Chapter 5. Program Execution

Instructions
Operands
Instruction Formats

Register Operands
Immediate Operands
Storage Operands

Address Generation
Bimodal Addressing
Sequential Instruction-Address Generation
Operand-Address Generation

Formation of the Intermediate Value

Formation of the Address
Branch-Address Generation

Formation of the Branch Address

Instruction Execution and Sequencing
Decision Making
Loop Control
Subroutine Linkage without the Linkage

Stack
Interruptions
Types of Instruction Ending

Completion
Suppression
Nullification
Termination
Interruptible Instructions
Point of Interruption
Execution of Interruptible Instructions
Exceptions to Nullification and
Suppression
Storage Change and Restoration for
DAT-Associated Access Exceptions
Modification of DAT-Table Entries
Trial Execution for Editing Instructions
and Translate Instruction
Authorization Mechanisms
Mode Requirements
Extraction-Authority Control
PSW-Key Mask
Secondary-Space Control
Subsystem-Linkage Control
ASN-Translation Control
Authorization Index
Access-Register and Linkage-Stack
Mechanisms

PC-Number Translation

PC-Number Translation Control
Control Register 0
Control Register 5

PC-Number Translation Tables
Linkage-Table Entries
Entry-Table Entries

............

............

PC-Number-Translation Process 5-23
Obtaining the Linkage-Table
Designation 5-24
Linkage-Table Lookup 5-25
Entry-Table Lookup 5-25
Recognition of Exceptions during
PC-Number Translation 5-25
Home Address Space 5-26
Access-Registers Introduction 5-26
Summary 5-26
Access-Register Functions 5-27
Access-Register-Specified Address
Spaces 5-27
Access-Register Instructions 5-34
Access-Register Translation 5-35
Access-Register-Translation Control 5-35
Address-Space-Function Control 5-35
Control Register 2 5-36
Control Register 5 5-36
Control Register 8 5-36
Access Registers 5-36
Access-Register-Translation Tables 5-37
Access-List Designations 5-37
Access-List Entries 5-39
Extended ASN-Second-Table Entries 5-40
Access-Register-Translation Process 5-41
Selecting the Access-List-Entry Token 5-44
Obtaining the Primary or Secondary
Segment-Table Designation 5-44
Checking the First Byte of the ALET 5-44
Obtaining the Effective Access-List
Designation 5-44
Access-List Lookup 5-44

Locating the ASN-Second-Table Entry ~ 5-45
Authorizing the Use of the Access-List

Entry 5-45
Obtaining the Segment-Table
Designation from the
ASN-Second-Table Entry 5-46
Recognition of Exceptions During
Access-Register Translation 5-46
ART-Lookaside Buffer 5-46
ALB Structure 5-46
Formation of ALB Entries 5-47
Useof ALBEntries 5-48
Modification of ART Tables 5-48
Linkage-Stack Introduction 5-48
Summary 5-48
Linkage-Stack Functions 5-49
Transferring Program Control 5-49
Branching Using the Linkage Stack 5-51
Adding and Retrieving Information 5-51
Chapter 5. Program Execution 5-1

Testing Authorization 5-52
Program-Problem Analysis 5-52
Extended Entry-Table Entries 5-52
Linkage-Stack Operations 5-54
Linkage-Stack-Operations Control 5-56
Control Register0 5-56
Control Register 15 5-56
Linkage Stack e 5-56
Entry Descriptors 5-56
Header Entries 5-58
Trailer Entries PR 5-58
State Entries 5-59
Stacking Process 5-60
Locating Space for a New Entry 5-61
Forming the New Entry 5-62
Updating the Current Entry 5-62
Updating Control Register 15 5-62
Recognition of Exceptions During the
Stacking Process 5-62
Unstacking Process 5-63
Locating the Current Entry and
Processing a Header Entry 5-63
Checking for a State Entry 5-64
Restoring Information 5-64
Updating the Preceding Entry 5-64
Updating Control Register 15 5-65

Recognition of Exceptions during the

Unstacking Process 5-65
Sequence of Storage References 5-65
Conceptual Sequence 5-65
Overlapped Operation of Instruction
Execution 5-66
Divisible Instruction Execution 5-66
Interlocks for Virtual-Storage References ~ 5-66
Interlocks Between Instructions 5-67
Interlocks Within a Single Instruction 5-67
Instruction Fetching 5-69
ART-Table and DAT-Table Fetches ... 5-71
Storage-Key Accesses 5-71
Storage-Operand References 5-72
Storage-Operand Fetch References . . . 5-72
Storage-Operand Store References ... 5-72

Storage-Operand Update References . . 5-72

Storage-Operand Consistency 5-74
Single-Access References 5-74
Multiple-Access References 5-74
Block-Concurrent References 5-74
Consistency Specification 5-74

Relation between Operand Accesses . . . 5-75

Other Storage References 5-76

Serialization 5-76

CPU Serialization 5-76

Channel-Program Serialization 5-77

Normally, operation of the cpu is controlled by
instructions in storage that are executed sequen-
tially, one at a time, left to right in an ascending
sequence of storage addresses. A change in the
sequential operation may be caused by branching,
LOAD PSW, interruptions, SIGNAL PROCESSOR
orders, or manual intervention. ’

Instructions
Each instruction consists of two major parts:

e An operation code (op code), which specifies
the operation to be performed '

» The designation of the operands that partic-
ipate

Operands

Operands can be grouped in three classes: oper-
ands located in registers, immediate operands, and
operands in storage. Operands may be either
explicitly or implicitly designated.

Register operands can be located in general,

§5-2 ESA/370 Principles of Operation

floating-point, access, or control registers, with the
type of register identified by the op code. The reg-
ister containing the operand is specified by identi-
fying the register in a four-bit field, called the R
field, in the instruction. For some instructions, an
operand is located in an implicitly designated reg-
ister, the register being implied by the op code.

Immediate operands are contained within the
instruction, and the eight-bit field containing the
immediate operand is called the 1 field.

Operands in storage may have an implied length;
be specified by a bit mask; be specified by a
four-bit or eight-bit length specification, called the
L field, in the instruction; or have a length specified
by the contents of a general register. The addresses
of operands in storage are specified by means of a
format that uses the contents of a general register as
part of the address. This makes it possible to:

1. Specify a complete address by using an abbrevi-
ated notation

2. Perform address manipulation using
instructions which employ general registers for
operands

3. Modify addresses by program means without
alteration of the instruction stream

4. Operate independent of the location of data
areas by directly using addresses received from
other programs

The address used to refer to storage either is con-
tained in a register designated by the R field in the
instruction or is calculated from a base address,
index, and displacement, specified by the B, X, and
D fields, respectively, in the instruction.

When the CPU is in the access-register mode, a B or
R field may designate an access register in addition
to being used to specify an address.

To describe the execution of instructions, operands
are designated as first and second operands and, in
some cases, third operands.

In general, two operands participate in an instruc-
tion execution, and the result replaces the first
operand. However, CONVERT TO DECIMAL, TEST
BLOCK, and instructions with “store” in the instruc-
tion name (other than STORE THEN AND SYSTEM
MASK and STORE THEN OR SYSTEM MASK) use the
second-operand address to designate a location in
which to store. TEST AND SET, COMPARE AND
SWAP, and COMPARE DOUBLE AND SWAP may
perform an update on the second operand. Except
when otherwise stated, the contents of all registers
and storage locations participating in the addressing
or execution part of an operation remain
-‘unchanged.

Instruction Formats

An instruction is one, two, or three halfwords in
length and must be located in storage on a
halfword boundary. Each instruction is in one of
nine basic formats: E, RR, RRE, RX, RS, SI, S, SSE,
and ss, with two variations of ss. (See Figure 5-1.)

E Format

Op Code

0 15
RR Format

Op Code{ R:1 | R2

0 8 12 15
RRE Format
op Code |////////| R1 | Re
0 16 24 28 31
RX Format
Op Code| R1 | X2 | B2 D2
0 8 12 16 20 31
RS Format
Op Code| Ra Ra | B2 D2
0 8 12 16 20 31
SI Format
Op Code I2 B1 D1
0 8 16 20 31
S Format
Op Code B2 D2
0 16 20 31

Figure 5-1 (Part 1 of 2). Basic Instruction Formats

Chapter 5. Program Execution -3

SS Format
/ /T
Op Code L | B1 | D1 | B2 | D2
0 8 16 20 32 36 47
/ /T
Op Codey L1 | L2 [Ba | D1 | B2 | D2
0 8 12 16 20 32 36 47
/ /T
Op Code| R:1 [Ra | Bx | D1 | B2 | D2
0 8 12 16 20 32 36 47
SSE Format
/ /
Op Code B1 | D1 | B2 DE:]
/
0 16 20 32 36 47

Figure 5-1 (Part 2 of 2). Basic Instruction Formats

Some instructions contain fields that vary slightly
from the basic format, and in some instructions the
operation performed does not follow the general
rules stated in this section. All of these exceptions
are explicitly identified in the individual instruction
descriptions.

Those instruction formats which are unique to
instructions associated with the vector facility are
described in the publication Enterprise Systems
Architecture/370 and System/|370 Vector Operations,
SA22-7125.

The format names indicate, in general terms, the
classes of operands which participate in the opera-
tion: ‘

* E denotes an operation using implied operands
and having an extended op-code field.

* RR denotes a register-and-register operation.

* RRE denotes a register-and-register operation
having an extended op-code field.

* RX denotes a register-and-indexed-storage oper-
ation.

* RS denotes a register-and-storage operation.

* sl denotes a storage-and-immediate operation.

e s denotes an operation using an implied
operand and storage.

» ss denotes a storage-and-storage operation.

* SSE denotes a storage-and-storage operation
having an extended op-code field.

5-4 ESA/370 Principles of Operation

The first byte or, in the E, RRE, 8, and sSE formats,
the first two bytes of an instruction contain the op
code. For some instructions in the s format, all or
a portion of the second byte is ignored.

The first two bits of the first or only byte of the op
code specify the length and format of the instruc-
tion, as follows:

Bit Instruction
Positions| Length (in Instruction
0-1 Halfwords) Format
00 One E/RR .
01 Two RX
10 Two RRE/RS/RX/S/SI
11 Three SS/SSE

In the format illustration for each individual
instruction description, the op-code field shows the
op code as hexadecimal digits within single quotes.
The hexadecimal representation uses 0-9 for the
binary codes 0000-1001 and A-F for the binary
codes 1010-1111.

The remaining fields in the format illustration for
each instruction are designated by code names, con-
sisting of a letter and possibly a subscript number.
The subscript number denotes the operand to
which the field applies.

Register Operands

In the RR, RRE, RX, and Rs formats, the contents
of the register designated by the R1 field are called
the first operand. The register containing the first
operand is sometimes referred to as the ‘“first-
operand location,” and sometimes as “register R1.”
In the RR and RRE formats, the R2 field designates
the register containing the second operand, and the
R2 field may designate the same register as R1. In
the Rs format, the use of the Ra field depends on
the instruction.

The R field designates a general or access register in
the general instructions, a general register in the
control instructions, and a floating-point register in
the floating-point instructions. However, in the
instructions EXTRACT STACKED REGISTERS and
LOAD ADDRESS EXTENDED, the R field designates
both a general register and an access register. In
the instructions LOAD CONTROL and STORE
CONTROL, the R field designates a control register.
(This paragraph refers only to register operands, .
not to the use of access registers in addressing
storage operands.)

Unless otherwise indicated in the individual instruc-
tion description, the register operand is one register
in length (32 bits for a general, access, or control
register and 64 bits for a floating-point register),
and the second operand is the same length as the
first.

Immediate Operands

In the s1 format, the contents of the eight-bit
immediate-data field, the 12 field of the instruction,
are used directly as the second operand. The B:
and D1 fields specify the first operand, which is one
byte in length.

Storage Operands

The use of B and R fields to designate access regis-
ters to refer to storage operands is described in the
section “Access-Register-Specified Address Spaces”
in this chapter.

In the sI, sSE, and ss formats, the contents of the
general register designated by the B1 field are added
to the contents of the D1 field to form the first-
operand address. In the s, RS, SSE, and ss formats,
the contents of the general register designated by
the B2 field are added to the contents of the D2
field to form the second-operand address. In the
RX format, the contents of the general registers des-
ignated by the X2 and B2 fields are added to the
contents of the D2 field to form the second-operand
address.

In the ss format with a single, eight-bit length field,
L specifies the number of additional operand bytes
to the right of the byte designated by the first-
operand address. Therefore, the length in bytes of
the first operand is 1-256, corresponding to a length
code in L of 0-255. Storage results replace the first
operand and are never stored outside the field spec-
ified by the address and length. In this format, the
second operand has the same length as the first
operand, except for the following instructions:
EDIT, EDIT AND MARK, TRANSLATE, and TRANS-
LATE AND TEST.

In the ss format, with two length fields given, L1
specifies the number of additional operand bytes to
the right of the byte designated by the first-operand
address. Therefore, the length in bytes of the first
operand is 1-16, corresponding to a length code in
L1 of 0-15. Similarly, 12 specifies the number of
additional operand bytes to the right of the location
designated by the second-operand address. Results
replace the first operand and are never stored

outside the field specified by the address and length.
If the first operand is longer than the second, the
second operand is extended on the left with zeros
up to the length of the first operand. This exten-
sion does not modify the second operand in
storage.

In the ss format with two R fields, the contents of
the general register specified by the Ri1 field are a
32-bit unsigned value called the true length. The
operands are of the same length, called the effective
length. The effective length is equal to the true
length or 256, whichever is less. The instructions
using this format, which are MOVE TO PRIMARY,
MOVE TO SECONDARY, and MOVE WITH KEY, set
the condition code to facilitate programming a loop
to move the total number of bytes specified by the
true length.

Address Generation

Bimodal Addressing

Bit 32 of the current psw is the addressing-mode
bit. This bit controls the size of the -effective
address produced by address generation. When bit
32 of the current Psw is zero, the cPU is in the
24-bit addressing mode, and 24-bit instruction and
operand effective addresses are generated. When bit
32 of the current PSW is one, the CPU is in the
31-bit addressing mode, and 31-bit instruction and
operand effective addresses are generated.

Execution of instructions by the cpPuU involves gen-
eration of the addresses of instructions and oper-
ands. This section describes address generation as
it applies to most instructions. In some
instructions, the operation performed does not
follow the general rules stated in this section. All
of these exceptions are explicitly identified in the
individual instruction descriptions.

Sequential Instruction-Address
Generation

When an instruction is fetched from the location
designated by the current psw, the instruction
address is increased by the number of bytes in the
instruction, and the instruction is executed. The
same steps are then repeated by using the new
value of the instruction address to fetch the next
instruction in the sequence.

Chapter 5. Program Execution 3-8

In the 24-bit addressing mode, instruction addresses
wrap around, with the halfword at instruction
address 22* - 2 being followed by the halfword at
instruction address 0. Thus, in the 24-bit
addressing mode, any catry out of PsW bit position
40, as a result of updating the instruction address, is
~ lost.

In the 31-bit addressing mode, instruction addresses
“wrap around, with the halfword at instruction
address 23! - 2 being followed by the halfword at
instruction address 0. Thus, in the 31-bit
- addressing mode, any carry out of Psw bit position

33, as a result of updating the instruction address, is
lost. :

Operand-Address Generation

Formation of the Intermediate Value

An operand address that refers to storage is derived
from an intermediate value, which either is con-
tained in a register designated by an R field in the
instruction or is calculated from the sum of three
binary numbers: base address, index, and displace-
ment.

The base address (B) is a 32-bit number contained
in a general register specified by the program in a
four-bit field, called the B ficld, in the instruction.
Base addresses can be used as a means of independ-
ently addressing each program and data area. In
array-type calculations, it can designate the location
of an array, and, in record-type processing, it can
identify the record. The base address provides for
addressing the entire storage. The base address
may also be used for indexing.

The index (X) is a 32-bit number contained in a
general register designated by the program in a
four-bit field, called the x field, in the instruction.
It is included only in the address specified by the
Rx-format instructions. The Rx-format
instructions permit double indexing; that is, the
- index can be used to provide the address of an
element within an array.

The displacement (D) is a 12-bit number contained
in a field, called the D field, in the instruction. The
displacement provides for relative addressing of up
to 4,095 bytes beyond the location designated by
the base address. In array-type calculations, the
displacement can be used to specify one of many
items associated with an element. In the processing
of records, the displacement can be used to identify
items within a record.

5-6 ESA/370 Principles of Operation

In forming the intermediate sum, the base address
and index are treated as 32-bit binary integers. The
displacement is similarly treated as a 12-bit
unsigned binary integer, and 20 zeros are appended
on the left. The three are added as 32-bit binary
numbers, ignoring overflow. The sum is always 32
bits long and is used as an intermediate value to
form the generated address. The bits of the inter-
mediate value are numbered 0-31.

A zero in any of the Bi, B2, or X2 fields indicates
the absence of the corresponding address compo-
nent. For the absent component, a zero is used in
forming the intermediate sum, regardless of the
contents of general register 0. A displacement of
zero has no special significance.

When an instruction description specifies that the
contents of a general register designated by an R
field are used to address an operand in storage, the
register contents are used as the 32-bit intermediate
value.

An instruction can designate the same general reg-
ister both for address computation and as the
location of an operand. Address computation is
completed before registers, if any, are changed by
the operation.

Unless otherwise indicated in an individual instruc-
tion definition, the generated operand address desig-
nates the leftmost byte of an operand in storage.

Formation of the Address

The generated operand address is always 31 bits
long, and the bits are numbered 1-31. In some
portions of this document, the generated address
may be referred to as being 32 bits long, with the
bits numbered 0-31. Bit 0 of the generated address
is always forced to be zero. The manner in which
the generated address is obtained from the interme-
diate value depends on the current addressing
mode. In the 24-bit addressing mode,.bits 0-7 of
the intermediate value are ignored, bits 0-7 of the
generated address are forced to be zeros, and bits
8-31 of the intermediate value become bits 8-31 of
the generated address. In the 31-bit addressing
mode, bit 0 of the intermediate value is ignored, bit
0 of the generated address is forced to be zero, and
bits 1-31 of the intermediate value become bits 1-31
of the generated address.

Programming Note: Negative values may be used
in index and base-address registers. Bit 0 of these
values is always ignored, and, in the 24-bit

addressing mode, bits 1-7 of these values are also
ignored.

Branch-Address Generation

For branch instructions, the address of the next
instruction to be executed when the branch is taken
is called the branch address. Depending on the
branch instruction, the instruction format may be
RR, RS, Or RX.

In the Rs and RX formats, the branch address is
specified by a base address, a displacement, and, for
RX, an index. In the RS and Rx formats, the
branch-address generation follows the normal rules
for operand-address generation. ’

In the RR format, the contents of the general reg-
ister designated by the R field are used as the inter-
mediate value from which the branch address is
formed. General register 0 cannot be designated as
containing a branch address. A value of zero in the
Rz field causes the instruction to be executed
without branching, :

Formation of the Branch Address

The branch address is always 31 bits long, with the
bits numbered 1-31. The branch address replaces
bits 33-63 of the current Psw. The manner in
which the branch address is obtained from the
intermediate value depends on the addressing mode.
For those branch instructions which change the
addressing mode, the new addressing mode is used.
In the 24-bit addressing mode, bits 1-7 of the inter-
mediate value are ignored, bits 1-7 of the branch
address are made zeros, and bits 8-31 of the inter-
mediate value become bits 8-31 of the branch
address. In the 31-bit addressing mode, bit 0 of the
intermediate value is ignored, and bits 1-31 of the
intermediate value become bits 1-31 of the branch
address.

For several branch instructions, branching depends
on satisfying a specified condition. When the con-
dition is not satisfied, the branch is not taken,
normal sequential instruction execution continues,
and the branch address is not used. When a
branch is taken, bits 1-31 of the branch address
replace bits 33-63 of the current psw. The branch
address is not used to access storage as part of the
branch operation.

A specification exception due to an odd branch
address and access exceptions due to fetching of the
instruction at the branch location are not recog-
nized as part of the branch operation but instead
are recognized as exceptions associated with the
execution of the instruction at the branch location.

A branch instruction, such as BRANCH AND LINK,
can designate the same general register for branch-
address computation and as the location of an
operand. Branch-address computation is com-
pleted before the remainder of the operation is per-
formed.

Instruction Execution and
Sequencing

The program-status word (Psw), described in
Chapter 4, “Control,” contains information
required for proper program execution. The Psw is
used to control instruction sequencing and to hold
and indicate the status of the CPU in relation to the
program currently being executed. The active or
controlling Psw is called the current PSW.

Branch instructions perform the functions of deci-
sion. making, loop control, and subroutine linkage.
A branch instruction affects instruction sequencing
by introducing a new instruction address into the
current PSW.

Decision Making

Facilities for decision making are provided by
BRANCH ON CONDITION. This instruction inspects
a condition code that reflects the result of a
majority of the arithmetic, logical, and 1/0 opera-
tions. The condition code, which consists of two
bits, provides for four possible condition-code set-
tings: 0, I, 2, and 3.

The specific meaning of any setting depends on the
operation that sets the condition code. For
example, the condition code reflects such condi-
tions as zero, nonzero, first operand high, equal,
overflow, and subchannel busy. Once set, the con-
dition code remains unchanged until modified by
an instruction that causes a different condition code
to be set. See Appendix C, “Condition-Code
Settings,” for a summary of the instructions which
set the condition code.

Chapter S. Program Execution S5-7

Loop Control

Loop control can be performed by the use of
BRANCH ON CONDITION to test the outcome of
address arithmetic and counting operations. For
some particularly frequent combinations of arith-
metic and tests, BRANCH ON COUNT,(BRANCH ON
INDEX HIGH, and BRANCH ON INDEX LOW OR
BQUAL are provided. These branches, being spe-
cialized, provide increased performance for these
tasks.

Subroutine Linkage without the
Linkage Stack

This section describes only the methods for subrou-
tine linkage that do not use the linkage stack. For
the linkage extensions provided by the linkage
stack, see the section “Linkage-Stack Introduction”
in this chapter.

Subroutine linkage is provided by the BRANCH

AND LINK and BRANCH AND SAVE instructions,
which permit not only the introduction of a new
instruction address but also the preservation of the
return address and associated information.
Instructions are also provided which set and save
the addressing-mode bit, psw bit 32. These
_ instructions provide the facility for subroutine
linkage between programs using the 24-bit and
31-bit addressing modes. Linkage between a
problem-state program and the supervisor or moni-
toring program is provided by means of the SUPER-
VISOR CALL and MONITOR CALL instructions.

The instructions PROGRAM CALL and PROGRAM
TRANSFER provide the facility for linkage between
programs of different authority and in different
address spaces. 'PROGRAM CALL permits linkage to

5-8 ESA/370 Principles of Operation

a number of preassigned programs that may be in
either the problem or the supervisor state and may
be in either the same address space or an address
space different from that of the caller. In general, it
is used to transfer control to a program of higher
authority. PROGRAM TRANSFER permits a change -
of the instruction address, addressing mode, and
address space. PROGRAM TRANSFER also permits a
reduction in psw-key-mask authority and a change
from the supervisor to the problem state. In
general, it is used to transfer control from one
program to another of equal or lower authority.
PROGRAM TRANSFER can be used to return from a
program called by PROGRAM CALL.

The operation of PROGRAM CALL is controlled by
means of an entry-table entry, which is located as
part of a table-lookup process during the execution
of the instruction. The instruction causes the
primary address space to be changed only when the
ASN in the entry-table entry is nonzero. When the
primary address space is changed, the operation is
called PROGRAM CALL with space switching
(pc-ss). When the primary address space is not
changed, the operation is called PROGRAM CALL to
current primary (PC-cp).

PROGRAM TRANSFER specifies the new addressing
mode and the address space which is to become the
new primary address space. When the primary
address space is changed, the operation is called
PROGRAM TRANSFER with space switching (PT-ss).
When the primary address space is not changed, the
operation is called PROGRAM TRANSFER to current

primary (PT-cp).

The linkage instructions provided and the functions
performed by each are summarized in Figure 5-2
on page 5-9.

Instruction Addressing Problem PASN
Address Mode State CR4 PSW-Key
PSW Bits 33-63 PSW Bit 32 PSW Bit 15 Bits 16-31 Mask
_ Changed
Instruction|Format| Save Set Save Set Save Set Save Set in CR3 Trace
BALR* RR Yes Rat AM - - - - - - Ra1
BAL* RX Yes Yes AM - - - - - - -
BASR RR Yes Ra1 Yes - - - - - - Rat
BAS RX | VYes Yes Yes - - - - - c- -
BASSM | RR Yes | Ret | Yes | Rat - - - - - Rzt
BSM RR - Rat Ri1 Ra21 - - - - - -
MC#2 SI Yes Yes Yes Yes Yes ?es - | - - -
PC-cp S - Yes Yes Yes Yes Yes Yes - - "OR" EKM Yes
PC-ss) Yes Yes Yes Yes Yes Yes Yes Yes |"OR" EKM Yes
~PT-cp RRE - Rz - Rz - Ra** - - "AND" Ri Yes
PT-ss RRE - - Rz - Rz - Ra** - Yes |["AND" Ri Yes
svc2 RR “Yes | VYes Yes Yes Yes Yes - - - -

Explanation:
- No
* In the 24-bit addressing mode, the instruction-length code, condition code, program mask,
and 24-bit instruction address are saved, and the 24-bit instruction address is set; in
 the 31-bit addressing mode, the addressing mode and the 31-bit instruction address are
saved, and the 31-bit instruction address is set.

*% A change from the supervisor to the problem state is allowed; a privileged-operation excep-
tion is recognized when a change from the problem to the supervisor state is specified.

Monitor-mask bits provide a means of disallowing linkage, or enabling linkage, for selected
classes of events. »)

1 The action takes place only if the associated R field in the instruction is nonzero.

2 MC and SVC, as part of the interruption, save the entire current PSW and load a new PSW.

AM Saved only if the 31-bit addressing mode is specified.

Figure 5-2. Summary of Linkage Instructions without the Linkage Stack

Chapter 5. Program Execution

Programming Note: This section describes the
linkage instructions that were included in 370-xA
and carried forward in BsA/370. To give the reader
a better understanding of the utility and intended
usage of these linkage instructions, the following
paragraphs in this note describe various program
linkages and conventions and the use of the linkage
instructions in these situations.

The linkage instructions are provided to permit
System/370 programs to operate with no modifica-
tion or only slight modification on 370-XA or
ESA/370 systems and also to provide additional
function for those programs which are designed to
take advantage of the 31-bit addressing of 370-xA
and EBSA/370. The instructions provide the capa-
bility for both old and new programs to coexist in
storage and to communicate with each other. It is
assumed that old, unmodified programs operate in
the 24-bit addressing mode and call, or directly
communicate with, other programs operating in the
24-bit addressing mode only.. Modified programs
normally operate in the 24-bit addressing mode but
may call programs which operate in either the
24-bit or 31-bit addressing mode. New programs
may be written to operate in either the 24-bit or
31-bit addressing mode, and in some cases a
program may be written such that it can be
invoked in either mode.

SUPERVISOR CALL is provided for compatibility
purposes and also because it provides the simplest
mechanism to call a program which operates in the
supervisor state. It has the advantage over
PROGRAM CALL that no general registers are dis-
turbed, that only two bytes in storage are required
in line, and that a complete change of pPsw status is
provided. The return from a routine called by
SUPERVISOR CALL normally is accomplished by
means of LOAD psw, which is a privileged instruc-
tion.

PROGRAM CALL is provided for fast communi-
cation to a program operating in the supervisor
state or higher-authority problem state, or even to a
program with the same authority. PROGRAM CALL
permits a program to call a program operating in a
different address space. This would normally be
used in the situation where the authorization index
associated with the called address space had a
higher level of authority than that of the calling
address space. The advantage of PROGRAM CALL
over SUPERVISOR CALL is in speed, since first- and
second-level interruption-handler programs are
avoided. It also provides a possible 22° different
entry points. The authorization key mask in the

5-10 ESA/370 Principles of Operation

entry-table entry permits a particular entry point to
be available to a limited subset of the programs in
the system. Thus, some or all of the authority
checking which would otherwise have to be placed
in the called program can be eliminated. Return
from a routine called by PROGRAM CALL is
normally accomplished by means of the PROGRAM
TRANSFER instruction; however, LOAD PSW may be
used if the called routine is in the supervisor state.

PROGRAM TRANSFER is provided as the return
instruction for PROGRAM CALL. It is also useful for
calling or transferring to programs with the same
authority in another address space. Although
PROGRAM TRANSFER does not save the current
PASN, the instruction EXTRACT PRIMARY ASN may
be used to provide the PASN for return purposes.

BRANCH AND SAVE AND SET MODE (BASSM) is
intended to be the principal calling instruction to
subroutines outside of an assembler/linkage-editor
control section (CSECT), for use by all new pro-
grams. BRANCH AND SET MODE (BsM) is intended
to be the return instruction used after a BAssM. It
is assumed that an extension to the current v-type
address constant (vcoN) will be established by the
assembler and linkage editor which consists of a
31-bit entry-point address and a leftmost bit indi-
cating whether the entry is in the 24-bit or 31-bit
addressing mode. This extended vCON is shown
here as “vcoNE.” This calling sequence would
normally be:

L 15,VCONE
BASSM 14,15

The return from such a routine would normally be:
BSM 0,14

The BRANCH AND LINK (BAL, BALR) instruction is
provided primarily for compatibility reasons. It is
defined to operate in the 31-bit addressing mode to
increase the probability that an old, straightforward
program can be modified to operate in the 31-bit
addressing mode with minimal or no' change. It is
recommended, however, that BRANCH AND SAVE
(BAs and BASR) be used instead and that BRANCH
AND LINK be avoided since it places nonzero infor-
mation in the left part of the general register in the
24-bit addressing mode, which may lead to prob-
lems. Additionally, BRANCH AND LINK is likely to
be slower than BRANCH AND SAVE because
BRANCH AND SAVE always saves the right half of
the psw, whereas BRANCH AND LINK must take
additional time to check the addressing mode, and
then even more time, if in the 24-bit addressing
mode, to construct the I1LC, condition code, and

program mask to be placed in the leftmost byte of
the link register.

It is assumed that the normal return from a sub-
routine called by BRANCH AND LINK (BAL or
BALR) will be:

BCR 15,14
However, the standard “return instruction”:
BSM 0,14

operates correctly for all cases except for a calling
BAL executed in the 24-bit addressing mode. In the
24-bit addressing mode, BAL causes an ILC of 10 to
be placed in the leftmost two bits of the link reg-
ister. Thus, a BsSM would return in the 31-bit
addressing mode. Note that an EXECUTE of BALR
in the 24-bit addressing mode also causes the same
1LC effect. :

The BRANCH AND SAVE (BAS, BASR) instruction is
provided to be used for subroutine linkage to any
program either within the same CSECT or known to
be in the same addressing mode. BASR with the R2
field 0 is also useful for obtaining addressability to
the instruction stream by getting a 31-bit address,

uncluttered by leftmost fields, in the 24-bit
addressing mode. BRANCH AND SAVE (BAS, BASR)
is the fastest linkage instruction since the linkage
information is not. addressing-mode sensitive and
since the instruction does not change the addressing
mode.

The return instruction from a routine called by
BRANCH AND SAVE (BAS or BASR) may be either -

BCR 15,14
or
BSM 0,14

In some cases, it may be desirable to rewrite a
program that is called by an old program which has
not been rewritten. In such a case, the old
program, which operates in the 24-bit addressing
mode, will be given the address of an intermediate
program that will set up the correct entry and
return modes and then call the rewritten program.
Such a program is sometimes referred to as a glue
module. The instruction BRANCH AND SET MODE
(BsM) with a nonzero Ri field provides the function
necessary to perform this operation -efficiently.
This is shown in Figure 5-3.

01d_Program Glue Module

L 15,0LDVCON

BALR 14,15
o
[
®
OLDVCON DC V(GLUE)

GLUE USING *,15

BSM 14,15
NEWVCON DC V(NEW)

L 15, NEWVCON

New Program

NEW USING *,15

Figure 5-3. Glue Module

Chapter 5. Program Execution S-11

Note . that the “BsM 14,15” in the glue module
causes the addressing mode to be saved in bit 0 of
general register 14 and that bits 1-31 of general reg-
ister 14 are unchanged. Thus, when “BsM 0,14” is
executed in the new program, control passes
directly back to the old program without passing
through the glue module again.)

Interruptions

Interruptions permit the CPU to change state as a
result of conditions external to the system, in sub-
channels or input/output (o) devices, in other
CPUS, or in the CPU itself. Details are to be found
in Chapter 6, “Interruptions.”

Six classes of interruption conditions are provided:
external, 1/0, machine check, program, restart, and
supervisor call. Each class has two relited psws,
called old and new, in permanently assigned real
storage locations. In all classes, an interruption
involves storing information identifying the cause of
the interruption, storing the current Psw at the
old-psw location, and fetching the psw at the
new-PSW location, which becomes the current psw.

The old PsW contains CPU-status information nec-
essary for resumption of the interrupted program.
At the conclusion of the program invoked by the
interruption, the instruction LOAD PSW may be
used to restore the current Psw to the value of the
old psw.

Types of Instruction Ending

Instruction execution ends in one of five ways:
completion, nullification, suppression, termination,
and partial completion.

Partial completion of instruction execution occurs
only for interruptible instructions; it is described in
the section “Interruptible Instructions” later in this
chapter. :

Completion

Completion of instruction execution provides
results as called for in the definition of the instruc-
tion. When an interruption occurs after the com-
pletion of the execution. of an instruction, the
instruction address in the old psw designates the
next sequential instruction.

5-12 ESA/370 Principles of Operation

Suppression

Suppression of instruction execution causes the
instruction to be executed as if it specified “no
operation.” The contents of any result fields,
including the condition code, are not changed. The
instruction address in the old psw on an inter-
ruption after suppression designates the next
sequential instruction.

Nullification

Nullification of instruction execution has the same
effect as suppression, except that when an inter-
ruption occurs after the execution of an instruction
has been nullified, the instruction address in the old
PSW designates the instruction whose execution was
nullified (or an EXECUTE instruction, as appro-
priate) instead of the next sequential instruction.

Termination ,

Termination of instruction execution causes the
contents of any fields due to be changed by the
instruction to be unpredictable. The operation

-may replace all, part, or none of the contents of the

designated result fields and may change the condi-
tion code if such change is called for by the instruc-
tion. Unless the interruption is caused by a
machine-check condition, the validity of the
instruction address in the Psw, the interruption
code, and the 1LC are not affected, and the state or
the operation of the machine is not affected in any
other way. The instruction address in the old psw
on an interruption after termination designates the
next sequential instruction.

Programming Note: Although the execution of an
instruction is treated as a no-operation when sup-
pression or nullification occurs, stores may be per-
formed as the result of the implicit tracing action
associated with some instructions. See the section
“Tracing” in Chapter 4, “Control.”

Interruptible Instructions

Point of Interruption

For most instructions, the entire execution of an
instruction is one operation. An interruption is
permitted between operations; that is, an inter-
ruption can occur after the performance of one
operation and before the start of a subsequent
operation.

For the following instructions, referred to as inter-
ruptible instructions, an interruption is permitted
after partial completion of the instruction:

* COMPARE AND FORM CODEWORD

* COMPARE LOGICAL LONG

¢ MOVE LONG

¢ TEST BLOCK

* UPDATE TREE

 Interruptible instructions of the vector facility
(see the publication Enterprise Systems
Architecture/370 and System|370 Vector Opera-
tions, SA22-7125)

The execution of an interruptible instruction is con-
sidered to consist in the execution of a number of
units of operation, and an interruption is permitted
between units of operation. The amount of data
processed in a unit of operation depends on the
particular instruction and may depend on the
model and on the particular condition that causes
the execution of the instruction to be interrupted.

Whenever points of interruption that include those
occurring within the execution of an interruptible
instruction are discussed, the term “unit of
operation” is used. For a noninterruptible instruc-
tion, the entire execution consists, in effect, in the
execution of one unit of operation.

When an instruction consists of a number of units
of operation and an interruption occurs after some,
but not all, units of operation have been com-
pleted, the instruction is said to be partially com-
pleted. In this case, the type of ending (com-
pletion, inhibition, nullification, suppression) is
associated with the unit of operation. In the case
of termination, the entire instruction is terminated,
not just the unit of operation.

Execution of Interruptible Instructions
The execution of an interruptible instruction is
completed when all units of operation associated
with that instruction are completed. When an
interruption occurs after completion, inhibition,
nullification, or suppression of a unit of operation,
all preceding units of operation have been com-
pleted, and subsequent units of operation and
instructions have not been started. The main dif-
ference between these types of ending is the han-
dling of the current unit of operation and whether
the instruction address stored in the old psw identi-
fies the current instruction or the next sequential
instruction.

At the time of an interruption, changes to register
contents, which are due to be made by an interrup-
tible vector instruction beyond the point of inter-
ruption, have not yet been made. Changes to
storage locations, however, which are due to be
made by an interruptible vector instruction beyond

the point of interruption, may have occurred for
one or more storage locations beyond the location
containing the element identified by the inter-
ruption parameters, but not for any location
beyond the last element specified by the instruction
and not for any locations for which access
exceptions exist. Changes to storage locations or
‘register contents which are due to be made by
instructions following the interrupted instruction
have not yet been made at the time of interruption.

Completion: On completion of the last unit of
operation of an interruptible instruction, the
instruction address in the old psw designates the
next sequential instruction. The result location for
the current unit of operation has been updated. It
depends on the particular instruction how the
operand parameters are adjusted. On completion
of a unit of operation other than the last one, the
instruction address in the old Psw designates the
interrupted instruction or an EXECUTE instruction,
as appropriate. The result location for the current
unit of operation has been updated. The operand
parameters are adjusted such that the execution of
the interrupted instruction is resumed from the
point of interruption when the old psw stored
during the interruption is made the current Psw.

Inhibition: When a unit of operation is inhibited,
the instruction address in the old psw designates
the interrupted instruction or an EXECUTE instruc-
tion, as appropriate. The result location for the
current unit of operation is not changed. The
operand parameters are adjusted such that, if the
instruction is reexecuted, execution of the inter-
rupted instruction is resumed with the next unit of
operation. Inhibition occurs only during interrup-
tible vector instructions and is described in more
detail in the publication Enterprise Spystems
Architecture/370 and System|370 Vector Operations,
SA22-7125.

Nullification: When a unit of operation is nulli-
fied, the instruction address in the old psw desig-
nates the interrupted instruction or an EXECUTE
instruction, as appropriate. The result location for
the current unit of operation remains unchanged.
The operand parameters are adjusted such that, if
the instruction is reexecuted, execution of the inter-
rupted instruction is resumed with the current unit
of operation.

Suppression: When a unit of operation is sup-
pressed, the instruction address in the old psw des-
ignates the next sequential instruction. The

5-13

Chapter 5. Program Execution

operand parameters, however, are adjusted so as to
indicate the extent to which instruction execution
has been completed. If the instruction is reexe-
cuted after the conditions causing the suppression
have been removed, the execution is resumed with
the current unit of operation.

Termination: When an exception which causes
termination occurs as part of a unit of operation of
an interruptible instruction, the entire operation is
terminated, and the contents, in general, of any
fields due to be changed by the instruction are
unpredictable. On such an interruption, the
instruction address in the old psw designates the
next sequential instruction.

The differences among the five types of ending for a
unit of operation are summarized in Figure 5-4.

Unit of Instruction Operand Current Result
Operation Is Address Parameters Location
Completed
Last unit |Next instruc-|Depends on Changed
of oper- tion the instruc-
ation tion
Any other Current in- |Next unit of |Changed
unit of struction operation
operation
Inhibited Current in- |Next unit of |Unchanged
struction operation
Nullified Current in- |Current unit |Unchanged
struction of operation
Suppressed Next instruc-|Current unit |Unchanged
tion of operation
Terminated Next instruc-|Unpredictable|Unpredictable
tion

Figure 5-4. Types of Ending for a Unit of Operation

Programming Notes:

1. Any interruption, other than supervisor call
and some program interruptions, can occur
after a partial execution of an interruptible
instruction. In particular, interruptions for
external, 1/0, machine-check, restart, and
program interruptions for access exceptions and
PER events can occur between units of opera-
tion. '

2. The amount of data processed in a unit of
operation of an interruptible instruction
depends on the model and may depend on the
type of condition which causes the execution of
the instruction to be interrupted or stopped.
Thus, when an interruption occurs at the end

5-14 ESA/370 Principles of Operation

of the current unit of operation, the length of
the unit of operation may be different for dif-
ferent types of interruptions. Also, when the
stop function is requested during the execution
of an interruptible instruction, the CPU enters
the stopped state at the completion of the exe-
cution of the current unit of operation. Simi-
larly, in the instruction-step mode, only a single
unit of operation is performed, but the unit of

operation for the various cases of stopping may
be different.

Exceptions to Nullification and
Suppression

In certain unusual situations, the result fields of an
instruction having a store-type operand are changed
in spite of the occurrence of an exception which
would normally result in nullification or sup-
pression. These situations are exceptions to the
general rule that the operation is treated as a no-
operation when an exception requiring nullification
or suppression is recognized. Each of these situ-
ations may result in the turning on of the change
bit associated with the store-type operand, even
though the final result in storage may appear
unchanged. Depending on the particular situation,
additional effects may be observable. The extent of
these effects is described along with. each of the sit-
uations.

All of these situations are limited to the extent that
a store access does not occur and the change bit is
not set when the store access is prohibited. For the
CPU, a store access is prohibited whenever an
access exception exists for that access, or whenever
an exception exists which is of higher priority than
the priority of an access exception for that access.

When, in these situations, an interruption for an
exception requiring suppression occurs, the instruc-
tion address in the old psw designates the next
sequential instruction. When an interruption for an
exception requiring nullification occurs, the instruc-
tion address in the old psw designates the instruc-
tion causing the exception even though partial
results may have been stored.

Storage Change and Restoration for
DAT-Associated Access Exceptions

In this section, the term ‘“DAT-associated access
exceptions” is used to refer to those exceptions
which may occur as part of the dynamic-address-
translation process. These exceptions are page
translation, segment translation, translation specifi-

cation, and addressing due to a DAT-table entry
being designated at a location that is not available
in the configuration. The first two of these
exceptions normally cause nullification, and the last
two normally cause suppression. Protection
exceptions, including those due to page protection,
are not considered to be DAT-associated access
exceptions.

For DAT-associated access exceptions, on some
models, channel programs may observe the effects
on storage as described in the following case.

When, for an instruction having a store-type
operand, a DAT-associated access exception is
recognized for any operand of the instruction, that
portion, if any, of the store-type operand which
would not cause an exception may be changed to
an intermediate value but is then restored to the
original value.

The accesses associated with storage change and
restoration for DAT-associated access exceptions are
only observable by channel programs and are not
observable by other cPus in a multiprocessing con-
figuration. Except for instructions which are
defined to have multiple-access operands, the inter-
mediate value, if any, is always equal to what
would have been the final value if the DAT-associ-
ated access exception had not occurred.

Programming Notes:

1. Storage change and restoration for DAT-associ-
ated access exceptions occur in two main situ-
ations:

a. The exception is recognized for a portion
of a store-type operand which crosses a
page boundary, and the other portion has
no access exception.

b. The exception is recognized for one
operand of an instruction having two
storage operands (for example, an
ss-format instruction or MOVE LONG), and
the other operand, which is a store-type
operand, has no access exception.

2. To avoid letting a channel program observe
intermediate operand values due to storage
change and restoration for DAT-associated
access exceptions (especially when a ccw chain
is modified), the cPU program should do one
of the following:

e Operate on one storage page at a time

e Perform preliminary testing to ensure that
no exceptions occur for any of the required

pages
» Operate with DAT off

Modification of DAT-Table Entries

When a valid and attached DAT-table entry is
changed to a value which would cause an excep-
tion, and when, before the TLB is cleared of entries
which qualify for substitution for that entry, an
attempt is made to refer to storage by using a
virtual address requiring that entry for translation,
the contents of any fields due to be changed by the
instruction are unpredictable. Results, if any, asso-
ciated with the virtual address whose DAT-table
entry was changed may be placed in those real
locations originally associated with the address.
Furthermore, it is unpredictable whether or not an
interruption occurs for an access exception that was
not initially applicable. On some machines, this
situation may be reported by means of an
instruction-processing-damage machine check with
the delayed-access-exception bit also indicated.

Trial Execution for Editing Instructions
and Translate Instruction

For the instructions EDIT, EDIT AND MARK, and
TRANSLATE, the portions of the operands that are
actually used in the operation may be established in
a trial execution for operand accessibility that is
performed before the execution of the instruction is
started. This trial execution consists in an exe-
cution of the instruction in which results are not
stored. If the first operand of TRANSLATE or either
operand of EDIT or EDIT AND MARK is changed by
another cpU or by a channel program, after the
initial trial execution but before completion of exe-
cution, the contents of any fields due to be changed
by the instruction are unpredictable. Furthermore,
it is unpredictable whether or not an interruption
occurs for an access exception that was not initially
applicable.

Authorization Mechanisms

The authorization mechanisms which are described
in this section permit the control program to estab-
lish the degree of function which is provided to a
particular semiprivileged program. (A summary of
the authorization mechanisms is given in
Figure 5-5on page 5-19. The authorization mech-
anisms are intended for use by programs considered
to be semiprivileged, that is, programs which are
executed in the problem state but which may be

Chapter 5. Program Execution 5-15

authorized to use additional capabilities. With
these authorization controls, a hierarchy of pro-
grams may be established, with programs at a
higher level having a greater degree of privilege or
authority than programs at a lower level. The
range of functions available at each level, and the
ability to transfer control from a lower to a higher
level, are specified in tables which are managed by
the control program. When the linkage stack is
used, a nonhierarchical transfer of control also can
be specified.

A semiprivileged instruction is one which can be
executed in the problem state, but which is subject
to the control of one or more of the authorization
mechanisms described in this section. There are 21
semiprivileged instructions and also the privileged
LOAD ADDRESS SPACE PARAMETERS instruction
that are controlled by the authorization mech-
anisms. All semiprivileged and privileged
instructions are described in Chapter 10, “Control
Instructions.”

The instructions controlled by the authorization
mechanisms are listed in Figure 5-5 on page S5-19.
The figure also shows additional authorization
mechanisms that do not control specifically semi-
privileged instructions; they control implicit access-
register translation (access-register translation as
part of an instruction making a storage reference)
and also access-register translation in the LOAD
REAL ADDRESS, TEST ACCESS, and TEST PRO-
TECTION instructions. These additional mech-
anisms (the extended authorization index, ALE
sequence number, and ASTE sequence number) are
described in the section “Access-Register-Specified
Address Spaces” in this chapter.

Mode Requirements

Most of the semiprivileged instructions can be exe-
cuted only with DAT on. Basic PROGRAM CALL,
and PROGRAM TRANSFER, are valid only in the
primary-space mode. (Basic PROGRAM CALL is the
PROGRAM CALL operation when the linkage stack
is not used. When the linkage stack is used, the
PROGRAM CALL operation is called stacking
PROGRAM CALL). MOVE TO PRIMARY and MOVE
TO SECONDARY are valid only in the primary-space
and secondary-space modes. BRANCH AND STACK,
stacking PROGRAM CALL, and PROGRAM RETURN
are valid only in the primary-space and access-
register modes. EXTRACT STACKED REGISTERS,
EXTRACT STACKED STATE, and MODIFY STACKED
STATE are valid only in the primary-space, access-
register, and home-space modes. When a semipriv-
ileged instruction is executed in an invalid trans-

5-16 ESA/370 Principles of Operation

lation mode, a special-operation exception is
recognized.

PROGRAM TRANSFER specifies a new value for the
problem-state bit in the psw. If a program in the
problem state attempts to execute PROGRAM
TRANSFER and set the supervisor state, a privileged-
operation exception is recognized. A privileged-
operation. exception is also recognized on an
attempt to use SET ADDRESS SPACE CONTROL to set
the home-space mode in the problem state.

Extraction-Authority Control

The extraction-authority-control bit is located in bit
position 4 of control register 0. In the problem
state, bit 4 must be one to allow completion of
these instructions:

* EXTRACT PRIMARY ASN

® EXTRACT SECONDARY ASN

¢ INSERT ADDRESS SPACE CONTROL
* INSERT PSW KEY

* INSERT VIRTUAL STORAGE KEY

Otherwise, a . privileged-operation exception is
recognized. The extraction-authority control is not
examined in the supervisor state.

PSW-Key Mask .
The psw-key mask consists of bits 0-15 in control
register 3. These bits are used in the problem state
to control which keys and entry points are author-
ized for the program. The psw-key mask is modi-
fied by PROGRAM TRANSFER, is modified or loaded
by PROGRAM CALL, and is loaded by PROGRAM
RETURN and LOAD ADDRESS SPACE PARAMETERS.
The psw-key mask is used in the problem state to
control the following;

» The psw-key values that can be set by means
of the instruction SET PSW KEY FROM
ADDRESS.

* The psw-key values that are valid for the five
move instructions that specify a second access
key: MOVE TO PRIMARY, MOVE TO SEC-
ONDARY, MOVE WITH KEY, MOVE WITH
SOURCE KEY, and MOVE WITH DESTINATION
KEY.

» The entry points which can be called by means
of PROGRAM CALL. In this case, the psw-key
mask is ANDed with the authorization key
mask in the entry-table entry, and, if the result
is zero, the program is not authorized.

When an instruction in the problem state attempts
to use a key not authorized by the psw-key mask, a

privileged-operation exception is recognized. The
same action is taken when an instruction in the
problem state attempts to call an entry not author-
ized by the psw-key mask. The psw-key mask is
not examined in the supervisor state, all keys and
entry points being valid.

Secondary-Space Control

Bit 5 of control register 0 is the secondary-space-
control bit. This bit provides a mechanism
whereby the control program can indicate whether
or not the secondary segment table has been estab-
lished. Bit 5 must be one to allow completion of
these instructions:

* MOVE TO PRIMARY
¢ MOVE TO SECONDARY
* SET ADDRESS SPACE CONTROL

Otherwise, a special-operation exception is recog-

nized. The secondary-space control is examined in

both the problem and supervisor states.

Subsystem-Linkage Control

When the address-space-function (ASF) control, bit
15 of control register 0, is zero, bit 0 of control reg-
ister 5 is the subsystem-linkage-control bit. When
the ASF control is one, bit 96 of the primary
AsN-second-table entry is the subsystem-linkage-
control bit. The subsystem-linkage control must be
one to allow completion of these instructions:

* PROGRAM CALL
* PROGRAM TRANSFER

Otherwise, a special-operation exception is recog-
nized. The subsystem-linkage control is examined
in both the problem and supervisor states and con-
trols both the space-switching and current-primary
versions of the instructions.

ASN-Translation Control

Bit 12 of control register 14 is the ASN-translation-
control bit. This bit -provides a mechanism
whereby the control program can indicate whether
ASN translation may occur while a particular
program 1is being executed. Bit 12 must be one to
allow completion of these instructions:

* LOAD ADDRESS SPACE PARAMETERS

¢ SET SECONDARY ASN

* PROGRAM CALL with space switching

* PROGRAM RETURN with space switching and
also when the restored secondary ASN is not
equal to the restored primary ASN

* PROGRAM TRANSFER with space switching

Otherwise, a special-operation exception is recog-
nized. The AsN-translation control is examined in
both the problem and supervisor states. The
ASN-translation control is examined by PROGRAM
CALL even when PROGRAM CALL obtains the
address of the AsN-second-table entry directly from
the entry-table entry, instead of by performing ASN
translation.

Authorization Index

The authorization index is contained in bits 0-15 of
control register 4. The authorization index is asso-
ciated with the primary address space and is loaded
along with the PASN when PROGRAM CALL with
space switching, PROGRAM RETURN with space
switching, PROGRAM TRANSFER with space
switching, or LOAD ADDRESS SPACE PARAMETERS
is executed. The authorization index is used to
determine whether a program is authorized to
establish a particular address space. A program
may be authorized to establish the address space as
a secondary-address space, as a primary-address
space, or both. The authorization index is exam-
ined in both the problem and supervisor states.

Associated with each address space is an authority
table. The authorization index is used to select an
entry in the authority table. Each entry contains
two bits, which indicate whether the program with
that authorization index is permitted to establish
the address space as a primary address space, as a
secondary address space, or both.

The instruction SET SECONDARY ASN with space
switching, and the instruction PROGRAM RETURN
when the restored secondary ASN is not equal to
the restored primary ASN, use the authorization
index to test the secondary-authority bit in the
authority-table entry to determine if the address
space can be established as a secondary address
space. The tested bit must be one; otherwise, a
secondary-authority exception is recognized.

The instruction PROGRAM TRANSFER with space
switching uses the authorization index to test the
primary-authority bit in the authority-table entry to
determine if the address space can be established as
a primary address space. The tested bit must be
one; otherwise, a primary-authority exception is

rrecognized.

The instruction PROGRAM CALL with space
switching causes a new authorization index to be
loaded from the AsN-second-table entry. This
permits the program which is called to be given an

Chapter 5. Program Execution S-17

authorization index which authorizes it to access
more or different address spaces than those author-
ized for the calling program. The instructions
PROGRAM RETURN with space switching and
PROGRAM TRANSFER with space switching restore
the authorization index that is associated with the
returned-to address space.

The secondary-authority bit in the authority-table

entry may also be used, along with the extended
authorization index, to determine if the program is
authorized to use an access-list entry in access-
register translation. This is described in the section
“Access-Register-Specified Address Spaces” in this
chapter. o

Access-Register and Linkage-Stack
Mechanisms

Bit 15 of control register 0 is the address-space-
function (ASF) control bit. Bit 15 must be one to
allow completion of these instructions:

* BRANCH AND STACK

* EXTRACT STACKED REGISTERS
¢ EXTRACT STACKED STATE

* MODIFY STACKED STATE

* PROGRAM RETURN

* TEST ACCESS

Otherwise, a special-operation exception is recog-
nized. The ASF control is examined in both the

5-18 ESA/370 Principles of Operation

problem and supervisor states and controls both
the space-switching and current-primary forms of
PROGRAM RETURN.

Under certain circumstances when the ASF control
is or has been zero, erroneous entries may exist in
the ART-lookaside buffer (ALB), and this can cause
erroneous access-register translation. A description
of the circumstances and of how to remove the
erroneous entries from the ALB appears in the
section “Formation of ALB Entries” in this chapter.

The ASF control also controls the setting of the
access-register mode by SET ADDRESS SPACE
CONTROL, the availability of the stacking
PROGRAM CALL operation, control-register con-
tents, the sizes of the entry-table entry and
ASN-second-table entry, and other functions. A
complete description of the effects of the AsF
control is in the section “Address-Space-Function
Control” in this chapter.

The use of access registers also involves the
extended authorization index, ALE sequence
number, and ASTE sequence number as authori-
zation mechanisms. These are described in the
section “Access-Register-Specified Address Spaces”
in this chapter.

rark

h‘“ -

. Authorization Mechanism
Func- - Space
tion Mode PSW- Ext. - Sw. -
or Requirement Sec.-|ASN- Extr.|Key. |Auth.]Auth. Event
In- Subs. |Space|Trans. [Auth.|Mask |Index|Index|ALE |ASTE|ASF Ct1.
struc- |Pr.|Trans. [Link.|Ctl. |Ctl. Ct1. |(3.6-|(4.0-[(8.0-|Seq.|Seq.|Ct1. (1.0,
tion Op. |Mode Ct1.7}(0.5)(14.12)}(0.4)|3.15)|4.15) [8.15) |No.8|No.9|(0.15)|13.0)
Implic. A EA |ALQ |ASQ | EALB
AR
trans.
BAKR S0-PA S0
EPAR S0-PSAH Q
EREG SO-PAH S0
ESAR S0-PSAH Q
ESTA SO-PAH S0
IAC S0-PSAH Q
IPK Q
IVSK S0-PSAH Q
LRA P CCA |CCA |CCA
LASP P SO cc Y cc
MSTA S0-PAH SO
MVCDK Q
MVCP S0-PS SO Q
.+ |MVCS S0-PS SO Q
MVCSK Q
MVCK Q
bPC-cp So-P SO Q1 Y
sPC-cp S0-PA S0 Q1 VA
bPC-ss S0-P S0 S0 Q1 Y X1
sPC-ss S0-PA SO SO Q! z X1
PR-cp S0-PA S04 SA® S0
PR-ss S0-PA SO PASAS SO X1
PT-cp Q2]S0-P S0
PT-ss Q2{S0-P S0 SO PA Y X1
SAC Q3|S0-PSAH SO S0s | X2
SPKA Q
SSAR-cp S0-PSAH S0
SSAR-ss S0-PSAH SO SA Y
TAR cC cc | CC SO
1 TPROT P ccC cc | CC

Figure 5-5. Summary of Authorization Mechanisms

Chapter 5. Program Execution

5-19

Explanation for Summary of Authorization Mech-
anisms:

1 The psw-key mask is ANDed with the
authorization key mask in the entry-table
entry.

The exception is recognized on an
attempt to set the supervisor state when
in the problem state.

The exception is recognized on an
attempt to set the home-space mode
when in the problem state.

ASN translation is performed for the new
sAasN, and the exception may be recog-
nized, only when the new SASN is not
equal to the new PASN.

The exception is recognized on an
attempt to set the access-register mode.

Secondary authority is checked for the
new SASN, and the exception may be
recognized, only when the new SASN is
not equal to the new PASN.

Subsystem-linkage control is bit 0 of
control register 5 if the address-space-
function (ASF) control, bit 15 of control
register 0, is zero; or it is bit 96 of the
primary ASN-second-table entry if the ASF
control is one.

ALE sequence number is bits 8-15 of the
access-list-entry token and bits 8-15 of the
access-list entry.

ASTE sequence number is bits 96-127 of
the access-list entry and bits 160-191 of
the AsN-second-table entry.

A Access-register translation occurs only in
the access-register mode.

ALQ ALE-sequence exception.

ASQ ASTE-sequence exception.

brpc Basic (nonstacking) PROGRAM CALL.

cc Test results in setting a condition code.

ccAa Test results in setting a condition code.
The test occurs only in the access-register
mode.

crxy Control register x, bit position y.

EA Extended-authority exception.

5-20 ESA/370 Principles of Operation

EALB

PA

PASA

When bit 15 of control register 0 is or has
been zero, erroneous ALB entries may
exist under certain circumstances. See the
section “Formation of ALB Entries” in
this chapter.

- Privileged-operation exception for privi-

leged instruction.
Primary-authority exception.

Primary-authority exception or
secondary-authority exception.

Privileged-operation. exception for semi-
privileged instruction. Authority checked

_only in the problem state.

SA
SO

SO-P

SO-PA

SO-PAH

SO-PS

SO-PSAH

sPC

X1

X2

Secondary-authority exception.
Special-operation exception.

CPU must be in the primary-space mode;
special-operation exception if the cPuU is
in the secondary-space, access-register,
home-space, or real mode.

CPU must be in the primary-space or
access-register mode; special-operation
exception if the CPU is in the secondary-
space, home-space, or real mode.

CPU must be in the primary-space, access-
register, or home-space mode; special-
operation exception if the cPU is in the
secondary-space or real mode.

CcpPU must be in the primary-space or
secondary-space mode; special-operation
exception if the CPU is in the home-space,
access-register, or real mode.

CPU must be in the primary-space,
secondary-space, access-register, or home-
space mode; special-operation exception if
the CPU is in the real mode.

Stacking PROGRAM CALL.

When bit 0 of control register 1 is one, a
space-switch event is recognized. The
operation is completed.

When bit 0 of control register 1 or 13 is
one and the instruction space is changed
to or from the home address space, a
space-switch event is recognized. The
operation is completed. '

The bit is tested to determine the size of

the ASTE and/or the ETE. %Ry

z Stacking PROGRAM CALL can occur only
when the ASF control is one.

PC-Number Translation

pC-number translation is the process of translating
the 20-bit PC number to locate an entry-table entry
as part of the execution of the PROGRAM CALL
instruction. To perform this translation, the 20-bit
PC number is divided into two fields. = Bits 12-23
are the linkage index (LX), and bits 24-31 are the
entry index (EX). The effective address, from which
the pc-number is taken, has the following format:

111111111117 LX EX
0 12 24 31

The translation is performed by means of two
tables: a linkage table and an entry table. Both of
these tables reside in real storage. The linkage-table
designation may reside in control register S, or it
may reside instead in a third area in storage, called
the primary ASN-second-table entry (primary ASTE),
in which case the origin of the primary ASTE is in
control register 5. The entry table is designated by
_ means of a linkage-table entry.

PC-Number Translation Control

pC-number translation may be controlled by means
of a linkage-table designation in control register 5,
or it may be controlled by means of controls in
control registers 0 and 5 and a linkage-table desig-
nation in storage. ‘

Control Register 0

Bit 15 of control register 0 is the address-space-
function (ASF) control bit. When the ASF control
is zero, the linkage-table designation is in control
register 5, and the entry-table entry has a length of
16 bytes. When the ASF control is one, control
_register 5 contains the origin of the primary
asN-second-table entry, the linkage-table desig-
nation is in the primary ASTE, and the entry-table
entry has a length of 32 bytes.

The AsF control has other effects also. A complete
description of the effects of the ASF control is in the
section “Address-Space-Function Control” in this
chapter.

Control Register 5
When the ASF control in control register 0 is zero,
control register 5 contains the linkage-table desig-
nation. The register has the following format:

V| Linkage-Table Origin LTL

0 1 25 3

Subsystem-Linkage Control (V): Bit 0 of control
register 5 is the subsystem-linkage-control bit. Bit
0 must be one to allow completion of these
instructions: '

* PROGRAM CALL
* PROGRAM TRANSFER

Otherwise, a special-operation exception is recog-
nized. The system-linkage control is examined in
both the problem and the supervisor states and
controls both the space-switching and current-
primary versions of the instructions.

Linkage-Table Origin: Bits 1-24 of control register
5, with seven zeros appended on the right, form a
31-bit real address that designates the beginning of
the linkage table.

Linkage-Table Length (LTL): Bits 25-31 of control
register 5 specify the length of the linkage table in
units of 128 bytes, thus making the length of the

linkage table variable in multiples of 32 four-byte

entries. The length of the linkage table, in units of
128 bytes, is one more than the value in bit posi-
tions 25-31. The linkage-table length is compared
against the leftmost seven bits of the linkage-index
portion of the PC number to determine whether the
linkage index designates an entry within the linkage
table.

When the ASF control is one, control register 5

~ specifies the location of the primary AsN-second-

table entry. The register has the following format:

PASTEO

0 1 26 31

Primary-ASTE Origin (PASTEO): Bits 1-25 of
control register 5, with six zeros appended on the
right, form a 31-bit real address that designates the
beginning of the primary ASTE.

When the ASF control is one, the linkage-table des-

ignation is in bytes 12-15 of the primary ASTE.
Thus, the subsystem-linkage control (v) is bit 0 of

Chapter 5. Program Execution S5-21

bytes 12-15 of the primary ASTE, the linkage-table
origin (LTO) is bits 1-24 of bytes 12-15, and the
linkage-table length (LTL) is bits 25-31 of bytes
12-15.

PC-Number Translation Tables

The PC-number translation process consists in a
two-level lookup using two tables: a linkage table
and an entry table. These tables reside in real
storage.

Linkage-Table Entries
The entry fetched from the linkage table has the
following format:

Entry-Table Origin ETL

—

6 1 26 31

The fields in the linkage-table entry are allocated as
follows:

LX Invalid Bit (I): Bit 0 controls whether the entry
table associated with the linkage-table entry is avail-
able.

When the bit is zero, Pc-number translation pro-
ceeds by using the linkage-table entry. When the
bit is one, an LX-translation exception is recog-
nized.

Entry-Table Origin: Bits 1-25, with six zeros
appended on the right, form a 31-bit real address
that designates the beginning of the entry table.

Entry-Table Length (ETL): When the address-
space-function (ASF) control, bit 15 of control reg-
ister 0, is zero, bits 26-31 specify the length of the
entry table in units of 64 bytes, thus making the
entry table variable in multiples of four 16-byte
entries. When the ASF control is one, bits 26-31
specify the entry-table length in units of 128 bytes,
thus making the table variable in multiples of four
32-byte entries. The length of the entry table, in
units of 64 or 128 bytes, is one more than the value
in bit positions 26-31. The entry-table length is
compared against the leftmost six bits of the entry
index to determine whether the entry index desig-
nates an entry within the entry table.

5-22 ESA/370 Principles of Operation

Entry-Table Entries

When the ASF control in control register 0 is zero,
the entry-table entry has a length of 16 bytes.
When the ASF control is one, the entry has a length
of 32 bytes. The format of the 16-byte entry-table
entry is identical to that of the first 16 bytes of the
32-byte entry. The 32-byte entry-table entry has
the following format:

Auth Key Mask ASN

Al Entry Instruction Address (P

32 63

Entry Parameter

64 95

Entry Key Mask

96 112 127

Linkage-Stack Fields

128 159

ASTE Address

160 : 186 191
192 223
224 255

The fields in the entry-table entry are allocated as
follows:

Authorization Key Mask: Bits 0-15 are used to
verify whether the program issuing the PROGRAM
CALL instruction, when in the problem state, is
authorized to call this entry point. The authori-
zation key mask and the current psw-key mask in
control register 3 are ANDed, and the result is
checked for all zeros. If the result is all zeros, a
privileged-operation exception is recognized. The
test is not performed in the supervisor state.

ASN: Bits 16-31 specify whether a pC-ss or PC-cp
is to occur. When bits 16-31 are zeros, a PC-cp is
specified. When bits 16-31 are not all zeros, a
pC-ss is specified, and the bits contain the ASN that
replaces the primary ASN.

Entry Addressing Mode (A): Bit 32 replaces the
addressing-mode bit, bit 32 of the current Psw, as
part of the PROGRAM CALL operation. When bit
32 is zero, bits 33-39 must also be zero; otherwise,
a PcC-translation-specification exception is recog-
nized.

Entry Instruction Address: Bits 33-62, with a zero
appended on the right, form the instruction address
which replaces the instruction address in the psw as
part of the PROGRAM CALL operation.

Entry Problem State (P): Bit 63 replaces the
problem-state bit, bit 15 of the current Psw, as part
of the PROGRAM CALL operation.

Entry Parameter: Bits 64-95 are placed in general
register 4.

Entry Key Mask: Bits 96-111 are ored into the
psw-key mask in control register 3 as part of the
PROGRAM CALL operation.

ASTE Address: When the address-space-function
(ASF) control is one and bits 16-31 are not all
zeros, bits 161-185, with six zeros appended on the
right, form the real AsN-second-table-entry address
that should result from applying the ASN-trans-
lation process to bits 16-31. When the ASF control
is one, it is unpredictable whether PC-ss uses bits

161-185 or uses ASN translation to obtain the ASTE
address.

Bits 128-159 are used in connection with the
linkage stack and are described in the section
“Extended Entry-Table Entries” in this chapter.

Bits 112-127, 160, and 186-255 are reserved for pos-
sible future extensions and should be zeros.

Programming Note: The entry parameter is
intended to provide the called program with an
address which can be depended upon and used as
the basis of addressability in locating necessary
information which may be environment-dependent.
The parameter may be appropriately changed for
each environment by setting up different entry
tables. The alternative -- obtaining this informa-
tion from the calling program -- may require
extensive validity checking or may present an integ-
rity exposure.

PC-Number-Translation Process

The translation of the PC number is performed by
means of a linkage table and entry table both of
which reside in real storage. The translation may
also require the use of the primary AsN-second-
table entry, which also resides in real storage.

For the purposes of PC-number translation, the
20-bit pC number is divided into two parts: the
leftmost 12 bits are called the linkage index (LX),
and the rightmost eight bits are called the entry
index (EX). The LX is used to select an entry from
the linkage table, the starting address and length of
which are specified by the linkage-table designation
in either control register 5 or the primary ASTE.
This entry designates the entry table to be used.
The ex field of the PC number is then used to
select an entry from the entry table.

When, for the purposes of PC-number translation,
accesses are made to main storage to fetch entries
from the primary ASTE, linkage table, and entry
table, key-controlled protection does not apply.

The pc-number-translation process is shown . in
Figure 5-6 on page 5-24.

Chapter 5. Program Execution 5-23

Linkage-Table Designation
in CR5 or Primary ASTE

v LTO LTL
PC Number
(x128)
LX EX
(x4) | (xN)
Linkage Table
__,
R]I ETO ETL
(x64)
Entry Table
_’
R AKM ASN |A 1A P PARM EKM

L.-S. Fields ASTE Address

N: 16 if ASF control, bit 15 of control register 0, is zero; 32 if

ASF control is one
R: Address is real

Figure 5-6. PC-Number Translation

Obtaining the Linkage-Table Designation
When the address-space-function (ASF) control, bit
15 of control register 0, is zero, the linkage-table
designation is the contents of control register 5.
When the ASF control is one, the linkage-table des-
ignation is obtained from bytes 12-15 of the
primary AsN-second-table entry, the starting
address of which is specified by the contents of
control register 5.

When the ASF control is one, the 31-bit real address
of the linkage-table designation is obtained by

5-24 ESA/370 Principles of Operation

appending six zeros on the right to the
primary-ASTE origin, bits 1-25 of control register 5,
and adding 12. The addition cannot cause a carry
into bit position 0. All 31 bits of the address are
used, regardless of whether the current Psw speci-
fies the 24-bit or 31-bit addressing mode.

When the ASF control is one, all four bytes of the
linkage-table designation are fetched concurrently
from the primary ASTE. The fetch access is not
subject to protection. When the storage address
which is generated for fetching the linkage-table

designation designates a location which is not avail-
able in the configuration, an addressing exception is
recognized, and the operation is suppressed.
Besides the linkage-table designation, no other field
in the primary ASTE is examined.

Linkage-Table Lookup

The linkage-index (LX) portion of the PC number,
in conjunction with the linkage-table origin, is used
to select an entry from the linkage table.

The 31-bit real address of the linkage-table entry is
obtained by appending seven zeros on the right to
the contents of bit positions 1-24 of the linkage-
table designation and adding the linkage index, with
two rightmost and 17 leftmost zeros appended. A
carry, if any, into bit position 0 is ignored. All 31
bits of the address are used, regardless of whether
the current pSw specifies the 24-bit or 31-bit
addressing mode.

As part of the linkage-table-lookup process, the
leftmost seven bits of the linkage index are com-
pared against the linkage-table length, bits 25-31 of
the linkage-table designation, to establish whether
the addressed entry is within the linkage table. If
the value in the linkage-table-length field is less
than the value in the seven leftmost bits of the
linkage index, an LX-translation exception is recog-
nized.

All four bytes of the linkage-table entry appear to
be fetched concurrently as observed by other cpus.
The fetch access is not subject to protection.
When the storage address which is generated for
fetching the linkage-table entry designates a
location which is not available in the configuration,
an addressing exception is recognized, and the oper-
ation is suppressed.

Bit 0 of the linkage-table entry specifies whether the
entry table corresponding to the linkage index is
available. This bit is inspected, and, if it is one, an
LX-translation exception is recognized.

When no exceptions are recognized in the process
of linkage-table lookup, the entry fetched from the
linkage table designates the origin and length of the
corresponding entry table.

Entry-Table Lookup

The entry-index (EX) portion of the pC number, in
conjunction with the entry-table origin contained in
the linkage-table entry, is used to select an entry
from the entry table.

The 31-bit real address of the entry-table entry is
obtained by appending six zeros on the right to the
entry-table origin and adding: (1) if the ASF
control is zero, the entry index, with four rightmost
and 19 leftmost zeros appended; or (2) if the ASF
control is one, the entry index, with five rightmost
and 18 leftmost zeros appended. A carry, if any,
into bit position 0 is ignored. All 31 bits of the
address are used, regardless of whether the current
PsW specifies the 24-bit or 31-bit addressing mode.

As part of the entry-table-lookup process, the six
leftmost bits of the entry index are compared
against the entry-table length, bits 26-31 of the
linkage-table entry, to establish whether the
addressed entry is within the table. If the value in
the entry-table length field is less than the value in
the six leftmost bits of the entry index, an EX-trans-
lation exception is recognized.

The 16-byte or 32-byte entry-table entry is fetched
by using the real address. The fetch of the entry
appears to be word-concurrent as observed by
other cpus, with the leftmost word fetched first.
The order in which the remaining three or seven
words are fetched is unpredictable. The fetch
access is not subject to protection. When the
storage address which is generated for fetching the
entry-table entry designates a location which is not
available in the configuration, an addressing excep-
tion is recognized, and the operation is suppressed.

The use that is made of the information fetched
from the entry-table entry is described in the defi-
nition of the PROGRAM CALL instruction.

Recognition of Exceptions during
PC-Number Translation

The exceptions which can be encountered during
the pc-number-translation process and their priority
are described in the definition of the PROGRAM
CALL instruction.

Programming Note: The linkage-table designation
is fetched successfully from the primary
ASN-second-table entry regardless of the values of
bit 0, the Asx-invalid bit, and bits 30, 31, and 60-63
in the primary ASTE. A one value of any of these
bits causes an exception to be recognized in other
circumstances.

5-25

Chapter 5. Program Execution

Home Address Space

Facilities are provided which a privileged program,
such as the control program, can use to obtain
control in and access the home address space of a
dispatchable unit (for example, a task).

Each dispatchable unit normally has an address
space associated with it in which the control
program keeps the principal control blocks that
represent the dispatchable unit. This address space
is called the home address space of the dispatchable
unit. Different dispatchable units may have the
same or different home address spaces. When the
control program initiates a dispatchable unit, it may
set the primary and secondary address spaces equal
to the home address space of the dispatchable unit.
Thereafter, because of the dispatchable unit’s pos-

sible use of the PROGRAM CALL, PROGRAM .

RETURN, PROGRAM TRANSFER, oOr SET SEC-
ONDARY ASN instruction, the control program
normally cannot depend on either the primary
address space or the secondary address space being
the home address space when the home address
space must be accessed, for example, during the
processing by the control program of an inter-
ruption. Therefore, the control program normally
must take some special action to ensure that the
home address space is addressed when it must be
accessed. The home-address-space facilities provide
an efficient means to take this action.

The home-address-space facilities include:

* The home segment-table designation (HSTD) in
control register 13. The HSTD is used by DAT
in the same way as the primary segment-table
designation (PSTD) in control register 1 and the
secondary segment-table designation (SSTD) in
control register 7.

* Home-space mode, which results when DAT is
on and the address-space control, psw bits 16
and 17, has the value 11 binary. When the
CPU is in the home-space mode, instruction
and logical addresses are home virtual addresses
and are translated by DAT by means of the
HSTD.

¢ The ability of the SBET ADDRESS SPACE
CONTROL instruction to set the home-space
mode in the supervisor state, and the ability of
the INSERT ADDRESS SPACE CONTROL instruc-
tion to return an indication of the home-space
mode.

5-26 ESA/370 Principles of Operation

» The home space-switch-event control, bit 0 of
control register 13.

* Recognition of a space-switch event upon com-
pletion of a SET ADDRESS SPACE CONTROL
instruction if the cPU was in the home-space
mode before or after the operation but not
both before and after the operation, if any of
the following is true: (1) the primary space-
switch-event control, bit 0 of control register 1,
is one, (2) the home space-switch-event control
is one, or (3) a PER event is to be indicated.

The space-switch event that may be caused by SET
ADDRESS SPACE CONTROL, along with those that
may be caused by the PROGRAM CALL, PROGRAM
RETURN, and PROGRAM TRANSFER instructions,
can be used to enable or disable PER or tracing
when fetching of instructions begins or ends in par-
ticular address spaces.

Access-Registers Introduction

Many of the functions related to access registers are
described in this section and in the sections
“Access-Register Translation” and “Sequence of
Storage References” in this chapter. Additionally,
Chapter 3, “Storage,” describes translation modes;
Chapter 4, “Control,” describes the handling of
access registers during resets and during the store-
status operation; Chapter 6, “Interruptions,”
describes interruptions; Chapter 7, “General
Instructions,” and 10, “Control Instructions,”
describe the instructions; Chapter 11, “Machine-
Check Handling,” describes the handling of access
registers during a machine-check interruption and
the programmed validation of the access registers;
and Chapter 12, “Operator Facilities,” describes the
alter-and-display controls for access registers.

Summary

These major functions are provided:

* A maximum of 16 address spaces, including the
instruction space, for immediate and simul-
taneous use by a semiprivileged program; the
address spaces are specified by 16 new registers
called access registers. '

¢ Instructions for examining and changing the
contents of the access registers.

In addition, control and authority mechanisms are
incorporated to control these functions.

Access registers allow a sequence of instructions, or
even a single instruction such as MOVE (MVC) or
MOVE LONG (MVCL), to operate on storage oper-
ands in multiple address spaces, without the
requirement of changing either the translation mode
or other control information. Thus, a program
residing in one address space can use the complete
instruction set to operate on data in that address
space and in up to 15 other address spaces, and it
can move data between any and all pairs of these
address spaces. Furthermore, the program can
change the contents of the access registers in order
to access still other address spaces.

The instructions for examining and changing
access-register contents are unprivileged and are
described in Chapter 7, “General Instructions.”
They are:

* COPY ACCESS

¢ EXTRACT ACCESS

* LOAD ACCESS MULTIPLE

* LOAD ADDRESS EXTENDED
* SET ACCESS

¢ STORE ACCESS MULTIPLE

The privileged PURGE ALB instruction is used in
connection with access registers and is described in
Chapter 10, “Control Instructions.”

Access registers specify address spaces when the
CPU is in the access-register mode. = The SET
ADDRESS SPACE CONTROL instruction allows
setting of the access-register mode, and the INSERT
ADDRESS SPACE CONTROL instruction provides an
indication of the access-register mode. These
instructions are described in Chapter 10, “Control
Instructions.”

Access-Register Functions

Access-Register-Specified Address
Spaces

The cPu includes sixteen 32-bit access registers
numbered 0-15. In the access-register mode, which
results when DAT is on and psw bits 16 and 17 are
01 binary, an instruction B or R field that is used to
specify the logical address of a storage operand des-
ignates not only a general register but also an access
register. The designated general register is used in
the ordinary way to form the logical address of the
storage operand. The designated access register is
used to specify the address space to which the
logical address is relative. The access register speci-
fies the address space by specifying a segment-table
designation for the address space, and this segment-
table designation is used by DAT to translate the
logical address. An access register specifies a
segment-table designation in an indirect way, not
by containing the segment-table designation.

An access register may specify the primary or sec-
ondary segment-table designation in control register
1 or 7, respectively, or it may specify a segment-
table designation contained in an AsN-second-table
entry (which exists in 370-XA, but which may be
extended in size in ESA/370). In the latter case, the
access register designates an entry in a table called
an access list, and the designated access-list entry in
turn designates the AsN-second-table entry.

The process of using the contents of an access reg-
ister to obtain a segment-table designation for use
by DAT is called access-register translation (ART).
This is depicted in Figure 5-7 on page 5-28.

Chapter 5. Program Execution 5-27

Instruction

Displacement

General Register

In Access-Register Mode

Base Address

Access Register l

+ |-

Logical Address

ART STD —{ DAT

Real Address

Figure 5-7. Use of Access Registers

An access register is said to specify an AR-specified
address space by means of an AR-specified segment-
table designation. The virtual addresses in an
AR-specified address space are called AR-specified
virtual addresses.

In the access-register mode, whereas all storage-
operand addresses are AR-specified virtual, instruc-
tion addresses are primary virtual.

Designating Access Registers: In the access-
register mode, an instruction B or R field designates
an access register, for use in access-register trans-
lation, under the following conditions:

* The field is a B field which designates a general
register containing a base address. The base
address is used, along with a displacement (D)
and possibly an index (x), to form the logical
address of a storage operand.

e The field is an R field which designates a
general register containing the logical address of
a storage operand.

For example, consider the following instruction:
MVC 0(L,1),0(2)

The second operand, of length 1, is to be moved to
the first-operand location. The logical address of

5-28 ESA/370 Principles of Operation

the second operand is in general register 2, and that
of the first-operand location in general register 1.
The address space containing the second operand is
specified by access register 2, and that containing
the first-operand location by access register 1.
These two address spaces may be different address
spaces, and each may be different from the current
instruction space (the primary address space).

When psw bits 16 and 17 are 01, the B field of the
LOAD REAL ADDRESS instruction designates an
access register, for use in access-register translation,
regardless of whether DAT is on or off.

The COMPARE AND FORM CODEWORD and
UPDATE TREE instructions specify storage operands
by means of implicitly designated general registers
and access registers.

The MOVE TO PRIMARY and MOVE TO SECONDARY
instructions specify storage operands by means of
primary virtual and secondary virtual addresses, and
access registers do not apply to these instructions.
An exception is recognized when either of these
instructions is executed in the access-register mode.
The MOVE WITH KEY instruction can be used in
place of MOVE TO PRIMARY and MOVE TO SEC-
ONDARY in the access-register mode. If they are
installed, the MOVE WITH SOURCE KEY and MOVE

WITH DESTINATION KEY instructions also can be
used.

An instruction R field may designate an access reg-
ister for other than the purpose of access-register
translation.

The fields which may designate access registers,
whether or not for access-register translation, are
indicated in the summary figure at the beginning of
each instruction chapter.

Obtaining the Segment Table Designation: This
section and the following ones introduce the access-
register-translation process and present the concepts
related to access lists.

The segment-table designation specified by an
access register is obtained by access-register trans-
lation as follows:

» If the access register contains 00000000 hex, the
specified segment-table designation is the
primary segment-table designation (PSTD),
obtained from control register 1.

« If the access register contains 00000001 hex, the
specified segment-table designation is the sec-
ondary segment-table designation (SSTD),
obtained from control register 7.

» If the access register contains any other value,
the specified segment-table designation is
obtained from an AsN-second-table entry. The
contents of the access register designate an
access-list entry, and it contains the real address
of the AsN-second-table entry.

Access register 0 is treated in a special way by
access-register translation; it is treated as containing
00000000 hex, and its actual contents are not exam-
ined. Thus, a logical address specified by means of
a zero B or R field in the access-register mode is
always relative to the primary address space, regard-
less of the contents of access register 0. However,
there is one exception to how access register 0 is
treated: the TEST ACCESs instruction uses the
actual contents of access register 0, instead of
treating access register 0 as containing 00000000
hex.

The treatment of an access register containing the
value 00000000 hex as designating the current
primary address space allows that address space to
be addressed, in the access-register mode, without
requiring the use of an access-list entry. This is
useful when the primary address space is changed

- access list.

by a space-switching PROGRAM CALL (PC-sS),
PROGRAM RETURN (PR-s§), oOr PROGRAM
TRANSFER (PT-ss) instruction. Similarly, the treat-
ment of an access register containing the value
00000001 hex as designating the secondary address
space allows that space to be addressed after a
space-switching operation, again without requiring
the use of an access-list entry.

The contents of the access registers are not changed
by the PROGRAM CALL and PROGRAM TRANSFER
instructions. Therefore, an access . register con-
taining 00000000 or 00000001 hex may specify a
different address space after the execution of a
PROGRAM CALL or PROGRAM TRANSFER than
before -the execution. For example, if a space-
switching PROGRAM CALL is executed, an access
register containing 00000000 hex specifies the old
primary address space before the execution and the
new primary address space after the execution.

When access-register translation obtains a segment-
table designation from an AsSN-second-table entry,

bit 0 of the entry, the Asx-invalid bit, must be zero;

otherwise, an exception is recognized.

Access Lists: The access-list' entry that is desig-
nated by the contents of an access register can be
located in either one of two access lists, the
dispatchable-unit access list or the primary-space
A bit in the access register specifies
which of the two access lists contains the desig-
nated entry. Both of the access lists reside in real
storage. The locations of the access lists are speci-
fied by means of control registers 2 and 5.

Control register 2 contains the origin of a real-
storage area called the dispatchable-unit control
table. The dispatchable-unit control table contains
the designation -- the real origin and length -- of
the dispatchable-unit access list.

When the address-space-function (ASF) control, bit
15 of control register 0, is one, control register 5
contains the origin of a real-storage area called the
primary ASN-second-table entry. The primary
ASN-second-table entry contains the designation of -
the primary-space access list, and it also contains
the linkage-table designation. @~ When the ASF
control is zero, the linkage-table designation is in
control register 5.

The ASF control determines the contents of control
register 5 for the instructions LOAD ADDRESS SPACE
PARAMETERS, = PROGRAM CALL, PROGRAM
RETURN, and PROGRAM TRANSFER. The access-

5-29

Chapter 5. Program Execution

register-translation process always treats control
register 5 as containing the primary-AsN-second-
table-entry origin and does not examine the ASF
control.

An access list, either the dispatchable-unit access
list or the primary-space access list, contains one of
the following, depending on the model: (1) some
multiple of eight 16-byte entries, up to a maximum
of 1024 entries, or (2) some multiple of sixteen
16-byte entries, up to a maximum of 4096 entries.

Programs and Dispatchable Units: When dis-
cussing access lists, it is necessary to distinguish
between the terms “program” and “dispatchable
unit.” A program is a sequence of instructions and
may be referred to as a program module. A
program may be a sequence of calling and called
programs. A dispatchable unit, which is sometimes
called a process or a task, is a unit of work that is
performed through the execution of a program by
one CPU at a time.

The dispatchable-unit access list is intended to be
associated with a dispatchable unit; that is, it is
intended that a dispatchable unit have the same
dispatchable-unit access list regardless of which
program is currently being executed to perform the
dispatchable unit. There is no mechanism, except
for the LOAD CONTROL instruction, that changes
the dispatchable-unit-control-table origin in control
register 2.

The primary-space access list is associated with the
primary address space that is specified by the
primary ASN in control register 4 and the primary
segment-table designation in control register 1. The
primary-space access list that is available for use by
a dispatchable unit changes as the primary address
space of the dispatchable unit changes, that is,
whenever a program in a different primary address
space begins to be executed to perform the
dispatchable unit. Whenever a LOAD ADDRESS
SPACE PARAMETERS, PROGRAM CALL, PROGRAM
RETURN, or PROGRAM TRANSFER instruction
replaces the primary ASN in control register 4 and
the primary segment-table designation in control
register 1, it also replaces the primary-AsN-second-
table-entry origin in control register S5, if the
address-space-function control is one.

Thus, for a dispatchable unit, the dispatchable-unit
access list is intended to be constant (although its
entries may be changed, as will be described), and

the primary-space access list is a function of which

5-30 ESA/370 Principles of Operation

program is being executed, through being a func-
tion of the primary address space of the program.
Also, all dispatchable units and programs in the
same primary address space have the same primary-
space access list. :

Access-List-Entry Token: The contents of an
access register are called an access-list-entry token
(ALET) since, in the general case, they designate an
entry in an access list. An ALET has the following
format:

0000000 |P| ALESN ALEN

0 78 16 31

The ALET contains a primary-list bit (P) that speci-
fies which access list contains the designated access-
list entry: the dispatchable-unit access list if the bit
is zero, or the primary-space access list if the bit is
one. The specified access list is called the effective
access list.

The ALET also contains an access-list-entry number
(ALEN) which, when multiplied by 16, is the
number of bytes from the beginning of the effective
access list to the designated access-list entry. .
During access-register translation, an exception is
recognized if the ALEN designates an entry that is
outside the effective access list or if the leftmost
seven bits in the ALET are not all zeros.

The access-list-entry sequence number (ALESN) in
the ALET is described in the next section.

The above format of the ALET does not apply
when the ALET is 00000000 or 00000001 hex.

An ALET can exist in an access register, in a general
register, or in storage, and it has no special pro-
tection from manipulation by the problem
program. Any program can transfer ALETs back
and forth among access registers, general registers,
and storage. A called program can save the con-
tents of the access registers in any storage area
available to it, load and use the access registers for
its own purposes, and then restore the original con-
tents of the access registers before returning to its

caller.

Allocating and Invalidating Access-List Entries:

It is intended that access lists be provided by the
control program and that they be protected from
direct manipulation by any problem program. This
protection may be obtained by means of key-
controlled protection or by placing the access lists

in real storage not accessible by any problem
“program by means of DAT.

As determined by a bit in the entry, an access-list
entry is either valid or invalid. A valid access-list
. entry specifies an address space and can be used by
a suitably authorized program to access that space.
An invalid access-list entry is available for allo-
cation as a valid entry. It is intended that the
control program provide services that allocate valid
access-list entries and that invalidate previously
allocated entries.

Allocation of an access-list entry may consist in the
following steps. A problem program passes some
kind of identification of an address space to the
control program, and it passes a specification of
either the dispatchable-unit access list or the
primary-space access list. The control program
checks, by some means, the authority of the
problem program to access the address space. If
the problem program is authorized, the control
program selects an invalid entry in the specified
access list, changes it to a valid entry specifying the
subject address space, and returns to the problem
program an access-list-entry token (ALET) that des-
ignates the allocated entry. The problem program
can subsequently place the ALET in an access reg-
ister in order to access the address space. Later,
through the use of the invalidation service of the
control program, the access-list entry that was allo-
cated may be made invalid. An exception is recog-
nized during access-register translation if an ALET is
used that designates an invalid access-list entry.

It may be that a particular access-list entry is allo-
cated, then invalidated, and then allocated again,
this time specifying a different address space than
the first time. To guard against erroneous use of
an ALET that designates a conceptually wrong
address space, an access-list-entry sequence number
(ALESN) is provided in both the ALET and the
access-list entry. When the control program allo-
cates an access-list entry, it should place the same
ALESN in the entry and in the designating ALET that
it returns to the problem program. When the
control program reallocates an access-list entry, it
should change the value of the ALESN. An excep-
tion is recognized during access-register translation
if the ALESN in the ALET used is not equal to the
ALESN in the designated access-list entry.

The ALESN check is a reliability mechanism, not an
authority mechanism, because the ALET is not pro-

tected from the problem program, and the problem
program can change the ALESN in the ALET to any
value. Also, this is not a fail-proof reliability mech-
anism because the ALESN is one byte and its value
wraps around after 256 reallocations, assuming that
the value is incremented by one for each reallo-
cation.

Authorizing the Use of Access-List Entries:
Although an access list is intended to be associated
with either a dispatchable unit or a primary address
space, the valid entries in the list are intended to be
associated with the different programs that are exe-
cuted, in some order, to perform the work of the
dispatchable unit. It is intended that each program
be able to have a particular authority that permits
the use of only those access-list entries that are
associated with the program. The authority being
referred to here is represented by a 16-bit extended
authorization index (EAX) in control register 8.
Other elements used in the related authorization
mechanism are: (1) a private bit in the access-list
entry, (2) an access-list-entry authorization index
(ALEAX) in the access-list entry, and (3) the
authority table (which is the same as in 370-XA).

A program is authorized to use an access-list entry,
in access-register translation, if any of the following
conditions is met:

1. The private bit in the access-list entry is zero.
This condition provides a high-performance
means to authorize any and all programs that
are executed to perform the dispatchable unit.

2. The ALEAX in the access-list entry is equal to
the EAX in control register 8. This condition
provides a high-performance means to
authorize only particular programs.

3. The EAX selects a secondary bit that is one in
the authority table associated with the address
space that is specified by the access-list entry.
The authority table is locatable in that the
access-list entry contains the real address of the
ASN-second-table entry (ASTE) for the address
space, and the ASTE contains the real address of
the authority table. This condition provides
another means, less well-performing than con-
dition 2, for authorizing only particular pro-
grams. However, providing for condition 3 to
be met instead of condition 2 can be advanta-
geous because it permits several programs, each
executed with a different EAX, all to use a single
access-list entry to access a particular address
space.

Chapter 5. Program Execution 5-31

A;ccess-r'egister translation tests for the three condi-
tions in the order indicated by their numbers, and a
higher-numbered condition is not tested for if a
lower-numbered condition is met. An exception is
recognized if none of the conditions is met.

ActessuList
I

Figure 5-8 shows an example of how the authori-
zation mechanism can be used. In the figure,
“pBZz” means that the private bit is zero, and “PB0O”
means that the private bit is one.

[} ASTE for Space 36
4 PBZ e
/[/. ASTE for Space 25
7| PBO, ALEAX = 5 |—>
/ / ASTE for Space 62
9| PBO, ALEAX = 10 —»
/ -/ ASTE for Space 17 Authority Table
12| PBO, ALEAX =5 |—> -—|S bit selected by
EAX 10 is one.
. {
Program A Program B Program C
EAX = 0 — EAX = 5 -— EAX = 10

Figure 5-8. Example of Authorizing the Use of Access-List Entries

5-32 ESA/370 Principles of Operation

The figure shows an access list -- assume it is a
dispatchable-unit access list -- in which the entries
of interest are entries 4, 7, 9, and 12. Each access-
list entry contains a private bit, an ALEAX, and the
real address of the ASTE for an address space. The
private bit in entry 4 is zero, and, therefore, the
value of the ALEAX in entry 4 is immaterial and is
not shown. The private bits in entries 7, 9, and 12
are ones, and the ALEAX values in these entries are
as shown. The numbers used to identify the
address spaces (36, 25, 62, and 17) are arbitrary.
They may be the AsNs of the address spaces;
however, ASNs are in no way used in access-register
translation. Only the authority table for address
space 17 is shown. In it, the secondary bit selected
by EAX 10 is one. Assume that no secondary bits
are ones in the authority tables for the other spaces.

The figure also shows a sequence of three pro-
grams, named A, B, and ¢, that is executed to
perform the work of the dispatchable unit associ-
ated with the access list. These programs may be
in the same or different address spaces. The EAX in
control register 8 when each of these programs is
executed is 0, 5, and 10, respectively.

Each of programs A, B, and C can use access-list
entry (ALE) 4 to access address space 36 since the
private bit in ALE 4 is zero. Program B can use
ALE 7 to access space 25 because the ALEAX in the
ALE equals the BAX for the program, and no other
program can use this ALE. Similarly, only program
C can use ALE 9. Program B can use ALE 12
because the ALEAX and EAX are equal, and
program C can use it because C’s EAX selects a sec-
ondary bit that is one in the authority table for
space 17.

The example would be the same if programs A, B,
and ¢ were all in the same address space and the
access list were the primary-space access list for that
space.

An ALE in which the private bit is zero may be
called public because the ALE can be used by any
program, regardless of the value of the current EAX.
An ALE in which the private bit is one may be
called private because the ability of a program to
use the ALE depends on the current EAX.

Notes on the Authorization Mechanism: An
access list is a kind of capability list, in the sense in
which the word “capability” is used in computer
science. It is up to the control program to formu-
late the policies that are used to allocate entries in
an access list, and the programmed authorization

checking required during allocation may be very
complex and lengthy. After a valid entry has been
made in an access list, the access-register-translation
process enforces the control-program policies in a
well-performing way by means of the authorization
mechanism described above.

Using access lists has an advantage over using only
AsSNs and authority tables. For example, assume
that an access register could contain an ASN and
that access-register translation would do ASN trans-
lation of the ASN and then use the EAX to test the
authority table. This would make the EAX relevant
to all existing address spaces, and, therefore, it
would make the management of EAXs and their
assignment to programs more difficult. With the
actual definitions of the ALET and access-register
translation, an EAX is relevant to only the address
spaces that are represented in the current
dispatchable-unit and primary-space access lists.
Also, since ASN translation is not done as a part of
access-register translation, the number of concur-
rently existing address spaces, as represented by
ASN-second-table entries, can be greater than the
number of available AsNs (64K).

The extended entry-table entry and linkage stack
can be used to assign EAXs to programs and to
change the EAX in control register 8 during
program linkages. These components are intro-
duced in the section “Linkage-Stack Introduction”
in this chapter.

The SET SECONDARY ASN instruction and the
authorization index (AX), bits 0-15 of control reg-
ister 4 (both of which are in 370-XA), can play a
role in the use of access registers. The space-
switching form of SET SECONDARY ASN (SSAR-ss)
establishes a new secondary address space if the
secondary bit selected by the AX is one in the
authority table associated with the new secondary
space. The secondary space can be addressed by
means of an ALET having the value 00000001 hex.

Revoking Accessing Capability: One final mech-
anism, which is a combined authority and integrity
mechanism, is part of access-register translation,
and it is described in this section.

An access-list entry (ALE) contains an ASN-second-
table-entry sequence number (ASTESN), and so does
the ASTE designated by the ALE when the ASTE is
extended to 64 bytes, as it is when the address-
space-function control is one. During access-
register translation, the ASTESN in the ALE must

Chapter 5. Program Execution 5-33

equal the ASTESN in the designated ASTE; other-
wise, an exception is recognized.

When the control program allocates an ALE, it
should copy the ASTESN from the designated ASTE
into the ALE. Subsequently, the control program
can, in effect, revoke the addressing capability
represented by the ALE by changing the ASTESN in

the AsTE. Changing the ASTESN in the ASTE makes |

all previously usable ALEs that designate the ASTE
unusable.

Making an ALE unusable may be required in either
of two cases:

1. Some, element of the control-program policy
for determining the authority of a program to
have access to the address space specified by
the ASTE has changed. This may mean that
some or all of the programs that were author-
ized to the address space, and for which ALEs
have been allocated, are no longer authorized.

Changing the ASTESN in the ASTE ends the usa-
bility of all ALEs that designate the ASTE. If
this revocation of capability is to be selective,
then, when an exception is recognized because
of unequal ASTESNs, the control program can
reapply its programmed procedures for deter-
mining authorization, and an ALE which should
have remained usable can be made usable again
by copying the new ASTESN into it. When the
usability of an ALE is restored, the control
program normally should cause reexecution of
the instruction that encountered the exception.

2. The ASTE has been reassigned to specify a con-
ceptually different address space, and ALEs
which specified the old address space must not
be allowed to specify the new one. (Bit 0 of
the ASTE, the Asx-invalid bit, can be set to one
to delete the assignment of the ASTE to an
address space, and this prevents the use of the
ASTE in access-register translation. But after
reassignment, bit 0 normally again is zero.)

The ASTESN mechanism may be regarded as an
authority mechanism in the first case above and as
an integrity mechanism in the second.

The ASTESN mechanism is especially valuable
because it avoids the need of the control program
to keep track of the access lists that contain the
ALEs that designate each ASTE. Furthermore, it
avoids the need of searching through these access
lists in order to find the ALEs and set them invalid,
to prevent the use of the ALEs in access-register
translation. The latter activity could be particularly

5-34 ESA/370 Principles of Operation

time-consuming, or could present a particularly dif-
ficult management problem, because the access lists
could be in auxiliary storage, such as a direct-access
storage device, when the need arises to invalidate
the ALEs.

The ASTESN is a four-byte field. Assuming a rea-
sonable frequency of authorization-policy changes
or address-space reassignments, the approximately
four billion possible values of the ASTESN provide a
fail-proof authority or integrity mechanism over the
lifetime of the system.

Improving Translation Performance: Access-
register translation (ART) conceptually occurs each
time a logical address is used to reference a storage
operand in the access-register mode. To improve
performance, ART normally is implemented such
that some or all of the information contained in the
ART tables (access-list-designation sources, access
lists, ASN second tables, and authority tables) is
maintained in a special buffer referred to as the
ART-lookaside buffer (ALB). The cPU necessarily
refers to an ART-table entry in real storage only for
the initial access to that entry. The information in
the entry may be placed in the ALB, and subsequent
translations may be performed using the informa-
tion in the ALB.

The PURGE ALB instruction can be used to clear all
information from the ALB after a change has been
made to an ART-table entry in real storage.

Access-Register Instructions
The following instructions are provided for exam-
ining and changing the contents of access registers:

* COPY ACCESS

* EXTRACT ACCESS

* LOAD ACCESS MULTIPLE

* LOAD ADDRESS EXTENDED
* SET ACCESS

¢ STORE ACCESS MULTIPLE

The SET ACCESS instruction replaces the contents of
a specified access register with the contents of a
specified general register. Conversely, the EXTRACT
ACCESS instruction moves the contents of an access
register to a general register. The COPY ACCEsS
instruction moves the contents of one access reg-
ister to another.

The LOAD ACCESS MULTIPLE instruction loads a
specified set of consecutively numbered access regis-
ters from a specified storage location whose length
in words equals the number of access registers

loaded. Conversely, the STORE ACCESS MULTIPLE
instruction function stores the contents of a set of
access registers at a storage location.

The LOAD ADDRESS EXTENDED instruction is
similar to the LOAD ADDRESS instruction in that it
loads a specified general register with an effective
address specified by means of the B, X, and D fields
of the instruction. In addition, LOAD ADDRESS
EXTENDED operates on the access register having
the same number as the general register loaded.
When the address-space control, psw bits 16 and
17, is 00, 10, or 11 binary, LOAD ADDRESS
EXTENDED loads the access register with 00000000,
00000001, or 00000002 hex, respectively. When the
address space control is 01 binary, LOAD ADDRESS
EXTENDED loads the target -access register with a
value that depends on the B field of the instruction.
If the B field is zero, LOAD ADDRESS EXTENDED
loads the target access register with 00000000 hex.
If the B field is nonzero, LOAD ADDRESS
EXTENDED loads the target access register with the
contents of the access register designated by the B
field. However, in the last case when bits 0-6 of
the access register designated by the B field are not
all zeros, the results in the target general register
and access register are unpredictable.

The address-space-control values 00, 01, 10, and 11
binary specify primary-space, access-register,
secondary-space, and home-space mode, respec-
tively, when DAT is on. LOAD ADDRESS
EXTENDED functions the same regardless of
whether DAT is on or off.

When used in access-register translation, the access-
register values 00000000 and 00000001 hex specify
the primary and secondary address spaces, respec-
tively, and the value 00000002 hex designates
access-list entry 2. Loading the target access reg-
ister with 00000002 hex when the address-space
control is 11 binary is intended to support assign-
ment, by the control program, of access-list entry 2
as specifying the home address space.

Access-Register Translation

Access-register translation is introduced in the
section ‘“Access-Register-Specified Address Spaces”
in this chapter.

Access-Register-Translation Control

Access-register translation is controlled by an
address-space control, by the address-space-
function (ASF) control in control register 0, and by
controls in control registers 2, 5, and 8. The
address-space control, pPsw bits 16 and 17, is
described in the section “Translation Modes” in
Chapter 3, “Storage.” The other controls are
described below.

Additional controls are located in the access-
register-translation tables.

Address-Space-Function Control

Bit 15 of control register 0 is the address-space-
function (AsF) control. This bit must be one when
a SET ADDRESS SPACE CONTROL instruction that is
to set the access-register mode is executed, and
when a BRANCH AND STACK, EXTRACT STACKED
REGISTERS, EXTRACT STACKED STATE, MODIFY
STACKED STATE, PROGRAM RETURN, oOr TEST
ACCESS instruction is executed; otherwise, a special-
operation exception is recognized.

When the ASF control is one:

* pc-number translation obtains the linkage-table
designation from the primary AsN-second-table
entry by first obtaining the primary-ASTE origin
from control register 5, instead of obtaining the
linkage-table designation from control register
5.

* PC-number translation treats the length of the
entry-table entry as changed from 16 bytes to
32 bytes.

* ASN translation treats the boundary alignment
and length of the ASN-second-table entry as
changed from 16 bytes to 64 bytes.

Access-register translation always treats control reg-
ister 5 as containing the primary-ASTE origin and
always treats the ASN-second-table entry designated
by an access-list entry as being 64 bytes, and, for
these purposes, it does not examine the ASF
control. However, when the ASF control is or has
been zero, erroneous entries may exist in the
ART-lookaside buffer (ALB), and, therefore, access-
register translation may be performed erroneously;
see the section “Formation of ALB Entries” in this
chapter.

Also when the ASF control is one:

* PROGRAM CALL with space switching may
obtain the address of an AsN-second-table entry

5-35

Chapter 5. Program Execution

from the entry-table entry used, instead of
obtaining it by means of ASN translation.

* LOAD ADDRESS SPACE PARAMETERS, when it
performs PASN translation, and also the space-
switching forms of PROGRAM CALL and
PROGRAM TRANSFER place the origin of the
new primary ASTE in control register 5 instead
of placing a linkage-table designation in that
register. (PROGRAM RETURN requires that the
ASF control be one. A space-switching
PROGRAM RETURN also places the new
primary-ASTE origin in control register 5.)

Control Register 2

The location of the dispatchable-unit control table
is specified in control register 2. The register has
the following format:

DUCTO

0 1 26 31

Dispatchable-Unit Control Table Origin
(DUCTO): Bits 1-25 of control register 2, with six
zeros appended on the right, form a 31-bit real
address that designates the beginning of the
dispatchable-unit control table. Access-register
translation may obtain the dispatchable-unit access-
list designation from the dispatchable-unit control
table.

Control Register 5

The location of the primary AsN-second-table entry
is specified in control register 5. The register has
the following format:

PASTEO

0 1 26 31

Primary-ASTE Origin (PASTEO): Bits 1-25 of
control register 5, with six zeros appended on the
right, form a 31-bit real address that designates the
beginning of the primary AsN-second-table entry.
Access-register translation may obtain the primary-
space access-list designation from the primary ASTE.
The primary-ASTE origin is set by LOAD ADDRESS
SPACE PARAMETERS when it performs PASN trans-
lation and by the space-switching forms of
PROGRAM CALL, PROGRAM RETURN, and
PROGRAM TRANSFER. When any of these
instructions places the primary-ASTE origin in
control register 5, it also places zeros in bit posi-
tions 0 and 26-31 of control register 5.

5-36 ESA/370 Principles of Operation

When the ASF control is zero, LOAD ADDRESS
SPACE PARAMETERS, PROGRAM CALL, and
PROGRAM TRANSFER treat control register 5 as
containing the linkage-table designation. Access-
register translation treats control register 5 as con-
taining the primary-ASTE origin regardless of the
value of the AsF control.

When control register 5 contains the primary-ASTE
origin, bits 0 and 26-31 of the register are subject to
possible future assignment, and they should not be
depended upon to be zeros.

Control Register 8
The extended authorization index is in control reg-
ister 8. The register has the following format:

EAX

0, 16

Extended Authorization Index (EAX): Bits 0-15 of
control register 8 are the extended authorization
index. During access-register translation, the EAX
may be compared against the access-list-entry
authorization index (ALEAX) in an access-list entry,

-and it may be used as an index to locate a sec-

ondary bit in an authority table. The EAX may be
set by a stacking PROGRAM CALL operation, and it
is restored by PROGRAM RETURN.

Access Registers

There are sixteen 32-bit access registers numbered
0-15. The contents of an access register are called
an access-list-entry token (ALET). An ALET has the
following format:

0000000 |P| ALESN ALEN

0 78 16 31

The fields in the ALET are allocated as follows:

Primary-List Bit (P): When the ALET is not
00000000 or 00000001 hex, bit 7 specifies the access
list to be used by access-register translation. When
bit 7 is zero, the dispatchable-unit access list is
used; this is specified by the dispatchable-unit
access-list designation in the dispatchable-unit
control table designated by the contents of control
register 2. When bit 7 is one, the primary-space
access list is used; this is specified by the primary-
space access-list designation in the primary ASTE
designated by the contents of control register 5.

Access-List-Entry Sequence Number (ALESN):
Bits 8-15 may be used as a check on whether the
access-list entry designated by the ALET has been
invalidated and reallocated since the ALET was
obtained. During access-register translation when
the ALET is not 00000000 or 00000001 hex, bits
8-15 of the ALET are compared against the access-
list-entry sequence number (ALESN) in the desig-
nated access-list entry.

Access-List-Entry Number (ALEN): When the

ALET is not 00000000 or 00000001 hex, bits 16-31

of the ALET designate an entry in either the
dispatchable-unit access list or the primary-space
access list, as determined by bit 7. The access-list
designation that is used is called the effective
access-list designation; it consists of the effective
access-list origin and the effective access-list length.

During access-register translation, the ALEN, with
four zeros appended on the right, is added to the
31-bit real address specified by the effective access-
list origin, and the result is the real address of the
designated access-list entry. The ALEN is compared
against the effective access-list length to determine
whether the designated access-list entry is within
the list, and an ALEN-translation exception is recog-
nized if the entry is outside the list. Although the
largest possible value of the ALEN is 65,535, an
access list can contain at most 1024 or 4096 entries,
depending on the model.

Bits 0-6 must be zeros during access-register trans-
lation; otherwise, an ALET-specification exception is
recognized.

When the ALET is 00000000 or 00000001 hex, it
specifies the primary or secondary address space,
respectively, and the above format does not apply.

Access register 0 usually is treated in access-register
translation as containing 00000000 hex, and its
actual contents are not examined; the access-register
translation done as part of TEST ACCESS is the only
exception. Access register 0 is also treated as con-
taining 00000000 hex when it is designated by the B
field of LOAD ADDRESS EXTENDED when PSW bits
16 and 17 are 01 binary. When access register 0 is

specified for TEST ACCESS or as a source for COPY
ACCESS, EXTRACT ACCESS, Oor STORE ACCESS MUL-
TIPLE, the actual contents of the access register are
used. Access register 0, like any other access reg-
ister, can be loaded by COPY ACCESS, LOAD ACCESS
MULTIPLE, LOAD ADDRESS EXTENDED, and SET
ACCESS.

Access-Register-Translation Tables

When the ALET being translated is not 00000000 or
00000001 hex, access-register translation performs a
two-level lookup to locate first the effective access-
list designation and then an entry in the effective
access list. The effective access-list designation and
the effective access list reside in real storage.

Access-register translation uses an address in the
access-list entry to locate an ASN-second-table
entry, and it may perform a one-level lookup to
locate an entry in an authority table. The
ASN-second-table entry and the authority table also
reside in real storage.

Authority-table entries are described in the section
“Authority-Table Entries” in Chapter 3, “Storage.”
Access-list designations, access-list entries, and
AsN-second-table entries are described in the fol-
lowing sections.

Access-List Designations

When the ALET being translated is not 00000000 or
00000001 hex, access-register translation obtains the
dispatchable-unit access-list designation if bit 7 of
the ALET is zero, or it obtains the primary-space
access-list designation if bit 7 is one. The obtained
access-list designation is called the effective access-
list designation.

The dispatchable-unit access-list designation
(DUALD) is located in bytes 16-19 of a 64-byte area
called the dispatchable-unit control table (DUCT).
The DUCT resides in real storage, and its location is
specified by the DUCT origin in control register 2.

The dispatchable-unit control table has the fol-
lowing format:

Chapter 5. Program Execution 35-37

Hex Dec

o 0

4 4

8 8

C 12
10 16 ~ DUALD
14 20
18 24
1C 28 \///1111117111111111
20 32

/ /

3¢ 60 I |

Bytes 0-15, 20-27, and 32-63 of the DUCT are
reserved for possible future extensions and should
contain all zeros. Bytes 28-31 are available for use
by programming,.

The primary-space access-list designation (PSALD)
is located in bytes 16-19 of a 64-byte area called the
primary AsN-second-table entry. The primary ASTE
resides in real storage, and its location is specified
by the primary-ASTE origin in control register 5.
~ The format of the primary ASTE is described in the
section “Extended AsN-Second-Table Entries” in
this chapter.

The dispatchable-unit and primary-space access-list
designations both have the same format.

There are two possible formats of the access-list
designation, called format 0 and format 1. A
model implements one or the other of these two
formats but not both; that is, the access-list-
designation format that is available is model-
dependent, and no control is provided by which the
program can specify the format. A model provides
no special indication of the format that it imple-
ments.

The two possible formats of the access-list desig-
nation are as follows.

Format-0 Access-List Designation

Access-List Origin ALL

01 ' 2% 31

The fields in the format-0 access-list designation are
allocated as follows:

5-38 [ESA/370 Principles of Operation

Access-List Origin: Bits 1-24 of the format-0
access-list designation, with seven zeros appended
on the right, form a 31-bit real address that desig-
nates the beginning of the access list.

Access-List Length (ALL): Bits 25-31 of the
format-0 access-list designation specify the length of
the access list in units of 128 bytes, thus making
the length of the access list variable in multiples. of
eight 16-byte entries. The length of the access list,
in units of 128 bytes, is one more than the value in
bit positions 25-31. The access-list length, with six
zeros appended on the left, is compared against bits
0-12 of an access-list-entry number (bits 16-28 of
an access-list-entry token) to determine whether the
access-list-entry number designates an entry in the
access list.

Bit 0 is reserved for a possible future extension and
should be zero.

Format-1 Access-List Designation

Access-List Origin ALL

0 1 24 31

The fields in the format-1 access-list designation are
allocated as follows:

Access-List Origin: Bits 1-23 of the format-1
access-list designation, with eight zeros appended
on the right, form a 31-bit real address that desig-
nates the beginning of the access list.

Access-List Length (ALL): Bits 24-31 of the
format-1 access-list designation specify the length of
the access list in units of 256 bytes, thus making
the length of the access list variable in muitiples of
sixteen 16-byte entries. The length of the access
list, in units of 256 bytes, is one more than the
value in bit positions 24-31. The access-list length,
with four zeros appended on the left, is compared
against bits 0-11 of an access-list-entry number (bits
16-27 of an access-list-entry token) to determine
whether the access-list-entry number designates an
entry in the access list. ‘

Bit 0 is reserved for a possible future extension and

should be zero.

Programming Note: The maximum number of
access-list entries allowed by a format-0 or format-1
access-list designation is 1024 or 4096, respectively.

There are two access lists available for use at any
time. Therefore, if a model implements the
format-0 access-list designation, a maximum of
2048 2G-byte address spaces can be addressable
without control-program intervention, which is a
total of 4T bytes; and if a model implements the
format-1 access-list- designation, a maximum of
8192 2G-byte address spaces can be addressable
without control-program intervention, which is a
total of 16T bytes.

Access-List Entries

The effective access list is the dispatchable-unit
access list if bit 7 of the ALET being translated is
zero, or it is the primary-space access list if bit 7 is
one. The entry fetched from the effective access list
is 16 bytes in length and has the following format:

I P| ALESN ALEAX
6 1 78 16 31
32 63
ASTE Address
64 90 95
ASTESN

96 127

The fields in the access-list entry are allocated as
follows:

ALEN-Invalid Bit (I): Bit 0, when zero, indicates
that the access-list entry specifies an address space.
When bit 0 is one during access-register translation,
an ALEN-translation exception is recognized.

Private Bit (P): Bit 7, when zero, specifies that
any program is authorized to use the access-list
entry in access-register translation. When bit 7 is
one, authorization is determined as described for
bits 16-31.

Access-List-Entry Sequence Number (ALESN):
Bits 8-15 are compared against the ALESN in the
ALET during access-register translation. Inequality
causes an ALE-sequence exception to be recognized.
It is intended that the control program change bits
8-15 each time it reallocates the access-list entry.

Access-List-Entry Authorization Index (ALEAX):
Bits 16-31 may be used to determine whether the
program for which access-register translation is
being performed is authorized to use the access-list
entry. The program is authorized if any of the fol-
lowing conditions is met:

1. Bit 7 is zero.

2. Bits 16-31 are equal to the extended authori-
zation index (EAX) in control register 8.

3. The BAX selects a secondary bit that is one in
the authority table for the specified address
space.

An extended-authority exception is recognized if
none of the conditions is met.

ASN-Second-Table-Entry (ASTE) Address: Bits
65-89, with six zeros appended on the right, form
the 31-bit real address of the ASTE for the specified
address space. Access-register translation obtains
the segment-table designation for the address space
from the ASTE.

ASTE Sequence Number (ASTESN): Bits 96-127
may be used to revoke the addressing capability
represented by the access-list entry. Bits 96-127 are
compared against an ASTE sequence number
(ASTESN) in the designated ASTE during access-
register translation.

Bits 1-6, 32-64, and 90-95 are reserved for possible
future extensions and should be zeros.

In both the dispatchable-unit access list and the
primary-space access list, access-list entries 0 and 1
are intended not to be used in access-register trans-
lation. Bits 1-127 of access-list entry 0 and bits
1-63 of access-list entry 1 are reserved for possible
future extensions and should be zeros. Bit 0 of
access-list entries 0 and 1, and bits 64-127 of access-
list entry 1, are available for use by programming.
The control program should set bit 0 of access-list
entries 0 and 1 to one in order to prevent the use of
these entries by means of ALETs in which the ALEN
isOor L.

5-39

Chapter S. Program Execution

Extended ASN-Second-Table Entries
When the ASF control is one, the length of each
entry in the ASN second table is extended from 16
bytes to 64 bytes when the table is used in AsSN
translation. Also, the ASN second table begins on a
64-byte boundary instead of a 16-byte boundary.
Access-register translation, which does not involve
ASN translation, always treats the ASN-second-table
entry as being 64 bytes on a 64-byte boundary, and
access-register translation does not examine the ASF
control. The first 32 bytes of the 64-byte ASTE
have the following format:

I ATO 00
01 31
AX ATL 0000
32 48 60 63
i STD]
X ST0 P STL
64 84 87 89 95
| LTD]
v LTO LTL
96 121 127

————Format-6 ALD——————

ALO ALL

128 153 159

—————Format-1 ALD——————

ALO ALL

128 152 159

ASTESN

169 191

5-40 ESA/370 Principles of Operation

192 ' 223

I 1T
224 255

The fields in bit positions 0-127 of the ASTE are
defined with respect to certain mechanisms and
instructions in the section “AsN-Second-Table
Entries” in Chapter 3, “Storage.” With respect to
access-register translation only, the fields in the
ASTE are allocated as follows:

ASX-Invalid Bit (I): Bit 0 controls whether the
address space associated with the ASTE is available.
When bit 0 is zero, access-register translation pro-
ceeds. When the bit is one, an AsTE-validity excep-
tion is recognized.

Authority-Table Origin (ATO): Bits 1-29, with two
zeros appended on the right, form a 31-bit real
address that designates the beginning of the:
authority table. The authority table is accessed in
access-register translation only if the private bit in
the access-list entry is one and the access-list-entry
authorization index (ALEAX) in the access-list entry
is not equal to the extended authorization index
(EAX) in control register 8.

Authorization Index (AX): Bits 32-47 are not used
in access-register translation.

Authority-Table Length (ATL): Bits 48-59 specify
the length of the authority table in units of four
bytes, thus making the authority table variable in
multiples of 16 entries. The length of the authority
table, in units of four bytes, is one more than the
ATL value. The contents of the ATL field are used
to establish whether the entry designated by a par-
ticular EAX falls within the authority table. An
extended-authority exception is recognized if the
entry does not fall within the table.

Segment-Table Designation (STD): Bits 65-95 are
obtained as the result of access-register translation
and are used by DAT to translate the logical address
for the storage-operand reference being made. Bit
64, the space-switch-event control, is not used in or
as a result of access-register translation.

Linkage-Table Designation (LTD): Bits 96-127 are
not used in access-register translation.

Access-List Designation (ALD): When this ASTE
is designated by the primary-ASTE origin in control
register 5, bits 128-159 are the primary-space
access-list designation (PSsALD). During access-
register translation when the primary-list bit, bit 7,
in the ALET being translated is one, the PSALD is
the effective access-list designation. The PSALD is a
format-0 ALD or a format-1 ALD, depending on the
model.

ASN-Second-Table-Entry Sequence Number
(ASTESN): Bits 160-191 are used to control revo-
cation of the accessing capability represented by
access-list entries that designate the ASTE. During
access-register translation, bits 160-191 are com-
pared against the ASTESN in the access-list entry,
and inequality causes an ASTE-sequence exception
to be recognized. It is intended that the control
program change the value of bits 160-191 when the
authorization policies for the address space specified
by the ASTE change or when the ASTE is reassigned
to specify another address space.

Bits 30, 31, and 60-63 must be zeros during access-
register translation if the authority table is to be
accessed; otherwise, an AsN-translation-specification
exception is recognized.

Bits 84-88 and 192-223 are reserved for possible
future extensions and should be zeros. Bits
224-255 are available for use by programming. The
second 32 bytes of the 64-byte ASTE also are
reserved for possible future extensions and should
contain all zeros.

Access-Register-Translation Process

This section describes the access-register-translation
process as it is performed during a storage-operand
reference in the access-register mode by any instruc-
tion except LOAD REAL ADDRESS, TEST ACCESS,
and TEST PROTECTION. LOAD REAL ADDRESS
when Psw bits 16 and 17 are 01 binary, TEST
ACCESS in any translation mode, and TEST PRO-
TECTION in the access-register mode, perform
access-register translation the same as described
here, except that the following exceptions cause a
setting of the condition code instead of being
treated as program-interruption conditions:

e ALET specification
* ALEN translation
* ALE sequence

 ASTE validity
e ASTE sequence
¢ Extended authority

Access-register translation operates on the access
register designated in a storage-operand reference in
order to obtain a segment-table designation for use
by DAT. When one of access-registers 1-15 is desig-
nated, the access-list-entry token (ALET) that is in
the access register is used to obtain the segment-
table designation. When access register 0 is desig-
nated, an ALET having the value 00000000 hex is
used, except that TEST ACCESS uses the actual con-
tents of access register 0.

When the ALET is 00000000 or 00000001 hex, the
primary or secondary segment-table designation,
respectively, is obtained.

When the ALET is other than 00000000 or
00000001 hex, the leftmost seven bits of the ALET
are checked for zeros, the primary-list bit in the
ALET and the contents of control register 2 or 5 are
used to obtain the effective access-list designation,
and the access-list entry number (ALEN) in the
ALET is used to select an entry in the effective
access list.

The access-list entry is checked for validity and for
containing the correct access-list-entry sequence
number (ALESN).

The AsN-second-table entry (ASTE) addressed by
the access-list entry is checked for validity and for
containing the correct AsSN-second-table-entry
sequence number (ASTESN).

Whether the program is authorized to use the
access-list entry is determined through the use of
one or more of: (1) the private bit and access-list-
entry authorization index (ALEAX) in the access-list
entry, (2) the extended authorization index (EAX)
in control register 8, and (3) an entry in the
authority table addressed by the AsN-second-table
entry.

When no exceptions are recognized, the segment-
table designation in the AsN-second-table entry is
obtained. :

In order to avoid the delay associated with refer-
ences to real storage, the information fetched from
real storage normally is also placed in a special
buffer, the ART-lookaside buffer (ALB), and subse-
quent translations involving the same information
may be performed by using the contents of the

Chapter 5. Program Execution S5-41

ALB. The operation of the ALB is described in the
section “ART-Lookaside Buffer” in this chapter.

Whenever access to real storage is made during

access-register translation for the purpose of
fetching an entry from an access-list-designation

5-42 ESA/370 Principles of Operation

source, access list, ASN second table, or authority
table, key-controlled protection does not apply.

The principal features of access-register translation,
including the effect of the ALB, are shown in
Figure 5-9 on page 5-43.

Access-List Designation

ALO ALL

ALET in Access Register Control Register 1

P|ALESN ALEN

PSTD

Control Register 7

Access List
ol

SSTD

1| {P[ALESN|ALEAX ASTE Addr.| ASTESN
v
=07 > =7 |«
CR 8
EAX
> =? +—oH by | =27 |[4—
ASN-Second-Table Entry
/
I ATO ATL STD ASTESN
/
(x 4)
l \ 2 J
(x 1/4)

Authority Table
—

EE

Explanation:

— placed in the ALB.

=

ALB

r— The appropriate ALD is obtained:
1 When P in the ALET is zero (and the ALET is not zero or one), the DUALD in the DUCT is obtained.
— When P in the ALET is one, the PSALD in the primary ASTE is obtained.

— The appropriate STD is obtained:
3 When the ALET is zero, the PSTD in CR 1 is obtained.
— When the ALET is one, the SSTD in CR 7 is obtained.

When the ALET is larger than one:
If a match exists, the STD from the ALB is used. .
If no match exists, tables from real storage are fetched. The resulting STD from the

ASTE is obtained, and entries may be formed in the ALB.

Figure 5-9. Access-Register Translation

\4
w

Obtained STD

r Information, which may include the ALD-source origin, ALET, ALO, and EAX, is used to search
2{ the ALB. This information, along with information from the ALE, ASTE, and ATE, may he

Chapter 5. Program Execution

5-43

Selecting the Access-List-Entry Token
When one of access registers 1-15 is designated, or
for the access register designated by the R: field of
TEST ACCESS, access-register translation uses the
access-list-entry token (ALET) that is in the access
register. When access register 0 is designated,
except for TEST ACCESS, an ALET having the value
00000000 hex is used, and the contents of access
register 0 are not examined.

Obtaining the Primary or Secondary
Segment-Table Designation

When the ALET being translated is 00000000 hex,
the primary segment-table designation in control
register 1 is obtained. When the ALET is 00000001
hex, the secondary segment-table designation in
control register 7 is obtained. In each of these two
cases, access-register translation is completed.

Checking the First Byte of the ALET
When the ALET being translated is other than
00000000 or 00000001 hex, bits 0-6 of the ALET are
checked for being all zeros. If bits 0-6 are not all
Zeros, an ALET-specification exception is recog-
nized, and the operation is suppressed.

Obtaining the Effective Access-List
Designation

The primary-list bit, bit 7, in the ALET is used to
perform a lookup to obtain the effective access-list
designation. When bit 7 is zero, the effective ALD
is the dispatchable-unit ALD located in bytes 16-19
of the dispatchable-unit control table (DUCT).
When bit 7 is one, the effective ALD is the primary-
space ALD located in bytes 16-19 of the primary
AsN-second-table entry (primary ASTE).

When bit 7 is zero, the real address of the
dispatchable-unit ALD is obtained by appending six
zeros on the right to the DUCT origin, bits 1-25 of
control register 2, and adding 16. The addition
cannot cause a carry into bit position 0. The result

is a 31-bit real address.

When bit 7 is one, the real address of the primary-
space ALD is obtained by appending six zeros on
the right to the primary-ASTE origin, bits 1-25 of
control register 5, and adding 16. The addition
cannot cause a carry into bit position 0. The result
is a 31-bit real address.

The obtained 31-bit real address is used to fetch the
effective ALD -- either the dispatchable-unit ALD or
the primary-space ALD, depending on bit 7 of the
ALET. The fetch of the effective ALD appears to be

5-44 ESA/370 Principles of Operation

word-concurrent, as observed by other cpus, and is
not subject to protection. When the storage
address that is generated for fetching the effective
ALD refers to a location which is not available in
the configuration, an addressing exception is recog-
nized, and the operation is suppressed. When the
primary-space ALD is fetched, bit 0, the
ASX-invalid bit, and bits 30, 31, and 60-63 in the
primary ASTE are ignored.

Access-List Lookup

A lookup in the effective access list is performed.
The effective access list is the dispatchable-unit
access list if bit 7 of the ALET is zero, or it is the
primary-space access list if bit 7 is one.

The access-list-entry-number (ALEN) portion of the
ALET is used to select an entry in the effective
access list. If the format-0 ALD is implemented, the
real address of the access-list entry is obtained by
appending seven zeros on the right to bits 1-24 of
the effective ALD and adding the ALEN to this
value. If the format-1 ALD is implemented, the real
address of the access-list entry is obtained by
appending eight zeros on the right to bits 1-23 of
the effective ALD and adding the ALEN to this
value. For these additions, the ALEN is extended
with four rightmost zeros and 11 leftmost zeros. In
either case, a carry, if any, into bit position 0 is
ignored, and the result is a 31-bit real address.

As part of the access-list-lookup process if the
format-0 ALD is implemented, the leftmost 13 bits
of the ALEN are compared against the effective
access-list length, bits 25-31 of the effective ALD, to
establish whether the addressed entry is within the
access list. For this comparison, the access-list
length is extended with six leftmost zeros. If the
value formed from the access-list length is less than
the value in the 13 leftmost bits of the ALEN, an
ALEN-translation exception is recognized, and the
operation is nullified. If the format-1 ALD is imple-
mented, the leftmost 12 bits of the ALEN are com-
pared against bits 24-31 of the effective ALD. For
this comparison, the access-list length is extended
with four leftmost zeros. If the value formed from
the access-list length is less than the value in the 12
leftmost bits of the ALEN, an ALEN-translation
exception is recognized, and the operation is nulli-
fied.

The 16-byte access-list entry is fetched by using the
real address. The fetch of the entry appears to be
word-concurrent as observed by other cpus, with
the leftmost word fetched first. The order in which

the remaining three words are fetched is unpredict-
able. The fetch access is not subject to protection.
When the storage address that is generated for
fetching the access-list entry refers to a location
which is not available in the configuration, an
addressing exception is recognized, and the opera-
tion is suppressed.

Bit 0 of the access-list entry indicates whether the
access-list entry specifies an address space by desig-
nating an ASN-second-table entry. This bit is
inspected, and, if it is one, an ALEN-translation
exception is recognized, and the operation is nulli-
fied.

When bit 0 is zero, the access-list-entry sequence
number (ALESN) in bit positions 8-15 of the access-
list entry is compared against the ALESN in the
ALET to determine whether the ALET designates the
conceptually correct access-list entry. Inequality
causes an ALE-sequence exception to be recognized
and the operation to be nullified.

Locating the ASN-Second-Table Entry
The AsN-second-table-entry (ASTE) address in the
access-list entry is used to locate the ASTE. Bits
65-89 of the access-list entry, with six zeros
appended on the right, form the 31-bit real address
of the ASTE.

The 64-byte ASTE is fetched by using the real
address. The fetch of the entry appears to be word-
concurrent as observed by other cPus, with the left-
most word fetched first. The order in which the
remaining words are fetched is unpredictable. The
fetch access is not subject to protection. When the
storage address that is generated for fetching the
ASTE refers to a location which is not available in
the configuration, an addressing exception is recog-
nized, and the operation is suppressed.

Bit 0 of the ASTE indicates whether the ASTE speci-
fies an address space. This bit is inspected, and, if
it is one, an ASTE-validity exception is recognized,
and the operation is nullified.

When bit 0 is zero, the ASTE sequence number
(ASTESN) in bit positions 160-191 of the ASTE is
compared against the ASTESN in bit positions
96-127 of the access-list entry to determine whether
the addressing capability represented by the access-
list entry has been revoked. Inequality causes an
ASTE-sequence exception to be recognized and the
operation to be nullified.

Authorizing the Use of the Access-List
Entry

The private bit, bit 7, in the access-list entry is used
to determine whether the program is authorized to
use the access-list entry. The access-list-entry
authorization index (ALEAX) in bit positions 16-31
of the access-list entry, the extended authorization
index (EAX) in bit positions 0-15 of control register
8, and the authority table designated by the ASTE
may also be used.

When the private bit is zero, the program is author-
ized, and the authorization step of access-register
translation is completed.

When the private bit is one but the ALEAX is equal
to the BAX, the program is authorized, and the
authorization step of access-register translation is
completed.

When the private bit is one and the ALEAX is not
equal to the BAX, bits 30, 31, and 60-63 of the ASTE
must be zeros; otherwise, an ASN-translation-
specification exception is recognized, and the opera-
tion is suppressed.

When the private bit is one and the ALEAX is not
equal to the EAX, a process called the extended-
authorization process is performed. Extended
authorization uses the EAX to select an entry in the
authority table designated by the ASTE, and it tests
the secondary-authority bit in the selected entry for
being one. The program is authorized if the tested
bit is one.

Extended authorization is the same as the sec-
ondary-AsN-authorization process described in the
section “ASN Authorization” in Chapter 3,
“Storage,” except as follows:

¢ The EAX in control register 8 is used instead of
the authorization index (AX) in control register
4.

e When the value in bit positions 0-11 of the
EAX is greater than the authority-table length
(ATL) in the ASTE, an extended-authority excep-
tion is recognized instead of a secondary-
authority exception. The operation is nullified
if the extended-authority exception is recog-
nized.

When the private bit is one, the ALEAX is not equal
to the BAX, and the secondary bit in the authority-
table entry selected by the EAX is not one, an
extended-authority exception is recognized, and the
operation is nullified.

5-45

Chapter 5. Program Execution

Obtaining the Segment-Table
Designation from the ASN-Second-Table
Entry

When the ALET being translated is other than
00000000 or 00000001 hex and no exception is
recognized in the steps described above, access-
register translation obtains the segment-table desig-
nation from bit positions 65-95 of the ASTE. Bit 64
of the ASTE, the space-switch-event control, is
ignored.

Recognition of Exceptions During
Access-Register Translation

The exceptions which can be encountered during
the access-register-translation process and their pri-
ority are shown in the section “Access Exceptions”
in Chapter 6, “Interruptions.”

Programming Note: When updating an access-list
entry or ASN-second-table entry, the program
should change the entry from invalid to valid (set
bit 0 of the entry to zero) as the last step of the
updating. This ensures, because the leftmost word
is fetched first, that words of a partially updated
entry will not be fetched.

ART-Lookaside Buffer

To enhance performance, the access-register-
translation (ART) mechanism normally is imple-
mented such that access-list designations and infor-
mation specified in access lists, ASN second tables,
and authority tables are maintained in a special
buffer, referred to as the ART-lookaside buffer
(ALB). Access-list designations, access-list entries,
ASN-second-table entries, and authority-table
entries are collectively referred to as ART-table
entries. The CPU necessarily refers to an ART-table
entry in real storage only for the initial access to
that entry. The information in the entry may be
placed in the ALB, and subsequent ART operations
may be performed using the information in the
ALB. The presence of the ALB affects the ART
process to the extent that a modification of an
ART-table entry in real storage does not necessarily
have an immediate effect, if any, on the translation.
In a multiple-cPU configuration, each CPU has its
own ALB.

Entries within the ALB are not explicitly addressable
by the program.

Information is not necessarily retained in the ALB

under all conditions for which such retention is
possible. Furthermore, information in the ALB

5-46 ESA/370 Principles of Operation

may be cleared under conditions additional to those
for which clearing is mandatory.

ALB Structure :

The description of the logical structure of the ALB
covers the implementation by all systems operating
as defined by BSA;370. The ALB entries are consid-
ered as being of four types: ALB access-list desig-
nations (ALB ALDs), ALB access-list entries (ALB
ALES), ALB AsN-second-table entries (ALB ASTESs),
and ALB authority-table entries (ALB ATEs). An
ALB entry is considered as containing within it both
the information obtained from the ART-table entry
in real storage and the attributes used to fetch the
ART-table entry from real storage, as follows:

ALB ALD:

ALDSO|ALO|ALL

ALDSO . The access-list-designation-source
origin used to select the ALD in real
storage; this is either the dispatchable-
unit-control-table origin or the
primary-ASTE origin, depending on the
value of the primary-list bit in the
ALET that was- translated when the
ALB ALD was formed

ALO The access-list origin fetched from the
ALD in real storage

ALL The access-list length fetched from the
ALD in real storage

ALB ALE:

ALO|ALET[P|ALEAX|ASTE Addr.|ASTESN

ALO The access-list origin used to select the
ALE in real storage

ALET The access-list-entry token used to
select the ALE in real storage

P The private bit fetched from the ALE
in real storage

ALEAX The ALE authorization index fetched
from the ALE in real storage

ASTE The AsTE address fetched from the
ALE in real storage

ASTESN The ASTE sequence number fetched

from the ALE in real storage

ALB ASTE:

ASTE Addr.[ASTESN|ATO|ATL|STD

ASTE Addr. The ASTE address used to select the
ASTE in real storage

ASTESN The ASTE sequénce number fetched
from the ASTE in real storage

ATO The authority-table origin fetched
from the ASTE in real storage

ATL The authority-table length fetched
from the ASTE in real storage

STD The segment-table designation fetched
from the ASTE in real storage

ALB ATE:

ATO|EAX{S

ATO The authority-table origin used to
select the ATE in real storage

EAX The extended authorization index used
to select the ATE in real storage

s The secondary bit fetched from the

ATE in real storage

There is not an indication in an ALB ALD of
whether the ALD-source origin used to select the
ALD in real storage was the dispatchable-unit-
control-table origin or the primary-ASTE origin.

Note: The following sections describe the condi-
tions under which information may be placed in
the ALB, the conditions under which information
from the ALB may be used for access-register trans-
lation, and how changes to the tables affect the ART
process. ‘

Formation of ALB Entries

The formation of ALB entries and the effect of any
manipulation of an ART-table entry in real storage
by the program depend on whether the ART-table
entry is attached to a particular cPU and on
whether the entry is valid.

The attached state of an ART-table entry denotes
that the cPU to which the entry is attached can
attempt to use the entry for access-register trans-

lation. The ART-table entry may be attached to
more than one CPU at a time.

An access-list entry or ASN-second-table entry is
valid when the invalid bit associated with the entry
is zero. Access-list designations and authority-table

~ entries have no invalid bit and are always valid.

The primary-space access-list designation is valid
regardless of the value of the invalid bit in the
primary ASTE.

An ART-table entry may be placed in the ALB
whenever the entry is attached and valid.

An access-list designation is attached to a cpu
when the designation is within the dispatchable-
unit control table specified by the dispatchable-
unit-control-table origin in control register 2 or is
within the primary ASTE specified by the
primary-ASTE origin in control register 5. Control
register 5 is considered to contain the primary-ASTE
origin regardless of the value of the address-space-
function (ASF) control, bit 15 of control register 0;
however, see the note below.

An access-list entry is attached to a CPU when the
entry is within the access list specified by either an
ALB ALD or an attached ALD.

An AsN-second-table entry is attached to a cpu
when it is designated by the ASTE address in either
an ALB ALE or an attached and valid ALE.

An authority-table entry is attached to a cpu when
it is within the authority table designated by either
an ALB ASTE or an attached and valid ASTE.

Note: During the execution of a PROGRAM CALL,
PROGRAM TRANSFER, Of LOAD ADDRESS SPACE
PARAMETERS instruction that loads control register
5 when the ASF control is zero, an unpredictable
access-list-designation (ALD) may be placed in the
ALB. This unpredictable ALB ALD may then be
used at any time to place other entries (ALE, ASTE,
and ATE) in the ALB. If access-register translation
uses any of these erroneous ALB entries, the results
are unpredictable. These specific erroneous entries
are removed from the ALB either by clearing the
entire ALB or by the execution of (1) a PROGRAM
CALL, PROGRAM RETURN, PROGRAM TRANSFER,
or LOAD ADDRESS SPACE PARAMETERS instruction
that loads control register 5 when the ASF control is
one, or (2) a LOAD CONTROL instruction that loads
control register 5, regardless of the value of the AsF
control.

Chapter 5. Program Execution 5-47

Use of ALB Entries
An ALB ALD may be used for ART when either of
the following conditions is met:

1. The primary-list bit in the ALET to be trans-
lated is zero, and the ALDso field in the ALB
ALD matches the current dispatchable-unit-
control-table origin.

2. The primary-list bit in the ALET to be trans-
lated is one, and the ALDso field in the ALB
ALD matches the current primary-ASTE origin.

An ALB ALE may be used for ART only when all of
the following conditions are met:

1. The ALET to be translated has a value larger
than 1. (If the ALET is 0 or 1, the contents of
CR | or CR 7 are used.)

2. The ALo field in the ALB ALE matches the ALO
field in the ALD or ALB ALD being used.

3. The ALET field in the ALB ALE matches the
ALET to be translated.

4. The ALB ALE passes the ALE authorization test;
that is, one of the following conditions is true:

» The private bit in the ALB ALE is zero.

e The ALEAX in the ALB ALE equals the
current EAX.

* The current EAX selects a secondary bit
that is one in the authority table designated
by the ASTE that is addressed by the ALB
ALE.

An ALB ASTE may be used for ART whenever the
ASTE address and ASTE sequence number in the
ALB ASTE match the ASTE address and ASTE
sequence number in the ALE or ALB ALE being
used.

An ALB ATE may be used for ART when both of
the following conditions are met:

1. The ATO in the ALB ATE matches the ATO in
the ASTE or ALB ASTE being used.

2. The EAX in the ALB ATE matches the current
EAX.

Modification of ART Tables

When an attached but invalid ART-table entry is
made valid, or when an unattached but valid
ART-table entry is made attached, and no usable
entry formed from the ART-table entry is already in
the ALB, the change takes effect no later than the
end of the current instruction.

5-48 ESA/370 Principles of Operation

When an attached and valid ART-table entry is
changed, and when, before the ALB is cleared of
copies of that entry, an attempt is made to perform
ART requiring that entry, unpredictable results may
occur, to the following extent. The use of the new
value may begin between instructions or during the
execution of an instruction, including the instruc-
tion that caused the change. Moreover, until the
ALB is cleared of copies of the entry, the ALB may
contain both the old and the new values, and it is
unpredictable whether the old or new value is
selected for a particular ART operation. If the old
and new values are used as representations of effec- -
tive space designations, failure to recognize that the
effective space designations are the same may
occur, with the result that operand overlap may not
be recognized. Effective space designations and
operand overlap are discussed in the section “Inter-
locks Within a Single Instruction” in this chapter.

When LOAD ACCESS MULTIPLE of LOAD CONTROL
changes the parameters associated with ART, the
values of these parameters at the start of the opera-
tion are in effect for the duration of the operation.

All entries are cleared from the ALB by the exe-
cution of PURGE ALB and SET PREFIX and by cPU
reset.

Linkage-Stack Introduction

Many of the functions related to the linkage stack
are described in this section and in the section
“Linkage-Stack Operations” in this chapter. Addi-
tionally, tracing of the stacking PROGRAM CALL
instruction and of the PROGRAM RETURN instruc-
tion is described in Chapter 4, “Control”; inter-
ruptions in Chapter 6, “Interruptions”; and the
instructions in Chapter 10, “Control Instructions.”

Summary

These major functions are provided:

1. A table-based subroutine-linkage mechanism
that provides increased (compared to 370-XA)
psW and control-register status changing and
which saves and restores this status and the
contents of general registers and access registers
through the use of an entry in a linkage stack.

2. A new branch-type linkage mechanism that
uses the linkage stack.

3. Instructions for placing an additional two
words of status in the current linkage-stack

entry and for retrieving all of the status and the
general-register and access-register contents that
are in the entry.

4. An instruction for determining whether a
program is authorized to use a particular
access-list-entry token.

5. Aids for program-problem analysis.

In addition, control and authority mechanisms are
incorporated to control these functions.

It is intended that a separate linkage stack be asso-
ciated with and used by each dispatchable unit.
The linkage stack for a dispatchable unit resides in
the home address space of the dispatchable unit.

It is intended that a dispatchable unit’s linkage
stack be protected from the dispatchable unit by
means of key-controlled protection. Key-controlled
protection does not apply to the linkage-stack
instructions that place information in or retrieve
information from the linkage stack.

The linkage-stack functions are for use by programs
considered to be semiprivileged, that is, programs
which are executed in the problem state but which
are authorized to use additional functions. With
these authorization controls, a nonhierarchical
organization of programs may be established, with
each program in a sequence of calling and called
programs having a degree of authority that is arbi-
trarily different from those of programs before or
after it in the sequence. The range of functions
available to each program, and the ability to
transfer control from one program to another, are

prescribed in tables that are managed by the control -

program.

The linkage-stack instructions, which are semiprivi-
leged, are described in Chapter 10, “Control
Instructions.” They are:

* BRANCH AND STACK
* EXTRACT STACKED REGISTERS
* EXTRACT STACKED STATE

* MODIFY STACKED STATE

* PROGRAM RETURN

* TEST ACCESS

In addition, the PROGRAM CALL instruction is
changed (relative to 370-XA) to optionally form an
entry in the linkage stack. A PROGRAM CALL that
operates on the linkage stack is called a stacking
PROGRAM CALL. Recognition of a PROGRAM
CALL as a stacking PROGRAM CALL is under the

control of a bit in a 32-byte entry-table entry. The
entry-table entry is extended in length from 16
bytes to 32 bytes when the address-space-function
(ASF) control, bit 15 of control register 0, is one.

Linkage-Stack Functions

Transferring Program Control

The use of the linkage stack permits programs
operating at arbitrarily different levels of authority
to be linked directly without the intervention of the
control program. The degree of authority of each
program in a sequence of calling and called pro-
grams may be arbitrarily different, thus allowing a
nonhierarchical organization of programs to be
established. Modular authorization control can be
obtained principally by associating an extended
authorization index with each program module.
This allows program modules with different author-
ities to coexist in the same address space. On the
other hand, the extended authorization index in
effect during the execution of a called program
module can be the one that is associated with the
calling program module, thus allowing the called
module to be executed with different authorities on
behalf of different dispatchable units. Options con-
cerning the psw-key mask and the secondary AsSN
are other means of associating different authorities
with different programs or with the same called
program. The authority of each program is pre-
scribed in tables that are managed by the control
program. By setting up the tables so that the same
program can be called by means of different pc
numbers, the program can be assigned different
authorities depending on which pc number is used
to call it. The tables also allow control over which
PC numbers can be used by a program to call other
programs.

The stacking PROGRAM CALL - and PROGRAM
RETURN linkage operations can link programs
residing in different address spaces and having dif-
ferent levels of authority. The execution state and
the contents of the general registers and access reg-
isters are saved during the execution of stacking
PROGRAM CALL and are partially restored during
the execution of PROGRAM RETURN. A linkage
stack provides an efficient means of saving and
restoring both the execution state and the contents
of registers during linkage operations. The avail-
ability of the linkage stack is controlled by the AsF
control in control register 0. When the linkage
stack is not available, these two linkage operations
cannot be performed.

Chapter 5. Program Execution 5-49

During the execution of a PROGRAM CALL instruc-
tion, the PC-number-translation process is per-
formed to locate a 16-byte or 32-byte entry-table
entry, as determined by the ASF control. When a
32-byte entry-table entry is located and a bit,
named the PC-type bit, in the entry-table entry is
one, the stacking PROGRAM CALL operation is
specified; otherwise, the basic PROGRAM CALL
operation (the 370-XA operation) is specified.

In addition to the entry information specified in the
16-byte entry-table entry, the 32-byte entry-table
entry further contains information that specifies
options concerning the address-space control and
psw key in the psw, and the psw-key mask,
extended authorization index, and secondary ASN in
the control registers.

During the stacking PROGRAM CALL operation and
by means of the additional information in the
entry-table entry, the address-space control in the
PSW can be set to specify either the primary-space
mode or the access-register mode. The psw key
can be either left unchanged or replaced from the
entry-table entry. The psw-key mask in control
register 3 can be either ored to from or replaced
from the entry-table entry. The extended authori-
zation index in control register 8 can be either left
unchanged or replaced from the entry-table entry.
The secondary ASN in control register 3 can be set
equal to the primary AsN of either the calling
program or the called program; thus, the ability of
the called program to have access to the primary
address space of the calling program can be con-
trolled.

The stacking PROGRAM CALL operation always
forms an entry, called a state entry, in the linkage
stack to save the execution state and the contents
of general registers 0-15 and access registers 0-15.
The saved execution state includes the pc number
used, the updated psw before any changes are made
due to the entry-table entry, and the extended
authorization index, psw-key mask, primary ASN,
and secondary ASN existing before the operation.
However, the value of the PER mask in the saved
updated psw is unpredictable. The linkage-stack
state entry also contains an entry-type code that
identifies the entry as one that was formed by
PROGRAM CALL.

A space-switching operation occurs when the
address-space number (AsN) specified in the entry-
table entry is nonzero. When space switching
occurs, the operation is called PROGRAM CALL with

5-50 ESA/370 Principles of Operation

space switching (PC-ss). When no space switching
occurs, the operation is called PROGRAM CALL to
current primary (PC-cp).

PROGRAM CALL with space switching performs AsN
translation of the new primary ASN to obtain a new
primary segment-table designation, which it places
in control register 1. It sets the secondary segment-
table designation in control register 7 equal to
either the old primary segment-table designation or
the new one, depending on whether it set the sec-
ondary ASN equal to the old primary ASN or the
new one, respectively. PROGRAM CALL to current
primary sets the secondary ASN equal to the
primary ASN and the secondary segment-table des-
ignation equal to the primary segment-table desig-
nation.

The instruction PROGRAM RETURN restores most
of the information saved in the linkage stack by the
stacking PROGRAM CALL operation. It restores the
psw, extended authorization index, psw-key mask,
primary ASN, secondary ASN, and the contents of
general registers 2-14 and access-registers 2-14.
However, the PER mask in the current PSW remains
unchanged, and the resulting condition code is
unpredictable. The operation of PROGRAM
RETURN is referred to by saying that PROGRAM
RETURN unstacks a state entry.

For PROGRAM RETURN, a space-switching opera-
tion occurs when the restored primary ASN is not
equal to the primary ASN existing before the opera-
tion. When space switching occurs, the operation
is called PROGRAM RETURN with space switching
(PR-ss). When no space switching occurs, the
operation is called PROGRAM RETURN to current

primary (PR-cp).

PROGRAM RETURN with space switching performs
ASN translation of the restored primary ASN to
obtain a new primary segment-table designation,
which it places in control register 1. For PROGRAM
RETURN with space switching or to current
primary, (1) if the restored secondary AsSN is the
same as the restored primary ASN, the secondary
segment-table designation in control register 7 is set
equal to the new primary segment-table designation
in control register 1, or (2) if the the restored sec-
ondary ASN is not the same as the restored primary
ASN, ASN translation and ASN authorization of the
restored secondary ASN are performed to obtain a
new secondary segment-table designation, which is
placed in control register 7.

The stacking PROGRAM CALL operation and the
PROGRAM RETURN operation each can be per-
formed successfully only in the primary-space mode
or access-register mode. An exception is recognized
when the CPU is in the real mode, secondary-space
mode, or home-space mode.

A bit, named the unstack-suppression bit, can be
set to one in a linkage-stack state entry to cause an
exception if an attempt is made by PROGRAM
RETURN to unstack the entry. When the bit is one,
- the entry still can be operated on by the
instructions that add information to or retrieve
information from the entry. The unstack-
suppression bit is intended to allow the control
program to gain control when an attempt is made
to unstack a state entry in which the bit is one.

Branching Using the Linkage Stack

The execution state and the contents of the general
registers and access registers can also be saved in
the linkage stack by means of the instruction
BRANCH AND STACK. BRANCH AND STACK uses a
branch address as do the other branching
instructions, instead of using a PC number.
BRANCH AND STACK, along with PROGRAM
RETURN, can link programs residing in the same
address space and having the same level of
authority; that is, BRANCH AND STACK does not
change the execution state except for the instruc-
tion address.

BRANCH AND STACK forms a linkage-stack state
entry that is almost the same as one formed by
PROGRAM CALL. When it is necessary to distin-
guish between these two types of state entry, an
. entry formed by PROGRAM CALL is called a
program-call state entry, and one formed by
BRANCH AND STACK is called a branch state entry.
A branch state entry differs from a program-call
state entry in two ways: (1) it contains a different
entry-type code, which identifies it as a branch state
entry, and (2) it contains the new value of bits
32-63 of the current psw, the addressing mode and
the branch address, instead of a PC number. The
new value of Psw bits 32-63 is in addition to the
complete Psw that is saved in the state entry.

For BRANCH AND STACK, the addressing mode and
instruction address that are part of the complete
psw saved in the state entry can be the current
addressing mode and the updated instruction
address (the address of the next sequential instruc-
tion), or they can be specified in a register. This
register can be one that had link information placed
in it by a BRANCH AND LINK (BALR only),

BRANCH AND SAVE, BRANCH AND SAVE AND SET
MODE, or BRANCH AND SET MODE instruction.
Thus, BRANCH AND STACK can be used either in a
calling program or at (or near) the entry point of a
called program, and, in either case, a PROGRAM
RETURN instruction located at the end of the called
program will return correctly to the calling
program. The ability to use BRANCH AND STACK
at an entry point allows the linkage stack to be
used without changing old calling programs.

When the Rz field of BRANCH AND STACK is zero,
the instruction is executed without causing
branching.

When PROGRAM RETURN unstacks a branch state
entry, it ignores the extended authorization index,
psw-key mask, primary ASN, and secondary ASN in
the entry. The PROGRAM RETURN instruction
restores the PSW and the contents of general regis-
ters 2-14 and access registers 2-14 that were saved
in the entry. However, the PER mask in the current
PSW remains unchanged, and the resulting condi-
tion code is unpredictable.

BRANCH AND STACK can be executed successfully
only in the primary-space mode or access-register
mode. An exception is recognized when the CPU is
in the real mode, secondary-space mode, or home-
space mode.

The unstack-suppression bit has the same effect in
a branch state entry as it does in a program-call
state entry.

Adding and Retrieving Information

The instruction MODIFY STACKED STATE can be
used by a program to place two words of informa-
tion, contained in a designated general-register pair,
in the current linkage-stack state entry (a branch
state entry or a program-call state entry). This is
intended to allow a called program to establish a
recovery routine that will be given control by the
control program, if necessary.

The instructions EXTRACT STACKED REGISTERS
and EXTRACT STACKED STATE can be used by a
program to obtain any of the information saved in
the current state entry by BRANCH AND STACK or
PROGRAM CALL or placed there by MODIFY
STACKED STATE. EXTRACT STACKED REGISTERS
places the contents of a specified range of general
registers and access registers back in the registers
from which the contents were saved. EXTRACT
STACKED STATE obtains any pair of words of the

Chapter 5. Program Execution S5-51

nonregister information saved or placed in a state
entry and places them in a designated general-
register pair. EXTRACT STACKED STATE sets the
condition code to indicate whether the current state
entry is a branch state entry or a program-call state
entry.

Testing Authorization

The instruction TEST ACCESs has as operands an
access-list-entry token (ALET) in a designated access
register and an extended authorization index (EAX)
in a designated general register. TEST ACCESS
applies the access-register-translation process, which
uses the specified EAX instead of the current EAX in
control register 8, to the ALET, and it sets the con-
dition code to indicate the result. The condition
code may indicate: (1) the ALET is 00000000 hex,
(2) the ALET designates an entry in the
dispatchable-unit access list and can be translated
without exceptions in access-register translation,
(3) the ALET designates an entry in the primary-
space access list and can be translated without
exceptions in access-register translation, or (4) the
ALET is 00000001 hex or causes exceptions in
access-register translation.

The principal purpose of TEST ACCESS is to allow a
called program to determine whether an ALET
passed to it by the calling program is authorized for
use by the calling program by means of the calling
program’s EAX. This is in support of a possible
programming convention in which a called program
will not operate on an AR-specified address space
by means of its own EAX unless the calling program
is authorized to operate on that space by means of
the calling program’s EAX. The called program can
obtain the calling program’s EAX, for use by TEST
ACCEsS, from the current linkage-stack state entry
by means of the EXTRACT STACKED STATE instruc-
tion.

Another purpose of TEST ACCESS is to indicate the
special cases in which the ALET is 00000000 hex,
designating the primary address space, or 00000001
hex, designating the secondary address space.
Because PROGRAM CALL may change the primary
and secondary address spaces, ALETs 00000000 hex
and 00000001 hex may designate different address
spaces when used by the called program than when
used by the calling program.

Still another purpose of TEST ACCESS is to indicate

whether the ALET designates an entry in the
primary-space access list since such a designation

5-52 ESA/370 Principles of Operation

after the primary address space was changed by a
space-switching program-linkage operation may be
an error.

Program-Problem Analysis N
To aid program-problem analysis, the option is
provided of having a trace entry made implicitly for
three additional linkage operations when the
linkage stack is used. When branch tracing is on, a
trace entry is made each time a BRANCH AND
STACK instruction is executed and causes
branching. When ASN tracing is on, a trace entry is
made each time the stacking PROGRAM CALL oper-
ation is performed and each time PROGRAM
RETURN unstacks a linkage-stack state entry formed
by PROGRAM CALL. A detailed definition of
tracing is contained in the section “Tracing” in
Chapter 4, “Control.”

As a further analysis aid, BRANCH AND STACK
when it causes branching, stacking PROGRAM
CALL, and PROGRAM RETURN are also recognized
as PER successful-branching events. For PROGRAM
RETURN, the unstacked state entry may have been
formed by BRANCH AND STACK Or PROGRAM
CALL.

The execution of a space-switching stacking
PROGRAM CALL or PROGRAM RETURN instruction
causes a space-switch event if the primary space-
switch-event control is one before or after the oper-
ation or if a PER event is to be indicated.

Extended Entry-Table Entries

When the address-space-function (ASF) control, bit
15 of control register 0, is one, the entry-table entry
is extended in length from 16 bytes to 32 bytes. Bit
128 of the 32-byte entry-table entry specifies
whether the basic or the stacking PROGRAM CALL
operation is to be performed, and bit positions
131-139 and 144-159 contain information that is
used only if stacking is specified.

This section describes the use of the 32-byte entry-
table entry in both the basic and the stacking
PROGRAM CALL operations. The description here
of the use in the basic PROGRAM CALL operation is
the same as the description in the section “Entry-
Table Entries” in this chapter.

The 32-byte entry-table entry has the followmg
format:

Authorization Key Mask ASN
0 16 31
A Entry Instruction Address P
32 63

Entry Parameter

64 95

Entry Key Mask

96 112 127

T KIM|E|C[S| EK Entry Ext. Auth. Index

128 131 136 140 144) 159
ASTE Address

160 186 191

192 223

224 255

The fields in the 32-byte entry-table entry are allo-
cated as follows:

Authorization Key Mask: Bits 0-15 are used to
verify whether the program issuing the PROGRAM
CALL instruction, when in the problem state, is
authorized to call this entry point. The authori-
zation key mask and the current psw-key mask in
control register 3 are ANDed, and the result is
checked for all zeros. If the result is all zeros, a
privileged-operation exception is recognized. The
test is not performed in the supervisor state.

ASN: Bits 16-31 specify whether a Pc-ss or PC-cp
is to occur. When bits 16-31 are all zeros, a PC-cp
is specified. When bits 16-31 are not all zeros, a
PC-ss is specified, and the bits are the AsN that
replaces the primary ASN.

Entry Addressing Mode (A): Bit 32 replaces the
addressing-mode bit, bit 32 of the current PsSw, as
part of the PROGRAM CALL operation. When bit
32 is zero, bits 33-39 must also be zeros; otherwise,
a PcC-translation-specification exception is recog-
nized.

Entry Instruction Address: Bits 33-62, with a zero
appended on the right, form the instruction address
that replaces the instruction address in the Psw as
part of the PROGRAM CALL operation.

Entry Problem State (P): Bit 63 replaces the
problem-state bit, bit 15 of the current Psw, as part
of the PROGRAM CALL operation.

Entry Parameter: Bits 64-95 are placed in general
register 4 as part of the PROGRAM CALL operation.

Entry Key Mask: Bits 96-111 are oRed into the
pPsW-key mask in control register 3 when bit 132,
the psw-key-mask control, is zero, or replace the
psw-key mask in control register 3 when bit 132 is
one, as part of the stacking PROGRAM CALL opera-
tion. Bits 96-111 are ORed into the psw-key mask
as part of the basic PROGRAM CALL operation.

PC-Type Bit (T): Bit 128, when one, specifies that
the PROGRAM CALL instruction is to perform the
stacking PROGRAM CALL operation. When this bit

“is zero, PROGRAM CALL performs the basic

PROGRAM CALL operation.

PSW-Key Contro! (K): Bit 131, when one, speci-
fies that bits 136-139 are to replace the pPSw key in
the psw as<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>